We consider the Gierer–Meinhardt system with precursor inhomogeneity and two small diffusivities in an interval  $$\begin{equation*}\left\{\begin{array}{ll}A_t=\epsilon^2 A''- \mu(x) A+\frac{A^2}{H}, &x\in(-1, 1),\,t>0,\\[3mm]\tau H_t=D H'' -H+ A^2, & x\in (-1, 1),\,t>0,\\[3mm]A' (-1)= A' (1)= H' (-1) = H' (1) =0,\end{array}\right.\end{equation*}$$
$$\begin{equation*}\left\{\begin{array}{ll}A_t=\epsilon^2 A''- \mu(x) A+\frac{A^2}{H}, &x\in(-1, 1),\,t>0,\\[3mm]\tau H_t=D H'' -H+ A^2, & x\in (-1, 1),\,t>0,\\[3mm]A' (-1)= A' (1)= H' (-1) = H' (1) =0,\end{array}\right.\end{equation*}$$  $$\begin{equation*}\mbox{where } \quad 0<\epsilon \ll\sqrt{D}\ll 1, \quad\end{equation*}$$
$$\begin{equation*}\mbox{where } \quad 0<\epsilon \ll\sqrt{D}\ll 1, \quad\end{equation*}$$  $$\begin{equation*}\tau\geq 0\mbox{ and$\tau$ is independent of $\epsilon$.}\end{equation*}$$
$$\begin{equation*}\tau\geq 0\mbox{ and$\tau$ is independent of $\epsilon$.}\end{equation*}$$  $O(\sqrt{D})$  scale of the inhibitor diffusivity and the O(ε) scale of the activator diffusivity; (iii) the expressions can be made explicit and often have a particularly simple form.
 $O(\sqrt{D})$  scale of the inhibitor diffusivity and the O(ε) scale of the activator diffusivity; (iii) the expressions can be made explicit and often have a particularly simple form.