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Abstract

Chickpea (Cicer arietinum L.) is a vital legume crop with significant global importance, yet its
productivity is highly sensitive to environmental variability. This study employed advanced
statistical modelling to identify key environmental drivers of chickpea yield and water-use
efficiency (WUE). Field trial data from 29 experiments across 10 Australian locations were
analysed, focusing on 19 climatic variables across four growth stages: sowing to flowering,
flowering to podding, podding to maturity and the critical period around flowering. Using
correlation analysis and Exclusive LASSO regression, the study quantified relationships
between environmental factors, growth stages and chickpea performance metrics. Key findings
identified soil evaporation and soil moisture supply-demand ratio during the sowing-to-
flowering stage, along with frost during the critical period, as significant determinants of yield.
Frost negatively impacted WUE across multiple growth stages, while mean photothermal
quotient during early growth positively influenced transpiration-based WUE. Predictive
models developed using daily climate data demonstrated strong performance (R? > 0.68-0.72)
for yield and WUE predictions. The study provides actionable insights for optimising chickpea
production under varying environmental conditions, offering practical tools for farmers and
agronomists to enhance crop management strategies, supporting sustainable and profitable
chickpea farming in Australia and beyond.

Introduction

Chickpea, Cicer arietinum L., is a globally significant legume, ranking as the second most
important food legume after dry beans (FAOSTAT, 2025). Its prominence stems from its dual
role in human nutrition and sustainable agriculture. Chickpeas are a rich source of protein,
making them a vital component of diets in many parts of the world, particularly in regions where
animal protein is scarce or expensive. Beyond its nutritional value, chickpea plays a crucial role
in agricultural systems due to its ability to fix atmospheric nitrogen, which enhances soil fertility
and reduces the need for synthetic fertilisers. This nitrogen-fixing capability makes chickpea an
ideal rotational crop in cereal-pulse systems, contributing to the sustainability of farming
practices (Rani and Krishna 2016; Liu et al., 2020; Palmero ef al., 2022).

Chickpea is predominantly cultivated as a cool-season crop, thriving in climates ranging
from Mediterranean to subtropical and tropical regions. The 2023, global chickpea production
reached approximately 16.5 million t, harvested from nearly 14.1 million ha (FAOSTAT, 2025).
Australia, a major player in the global chickpea market, is the largest exporter of desi chickpeas,
the crop ecotype widely used in traditional dishes across South Asia. The crop is well-suited to
medium-rainfall regions (300-500 mm), where it exhibits slow growth during the cold winter
months, followed by accelerated growth in spring as temperatures rise. The area under chickpea
cultivation in Australia has expanded significantly, to 1.039 million ha in 2024-25, driven by
favourable grain prices and its role as a profitable break crop in cereal rotations. However,
despite its economic and agronomic benefits, the average yield of chickpea in Australia remains
relatively low at 1.35 t/ha over the last 10 years (2015-16 to 2024-25), primarily due to challenges
posed by diseases and abiotic stresses such as drought, frost and heat stress (GRDC, 2011;
ABARES, 2024).
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Table 1. Weather data spanning 75 years (1950-2024) for 10 experimental sites (Fig. 1), summarised for both long-term (LT) and short-term (ST) periods (years with
experiments). Data covers the growing season (April 1-October 31) and was sourced from SILO (https://longpaddock.qld.gov.au/silo/; Jeffrey et al., 2001)

Mean daily Mean daily Mean number of
Number of years Mean total rainfall minimum maximum frosts
for experiments (mm) temperature (°C) temperature (°C) (<= 0°C)
Site LT* ST* LT ST LT ST LT ST
Breeza 1 303.7 80.70 6.758 6.122 20.84 23.10 14.36 28.0
Horsham 1 291.5 232.6 5.301 4.675 17.13 17.74 14.31 19.0
Kingaroy 1 303.4 129.6 7.904 7.845 22.29 23.82 14.21 14.0
Leeton 2 291.4 140.0 6.249 6.169 18.52 20.12 15.71 18.5
Narrabri 2 284.7 122.7 7.585 7.871 22.43 23.89 10.95 115
Roseworthy 2 3124 282.2 7.796 7.985 18.75 20.14 2.24 5.0
Tamworth 2 325.0 238.2 5.965 5.812 19.98 21.21 21.59 27.5
Trangie 2 266.8 91.1 7.006 8.074 20.22 22.58 13.09 9.5
Wagga Wagga 3 336.8 249.8 5.710 5.369 17.40 18.51 18.80 30.3
Yanco 1 252.1 88.80 6.746 7.820 18.61 20.48 10.21 6.0

Globally, chickpea yields have stagnated at around 1 t/ha, with
productivity gains lagging behind those of other winter crops
(Joshi and Rao 2017). Abiotic stresses, particularly drought, are
major constraints on chickpea productivity, limiting plant growth,
distribution and yield (Garg et al, 2016; Saini et al, 2022).
Drought, exacerbated by climate change, threatens global food
security, with chickpea being particularly vulnerable due to its
sensitivity to water availability. In Australia, where chickpea is a
cornerstone of the pulse industry, the crop’s productivity is highly
susceptible to climatic variations, especially during critical growth
phases. This vulnerability underscores the urgent need for adaptive
strategies to mitigate the impacts of environmental stresses and
enhance chickpea yields.

Chickpea’s sensitivity to environmental variability, including
temperature, precipitation and other climatic factors, is particu-
larly pronounced during key growth stages. After germination,
temperature, photoperiod and soil moisture availability collec-
tively influence the progression through various phenological
stages. Among these, flowering is a critical phase, as the
environmental conditions during this period and the length of
the reproductive phase significantly affect pod formation and final
yield (Lake and Sadras 2014; Peake et al., 2020; Graham et al,
2022). Understanding and predicting the complex interactions
between environmental conditions, crop growth stages and yield
outcomes is essential for improving productivity and resource use
efficiency. Temperature, solar radiation and water availability
significantly influence chickpea yield and water-use efficiency
(WUE) (Sadras and McDonald 2011; Siddique et al., 2012). These
interactions are further modulated by the specific growth stages of
the crop, highlighting the need for targeted analyses to identify
periods of heightened sensitivity.

Despite significant advancements in agricultural research, there
remains a critical knowledge gap in quantifying how combinations
of environmental factors and growth stages affect chickpea yield
and WUE. Addressing this gap could lead to improved
management strategies and adaptive practices, particularly in the
face of changing climate conditions. For instance, understanding
the impact of cold and heat stress during flowering or the role of
soil moisture during podding could inform irrigation schedules,
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planting dates and varietal selection for mitigating stress and
enhancing crop productivity. Therefore, to uncover the most
significant drivers of yield and WUE, we split the chickpea growing
season phenologically into four intervals: sowing to flowering (sf),
flowering to podding (fp), podding to maturity (pm) and critical
period (cp) thus isolating the sensitive periods (fp and cp) where
the chickpea is prone to pod abortion from sub- and supra-optimal
temperatures (Peake et al., 2020). In the vegetative phase (sf), the
crop accumulates biomass to maximise productivity, while during
the seed-filling stage, there is a balance between vegetative and
reproductive growth to maximise productivity and WUE.

This study aimed to bridge these knowledge gaps by focusing on
four key objectives. Firstly, it sought to quantify the relationships
between combinations of environmental factors and chickpea
growth stages in relation to grain yield and WUE. Secondly, the
study employed correlation analysis and Exclusive LASSO
(eLASSO) regression to identify the most influential environmen-
tal factors in different growth stages. Thirdly, predictive models
were developed to forecast chickpea yield and WUE under
varying environmental conditions. Finally, the research aimed to
provide a practical tool for farmers and agronomists, enabling
informed decision-making to optimise and expand chickpea
production.

Materials and methods
Study area and agronomy

The workflow for this investigation - a meta-analysis of nineteen
environmental variables across four growth stages of chickpeas - is
summarised in Figure S1. Data were collected from 29 field
experiments at 10 sites between 2013 and 2019 (with multiple
sowing times per year at some sites) in South Australia (SA),
Victoria (VIC), New South Wales (NSW) and Queensland (QLD),
representing diverse agroclimatic conditions in Australia’s
chickpea regions (see Table 1 and Figure 1). Detailed information
on years, sowing times, cultivars, agronomic practices and
experimental designs is available in prior studies (Anwar et al.,
2022; Chauhan et al, 2023). The experiments followed the
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National Variety Trials (NVT) protocols, including guidelines for
crop establishment and pest control (NVT Online, 2025).
Although procedures were generally consistent, variations in
row spacing, sowing depth, plant density and harvested area were
noted. Specific details can be found in Table 1 of Anwar
et al. (2022).

Phenological stages (flowering and podding) were recorded
when 50% of the plants exhibited at least one open flower or visible
pod. Yield was measured at physiological maturity via machine
harvest and expressed in kg/ha. Daily weather data, including
temperature, rainfall and solar radiation, were primarily sourced
from the SILO database (https://legacy.longpaddock.qld.gov.au/si
lo/about.html; Jeffrey et al.,, 2001), with some locations using on-
site climate data. Soil properties for each experimental site are
detailed in Anwar et al. (2022) and Chauhan et al. (2023).

Growing periods and weather indices

The growth stages of chickpea — emergence, flowering, pod set and
physiological maturity - are crucial for grain yield and water use
efficiency. Abiotic stresses like heat and drought during these
stages can significantly affect crop performance (Soltani and
Sinclair, 2011; Devasirvatham and Tan, 2018; Bicard et al., 2025).
This study defines four key crop growth periods (Lake and Sadras,
2014; Bicard et al., 2025):

a. SF (Sowing to Flowering): The period from sowing to the
onset of flowering.
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Figure 1. The ten field experimental sites
(black dot) in southeastern Australia used in
this study.

b. FP (Flowering to Pod): The interval between flowering and
pod formation.

c. PM (Pod to Maturity): The period from pod formation to
maturity.

d. CP (Critical Period): Defined as 300°Cd before flowering to
500°Cd after flowering, based on the thermal time concept.

These growth periods may overlap, requiring careful inter-
pretation. The growth periods were calculated for each genotype
based on observed phenology. To assess environmental conditions
during these periods, 19 weather indices were calculated, capturing
temperature, water availability and solar radiation aspects that
influence chickpea growth and yield. Key indices include:

1) H30: Number of days with maximum temperatures > 30°C,
indicating heat stress.

2) H35: Number of days with maximum temperatures > 35°C,
representing extreme heat stress.

3) F: Frost frequency, measured as the number of days with
minimum temperatures < 0°C.

4) sumTT: Cumulative thermal time (°Cd), calculated as the
sum of daily temperatures above a base temperature.

5) SE: Cumulative soil evaporation (mm), representing water
loss from the soil surface.

6) PET: Cumulative potential evapotranspiration (mm),
estimated using the Priestley-Taylor method.

7) SDR: Accumulated water deficit ratio, calculated as the
ratio of water supply to water demand.

8) RAIN: Cumulative rainfall (mm) during the growth period.
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9) ET: Cumulative crop water use (mm), including both
transpiration and soil evaporation.

10) T: Cumulative crop transpiration (mm), excluding soil
evaporation.

11) meanVPD: Mean vapour pressure deficit (kPa), indicating
atmospheric demand for water.

12) meanPTQ: Mean photothermal quotient (MJ/m?/°Cd),
calculated as the ratio of photosynthetically active radiation
(PAR) to mean temperature.

13) meanPTQvpd: Mean photothermal quotient corrected by
vapour pressure deficit (MJ/m?/°Cd/kPa).

14) meanPAR: Mean photosynthetically active radiation (M]J/
m?*/day), derived by multiplying global solar radiation by
0.47 (Pinker and Laszlo, 1992).

15) DL: Cumulative day length (hours:minutes).

16) RADN: Cumulative solar radiation (M]/m?/day).

17) MINT: Mean daily minimum temperature (°C).

18) MAXT: Mean daily maximum temperature (°C).

19) meanPZT: Mean temperature corrected for photoperiod
(°C).

Vapour pressure deficit (VPD) was calculated from saturated
and actual vapour pressure (Zeleke et al., 2023), and the
photothermal quotient (PTQ) was derived from cumulative
photosynthetically active radiation (PAR) over mean temperature
(Fischer, 1985; Soltani and Sinclair, 2011). The PTQ adjusted for
VPD (PTQvpd) was calculated by dividing PTQ by mean VPD.
The photoperiod-adjusted temperature (meanPZT) was deter-
mined using the approach from Gallagher et al. (1983) and Verghis
et al. (1999). The saturated vapour pressure and actual vapour
pressure was estimated for maximum (Tmax) and minimum
(Tmin) temperatures using the equations provided by Dreccer
et al. (2018) and Jeffrey et al. (2001). Equations to compute VPD,
PTQ, PTQvpd and meanPZT, respectively, are given in the
Supplementary material.

Soil water balance

Soil water balance is crucial for crop growth and yield as it
determines the availability of water for plants. Key components
include rainfall, evapotranspiration (ET), runoff and drainage
(Unkovich et al., 2018; Unkovich et al., 2023). This study calculates
the soil water balance using temperature, rainfall and simulated
soil water content at sowing and harvest, following He and
Wang (2019).

We used the Agricultural Production Systems sIMulator
(APSIM) to simulate soil water dynamics. APSIM is a validated
model for crop growth, water cycling and nutrient dynamics
(Holzworth et al., 2014; APSIM, 2023). The Soil Water module was
parameterised using previous research data (Liu et al., 2014; Zeleke
and Nendel, 2019; Wang et al., 2017; Xing et al., 2017; Anwar et al.,
2022). To estimate the initial soil water content for the 2013-2019
experimental period, we ran APSIM from January 1, 2000,
assuming soil water content was equal to the lower limit of plant-
available water (LL15) (He and Wang, 2019).

Total water use (WU) for crops, measured as ET, was
determined by the difference between starting soil moisture at
planting and final soil moisture at harvest, plus total irrigation and
rainfall during the growing season. Water use efficiency (WUE) is
defined as crop yield (Y, kg/ha) per unit of water lost through ET
(mm). Transpiration (T), which excludes soil evaporation, was
calculated similarly (Yang et al., 2016). Equations to compute ET,
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T and WUE using ET and T, respectively, are given in the
Supplementary material.

APSIM also calculates daily potential evapotranspiration (PET)
using the Priestley-Taylor method, based on the relationship
between crop yield and ET (Paredes et al, 2014; Trout and
DeJonge, 2017; Akumaga and Alderman, 2019).

Water supply-demand ratio (SDR)

The APSIM model computes a water-deficit index (Chapman
et al., 19193; Chenu et al., 2011), also known as the ‘water supply’
and ‘water demand’ ratio, which indicates how well the water
extractable by a crop’s roots (water supply) meets the crop’s
potential transpiration needs (water demand). The water supply is
calculated for each soil layer with roots, depending on root growth
and soil properties. Water demand is estimated daily based on crop
growth and atmospheric conditions. The water supply-demand
ratio (SDR) ranges from 0 to 1, reflecting water stress levels in
plants. An SDR of 1 indicates no stress, while a lower value
indicates stress. The water supply-demand ratio (SDR) is the ratio
between water supply and water demand, bounded between 0 and
1, which indicates if the plant is water-stressed. Equations 8 and 9
in the Supplementary material describe how SDR and water
deficiency was calculated.

Exclusive least absolute shrinkage and selection operator
(LASSO)

The technique ‘least absolute shrinkage and selection operator’
(LASSO) introduced by Tibshirani (1996) is a variable selection
method that ‘shrinks’ some of the regression coefficients to zero
during the estimation procedure and aims to retain only the
essential features, leading to a more interpretable model. Recent
applications of LASSO in agricultural studies include Anwar et al.
(2024) and Heilemann et al. (2024). Since its introduction, LASSO
has been extended in various ways to handle different data
structures, including situations where the predictor variables can
be divided into several groups. For example, a group of indicator
variables are often used to represent a multi-level categorical
variable collectively. In genomic analysis, for example, several
genes may be treated as a group if they belong to the same pathway.
Group LASSO (Bakin, 1999; Yuan and Lin, 2006) is used to select
the most important groups of variables without focusing on the
selection of individual variables. If one is interested in selecting
both the important groups and the important variables within the
groups, a bi-level selection method such as those proposed by
Huang et al. (2009) and Breheny and Huang (2009) is needed. A
review of group LASSO and bi-level selection methods can be
found in Huang et al. (2012). Since both group LASSO and bi-level
selection methods aim to select the most representative groups of
variables, some variable groups may be missing in the final model,
which may not be desirable in some circumstances. The method of
exclusive LASSO (eLASSO), recently introduced by Campbell and
Allen (2017), selects at least one variable from each group, thus
maintaining all variable groups in the final model. Campbell and
Allen (2017) reported that eLASSO tends to select the correct
number of variables even when the explanatory variables within
and across groups are correlated. This property is essential since
multicollinearity often exists in agricultural studies. Like all other
LASSO-based methods, eLASSO seeks to solve a constrained
optimisation problem. The objective function involves a penalty
term (A) that governs the number of non-zero coefficients. Under
eLASSO, with a sufficiently large A, there will be exactly one non-
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zero coefficient per group (that is, only one explanatory variable
per group will remain), representing the most parsimonious model
possible under such a method. During the shrinking process, biases
are inevitably introduced to the regression coefficients. Therefore,
the predictive power of eLASSO models may not be as high as that
of other models. Yet, eLASSO models offer a unique way for users
to identify the most important explanatory variable(s) within and
across variable groups.

In this study, the growth periods were considered the variable
groups and the 19 weather indices were considered as the
explanatory variables. All explanatory variables were standardised
by subtracting the mean and further dividing by the standard
deviation before analysis. Two eLASSO models were developed for
each of the response variables:

o Model 1: Selected by minimising the Bayesian Information
Criterion (BIC), balancing interpretability and goodness of fit
(Schwarz, 1978).

o Model 2: Selected using the minimum penalty parameter ()
that retained one variable from each group, prioritising
simplicity and identifying key factors.

The chief intention of including Model 2 was to identify the
single most dominant variable per growth stage under the eLASSO
constraint, rather than for prediction. The performance of Model 2
also provides a contrast to the more complex but better-
performing BIC-selected Model 1.

eLASSO model performance evaluation

We compared the observed and the eLASSO-modelled chickpea
yield, water use efficiency based on transpiration (WUE_T) and
water use efficiency based on evapotranspiration (WUE_ET) with
least square linear regressions, including the coefficient of
determination (R?, the amount of variation explained by the
model). We tested the goodness of fit by calculating the Root Mean
Square Error (RMSE) (Pifieiro et al., 2008) using Equation 10 given
in Supplementary material. Additionally, we expressed the
normalised root means square error (NRMSE) as precision
parameters given in Equation 11 and the Willmott index
(Willmott, 1982) using Equation 12 (Supplementary material).

The analyses were carried out using the ExclusiveLasso package
in R (Weylandt et al., 2018). We used R version 4.4.2 (R Core
Team, 2024) and the following R packages: correlationfunnel v.
0.2.0 (Dancho, 2020), emmeans v. 1.10.5 (Lenth, 2024),
ExclusiveLasso v. 0.0 (Weylandt et al., 2018), ggpmisc v. 0.6.1
(Aphalo, 2024), ggpubr v. 0.6.0 (Kassambara, 2023), glmnet v. 4.1.8
(Friedman et al., 2010; Simon et al., 2011; Tay et al., 2023), grateful
v. 0.2.10 (Rodriguez-Sanchez and Jackson, 2023), gt v. 0.11.1
(Iannone et al., 2024), janitor v. 2.2.0 (Firke, 2023), MESS v. 0.5.12
(Ekstrom, 2023), naniar v. 1.1.0 (Tierney and Cook, 2023),
patchwork v. 1.3.0 (Pedersen, 2024), gs v. 0.27.2 (Ching, 2024),
remotes v. 2.5.0 (Csardi et al., 2024), reshape2 v. 1.4.4 (Wickham
2007), tidyverse v. 2.0.0 (Wickham et al., 2019), running in RStudio
v. 2024.9.1.394 (Posit team, 2024).

Results
Weather data

Significant variations in ambient temperature and in-season
rainfall were observed across ten diverse locations in the south-
eastern Australian cropping belt (Table 1, Figure 1 and
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Table 2. Descriptive summary statistics for chickpea yield and water use
efficiency (WUE) based on two different measures: transpiration (WUE_T) and
evapotranspiration (WUE_ET). These data are derived from 438 observations
across 29 experiments at ten field experimental sites in southeastern Australia
with multiple genotypes per experiment. Some experiments had several sowing
times to generate different growing conditions (Anwar et al., 2022). *sd =
standard deviation, min = minimum and max = maximum

Response variable Mean sd* min max

Yield 1725.3 709.4 113.1 4128.4
(kg/ha)

wue_T 11.67 4.74 0.85 30.83
(kg grain/ha/mm)

wue_ET 6.41 2.45 0.42 16.01

(kg grain/ha/mm)

Supplementary Table S5). Mean maximum temperatures ranged
from 15.8°C to 22.7°C, with Narrabri recording the highest, while
Wagga Wagga experienced the lowest. In contrast, minimum
temperatures varied from 1.3°C to 9.4°C. Rainfall patterns also
displayed considerable differences. Breeza, the driest site, received
only 71 mm of in-season rainfall. In contrast, Wagga Wagga, the
wettest, recorded up to 300 mm. Notably, all experimental sites
experienced substantially lower growing-season rainfall during the
experimental years compared to their long-term averages. For
instance, Breeza’s rainfall during the experiment was 80.7 mm,
significantly lower than its 303.7 mm long-term average. While
minimum temperatures remained relatively consistent between
short-term experimental periods and long-term averages, with
slight increases of over 1°C at Trangie and Yanco, maximum
temperatures showed a clear upward trend in the short term,
exceeding long-term means across all sites. Trangie, for example,
experienced a temperature increase of more than 2°C.
Furthermore, the frequency of frost days was notably higher
during the experimental years, particularly at Breeza and Wagga
Wagga. These findings collectively suggest that the experiments
were conducted during an unusually warm and dry period in the
region, characterised by reduced cloud cover, which likely
contributed to the increased frequency of frost days. Such climatic
conditions could potentially impact chickpea flowering and

podding.

Statistics of response variables

The summary descriptive statistics for chickpea yield and water use
efficiency (WUE) based on two different measures: transpiration
(WUE_T) and evapotranspiration (WUE_ET) are given in Table 2.
These data are derived from 438 observations across ten field
experimental sites in southeastern Australia. Yields varied
considerably, ranging from 113 to 4128 kg/ha, with an average
of 1725 kg/ha. WUE_T ranged from 0.85 to 30.8 kg grain/ha/mm,
averaging 11.7 kg grain/ha/mm. WUE_ET showed similar
variability, ranging from 0.42 to 16.0 kg grain/ha/mm, with an
average of 6.41 kg grain/ha/mm. Standard deviations indicate
substantial variability in the dataset.

Correlation analysis of predictor variables

The Pearson correlation coefficients between nineteen weather
indices and chickpea yield, water use efficiency based on
transpiration (WUE_T), and water use efficiency based on
evapotranspiration (WUE_ET) are presented in Table 3 and
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Table 3. Pearson correlation coefficients between nineteen weather indices and chickpea yield, water use efficiency based on transpiration (WUE_T), and water use
efficiency based on evapotranspiration (WUE_ET) during the critical period (cp). n = 438; cp = 300 °Cd before flowering to 500 °Cd after flowering (Lake and Sadras,
2014); Sig= significance levels: *** = p <0.001; ** = p < 0.01; * = p <0.05; and ns = not significant

Yield Sig_Y WUE_T Sig T WUE_ET Sig _ET

Chickpea critical period (cp)

H30 -0.17 e -0.18 e -0.22 e
H35 -0.35 b -0.22 b -0.32 ol
F -0.43 b -0.49 b -0.51 x
sumTT 0.07 ns 0.10 * 0.11 *
SE 0.10 * 0.05 ns -0.10 *
PET 0.02 ns 0.09 ns 0.01 ns
SDR -0.02 ns -0.19 b -0.08 ns
RAIN 0.03 ns 0.06 ns -0.15 >
ET 0.09 ns -0.22 bl -0.20 ol
T 0.05 ns -0.23 e -0.16 **
meanVPD -0.17 i -0.17 e -0.22 e
meanPTQ -0.09 ns -0.04 ns -0.11 *
meanPTQvpd 0.07 ns 0.09 ns 0.07 ns
meanPAR 0.14 ** 0.22 b 0.14 **
DL -0.18 b -0.19 b -0.21 ol
RADN -0.02 ns 0.01 ns -0.04 ns
MINT 0.35 e 0.43 b 0.40 ol
MAXT -0.04 ns -0.03 ns -0.07 ns
meanPZT 0.09 ns 0.22 b 0.07 ns

Abbreviations: H30 = heat stress, number of days with maximum temperatures > = 30°C; H35 = number of days with maximum temperatures >= 35°C; F = frost frequency, number of days with
minimum temperatures < = 0°C; sumTT = sum of daily thermal time (°Cd); SE = sum of daily soil evaporation (mm); PET = sum of daily potential evapotranspiration (mm); SDR = accumulated
daily water deficit; RAIN = sum of daily rainfall (mm); ET = sum of daily crop water use (mm); T = sum of daily crop transpiration (mm); meanVPD = mean vapour pressure deficit (kPa);
meanPTQ = mean of photothermal quotient (MJ/m?/°Cd); meanPTQvpd = mean photothermal quotient corrected by VPD (MJ/m?/°Cd); meanPAR = mean of photosynthetically active

radiation (MJ/m?/d); DL = sum of day length (hours); RADN =sum of solar radiation (MJ/m?/d); MINT= daily mean minimum temperature (°C); MAXT = daily mean maximum temperature (°C);

meanPZT = daily mean temperature corrected for photoperiod (°C).

S1-S3. The results revealed significant relationships between
weather indices and chickpea performance, with varying degrees of
influence across different growth stages. For instance, during the
sowing to flowering (SF) period (Table S1), frost frequency (F)
showed negative correlations with yield (r = —0.33, p < 0.001),
WUE_T (r —0.27, p<0.001) and WUE_ET (r —0.39,
p <0.001). Sum of daily thermal time (sumTT) and accumulated
daily water deficit (SDR) were negatively correlated with yield and
WUE. Mean photosynthetically active radiation (meanPAR) and
daily mean minimum temperature (MINT) showed positive
correlations with yield and WUE. In the flowering to pod (FP)
period (Table S2), heat stress indices (H30, H35) had negative
correlations with yield (r = —0.13, p < 0.01; r = —0.30, p < 0.001)
and WUE. Frost frequency (F) continued to affect yield and WUE
negatively. Mean vapour pressure deficit (meanVPD) correlated
negatively with yield and WUE. The photothermal quotient
corrected by VPD (meanPTQvpd) showed positive correlations
with WUE_T and WUE_ET.

In the pod to maturity (pm) period (Table S3), sumTT and
MINT continued to have positive correlations with yield
(r=0.44, p<0.001; r=0.25 p<0.001) and WUE. Frost
frequency (F) had a negative impact but was slightly lower
than in earlier periods. Mean VPD negatively correlated with
WUE_T and WUE_ET.
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During the critical period (cp), heat stress indices (H30, H35)
negatively correlated with yield (r = —0.17, p < 0.001; r = —0.35,
p<0.001) and WUE (Table 3). Frost frequency (F) remained
strongly negative across all measures. Mean PAR and MINT had
positive correlations with yield and WUE.

These results indicate significant weather influences on
chickpea yield and water use efficiency across growth periods.
Heat stress, frost and water deficit negatively affect chickpea
performance, whereas adequate light and moderate temperatures
contribute positively.

Correlation funnels of explanatory variables

The correlation funnels (Figure 2) illustrate the most influential
explanatory variables (climate index plus period) for each of the
three response variables. For grain yield (kg/ha), of the 10 most
influential features, nine are positively correlated with yield while
only one is strongly negative (‘F_cp’ = number of frost days in the
‘critical period’) (Figure 2A). Of the positive features, six were
from the podding-to-maturity (‘pm’) period; the other three were
from the sowing-to-flowering (‘sf’) period. Four of the influential
features involved evapotranspiration (‘ET_pm’ and ‘ET_sf’) or
transpiration alone (‘T_pm’ and ‘T_sf’). The sum of thermal time
for podding to maturity (‘sumTT_pm’) was the only purely
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Figure 2. Correlation funnels showing the relationships between response (yield (A), water use efficiency based on transpiration (WUE_T) (B) and based on evapotranspiration
(WUE_ET) (C)) and explanatory variables (see text for explanation) across four growth stages (sf =sowing to flower, fp =flower to pod, pm =pod to maturity and cp =critical
period). The critical t-test values for these Pearson correlation coefficients (n = 438) are: +/- 0.094 (for 0.05 > p > 0.01); +/- 0.123 (for 0.01 > p > 0.001); and +/- 0.157 (p < 0.001; see

Table S1 - S3).

temperature-derived feature present in this top 10. The final two
were the sum of PZT in the same periods (‘sumPZT_pm’) and
‘SE_pm’. Another notable negatively correlated point was
‘SDR_sf” (soil moisture supply/demand ratio for the sowing to
flowering period). Many other interesting observations can be
made; for example, while high heat stress at the critical period
(‘H35_cp’) and flowering to podding (‘H35_fp’) were signifi-
cantly negatively correlated with yield, the incidence of warm
days from podding to maturity (‘H30_pm’) is positively
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correlated with yield. We can speculate about the mechanisms
for these observations.

When seasonal water-use efficiency for transpiration from
sowing to maturity (‘wue_T’) was examined as the response
variable (Figure 2B) it produced a somewhat dissimilar set of most-
influential features: in the top 10, four were positively and six were
negatively correlated. Low temperatures (‘MINT_cp’ and
‘MINT_fp’) were strongly positive while actual frost effects
(‘F_cp’, ‘F_sf, ‘F_{p’) featured strongly on the negative side. The
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Figure 3. Estimated Exclusive LASSO coefficients based on Model 2 (see text) for chickpea yield (A, Left), water-use efficiency based on transpiration (WUE_T, B_middle) and
evapotranspiration (WUE_ET, C_right) in relation to climatic indices across four growing periods (sf = sowing to flower, fp = flower to pod, pm = pod to maturity and cp = critical

period).

sum of vapour-pressure deficit for the critical period
(‘sumVPD_cp’) and for sowing to flowering (‘sumVPD_sf’) were
strongly negatively correlated with ‘wue_T’, along with soil
moisture supply/demand ratio in the sowing to flowering period
(‘SDR_sf). Finally, ‘meanPZT_sf and ‘mean_PTQvpd_fp’ made
up the positive correlations.

The third response variable (seasonal water-use efficiency for
evapotranspiration for sowing to maturity = ‘wue_ET’) only
exhibited one highly positively correlated feature in this top group
(Figure 2C), namely ‘MINT_cp’ (mean daily minimum temper-
ature in the critical period). The other top influencers (features)
were all negative: five in the sowing-to-flowering period, plus frost
incidence in all three periods involving flowering time (‘F_cp’,
‘F_sf’, ‘F_{p’). Surprisingly, accumulated day-length in the sowing-
to-flowering period (‘DL_sf’) was strongly negatively correlated
with ‘wue_ET’, in addition to ‘SDR_sf, ‘sumVPD_sf,
‘sumPTQ_sf and ‘sumPTQvpd_sf.

Exclusive LASSO for Variable Selection

The estimated coefficients based on eLASSO Model 2 for chickpea
yield, WUE_T and WUE_ET are presented in Figure 3. Under this
model’s selection criterion, only one explanatory variable was
retained for each growing period. Figure 3 (left panel) reveals that
the key factors affecting yield are ET during pm, MINT during fp,
SDR during sf and F during cp. Yield increases by approximately
5 kg/ha for every standard deviation increase in ET during these
periods, while F during fp and cp and SDR during sf show negative
effects on yield.

For WUE_T, Figure 3B (middle panel) shows that mean PZT
during sf and frost during other periods (pm, fp and cp) are the key
influencing factors. Frost exhibited the most significant effects on
WUE_T across these periods, with values ranging from -0.04 to -
0.09. In contrast, mean PZT during sf demonstrated a positive
effect on WUE_T, with an expected increase of 0.06 for every
standard deviation increase in mean PZT. For WUE_ET, the key
factors identified include RAND during pm, SDR during sf and
frost during fp and cp periods. Among these, only RAND during
pm showed a positive effect (approximately 0.03), while all other
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factors exhibited negative effects ranging between —0.05
and —0.095.

Figure 4 displays the estimated non-zero eLASSO coefficients
based on Model 1 for chickpea yield, WUE_T and WUE_ET. For
better visualisation of the effects of the explanatory variables,
similar enlarged plots showing the complete list of explanatory
variables, including those with a coefficient being shrunk to zero,
are displayed in Figures S2-S4. This model minimised BIC without
restricting the number of explanatory variables. The left panel
indicates that ET, SE and mean PTQ during pm and sf periods had
the strongest positive effects on yield, while F during cp and mean
PTQvpd during sf had the most detrimental effects. For WUE_T
(Figure 4, middle panel), SE during sf showed the most positive
effects, while F during cp and RAIN during pm had the most
negative impacts. Similar patterns were observed for WUE_ET,
except that SE during sf had less influence than mean PTQvpd.
Detailed eLASSO coefficients based on Model 1 are provided in
Table S4.

Predictions of response variables from eLASSO

Figure 5 compares observed and predicted values of yield and
water-use efficiency (WUE) in chickpea using two eLASSO
models: one based on BIC (Model 1) and the other on the
minimum penalty parameter A (Model 2). Panels A-F in Fig. 5
show predictions versus observations for yield, WUE based on
evapotranspiration (WUE_ET) and WUE based on transpiration
(WUE_T) for both models.

Each graph displays scatter plots of observed against predicted
values, with a black dashed 1:1 line representing perfect prediction
and a black solid line indicating the linear regression fit (LR). The
insets include key statistical metrics such as the coefficient of
determination (r?), root mean square error (RMSE), normalised
RMSE (NRMSE) and Willmott’s index (d).

For each of the three response variables (yield, WUE_T and
WUE_ET) we observed a very similar result within the two
eLASSO models (BIC-based and A-based models) but a large
difference between them when plotting observed versus predicted
values. The A-based model fits (see Figure 5B, D and F) had a
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Figure 4. Estimated Exclusive LASSO coefficients based on Model 1 (see text) for chickpea yield (A, Left), water-use efficiency based on transpiration (WUE_T, B_middle) and
evapotranspiration (WUE_ET, C_right) in relation to climatic indices across four growing periods (sf = sowing to flower, fp = flower to pod, pm = pod to maturity and cp = critical

period).

tighter distribution around the regression lines but much lower R%s
than the BIC-based model fits (Figure 5A, C and E). This was also
reflected in their higher RMSE and NRMSE values. However, these
A-based model fits were poorly predictive of the response variables
because the model retained only one explanatory variable in each
growth stage; hence, the low explanatory and predictive powers
reflected by the almost horizontal spread of the points. Predictions
of this type would be of little or no utility in the field for predicting
crop water use and yield.

In contrast, the BIC-based model fits were much more
predictive with much higher R? values (all >0.7) but with a
greater scatter about the regression lines (which is also reflected in
the lower RMSE and NRMSE statistics). The BIC-based model also
fits and estimates a sensible origin (i.e., (0,0)) much more closely
for all response variables (actual values not given), so these models
perform better across a typical real-world range of yield and water-
use scenarios. The A-based model fits are almost useless for
predictive purposes except for the fact that the LASSO procedure
uncovered these ‘best-fit’ solutions. Examination of the range of
the predicted values from A-based model fits illustrates their poor
predictive value. For example, predicted A-based model yields
(Figure 5B) range from about 1400 to 2100 kg/ha, whereas the
observed yields range from 100 kg/ha to over 4000.

Discussion

The need to improve resource-use efficiency drives agricultural
innovation (Sadras and McDonald, 2011; Lorite et al., 2023;
Dreccer et al., 2024); understanding the environmental factors
influencing crop performance becomes increasingly critical,
particularly in the context of climate change and its impact on
crop yields (Challinor et al., 2014). This study comprehensively
analyses the key environmental drivers, including abiotic stress
factors, influencing chickpea yield and water-use efficiency (WUE)
under Australian field conditions. By integrating advanced
statistical modelling with extensive field data, the research
identifies temperature extremes, water availability and solar
radiation as critical factors affecting chickpea growth and
productivity. The study’s use of eLASSO regression (Tibshirani,
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1996; Campbell and Allen, 2017) to identify these key drivers
represents a significant methodological advancement. Unlike
traditional LASSO, which may exclude entire groups of variables,
eLASSO ensures that at least one variable from each group is
retained, providing a more comprehensive understanding of the
factors influencing crop performance. This approach is particu-
larly useful in agricultural studies, where multiple interrelated
variables often influence crop outcomes (Kumar et al., 2019). The
strong predictive performance of the models developed in this
study (R* > 0.7 for yield and WUE predictions, Figs. 5A, C and E)
demonstrates the potential of eLASSO to identify key drivers of
crop performance under varying environmental conditions.
Despite its advantages, eLasso regression has a notable drawback.
Since the algorithm must retain at least one explanatory variable
from each group, some of the retained variables may not be
important at all. Caution must be applied while interpreting the
model, especially when only one variable is selected in any group.

The findings described here offer novel insights into the
complex interactions between environmental variables and
chickpea performance, which can inform improved agronomic
practices and breeding strategies to enhance crop resilience in the
face of climate variability (Vadez et al., 2012; Garg et al., 2016;
Vadez et al., 2024). This methodology could also be applied to
other crops to better understand the complex interactions between
environmental factors and crop growth, ultimately leading to more
targeted and effective management strategies.

Chickpea yield is highly sensitive to environmental fluctuations,
with evapotranspiration (ET) and frost frequency emerging as
major determinants (Singh et al., Singh et al., 1993; Berger et al.,
2006). The positive correlation between ET during podding to
maturity (pm) including sowing to flowering (sf) and yield
(Figure 2) underscores the importance of water availability during
these stages for biomass accumulation and grain filling. Chickpea is
a drought-avoidant crop through plasticity in phenology and
employs a deep root system to access subsoil moisture when it
cannot escape drought. However, water availability during the
reproductive phase is particularly critical, as it supports both pod
retention and seed filling (Singh et al., 2008; Comas et al., 2013;
Wagqas et al., 2019). Inadequate moisture supply during this period
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can lead to increased flower abortion and reduced seed set,
ultimately lowering yield potential (Peake et al., 2020). Similar
findings have been reported in other crops such as wheat and
barley, where post-anthesis water availability significantly enhan-
ces grain yield by maintaining assimilate supply to the developing
grain (Samarah, 2005; Passioura, 2006; Foulkes et al., 2007). The
physiological need for sustained photosynthesis and assimilate
translocation to seeds during these stages aligns with ET’s observed
importance in chickpea’s final growth phases (Sadras and
McDonald, 2011; Dreccer et al., 2018).

Conversely, frost during flowering to podding (fp) and the
critical period (cp) had a strong negative impact on yield (Table 3;
Figures 3 and 4), highlighting chickpea’s vulnerability to low
temperatures during reproductive stages (Lake and Sadras, 2014;
GRDC, 2016). Unlike cereals such as wheat and barley, which have
a degree of frost tolerance due to protective floral structures and
cold acclimation mechanisms, chickpea lacks sufficient protective
adaptations (Croser ef al., 2003; Barlow et al., 2015; Peake et al.,
2020). Frost exposure during flowering causes sterility by
disrupting pollen viability, while frost at early podding stages
can lead to pod abortion, ultimately reducing the number of
harvestable seeds (Clarke and Siddique, 2004; Chauhan and Ryan,
2020). Additionally, frost-induced cellular damage can lead to
reduced photosynthetic efficiency and lower carbon assimilation
rates, further compounding yield losses (Allen and Ort, 2001; Sage
and Kubien, 2007). Frost damage at flowering can lead to flower
abortion and reduced pod set, similar to its effects in canola
(Brassica napus) (Kovaleski et al., 2020). This sensitivity under-
scores the need for agronomic interventions such as delayed
sowing, spatial diversification of planting dates and the develop-
ment of frost-tolerant chickpea cultivars through breeding efforts
(GRDC, 20165 Peake et al., 2020).

Water-use efficiency (WUE) is a key determinant of chickpea
productivity, particularly in water-limited environments (Siddique
et al., 2012). The study identified mean photothermal quotient
(meanPTQ) during sowing to flowering (sf) as a significant
positive contributor to WUE_T (Figure 3B), emphasising the
importance of early-season radiation use efficiency (Sinclair and
Muchow, 1999). PTQ, which represents the ratio of photosyn-
thetically active radiation (PAR) to temperature, measures of the
crop’s ability to convert solar energy into biomass (Kiniry et al.,
1989; Muchow et al., 1990). Higher PTQ values during early
growth stages likely promote vigorous vegetative growth, which
can enhance the crop’s ability to utilise water efficiently during
later stages (Richards, 2000). This is particularly relevant for
chickpea, as its initial biomass accumulation determines its ability
to withstand later-season stresses (Singh and Saxena, 1993; Soltani
and Sinclair, 2011). Similar relationships have been observed in
other legumes such as lentil (Lens culinaris) and faba bean (Vicia
faba) (Thomson et al., 1997), where high PTQ during vegetative
growth enhances biomass accumulation and transpiration effi-
ciency (Siddique et al., 2012).

In contrast, the negative impact of frost on WUE_ET and
WUE_T across multiple growth stages (Figure 3B, C) suggests
that cold stress not only reduces total water uptake but also
impairs physiological water-use efficiency (Chaves et al., 2009;
Flexas et al., 2016). This occurs because frost damage to leaves
and reproductive structures reduces the plant’s ability to fix
carbon, leading to an inefficient use of available soil moisture.
Moreover, low temperatures can limit root hydraulic conduc-
tivity, reducing water uptake even with sufficient soil moisture
(Aroca and Ruiz-Lozano, 2012). The correlation between soil
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moisture supply-demand ratio (SDR) during sowing to flowering
(sf) and reduced WUE highlights the significance of early-season
moisture availability (Table 3). A low SDR during early growth
stages indicates a mismatch between soil moisture supply and
crop demand, which can lead to suboptimal biomass develop-
ment and lower transpiration efficiency (Sadras and Milroy,
1996; Sinclair and Muchow, 2001; Sadras et al., 2015). This aligns
with findings in sorghum (Sorghum bicolour), where pre-
flowering drought stress leads to inefficient water use and lower
yields (Kholova et al., 2014; de Souza et al., 2021). Strategies such
as optimising sowing dates, improving soil organic matter
content and implementing water-conserving agronomic practi-
ces could mitigate these adverse effects in chickpea cultivation
(Kumar and Abbo, 2001, Sadras and McDonald, 2011).

Heat stress (H30 and H35) during the critical period (cp) and
flowering to podding (fp) was identified as a major constraint,
negatively impacting yield and WUE (Table 3; Figure 2). Heat
stress accelerates phenological development, shortening the grain-
filling period and reducing final seed weight (Vogel et al., 2019;
Lorite et al., 2023). Chickpea, as C3 crop, exhibits a decline in
photosynthetic efficiency under high temperatures due to
increased photorespiration and a reduction in stomatal conduct-
ance, which limits CO, assimilation (Prasad et al., 2006; Ainsworth
and Rogers, 2007). Unlike maize (Zea mays), which benefits from a
more efficient C4 photosynthetic pathway, chickpea experiences
significant reductions in reproductive success under heat stress
(Sage and Kubien, 2007; Hatfield and Prueger, 2015). Excessive
heat exposure during flowering reduces pollen viability and ovule
fertilisation, leading to lower pod set and yield. Interestingly,
moderate heat exposure during podding to maturity (pm) had a
positive correlation with yield (Figure 2A), suggesting that late-
season warmth may facilitate seed development if adequate
moisture is available (Devasirvatham et al., 2012; Kaushal et al.,
2013; Devasirvatham and Tan, 2018). Similar trends have been
observed in soybean (Glycine max), where late-season warmth
enhances pod filling but excessive heat stress during flowering
leads to flower abortion (Hatfield et al, 2011). These findings
indicate that chickpea breeding efforts should enhance heat
tolerance during flowering while leveraging late-season warmth for
improved grain filling.

Chickpea exhibits distinct responses to environmental stressors
when compared to other major field crops. While cereals such as
wheat and barley demonstrate greater cold tolerance, they are more
sensitive to terminal drought stress (Samarah, 2005; Farooq et al.,
2017). With its deep-rooting system, chickpea can access subsoil
moisture more effectively than shallow-rooted crops like canola
and lentil (Kashiwagi et al, 2006; Zaman-Allah et al, 2011).
However, its reproductive sensitivity to frost and heat stress limits
its adaptation to variable climatic conditions. The negative impact
of high vapour pressure deficit (VPD) on chickpea WUE
(Figure 3B, C) aligns with observations in maize and sorghum
(Sinclair et al., 2005; Lobell et al., 2013), where high atmospheric
demand increases transpiration losses without proportional gains
in biomass accumulation (Sadras and McDonald, 2011). Unlike
sorghum, which can regulate stomatal closure to minimise water
loss, chickpea exhibits less efficient stomatal regulation, leading to
higher transpiration under high VPD conditions (Koehler et al.,
2023). Improving stomatal response traits through breeding and
implementing agronomic measures such as mulching and
conservation tillage could help mitigate water loss under high
evaporative demand conditions (Hatfield et al., 2001; Richards
et al., 2010).
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A limitation of this study is the absence of simulated biotic
stressors such as pests, weeds and diseases, which can significantly
impact chickpea yield and water-use efficiency under field
conditions. Future research should incorporate these factors to
provide a more comprehensive understanding of chickpea
performance in realistic agricultural settings.

The findings from this study have important implications for
agronomic management and climate adaptation strategies in
chickpea production. Optimising sowing dates to avoid frost-
prone periods and selecting cultivars with improved heat and
drought tolerance are critical for mitigating yield losses. Models are
available to achieve this goal (Chauhan et al., 2023). Enhancing soil
moisture conservation through cover cropping, reduced tillage and
organic amendments can improve early-season water availability
and WUE. The application of eLASSO modelling offers a robust
approach for identifying key environmental drivers and develop-
ing predictive tools for chickpea yield and WUE. By integrating
climate-responsive agronomic practices with advanced statistical
modelling, chickpea production can be optimised for greater
resilience under changing climatic conditions. Further research
into genotype-by-environment interactions will be essential to
develop site-specific recommendations for chickpea growers
(Dreccer et al., 2018; Bicard et al., 2025).

Conclusions

This study provides valuable insights into the environmental
factors driving chickpea yield and water-use efficiency, emphasis-
ing the crucial roles of water and temperature extremes,
particularly evapotranspiration, frost frequency and heat stress
during key growth stages. Comparisons with other field crops
reveal both advantages and limitations in chickpea’s agronomic
and physiological traits expressed under varying climatic con-
ditions. Future research should focus on validating these findings
across diverse environments and cropping systems, while breeding
for improved stress resilience (particularly for climate change
adaptation), refining crop management practices and integrating
these models into decision-support tools for farmers and
agronomists to ensure sustainable and profitable chickpea
production in water-limited environments.

Supplementary material. The Supplementary material for this article can be
found at https://doi.org/10.1017/50021859625100270.
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