This paper is concerned with the following periodic Hamiltonianelliptic system
  $ \{ -\Delta \varphi+V(x)\varphi=G_\psi(x,\varphi,\psi)\ \hbox{in }\mathbb{R}^N, \\-\Delta \psi+V(x)\psi=G_\varphi(x,\varphi,\psi)\ \hbox{in }\mathbb{R}^N, \\\varphi(x)\to 0\ \hbox{and }\psi(x)\to0\ \hbox{as }|x|\to\infty.$  
 
Assuming the potential V is periodic and 0 lies in a gap of $\sigma(-\Delta+V)$  ,  $G(x,\eta)$
 ,  $G(x,\eta)$  is periodic in x andasymptotically quadratic in  $\eta=(\varphi,\psi)$
  is periodic in x andasymptotically quadratic in  $\eta=(\varphi,\psi)$  , existence andmultiplicity of solutions areobtained via variational approach.
 , existence andmultiplicity of solutions areobtained via variational approach.