Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-r8tb2 Total loading time: 0 Render date: 2025-12-18T16:55:28.401Z Has data issue: false hasContentIssue false

18 - Hippocampal Dependent Memory Supports Communication and Language

Implications for Cognitive-Communication Disorders

from Part VI - New Directions and Perspectives

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

The study of individuals with hippocampal damage and amnesia provides a compelling opportunity to directly test the role of declarative memory to communication and language. Over the past two decades, we have documented disruptions in discourse and conversation as well as in more basic aspects of language in individuals with hippocampal amnesia including at the word, phrase, and sentence level across offline and online language processing tasks. This work highlights the critical contribution of hippocampal-dependent memory to language and communication and suggests that hippocampal damage or dysfunction is a risk factor for a range of language and communicative disruptions even in the absence of frank disorders of amnesia or aphasia. This work also raises questions about the reality and utility of the historical distinction between communication and language in defining cognitive-communication disorders as individuals with isolated memory impairments show deficits that cut across both communication and language.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Addis, D. R., & Schacter, D. L. (2012). The hippocampus and imagining the future: Where do we stand? Frontiers in Human Neuroscience, 5, 173. https://doi.org/10.3389/fnhum.2011.00173CrossRefGoogle ScholarPubMed
Allen, J., Tranel, D., Bruss, J., & Damasio, H. (2006). Correlations between regional brain volumes and memory performance in anoxia. Journal of Clinical and Experimental Neuropsychology, 28, 457476.10.1080/13803390590949287CrossRefGoogle ScholarPubMed
Aly, M., & Turk-Browne, N. B. (2017). How hippocampal memory shapes, and is shaped by, attention. In Hannula, D. & Duff, M. C. (Eds.), The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition (pp. 369403). Springer International Publishing AG.10.1007/978-3-319-50406-3_12CrossRefGoogle Scholar
American Speech-Language-Hearing Association. (1987). Role of speech-language pathologists in the habilitation and rehabilitation of cognitively impaired individuals. Reprinted from American Speech-Language-Hearing Association Vol. 29, pp. 53–55.Google Scholar
American Speech-Language-Hearing Association. (2005). Roles of speech-language pathologists in the identification, diagnosis, and treatment of individuals with cognitive-communication disorders: Position statement. www.asha.org/policyGoogle Scholar
Arnold, J., Eisenband, J., Brown-Schmidt, S., & Trueswell, J. (2000). The rapid use of gender information: Evidence of the time course of pronoun resolution from eyetracking. Cognition, 76, 813826.10.1016/S0010-0277(00)00073-1CrossRefGoogle ScholarPubMed
Azuma, T., & Bayles, K. (1997). Memory impairments underlying language difficulties in dementia. Topics in Language Disorders, 18(1), 5871.10.1097/00011363-199711000-00007CrossRefGoogle Scholar
Banjac, S., Roger, E., Pichat, C., Cousin, E., Mosca, C., Lamalle, L., Krainik, A., Kahane, P., & Baciu, M. (2021). Reconfiguration dynamics of a language-and-memory network in healthy participants and patients with temporal lobe epilepsy. NeuroImage: Clinical, 31, 102702.10.1016/j.nicl.2021.102702CrossRefGoogle ScholarPubMed
Barense, M. D., Gaffan, D., & Graham, K. S. (2007). The human medial temporal lobe processes online representations of complex objects. Neuropsychologia, 45(13), 29632974.10.1016/j.neuropsychologia.2007.05.023CrossRefGoogle ScholarPubMed
Blank, I. A., Duff, M. C., Brown-Schmidt, S., & Fedorenko, E. (2016). Expanding the language network: Domain-specific hippocampal recruitment during high-level linguistic processing. www.biorxiv.org/content/10.1101/091900v110.1101/091900CrossRefGoogle Scholar
Bonhage, C. E, Mueller, J. L, Friederici, A. D., & Fiebach, C. J. (2015). Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension. Cortex, 68, 3347.10.1016/j.cortex.2015.04.011CrossRefGoogle ScholarPubMed
Broca, P. (1865). Sur la faculte du langage articule. Bull. Soc. Anthropol., 6, 337393.Google Scholar
Brodeur, M. B., Guérard, K., & Bouras, M. (2014) Bank of Standardized Stimuli (BOSS) phase II: 930 new normative photos. PLoS ONE, 9(9), e106953. https://doi.org/10.1371/journal.pone.0106953CrossRefGoogle ScholarPubMed
Brown-Schmidt, S., & Duff, M.C. (2016). Memory and common ground processes in language use. Topics in Cognitive Science, 8(4), 722736.10.1111/tops.12224CrossRefGoogle ScholarPubMed
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Science, 11, 4957.10.1016/j.tics.2006.11.004CrossRefGoogle ScholarPubMed
Carey, S. (2010). Beyond fast mapping. Language Learning and Development, 6(3), 184205.10.1080/15475441.2010.484379CrossRefGoogle ScholarPubMed
Cassell, J., McNeill, D., & McCullough, K.-E. (1999). Speech-gesture mismatches: Evidence for one underlying representation of linguistic and nonlinguistic information. Pragmat. Cogn. 7, 134.10.1075/pc.7.1.03casCrossRefGoogle Scholar
Cavaco, S., Anderson, S. W., Allen, J. S., Castro-Caldas, A., & Damasio, H. (2004). The scope of preserved procedural memory in amnesia. Brain, 127(8), 1853–67.10.1093/brain/awh208CrossRefGoogle ScholarPubMed
Chambers, K. E., Onishi, K. H., & Fisher, C. (2003). Infants learn phonotactic regularities from brief auditory experience. Cognition, 87, B69B77.10.1016/s0010-0277(02)00233-0CrossRefGoogle ScholarPubMed
Cherney, L. R., Shadden, B. B., & Coelho, C. A. (1998). Analyzing Discourse in Communicatively Impaired Adults Gaithersburg, MAQ2. Aspen Publishers.Google Scholar
Clark, H. H. (1996). Using Language. Cambridge University Press.10.1017/CBO9780511620539CrossRefGoogle Scholar
Clark, H. H., & Marshall, C. R. (1978). Reference diaries. In Waltz, D. L. (Ed.), Theoretical Issues in Natural Language Processing, vol 2. (pp. 5763) Association for Computing Machinery.Google Scholar
Clark, H. H., & Wilkes-Gibbs, D. (1986). Referring as a collaborative process. Cognition, 22, 139.10.1016/0010-0277(86)90010-7CrossRefGoogle ScholarPubMed
Clough, S., & Duff, M. C. (2020). The role of gesture in communication and cognition: Implications for understanding and treating neurogenic communication disorders. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.00323CrossRefGoogle ScholarPubMed
Clough, S., Hilverman, C., Brown-Schmidt, S., & Duff, M. C. (2022). Evidence of audience design in amnesia: Adaptation in gesture but not speech. Brain Sciences, 12(8), 1082. https://doi.org/10.3390/brainsci12081082CrossRefGoogle Scholar
Cohen, N. J., & Eichenbaum, H. (1993). Memory, Amnesia, and the Hippocampal System, vol. 3. MIT Press.Google Scholar
Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory, 5(1–2), 131–78.10.1080/741941149CrossRefGoogle ScholarPubMed
Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(1), 2439. https://doi.org/10.1037/0278-7393.31.1.24CrossRefGoogle ScholarPubMed
Corballis, M. C. (2019). Language, memory, and mental time travel: An evolutionary perspective. Frontiers in Human Neuroscience, 13, 217. https://doi.org/10.3389/fnhum.2019.00217CrossRefGoogle ScholarPubMed
Coronel, J. C., Duff, M. C., Warren, D. E., Gonsalves, B. D., Tranel, D., & Cohen, N. J. (2012). Remembering and voting: Theory and evidence from amnesic patients. American Journal of Political Science, 56(4), 837848.10.1111/j.1540-5907.2012.00608.xCrossRefGoogle ScholarPubMed
Covington, N. V., Brown-Schmidt, S., & Duff, M. C. (2018). The necessity of the hippocampus for statistical learning. Journal of Cognitive Neuroscience, 30(5), 680697.10.1162/jocn_a_01228CrossRefGoogle ScholarPubMed
Covington, N. V., & Duff, M. C. (2016). Expanding the language network: Direct contributions from hippocampus. Trends in Cognitive Sciences, 20(12), 869870.10.1016/j.tics.2016.10.006CrossRefGoogle ScholarPubMed
Covington, N. V., Kurczek, J., Duff, M. C., & Brown-Schmidt, S. (2020). The effect of repetition on pronoun resolution in patients with memory impairment. Journal of Clinical and Experimental Neuropsychology, 42(2), 171184.10.1080/13803395.2019.1699503CrossRefGoogle ScholarPubMed
Crystal, D. (1998). Language Play. University of Chicago Press.Google Scholar
de Marchena, A., & Miller, J. (2017), “Frank” presentations as a novel research construct and element of diagnostic decision-making in autism spectrum disorder. Autism Research, 10, 653662. https://doi.org/10.1002/aur.1706CrossRefGoogle ScholarPubMed
Doedens, W., Bose, A., Lambert, L., & Meteyard, L. (2021). Face-to-face communication in aphasia: The influence of conversation partner familiarity on a collaborative communication task. Frontiers in Communication, 6, 574051. https://doi.org/10.3389/fcomm.2021.574051CrossRefGoogle Scholar
Duff, M. C., & Brown-Schmidt, S. (2012). The hippocampus and the flexible use and processing of language. Frontiers in Human Neuroscience, 6.https://doi.org/10.3389/fnhum.2012.00069CrossRefGoogle ScholarPubMed
Duff, M. C., & Brown-Schmidt, S. (2017). Hippocampal contributions to language use and processing. In Hannula, D. & Duff, M. C. (Eds.), The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition (pp. 503536). Springer International Publishing.10.1007/978-3-319-50406-3_16CrossRefGoogle Scholar
Duff, M. C., Covington, N., Hilverman, C., & Cohen, N. J. (2020). Semantic memory and the hippocampus: Revising, reaffirming, and extending the reach of their critical relationship. Frontiers in Human Neuroscience, 13, 471. https://doi.org/10.3389/fnhum.2019.00471CrossRefGoogle Scholar
Duff, M. C., Gallegos, D., Cohen, N. J. & Tranel, D. (2013). Learning in Alzheimer’s disease is facilitated by social interaction and common ground. Journal of Comparative Neurology, 521(18), 43564369.10.1002/cne.23433CrossRefGoogle Scholar
Duff, M. C., Gupta, R., Hengst, J., Tranel, D., & Cohen, N. J. (2011a). The use of definite references signals declarative memory: Evidence from hippocampal amnesia. Psychological Science, 22(5), 666673.10.1177/0956797611404897CrossRefGoogle ScholarPubMed
Duff, M. C., Hengst, J., Gupta, R., Tranel, D. & Cohen, N. J. (2011b). Distributed impact of cognitive-communication impairment: Disruptions in the use of definite references when speaking to individuals with amnesia. Aphasiology, 25(6–7), 675687.10.1080/02687038.2010.536841CrossRefGoogle ScholarPubMed
Duff, M. C., Hengst, J., Tengshe, C., Krema, A., Tranel, D., & Cohen, N. J. (2008). Hippocampal amnesia disrupts the flexible use of procedural discourse in social interaction. Aphasiology, 22(7, 8), 866880.10.1080/02687030701844196CrossRefGoogle ScholarPubMed
Duff, M. C., Hengst, J., Tranel, D., & Cohen, N. J. (2006). Development of shared information in communication despite hippocampal amnesia. Nature Neuroscience, 9(1), 140146.10.1038/nn1601CrossRefGoogle ScholarPubMed
Duff, M. C., Hengst, J., Tranel, D., & Cohen, N. J. (2007). Talking across time: Using reported speech as a communicative resource in amnesia. Aphasiology, 21(6, 7, 8), 702716.10.1080/02687030701192265CrossRefGoogle ScholarPubMed
Duff, M. C., Hengst, J., Tranel, D., & Cohen, N. J. (2009). Hippocampal amnesia disrupts verbal play and the creative use of language in social interaction. Aphasiology, 23(7), 926939.10.1080/02687030802533748CrossRefGoogle ScholarPubMed
Duff, M. C., Kurczek, J., & Miller, M. (2015). Use of reported speech in the communicative interactions of individuals with ventromedial prefrontal cortex damage. Journal of Interactional Research in Communication Disorders, 6(1), 97114.10.1558/jircd.v6i1.97CrossRefGoogle Scholar
Duff, M. C., Kurczek, J., Rubin, R., Cohen, N. J., & Tranel, D. (2013). Hippocampal amnesia impairs creative thinking. Hippocampus, 23(12), 11431149.10.1002/hipo.22208CrossRefGoogle ScholarPubMed
Eichenbaum, H., & Cohen, N. J. (2001). From Conditioning to Conscious Recollection: Memory Systems of the Brain. Oxford University Press.Google Scholar
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., et al. (2011). Exercise training increases size of hippocampus and improves memory. PNAS, 108(7), 30173022. https://doi.org/10.1073/pnas.1015950108CrossRefGoogle ScholarPubMed
Evans, J. L., Saffran, J. R., & Robe-Torres, K. (2009). Statistical learning in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 52, 321335.10.1044/1092-4388(2009/07-0189)CrossRefGoogle ScholarPubMed
Gómez, R. L. (2002). Variability and detection of invariant structure. Psychological Science, 13, 431436.10.1111/1467-9280.00476CrossRefGoogle ScholarPubMed
Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18, 254260.10.1111/j.1467-9280.2007.01885.xCrossRefGoogle ScholarPubMed
Federmeier, K., McLennan, D., De Ochoa, E., & Kutas, M. (2002). The impact of semantic memory organization and sentence context information on spoken language processing by younger and older adults: An ERP study. Psychophysiology, 39(2), 133146.10.1111/1469-8986.3920133CrossRefGoogle ScholarPubMed
Fedorenko, E., & Thompson-Schill, S. L. (2014). Reworking the language network. Trends in Cognitive Science, 18(3), 120126.10.1016/j.tics.2013.12.006CrossRefGoogle ScholarPubMed
Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinions in Neurobiology, 23(2), 250254.10.1016/j.conb.2012.10.002CrossRefGoogle ScholarPubMed
Gabrieli, J. D. E., Cohen, N. J., & Corkin, S. (1988). The impaired learning of semantic knowledge following bilateral medial temporal-lobe resection. Brain Cognition, 7, 157177.10.1016/0278-2626(88)90027-9CrossRefGoogle ScholarPubMed
Gerwing, J., & Bavelas, J. (2004). Linguistic influences on gesture’s form. Gesture, 4, 157195.10.1075/gest.4.2.04gerCrossRefGoogle Scholar
Gupta, G. R., & Duff, M. C. (2016). Incorporating principles of the collaborative contextualized intervention approach with the empirical study of learning and communication in traumatic brain injury. Aphasiology, 30(12), 14611482.Google Scholar
Gupta, R., Tranel, D., & Duff, M. C. (2012). Ventromedial prefrontal cortex damage does not impair the development and use of common ground in social interaction: Implications for cognitive theory of mind. Neuropsychologia, 25(2), 137146.10.1037/a0021123CrossRefGoogle Scholar
Habets, B., Kita, S., Shao, Z., Ozyurek, A., & Hagoort, P. (2011). The role of synchrony and ambiguity in speech-gesture integration during comprehension. Journal of Cognitive Neuroscience, 23(8), 18451854.10.1162/jocn.2010.21462CrossRefGoogle ScholarPubMed
Hamamé, C. M., Alario, F. X., Llorens, A., Liégeois-Chauvel, C., & Trébuchon-Da Fonseca, A. (2014). High frequency γ activity in the left hippocampus predicts visual object naming performance. Brain Language, 135, 104114.10.1016/j.bandl.2014.05.007CrossRefGoogle ScholarPubMed
Hannula, D., & Duff, M. C. (Eds.). (2017). The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition. Springer International Publishing.10.1007/978-3-319-50406-3CrossRefGoogle Scholar
Hannula, D. E., & Greene, A. (2012). The hippocampus reevaluated in unconscious learning and memory: At a tipping point? Frontiers in Human Neuroscience, 6, 80. https://doi.org/10.3389/fnhum.2012.00080CrossRefGoogle Scholar
Hannula, D. E., & Ranganath, C. (2009). The eyes have it: Hippocampal activity predicts expression of memory in eye movements. Neuron, 63(5), 592599.10.1016/j.neuron.2009.08.025CrossRefGoogle ScholarPubMed
Hannula, D. E., Tranel, D., & Cohen, N. J. (2006). The long and the short of it: Relational memory impairments in amnesia, even at short lags. Journal of Neuroscience, 26(32), 83528359.10.1523/JNEUROSCI.5222-05.2006CrossRefGoogle Scholar
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. PNAS, 104, 17261731.10.1073/pnas.0610561104CrossRefGoogle ScholarPubMed
Hengst, J. (2003). Collaborative referencing between individuals with aphasia and routine communication partners. Journal of Speech, Language and Hearing Research, 46, 831848.10.1044/1092-4388(2003/065)CrossRefGoogle ScholarPubMed
Hengst, J. & Duff, M. C. (2007). Clinicians as communication partners: Developing a mediated discourse elicitation protocol. Topics in Language Disorders, 27, 3647.10.1097/00011363-200701000-00005CrossRefGoogle Scholar
Heyworth, N., & Squire, L. (2019). The nature of recollection across months and years after medial temporal lobe damage. PNAS, 116 (10), 46194624.10.1073/pnas.1820765116CrossRefGoogle ScholarPubMed
Hilliard, C., & Cook, S. W. (2016). Bridging gaps in common ground: Speakers design their gestures for their listeners. Journal of Experimental Psychology: Learning, Memory and Cognition, 42, 91103.Google Scholar
Hilverman, C., Brown-Schmidt, S., & Duff, M. C. (2019). Gesture height reflects common ground status even in patients with amnesia. Brain & Language, 190, 3137.10.1016/j.bandl.2018.12.008CrossRefGoogle ScholarPubMed
Hilverman, C., Clough, S. A., Duff, M. C., & Cook, S. W. (2018a). Patients with hippocampal amnesia successfully integrate gesture and speech. Neuropsychologia, 117, 332338.10.1016/j.neuropsychologia.2018.06.012CrossRefGoogle ScholarPubMed
Hilverman, C., Cook, S. W., & Duff, M. C. (2016). Hippocampal declarative memory supports gesture production: Evidence from amnesia. Cortex, 85, 2536.10.1016/j.cortex.2016.09.015CrossRefGoogle ScholarPubMed
Hilverman, C., Cook, S. W., & Duff, M. C. (2017). The influence of the hippocampus and declarative memory on word use: Patients with amnesia use less imageable words. Neuropsychologia, 106, 179186.10.1016/j.neuropsychologia.2017.09.028CrossRefGoogle ScholarPubMed
Hilverman, C., Cook, S. W., & Duff, M. C. (2018b). Hand gestures support word learning in patients with hippocampal amnesia. Hippocampus, 28, 406415.10.1002/hipo.22840CrossRefGoogle ScholarPubMed
Hilverman, C., & Duff, M. C. (2021). Evidence of impaired naming in patients with hippocampal amnesia. Hippocampus, 31(6), 612626.10.1002/hipo.23325CrossRefGoogle ScholarPubMed
Holland, A. (1982). When is aphasia aphasia? The problem of closed head injury. Paper presentation at the Clinical Aphasiology Conference. http://aphasiology.pitt.edu/746/Google Scholar
Issacs, E. A., & Clark, H. H. (1987). References in conversation between experts and novices. Journal of Experimental Psychology: General, 116, 2637.10.1037/0096-3445.116.1.26CrossRefGoogle Scholar
Jafarpour, A., Piai, V., Lin, J. J., & Knight, R. T. (2017). Human hippocampal pre-activation predicts behavior. Scientific Reports, 7(1), 5959.10.1038/s41598-017-06477-5CrossRefGoogle ScholarPubMed
Kaiser, E., Runner, J. T., Sussman, R. S., & Tanenhaus, M. K. (2009). Structural and semantic constraints on the resolution of pronouns and reflexives. Cognition, 112, 5580.10.1016/j.cognition.2009.03.010CrossRefGoogle ScholarPubMed
Karuza, E. A., Newport, E. L., Aslin, R. N., Starling, S. J., Tivarus, M. E., & Bavelier, D. (2013). The neural correlates of statistical learning in a word segmentation task: An fMRI study. Brain and Language, 127, 4654.10.1016/j.bandl.2012.11.007CrossRefGoogle Scholar
Kelly, S. D., Barr, D. J., Church, R. B., & Lynch, K. (1999). Offering a hand to pragmatic understanding: The role of speech and gesture in comprehension and memory. Journal of Memory and Language, 40, 577592.10.1006/jmla.1999.2634CrossRefGoogle Scholar
Kensinger, E. A., Ullman, M. T., & Corkin, S. (2001). Bilateral medial temporal lobe damage does not affect lexical or grammatical processing: Evidence from the amnesic patient H.M. Hippocampus, 11, 347360.10.1002/hipo.1049CrossRefGoogle ScholarPubMed
Kim, R., Seitz, A., Feenstra, H., & Shams, L. (2009). Testing assumptions of statistical learning: Is it long-term and implicit? Neuroscience Letters, 461, 145149.10.1016/j.neulet.2009.06.030CrossRefGoogle ScholarPubMed
Kiran, S., Meier, E., & Johnson, J. (2019). Neuroplasticity in aphasia: A proposed framework of language recovery. Journal of Speech, Language, and Hearing Research, 62(11), 39733985.10.1044/2019_JSLHR-L-RSNP-19-0054CrossRefGoogle ScholarPubMed
Klooster, N., Cook, S., Uc, E., & Duff, M. C. (2015). Gestures make memories, but what kind? Patients with impaired procedural memory display disruptions in gesture production and comprehension. Frontiers in Human Neuroscience, 8, 1054. https://doi.org/10.3389/fnhum.2014.01054CrossRefGoogle ScholarPubMed
Klooster, N., & Duff, M. C. (2015). Remote semantic memory is impoverished in hippocampal amnesia. Neuropsychologia, 79(Part A), 4252.10.1016/j.neuropsychologia.2015.10.017CrossRefGoogle ScholarPubMed
Klooster, N., Tranel, D., & Duff, M. C. (2020). Hippocampus and semantic memory across time. Brain and Language, 210. https://doi.org/10.1016/j.bandl.2019.104711Google Scholar
Kurczek, J., Brown-Schmidt, S., & Duff, M. C. (2013). Hippocampal contributions to language: Evidence of referential processing deficits in amnesia. Journal of Experimental Psychology: General, 142(4), 13461354.10.1037/a0034026CrossRefGoogle ScholarPubMed
Kurczek, J., & Duff, M. C. (2011). Cohesion, coherence, and declarative memory: Discourse patterns of patients with hippocampal amnesia. Aphasiology, 25, (6–7), 700712.10.1080/02687038.2010.537345CrossRefGoogle ScholarPubMed
Kurczek, J., & Duff, M. C. (2012). Intact discourse cohesion and coherence following bilateral ventromedial prefrontal damage. Brain and Language, 123(3), 222227.10.1016/j.bandl.2012.09.003CrossRefGoogle Scholar
Kurczek, J., Wechsler, E., Ahuja, S., Jensen, U., Cohen, N., Tranel, D., & Duff, M. C. (2015). Differential contributions of hippocampus and medial prefrontal cortex to self-projection and self-referential processing. Neuropsychologia, 73, 116126.10.1016/j.neuropsychologia.2015.05.002CrossRefGoogle ScholarPubMed
Kutas, M., & Federmeier, K. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Science, 4(12), 463470.10.1016/S1364-6613(00)01560-6CrossRefGoogle ScholarPubMed
Lackner, J. R. (1974). Observations on the speech processing capabilities of an amnesic patient: Several aspects of H.M.’s language function. Neuropsychologica, 12, 199207.10.1016/0028-3932(74)90005-0CrossRefGoogle ScholarPubMed
Laszlo, S., & Federmeier, K. D. (2011). The N400 as a snapshot of interactive processing: Evidence from regression analyses of orthographic neighbor and lexical associate effects. Psychophysiology, 48(2), 176186.10.1111/j.1469-8986.2010.01058.xCrossRefGoogle ScholarPubMed
Laurita, A., & Spreng, R. N. (2017). The hippocampus and social cognition. In Hannula, D. & Duff, M. C. (Eds.), The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition (pp. 537558). Springer International Publishing.10.1007/978-3-319-50406-3_17CrossRefGoogle Scholar
Lee, J. C., Nopoulos, P. C., & Tomblin, J. B. (2013). Abnormal subcortical components of the corticostriatal system in young adults with DLI: A combined structural MRI and DTI study. Neuropsychologia, 51(11), 21542161.10.1016/j.neuropsychologia.2013.07.011CrossRefGoogle Scholar
Lee, J. C., Nopoulos, P. C., & Tomblin, J. B. (2020). Procedural and declarative memory brain systems in developmental language disorder (DLD). Brain and Language, 205, 104789. https://doi.org/10.1016/j.bandl.2020.104789CrossRefGoogle ScholarPubMed
MacDonald, M. C., Just, M. A., & Carpenter, P. A. (1992). Working memory constraints on the processing of syntactic ambiguity. Cognitive Psychology, 24, 5698.10.1016/0010-0285(92)90003-KCrossRefGoogle ScholarPubMed
MacKay, D. G., Burke, D. M., & Stewart, R. (1998). H.M. revisited: Relations between language comprehension, memory, and the hippocampal system. Journal of Cognitive Neuroscience, 10, 377394.10.1162/089892998562807CrossRefGoogle ScholarPubMed
Madore, K. P., & Schacter, D. L. (2014). An episodic specificity induction enhances means-end problem solving in young and older adults. Psychology and Aging, 29, 913924.10.1037/a0038209CrossRefGoogle ScholarPubMed
Manns, J. R., Hopkins, R. O., & Squire, L. R. (2003). Semantic memory and the human hippocampus. Neuron, 38, 127133.10.1016/S0896-6273(03)00146-6CrossRefGoogle ScholarPubMed
Mayer, J. F., & Murray, L. L. (2012). Measuring working memory deficits in aphasia. Journal of Communication Disorders, 45(5), 325339.10.1016/j.jcomdis.2012.06.002CrossRefGoogle ScholarPubMed
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419457.10.1037/0033-295X.102.3.419CrossRefGoogle ScholarPubMed
McGregor, K. K., Newman, R. M., Reilly, R. M., & Capone, N. C. (2002). Semantic representation and naming in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 45(5), 9981014.10.1044/1092-4388(2002/081)CrossRefGoogle ScholarPubMed
McKenzie, S., & Eichenbaum, H. (2011). Consolidation and reconsolidation: Two lives of memories? Neuron, 71(2), 224233.10.1016/j.neuron.2011.06.037CrossRefGoogle ScholarPubMed
McMurray, B., Horst, J. S., & Samuelson, L. K. (2012). Word learning emerges from the interaction of online referent selection and slow associative learning. Psychological Review, 119, 831877.10.1037/a0029872CrossRefGoogle ScholarPubMed
McNeill, D. (1992). Hand and Mind: What Gestures Reveal About Thought. The University of Chicago Press.Google Scholar
Milner, B., Corkin, S., & Teuber, H. L. (1968). Further analysis of the hippocampal amnesic syndrome: A 14-year follow up study of H.M. Neuropsychologia, 6, 215234.10.1016/0028-3932(68)90021-3CrossRefGoogle Scholar
Monti, J. M., Baym, C. L., & Cohen, N. J. (2014). Identifying and characterizing the effects of nutrition on hippocampal memory. Advances in Nutrition, 5(3), 337S–43S. https://doi.org/10.3945/an.113.005397CrossRefGoogle ScholarPubMed
Morrow, E., Mayberry, L., & Duff, M. C. (2023). The growing gap: A study of sleep, encoding, consolidation of new words in chronic traumatic brain injury. Neuropsychologia, 184, 108518. https://doi.org/10.1016/j.neuropsychologia.2023.108518CrossRefGoogle Scholar
Novick, J. M., Trueswell, J. C., & Thompson-Schill, S. L. (2005). Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension. Cognitive, Affective, & Behavioral Neuroscience, 5, 263281.10.3758/CABN.5.3.263CrossRefGoogle ScholarPubMed
O’Connor, M., & Verfaellie, M. (2002). The amnesic syndrome. In Baddeley, A. D., Kopelman, M. D., & Wilson, B. A. (Eds.), The Handbook of Memory Disorders (2nd ed, pp.145166). John Wiley & Sons Ltd.Google Scholar
O’Connor, M., Verfaellie, M., & Cermak, L. S. (1995). Clinical differentiation of amnesic subtypes. In Baddeley, A. D., Wilson, B. A., & Watts, F. N. (Eds.), The Handbook of Memory Disorders (pp. 5380). John Wiley & Sons Ltd.Google Scholar
Olson, I. R., Page, K., Moore, K. S., Chatterjee, A., & Verfaellie, M. (2006). Working memory for conjunctions relies on the medial temporal lobe. Journal of Neuroscience, 26(17), 45964601.10.1523/JNEUROSCI.1923-05.2006CrossRefGoogle ScholarPubMed
Oppenheim, G. M., Dell, G. S., & Schwartz, M. F. (2007). Cumulative semantic interference as learning. Brain and Language, 103(1–2), 175176.10.1016/j.bandl.2007.07.102CrossRefGoogle Scholar
Oppenheim, G. M., Dell, G. S., & Schwartz, M. F. (2010). The dark side of incremental learning: A model of cumulative semantic interference during lexical access in speech production. Cognition, 114(2), 227252.10.1016/j.cognition.2009.09.007CrossRefGoogle Scholar
Pacton, S., Fayol, M., & Perruchet, P. (2005). Children’s implicit learning of graphotactic and morphological regularities. Child Development, 76, 324339.10.1111/j.1467-8624.2005.00848_a.xCrossRefGoogle ScholarPubMed
Paek, E. J., & Yoon, S. O. (2021). Partner-specific communication deficits in individuals with Alzheimer’s Disease. American Journal of Speech-Language Pathology, 11(30)(1S), 76390.Google Scholar
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 20, 233238.10.1016/j.tics.2006.03.006CrossRefGoogle Scholar
Piai, V., Anderson, K. L., Lin, J. J., Dewar, C., Parvizi, J., Dronkers, N. F., & Knight, R. T. (2016). Direct brain recordings reveal hippocampal rhythm underpinnings of language processing. PNAS, 113, 1136611371.10.1073/pnas.1603312113CrossRefGoogle ScholarPubMed
Pu, Y., Cheyne, D., Sun, Y., & Johnson, B. W. (2020). Theta oscillations support the interface between language and memory. NeuroImage, 215, 116782.10.1016/j.neuroimage.2020.116782CrossRefGoogle ScholarPubMed
Race, E., Keane, M. M., & Verfaellie, M. (2011). Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. The Journal of Neuroscience, 31(28), 1026210269. https://doi.org/10.1523/JNEUROSCI.1145-11.2011CrossRefGoogle Scholar
Ranganath, C., & D’Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31(5), 865873.10.1016/S0896-6273(01)00411-1CrossRefGoogle ScholarPubMed
Reber, P. J., Knowlton, B. J., & Squire, L. R. (1996). Dissociable properties of memory systems: Differences in the flexibility of declarative and nondeclarative knowledge. Behavioral Neuroscience, 110(5), 861871.10.1037/0735-7044.110.5.861CrossRefGoogle ScholarPubMed
Ripich, D. N., Ziol, E., & Lee, M. M. (1998). Longitudinal effects of communication training on caregivers of persons with Alzheimer’s disease. Clinical Gerontologist, 19(2), 3755.10.1300/J018v19n02_04CrossRefGoogle Scholar
Roger, E., Banjac, S., de Schotten, M. T., & Baciu, M. (2022). Missing links: The functional unification of language and memory (L∪ M). Neuroscience & Biobehavioral Reviews, 133, 104489.10.1016/j.neubiorev.2021.12.012CrossRefGoogle Scholar
Rousseaux, M., Vérigneaux, C., & Kozlowski, O. (2010). An analysis of communication in conversation after severe traumatic brain injury. European Journal of Neurology, 17, 922929.10.1111/j.1468-1331.2009.02945.xCrossRefGoogle ScholarPubMed
Rubin, R., Brown-Schmidt, S., Duff, M. C., Tranel, D., & Cohen, N. J. (2011). How do I remember that I know you know that I know? Psychological Science, 22(12), 15741582.10.1177/0956797611418245CrossRefGoogle ScholarPubMed
Rubin, R., & Cohen, N. J. (2017). Memory, relational representations, and the long reach of the hippocampus. In Hannula, D. & Duff, M. C. (Eds.), The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition (pp. 337368). Springer International Publishing.10.1007/978-3-319-50406-3_11CrossRefGoogle Scholar
Rubin, R., Watson, P., Duff, M. C., & Cohen, N. J. (2014). The role of the hippocampus in flexible cognition and social behavior. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00742CrossRefGoogle ScholarPubMed
Ryan, J. (2012) Reconsidering the use of “explicit” and “implicit” as terms to describe task requirements, Cognitive Neuroscience, 3(3–4), 211212.10.1080/17588928.2012.689963CrossRefGoogle ScholarPubMed
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.10.1126/science.274.5294.1926CrossRefGoogle ScholarPubMed
Saffran, J. R., & Wilson, D. P. (2003). From syllables to syntax: Multilevel statistical learning by 12-month-old infants. Infancy, 4, 273284.10.1207/S15327078IN0402_07CrossRefGoogle Scholar
Schacter, D., Addis, D., & Szpunar, K. (2017). Escaping the past: Contributions of the hippocampus to future thinking and imagination. In Hannula, D. & Duff, M. C. (Eds.), The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition (pp. 439466). Springer International Publishing.10.1007/978-3-319-50406-3_14CrossRefGoogle Scholar
Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial temporal lobe for statistical learning. Journal of Cognitive Neuroscience, 26, 17361747.10.1162/jocn_a_00578CrossRefGoogle ScholarPubMed
Schevenels, K., Michiels, L., Lemmens, R., De Smedt, B., Zink, I., & Vandermosten, M. (2022). The role of the hippocampus in statistical learning and language recovery in persons with post stroke aphasia. Neuroimage: Clinical, 36, 103243.10.1016/j.nicl.2022.103243CrossRefGoogle ScholarPubMed
Schlichting, M., & Preston, A. (2017). The hippocampus and memory integration: Building knowledge to navigate future decisions. In Hannula, D. & Duff, M.C. (Eds.), The Hippocampus from Cells to Systems: Structure, Connectivity, and Functional Contributions to Memory and Flexible Cognition (pp. 405438). Springer International Publishing.10.1007/978-3-319-50406-3_13CrossRefGoogle Scholar
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 1121. https://doi.org/10.1136/jnnp.20.1.11CrossRefGoogle ScholarPubMed
Sherman, B. E., Turk-Browne, N. B., & Goldfarb, E. V. (2023). Multiple Memory Subsystems: Reconsidering Memory in the Mind and Brain. Perspectives on Psychological Science, 0(0). https://doi.org/10.1177/17456916231179146Google Scholar
Shrager, Y., Levy, D. A., Hopkins, R. O., & Squire, L. R. (2008). Working memory and the organization of brain systems. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(18), 48184822.10.1523/JNEUROSCI.0710-08.2008CrossRefGoogle ScholarPubMed
Snow, P., Douglas, J. M., & Ponsford, J. (1998). Conversational discourse abilities following severe traumatic brain injury: A follow-up study. Brain Injury, 12, 911935.10.1080/026990598121981CrossRefGoogle ScholarPubMed
Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 12721278. https://doi.org/10.1038/nature04286CrossRefGoogle ScholarPubMed
Tannen, D. (1989). Talking Voices: Repetition, Dialogue, and Imagery in Conversational Discourse. Cambridge University Press.Google Scholar
Tranel, D., & Damasio, A. R. (1993.) The covert learning of affective valence does not require structures in hippocampal system or amygdala. Journal of Cognitive Neuroscience, 5, 7988.10.1162/jocn.1993.5.1.79CrossRefGoogle ScholarPubMed
Trude, A., Duff, M. C., & Brown-Schmidt, S. (2014). Talker-specific learning in amnesia: Insight into mechanisms of adaptive speech perception. Cortex, 54, 117123.10.1016/j.cortex.2014.01.015CrossRefGoogle ScholarPubMed
Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: Efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 19341945.10.1162/jocn.2009.21131CrossRefGoogle ScholarPubMed
Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92, 231270.10.1016/j.cognition.2003.10.008CrossRefGoogle ScholarPubMed
Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J., Pinker, S. (1997). A neural dissociation within language: Evidence that the mental dictionary is part of declarative memory and that grammatical rules are processed by the procedural system. Journal of Cognitive Neuroscience, 9(2), 266276.10.1162/jocn.1997.9.2.266CrossRefGoogle ScholarPubMed
Vallila-Rohter, S., & Kiran, S. (2013). Non-linguistic learning and aphasia: Evidence from a paired associate and feedback-based task. Neuropsychologia, 51(1), 7990.10.1016/j.neuropsychologia.2012.10.024CrossRefGoogle ScholarPubMed
Verfaellie, M., Koseff, P., & Alexander, M. P. (2000). Acquisition of novel semantic information in amnesia: Effects of lesion location. Neuropsychologia, 38, 484492.10.1016/S0028-3932(99)00089-5CrossRefGoogle ScholarPubMed
Wang, J. X., Rogers, L. M., Gross, E. Z., Ryals, A. J., Dokucu, M. E., Brandstatt, K. L., Hermiller, M. S., & Voss, J. L. (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 345(6200), 10541057.10.1126/science.1252900CrossRefGoogle ScholarPubMed
Warren, D. E., Duff, M. C., Tranel, D., & Cohen, N. J. (2011). Observing degradation of visual representations over short intervals when medial temporal lobe is damaged. Journal of Cognitive Neuroscience, 23(12), 38623873.10.1162/jocn_a_00089CrossRefGoogle ScholarPubMed
Wilkes-Gibbs, D., & Clark, H. H. (1992). Coordinating beliefs in conversation. Journal of Memory and Language, 31, 183194.10.1016/0749-596X(92)90010-UCrossRefGoogle Scholar
Wilson, S., Eriksson, D., Yen, M., Demarco, A., Schneck, S., & Lucanie, J. (2019). Language mapping in aphasia. Journal of Speech Language and Hearing Research, 62(11), 39373946.10.1044/2019_JSLHR-L-RSNP-19-0031CrossRefGoogle ScholarPubMed
Yoon, S., & Brown-Schmidt, S. (2018). Aim low: Mechanisms of audience design in multiparty conversation. Discourse Processes, 55, 566592.10.1080/0163853X.2017.1286225CrossRefGoogle Scholar
Yoon, S. O., Duff, M. C., Brown-Schmidt, S. (2017). Learning and using knowledge about what other people do and don’t know despite amnesia. Cortex, 94, 164175.10.1016/j.cortex.2017.06.020CrossRefGoogle Scholar
Youse, K. M., & Coelho, C. A. (2005). Working memory and discourse production abilities following closed-head injury. Brain Injury, 19, 10011009.10.1080/02699050500109951CrossRefGoogle ScholarPubMed
Zeithamova, D., & Preston, A. R. (2010). Flexible memories: Differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. The Journal of Neuroscience, 30(44), 1467614684.10.1523/JNEUROSCI.3250-10.2010CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×