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Abstract
Connections between heaps of modules and (affine) modules over rings are explored. This leads to explicit, often
constructive, descriptions of some categorical constructions and properties that are implicit in universal algebra and
algebraic theories. In particular, it is shown that the category of groups with a compatible action of a truss T (also
called pointed T-modules) is isomorphic to the category of modules over the ring R(𝑇) universally associated to
the truss. This is widely used in the explicit description of free objects. Next, it is proven that the category of heaps
of modules over T is isomorphic to the category of affine modules over R(𝑇) and, in order to make the picture
complete, that (in the unital case) these are in turn equivalent to a specific subcategory of the slice category of
pointed T-modules over R(𝑇). These correspondences and properties are then used to describe explicitly various
(co)limits and to compare short exact sequences in the Barr-exact category of heaps of T-modules with short exact
sequences as defined previously.
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1. Introduction

In the 1920s, H. Prüfer [17], R. Baer [2], and A. K. Suškevič [19] introduced a novel algebraic structure
called heap. A heap is a set with a ternary operation limited by certain conditions, called associativity
and Mal’cev’s identities (see Section 2.1). It turns out that there is a deep connection between groups
and heaps: heaps correspond to free transitive actions of groups on sets, which allows us to depart from
the choice of a neutral element and focus on the set as an affine version of the group itself.

Nearly 100 years later, trusses were introduced in [7] as structures describing two different distributive
laws: the well-known ring distributivity and the one coming from the recently introduced braces, which
are gaining popularity due to their role in the study of the set-theoretic solutions of the Yang-Baxter
equation. The brace distributive law appeared earlier in the context of quasirings of radical rings; see
[14]. It turns out that both rings and braces can be described elegantly by switching the group structure
to a heap structure. This leads to the definition of a truss, which is a set T with a ternary operation
[−,−,−] and a binary multiplication · satisfying the conditions of Section 2.3, the crucial one being the
generalization of ring and brace distributivity:

𝑎 · [𝑏, 𝑐, 𝑑] = [𝑎 · 𝑏, 𝑎 · 𝑐, 𝑎 · 𝑑] and [𝑏, 𝑐, 𝑑] · 𝑎 = [𝑏 · 𝑎, 𝑐 · 𝑎, 𝑑 · 𝑎],

for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑇 . Thanks to this, we can jointly approach brace and ring theory.
Every truss T is a congruence class of a ring R(𝑇), the universal extension of T into a ring (see [1]).

Trusses, even though similar to rings, differ significantly as the category of trusses has no zero object.
Having the structure of a truss, it is natural to ask: what is the theory of modules over trusses? As one
can expect, a module M over a truss T is a truss homomorphism from the truss T to the endomorphisms
of the abelian heap M, analogously to the case of modules over rings. In the previous paper [6], we have
shown that with every module M over a truss T, one can associate an affine version of the module M,
denoted by (𝑀, ⊲) and called a heap of T-modules. In the case of modules over a ring, we acquire affine
modules in the sense of ring theory (see, e.g., [16]). Surprisingly, two nonisomorphic modules over a
truss can give rise to the same affine structure. Moreover, every heap of T-modules is an affine version
of a T-module coming from a truss homomorphism from T to the endomorphisms of a group (instead of
a heap), and such T-modules will be called pointed T-modules in the present text, to underline the fact
that T acts on a group, that is, a heap with a chosen point. In this sense, heaps of modules over a truss
offer a promising algebraic setting for a frame-independent approach to mathematical notions that come
from various domains. For example, the heaps of T-modules approach to affine spaces advocated in [6]
and herein allows one for a smooth formulation of Lie brackets on affine spaces or Lie affgebras (see
[9, 13]). In addition, particular solutions of the set theoretic Yang-Baxter equation coming from spindles
and quandles can be parameterized by using heaps of modules, as was previously discussed in [6, §5.2].
For example, Theorem 5.9 therein offers a rich family of these, encompassing Alexander quandles as a
particular case. However, this goes beyond the scope of the present paper. Furthermore, modules and
heaps of modules over commutative trusses are modes in the sense of [18] or, in other words, idempotent
entropic algebras. In that case, some results in this paper can also be seen as noncommutative extensions
of their modal analogues.

In this paper we extend the exploration of links between T-modules, modules over rings and pointed
T-modules from [6] and present a fundamental new observation that every affine structure over a truss T
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reduces to the affine structure over a particular, universally constructed ring R(𝑇). The paper is arranged
as follows.

Section 2 contains preliminaries in which we recall all the necessary definitions and facts on heaps,
trusses, modules over trusses, and heaps of modules.

In Section 3, we show that categories of pointed T-modules and R(𝑇)-modules are isomorphic
(Theorem 3.1). Due to this, we can construct all limits and colimits of pointed T-modules from R(𝑇)-
modules and vice versa. For example, in Proposition 3.4 we use this isomorphism of categories to
describe the free functor for pointed T-modules. We conclude this section with Theorem 3.8, which
states that the categories of heaps of T-modules and affine R(𝑇)-modules are isomorphic.

Section 4 is devoted to categorical aspects of heaps of T-modules. First, we note that all limits and
colimits exist as heaps of T-modules, heaps, and T-modules are varieties of algebras in the sense of
universal algebra. Then we briefly describe equalizers, products, and pullback of heaps of T-modules.
After that, we proceed to colimits. We present explicit constructions of quotients (Construction 4.5),
coequalizers (Proposition 4.6 and Construction 4.8), coproducts (Construction 4.10), and pushouts
(Example 4.11) of heaps of T-modules or, in view of Theorem 3.8, affine R(𝑇)-modules. We conclude
the part on colimits by presenting Theorem 4.14, which states that the category of heaps of T-modules
is equivalent to the slice category of pointed T-modules projecting onto R(𝑇).

In the last part, Section 5, we propose the definition of exactness of short sequences for heaps.
In Proposition 5.5 we show that, for every exact sequence of nonempty heaps, there exists a choice of
elements such that by fixing those elements in the heaps of T-modules, we will acquire an exact sequence
of modules over the ring R(𝑇). Then in Section 5.2, by taking advantage of the fact that the category of
heaps of T-modules is exact, we define exact sequences in the sense of Barr and we conclude the paper
with Theorem 5.7, relating every Barr exact sequence of heaps of T-modules to a particular short exact
sequence of heaps of T-modules and conversely.

2. Preliminaries

We begin by collecting the basics of heaps and trusses, which will be necessary in the sections to come.

2.1. Heaps and their morphisms

A heap is a set H with a ternary operation

[−,−,−] : 𝐻 × 𝐻 × 𝐻 → 𝐻

such that for all 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ 𝐻 the following axioms hold:

(H1) [𝑎, 𝑏, [𝑐, 𝑑, 𝑒]] = [[𝑎, 𝑏, 𝑐], 𝑑, 𝑒] (Associativity),
(H2) [𝑎, 𝑏, 𝑏] = [𝑏, 𝑏, 𝑎] = 𝑎 (Mal’cev identities).

Moreover, if [𝑎, 𝑏, 𝑐] = [𝑐, 𝑏, 𝑎], for all 𝑎, 𝑏, 𝑐 ∈ 𝐻, then H is called an abelian heap. A sub-heap of a
heap H is a subset S closed under the ternary operation.

A morphism of heaps is a function 𝑓 : 𝐻 → 𝐻 ′, between heaps which is compatible with the ternary
operations, that is, for all 𝑎, 𝑏, 𝑐 ∈ 𝐻, 𝑓 ([𝑎, 𝑏, 𝑐]) = [ 𝑓 (𝑎), 𝑓 (𝑏), 𝑓 (𝑐)]. We denote by Hp the category
of heaps and their morphisms and by Ah the full subcategory of abelian heaps and their morphisms.

Remark 2.1 [8, §2.4]. Let 𝑆 ⊆ 𝐻 be a sub-heap of an abelian heap H. Denote by ∼𝑆 ⊆ 𝐻 × 𝐻 the
equivalence relation:

𝑎 ∼𝑆 𝑏 ⇐⇒ [𝑎, 𝑏, 𝑠] ∈ 𝑆, ∀ 𝑠 ∈ 𝑆,

called the sub-heap relation. It is a congruence over H: if 𝑎𝑖 ∼𝑆 𝑏𝑖 for 𝑖 = 1, 2, 3, then [𝑎1, 𝑎2, 𝑎3] ∼𝑆
[𝑏1, 𝑏2, 𝑏3]. Therefore, the quotient 𝐻/𝑆 � 𝐻/∼𝑆 is an abelian heap and the canonical projection

https://doi.org/10.1017/fms.2025.10109 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10109


4 S. Breaz et al.

𝐻 → 𝐻/𝑆 is a morphism of heaps. Moreover, any congruence over an abelian heap is a sub-heap
relation.

A family of morphisms that plays a cardinal role in the theory of heaps consists of translation
automorphisms, defined for all 𝑎, 𝑏 ∈ 𝐻 by the formula

𝜏𝑏𝑎 : 𝐻 −→ 𝐻, 𝑥 ↦−→ [𝑥, 𝑎, 𝑏] . (2.1)

The set of all translation automorphisms together with the identity of H is denoted by Tr(𝐻). It is a
subgroup of the automorphism group of H, which is called the translation group of H. In view of (2.1),
for any morphism of heaps 𝑓 : 𝐻 → 𝐻 ′, the map

Tr( 𝑓 ) : Tr(𝐻) −→ Tr(𝐻 ′), 𝜏𝑏𝑎 ↦−→ 𝜏
𝑓 (𝑏)
𝑓 (𝑎)

, (2.2)

is a homomorphism of groups. This gives a functor Tr : Hp −→ Grp that restricts to a functor
Ah −→ Ab, that we denote by Tr again (see [6, §2.1]).

2.2. Heaps and groups

With every group (𝐺, ·, 𝑒) we can associate a heap H(𝐺) = (𝐺, [−,−,−]) where [𝑥, 𝑦, 𝑧] = 𝑥𝑦−1𝑧 for
all 𝑥, 𝑦, 𝑧 ∈ 𝐺; every morphism of groups is automatically a morphism of heaps hence this assignment
is functorial, leading to the functor H: Grp→ Hp. In the opposite direction, with every nonempty heap
H and 𝑒 ∈ 𝐻, we can associate a group G(𝐻; 𝑒) = (𝐻, [−, 𝑒,−]), where [−, 𝑒,−] is a binary operation
acquired by fixing the middle variable in the ternary operation. The group G(𝐻; 𝑒) is called the e-retract
of the heap H. Every morphism of nonempty heaps 𝑓 : 𝐻 → 𝐻 ′ yields a morphism of groups

G( 𝑓 ) : G(𝐻; 𝑒𝐻 ) −→ G(𝐻 ′; 𝑒𝐻 ′ ), G( 𝑓 ) � 𝜏
𝑒𝐻′
𝑓 (𝑒𝐻 )

◦ 𝑓 ,

Notice that H(G(𝐻; 𝑒𝐻 )) = 𝐻 for every nonempty heap H and that G(H(𝐺); 𝑒𝐺) � 𝐺 for every group G.

Remark 2.2. Let 𝑓 : 𝐻 → 𝐻 ′ be a morphism of heaps. For every group operation associated with H
there exists a group operation associated with 𝐻 ′ such that f is a morphism of groups with respect to
these operations.

Remark 2.3 [6, §2.1]. Let H be a nonempty heap and 𝑒 ∈ 𝐻. The assignment

G(𝐻; 𝑒) −→ Tr(𝐻)op, 𝑥 ↦−→ 𝜏𝑥𝑒

is an isomorphism of groups with inverse

Tr(𝐻)op −→ G(𝐻; 𝑒), 𝜏
𝑦
𝑥 ↦−→ 𝜏

𝑦
𝑥 (𝑒).

For the convenience of the interested reader, we record the third realization of the group associated
with a nonempty heap (see, e.g., [18, §6.3]). On the Cartesian product 𝐻 × 𝐻, define the equivalence
relation

(𝑥, 𝑦) ∼ (𝑥 ′, 𝑦′) ⇐⇒ 𝑦′ = [𝑥 ′, 𝑥, 𝑦] .

Since 𝐻 × 𝐻 is a semigroup with product (𝑥, 𝑦) (𝑥 ′, 𝑦′) � (𝑥, [𝑦, 𝑥 ′, 𝑦′]) and ∼ is a congruence on
𝐻 × 𝐻, the quotient 𝐻 × 𝐻/∼ is a semigroup. In fact, it is a group with identity the class of (𝑥, 𝑥). The
inverse of the class of (𝑥, 𝑦) is the class of (𝑦, 𝑥). The assignment

Tr(𝐻)op −→ 𝐻 × 𝐻/∼, 𝜏
𝑦
𝑥 ↦−→ (𝑥, 𝑦)
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is an isomorphism of groups with inverse

𝐻 × 𝐻/∼ −→ Tr(𝐻)op, (𝑥, 𝑦) ↦−→ 𝜏
𝑦
𝑥 .

2.3. Trusses and their modules

A truss is an abelian heap T together with an associative binary operation · : 𝑇 × 𝑇 → 𝑇, (𝑠, 𝑡) ↦→ 𝑠𝑡,
such that for all 𝑠, 𝑠′, 𝑠′′, 𝑡 ∈ 𝑇 ,

(T1) 𝑡 [𝑠, 𝑠′, 𝑠′′] = [𝑡𝑠, 𝑡𝑠′, 𝑡𝑠′′] (left distributivity),
(T2) [𝑠, 𝑠′, 𝑠′′]𝑡 = [𝑠𝑡, 𝑠′𝑡, 𝑠′′𝑡] (right distributivity).

A truss T is said to be unital if there exists a distinguished element 1𝑇 ∈ 𝑇 such that 𝑡1𝑇 = 𝑡 = 1𝑇 𝑡 for
all 𝑡 ∈ 𝑇 .

A morphism of trusses is a heap morphism 𝑓 : 𝑇 → 𝑇 ′ between trusses which preserves the binary
operation, that is, for all 𝑠, 𝑡 ∈ 𝑇 , 𝑓 (𝑠𝑡) = 𝑓 (𝑠) 𝑓 (𝑡). If T and 𝑇 ′ are unital, then we often require f to
preserve the units as well, that is, 𝑓 (1𝑇 ) = 1𝑇 ′ . Trusses and their morphisms form a category that we
denote by Trs. The category of unital trusses with unital morphisms will be denoted by Trs𝑢 .

Example 2.4. Let R be a ring. The abelian heap H(𝑅) associated with the underlying abelian group
structure, with the same multiplication, is a truss, that we denote by T(𝑅). If R is unital, then T(𝑅) is
unital as well. This construction induces a functor T: Rings → Trs from the category of rings to the
category of trusses that also restricts to their unital counterparts.

A left module over a truss T or a left T-module is an abelian heap M together with an action
· : 𝑇 × 𝑀 → 𝑀 such that for all 𝑡, 𝑡 ′, 𝑡 ′′ ∈ 𝑇 and 𝑚, 𝑛, 𝑒 ∈ 𝑀 ,

(M1) 𝑡 · (𝑡 ′ · 𝑚) = (𝑡𝑡 ′) · 𝑚,
(M2) [𝑡, 𝑡 ′, 𝑡 ′′] · 𝑚 = [𝑡 · 𝑚, 𝑡 ′ · 𝑚, 𝑡 ′′ · 𝑚],
(M3) 𝑡 · [𝑚, 𝑛, 𝑒] = [𝑡 · 𝑚, 𝑡 · 𝑛, 𝑡 · 𝑒].

An element e in a left T-module M is called an absorber if 𝑡 · 𝑒 = 𝑒 for all 𝑡 ∈ 𝑇 . A module M over a
unital truss T is said to be unital if 1𝑇 · 𝑚 = 𝑚 for all 𝑚 ∈ 𝑀 . The category of left T-modules and their
morphisms will be denoted by 𝑇-Mod.

Analogously, one defines (unital) right T-modules. A (𝑇, 𝑆)-bimodule is a left T-module and right
S-module M such that (𝑡 · 𝑚) · 𝑠 = 𝑡 · (𝑚 · 𝑠) for all 𝑡 ∈ 𝑇 , 𝑠 ∈ 𝑆 and 𝑚 ∈ 𝑀 .

As it happens for rings and modules, many facts about modules over trusses have a straightforward
unital analogue. In what follows we will deal with not necessarily unital modules over not necessarily
unital trusses, unless differently specified, leaving to the interested reader the task of specifying the
results to the unital setting.

Definition 2.5. Let M be a nonempty left T-module. For every 𝑒 ∈ 𝑀 , the action ⊲𝑒 : 𝑇 × 𝑀 −→ 𝑀 ,
given by

𝑡 ⊲𝑒 𝑚 � [𝑡 · 𝑚, 𝑡 · 𝑒, 𝑒], for all 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇,

is called the e-induced action or the e-induced module structure on M. We say that a subset 𝑁 ⊆ 𝑀 is
an induced submodule of M if N is a nonempty sub-heap of M and 𝑡 ⊲𝑒 𝑛 ∈ 𝑁 for all 𝑡 ∈ 𝑇 and 𝑛, 𝑒 ∈ 𝑁 .

Theorem 2.6 [8, Proposition 4.32]. Let M be a T-module and 𝑁 ⊆ 𝑀 a nonempty sub-heap. The quotient
𝑀/𝑁 is a T-module with the canonical map 𝜋 : 𝑀 → 𝑀/𝑁 being an epimorphism of T-modules if and
only if N is an induced submodule of M.

A distinguished class of T-modules is the one consisting of nonempty T-modules together with a
fixed absorber. That is, abelian groups with a left T-action.
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Definition 2.7 [6, Definition 2.30]. Let T be a truss. A pointed module over T, or pointed T-module, is
an abelian group G together with an action · : 𝑇 × 𝐺 → 𝐺 of the multiplicative semigroup of T on G
such that for all 𝑡, 𝑡 ′, 𝑡 ′′ ∈ 𝑇 and 𝑔, ℎ ∈ 𝐺,

[𝑡, 𝑡 ′, 𝑡 ′′] · 𝑔 = 𝑡 · 𝑔 − 𝑡 ′ · 𝑔 + 𝑡 ′′ · 𝑔 and 𝑡 · (𝑔 + ℎ) = 𝑡 · 𝑔 + 𝑡 · ℎ. (2.3)

If T is unital and 1𝑇 · 𝑔 = 𝑔 for all 𝑔 ∈ 𝐺, then G is called a unital pointed T-module.
A morphism of pointed T-modules is by definition a group homomorphism 𝑓 : 𝐺 → 𝐺 ′ such that

𝑓 (𝑡 · 𝑔) = 𝑡 · 𝑓 (𝑔) for all 𝑔 ∈ 𝐺 and 𝑡 ∈ 𝑇 . For the sake of brevity, we may often call them T-linear
group homomorphisms. All pointed T-modules together with T-linear group homomorphisms form the
category 𝑇-Mod•.
Remark 2.8. Let G be a pointed T-module and consider 𝜆 : 𝑇 → Set(𝐺, 𝐺), 𝑡 ↦→ 𝜆𝑡 , where 𝜆𝑡 (𝑔) � 𝑡 ·𝑔
for all 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 . The right-hand side of (2.3) entails that 𝜆𝑡 ∈ Ab(𝐺, 𝐺) for all 𝑡 ∈ 𝑇 . The left-hand
side of (2.3) implies that 𝜆 is a morphism of heaps, where the heap structure on Ab(𝐺, 𝐺) is the one
induced by its own abelian group structure (i.e., the point-wise one). The fact that · is a semigroup action
means that 𝜆 is also multiplicative and so that

𝜆 : 𝑇 −→ T
(
Ab(𝐺, 𝐺)

)
, 𝑡 ↦−→ 𝜆𝑡 ,

is a morphism of trusses. Conversely, if G is an abelian group, then every morphism of trusses 𝜆 : 𝑇 −→
T
(
Ab(𝐺, 𝐺)

)
, 𝑡 ↦−→ 𝜆𝑡 , induces a pointed T-module structure on G, where 𝑡 · 𝑔 � 𝜆𝑡 (𝑔).

Example 2.9. Consider the truss Oint �
(
{2𝑛 + 1 | 𝑛 ∈ Z}, [−,−,−], ·

)
consisting of odd integers

together with multiplication of integers and ternary bracket [𝑎, 𝑏, 𝑐] � 𝑎 − 𝑏 + 𝑐 for 𝑎, 𝑏, 𝑐 ∈ Oint.
Then, consider the group (2Z, +) of even integers with usual addition. We have that (2Z, +) is a pointed
Oint-module with usual multiplication of integers as action, that is, (2𝑚 + 1) · 2𝑛 � 4𝑚𝑛 + 2𝑛, for all
𝑚, 𝑛 ∈ Z.

2.4. Trusses and rings

It is a well-known fact in truss theory (see [1, §5] and [10, Lemma 3.13]) that there exists a ring R(𝑇),
which is unital if and only if T is unital, satisfying the following universal property: there is a morphism
of trusses 𝜄𝑇 : 𝑇 → TR(𝑇) such that for any ring R and any morphism of trusses 𝜑 : 𝑇 → T(𝑅) there
exists a unique ring homomorphism 𝜑̂ : R(𝑇) → 𝑅 making the following diagram commute:

𝑇
𝜄𝑇 ��

𝜑
���

��
��

��
� TR(𝑇)

∃!T( 𝜑̂)��
T(𝑅)

That is to say, the pair (R(𝑇), 𝜄𝑇 ) is a universal arrow in the sense of [15, Chapter III, §1, Definition]
or, equivalently, the functor R: Trs → Rings is left adjoint to the functor T: Rings → Trs from
Section 2.3. Moreover, if T and R are unital and 𝜑(1𝑇 ) = 1𝑅, then 𝜑̂ preserves the units, too. Thus, R
and T restrict to functors between the categories of unital trusses Trs𝑢 and of unital rings Ring𝑢 , still
providing an adjoint pair.

Remark 2.10 [1, §5]. If T is the empty truss, then R(𝑇) = 0, the zero ring. Let T be a nonempty truss
and let 𝑜 ∈ 𝑇 . The ring R(𝑇) can be realized as the abelian group G(𝑇 ; 𝑜) ⊕ Z with multiplication

(𝑡, 𝑚) (𝑠, 𝑛) =
(
𝑡𝑠 + (𝑛 − 1)𝑡𝑜 + (𝑚 − 1)𝑜𝑠 + (𝑚 − 1) (𝑛 − 1)𝑜2, 𝑚𝑛

)
and 𝜄𝑇 : 𝑇 → TR(𝑇), 𝑡 ↦→ (𝑡, 1) (here and elsewhere we simply write + for the addition in G(𝑇 ; 𝑜)).
The truss T is unital with unit 1𝑇 if and only if the associated ring R(𝑇) is unital with unit (1𝑇 , 1).
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If the truss T is unital, we can choose 𝑜 = 1𝑇 and then the multiplication in the ring R(𝑇) =
G(𝑇 ; 1𝑇 ) ⊕ Z takes the nicer form

(𝑡, 𝑚) (𝑠, 𝑛) =
(
𝑡𝑠 + (𝑛 − 1)𝑡 + (𝑚 − 1)𝑠 + (𝑚 − 1) (𝑛 − 1)1𝑇 , 𝑚𝑛

)
=
(
𝑡𝑠 + (𝑛 − 1)𝑡 + (𝑚 − 1)𝑠, 𝑚𝑛

)
for all 𝑡, 𝑠 ∈ 𝑇 , 𝑚, 𝑛 ∈ Z. Observe that, in the latter situation, G(𝑇 ; 1𝑇 ) is a ring without unit with respect
to the multiplication

𝑡 · 𝑠 � 𝑡𝑠 − 𝑡 − 𝑠

for all 𝑠, 𝑡 ∈ 𝑇 and R(𝑇) is its Dorroh extension.

Readers accustomed to work with unital rings are familiar with the fact that with any not necessarily
unital ring R, one may always associate a unital ring 𝑅𝑢 called its Dorroh extension, that we just
mentioned (see [12]). This 𝑅𝑢 can be characterized as the universal unital ring associated with R in the
following sense: there is a canonical ring homomorphism 𝚥𝑅 : 𝑅 → 𝑅𝑢 such that for any unital ring 𝑅′

and any morphism of rings 𝑅 → 𝑅′ there exists a unique morphism of unital rings 𝑅𝑢 → 𝑅′ making
the obvious diagram commutative. In particular, the Dorroh extension is functorial and it provides a
left adjoint to the obvious forgetful functor 𝑈 : Ring𝑢 → Ring. Furthermore, the category of unital
modules over 𝑅𝑢 is isomorphic (via the identity functor) to the category of R-modules.

An analogous construction exists for trusses (see [11, §2.5]): for any not necessarily unital truss T,
there exists a unital truss 𝑇𝑢 and a truss homomorphism 𝚥𝑇 : 𝑇 → 𝑇𝑢 which is universal in the sense that
for any other unital truss 𝑇 ′ and any truss homomorphism 𝑓 : 𝑇 → 𝑇 ′, there exists a unique morphism
of unital trusses 𝑓 : 𝑇𝑢 → 𝑇 ′ such that 𝑓 ◦ 𝚥𝑇 = 𝑓 . That is, the Dorroh extension for trusses provides a
left adjoint to the obvious forgetful functor 𝑈 ′ : Trs𝑢 → Trs.

Remark 2.11. Taking Dorroh extensions commutes with functor R: Trs→ Rings. Indeed, 𝑇 ↦→ R(𝑇)𝑢
and 𝑇 ↦→ 𝑅(𝑇𝑢) from Trs to Ring𝑢 are left adjoints to 𝑇 ◦𝑈 and 𝑈 ′ ◦ 𝑇 , respectively. Since evidently
𝑈 ′ ◦ 𝑇 = 𝑇 ◦𝑈 as functors Ring𝑢 → Trs, then R(𝑇)𝑢 � R(𝑇𝑢) as unital rings.

2.5. Heaps of modules

Let T be a truss. A heap of T-modules (𝑀, [−,−,−], ⊲) is an abelian heap (𝑀, [−,−,−]) together with
an operation

⊲ : 𝑇 × 𝑀 × 𝑀 → 𝑀, (𝑡, 𝑚, 𝑛) ↦→ 𝑡 ⊲𝑚 𝑛,

such that

(HM1) for all 𝑚 ∈ 𝑀 , the operation

⊲𝑚 : 𝑇 × 𝑀 → 𝑀, (𝑡, 𝑛) ↦→ 𝑡 ⊲𝑚 𝑛,

makes M a left T-module,
(HM2) the operation ⊲ satisfies the base change property

𝑡 ⊲𝑚 𝑛 = [𝑡 ⊲𝑒 𝑛, 𝑡 ⊲𝑒 𝑚, 𝑚], (2.4)

for all 𝑚, 𝑛, 𝑒 ∈ 𝑀 , 𝑡 ∈ 𝑇 .

For the sake of brevity, we will often denote a heap of T-modules simply by (𝑀, ⊲), leaving the heap
structure [−,−,−] understood.
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A morphism of heaps of modules is a morphism 𝑓 : 𝑀 → 𝑁 of heaps such that

𝑓 (𝑡 ⊲𝑚 𝑛) = 𝑡 ⊲ 𝑓 (𝑚) 𝑓 (𝑛), (2.5)

for all 𝑚, 𝑛 ∈ 𝑀 , 𝑡 ∈ 𝑇 . The category of heaps of T-modules and their morphisms will be denoted by
𝑇-HMod.

Suppose that T is unital with unit 1𝑇 . A heap of T-modules M is said to be isotropic if 1𝑇 ⊲𝑚 𝑛 = 𝑛
for all 𝑚, 𝑛 ∈ 𝑀 (see [6, §3.2]). The full subcategory of isotropic heaps of T-modules is denoted by
𝑇-HModis.

Remark 2.12 [6, §3.1]. Among the consequences of the base change property (2.4) one finds that
𝑡 ⊲𝑚 𝑚 = 𝑚 and 𝑡 ⊲𝑚 𝑛 = [𝑛, 𝑡 ⊲𝑛 𝑚, 𝑚] for all 𝑚, 𝑛 ∈ 𝑀 , 𝑡 ∈ 𝑇 . Furthermore, for all 𝑒, 𝑓 ∈ 𝑀 , the
translation automorphism 𝜏

𝑓
𝑒 : 𝑀 → 𝑀 is a morphism of heaps of modules, that is, it satisfies (2.5).

The following remark tells us that the notation for the heap of modules structure and that from
Definition 2.5 are consistent.

Remark 2.13. Let (𝑀, ·) be a T-module. Then, the operation ⊲ : 𝑇 × 𝑀 × 𝑀 → 𝑀 given by 𝑡 ⊲𝑚 𝑛 �
[𝑡 · 𝑛, 𝑡 · 𝑚, 𝑚] for all 𝑡 ∈ 𝑇 , 𝑚, 𝑛 ∈ 𝑀 makes M into a heap of T-modules. Moreover, if (𝑀, ⊲) is
a heap of T-modules, then the base change property (2.4) means exactly that for all 𝑒, 𝑚 ∈ 𝑀 , the
module structure ⊲𝑚 is the m-induced module structure on (𝑀, ⊲𝑒). Hence a heap of T-modules can be
understood as a family of T-modules {(𝑀, ⊲𝑒) | 𝑒 ∈ 𝑀} in which each module is an induced module of
any member of the family.

Heaps of T-modules can be viewed as affinization of modules; in particular, they encompass affine
spaces.

Example 2.14. Every affine space over a field k is a heap of T(k)-modules. For example, the space of
solutions of a linear differential equation of the form

𝑃(𝑦) � 𝑎𝑛 (𝑥)𝑦
(𝑛) + · · · + 𝑎0 (𝑥)𝑦 + 𝑟 (𝑥) = 0,

is a heap of T(k)-modules with respect to the structures

[ 𝑓 , 𝑔, ℎ] � 𝑓 − 𝑔 + ℎ and 𝑘 ⊲𝑔 𝑓 � 𝑘 𝑓 − 𝑘𝑔 + 𝑔,

for all 𝑘 ∈ k and all 𝑓 , 𝑔, ℎ solutions.

Example 2.15. The heaps of modules over 𝑇 = ∅ are exactly the abelian heaps, since there is one and
only one morphism∅×𝐻×𝐻 = ∅ → 𝐻 for every abelian heap H. This induces, in fact, an isomorphism
of categories Ah � ∅-HMod.

Triggered by Remark 2.13, the following is a variation of [6, Proposition 3.9 and Lemma 3.12] which
makes more explicit the isomorphism between the category of pointed heaps of T-modules (i.e., heaps
of modules with a chosen point and morphisms preserving those points) and the category of pointed
T-modules [6, Proposition 4.5].

Remark 2.16. Let T be a truss and let G be a pointed T-module. If we consider the map

⊲ : 𝑇 × 𝐺 × 𝐺 −→ 𝐺, (𝑡, 𝑥, 𝑦) ↦−→ 𝑡 ⊲𝑥 𝑦 = 𝑡 · 𝑦 − 𝑡 · 𝑥 + 𝑥,

then H(𝐺) � (H(𝐺), ⊲) is a nonempty heap of T-modules. Furthermore, the assignment H : (𝐺, ·) ↦−→(
H(𝐺), ⊲

)
from the category of pointed T-modules to the category of nonempty heaps of T-modules is

functorial. In the opposite direction, let (𝑀, ⊲) be a nonempty heap of T-modules. Then for any chosen
𝑒 ∈ 𝑀 we can consider

⊲𝑒 : 𝑇 × 𝑀 → 𝑀
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and the pair
(
G(𝑀; 𝑒), ⊲𝑒

)
turns out to be a pointed T-module, which we denote by G

(
(𝑀, ⊲); 𝑒

)
.

The assignment G : (𝑀, ⊲) ↦−→
(
G(𝑀; 𝑒), ⊲𝑒

)
from the category of nonempty heaps of T-modules

to the one of pointed T-modules is itself functorial, if for every morphism of heaps of T-modules
𝜑 : (𝑀, ⊲) → (𝑁, ⊲) and for every chosen 𝑒 ∈ 𝑀 and 𝑓 ∈ 𝑁 we consider

G (𝜑) � 𝜏
𝑓
𝜑 (𝑒)
◦ 𝜑 :

(
G(𝑀; 𝑒), ⊲𝑒

)
−→

(
G(𝑁; 𝑓 ), ⊲ 𝑓

)
.

Moreover, one may observe that HG
(
(𝑀, ⊲); 𝑒

)
= (𝑀, ⊲) for every nonempty heap of T-modules (𝑀, ⊲)

and for all 𝑒 ∈ 𝑀 , and G
(
H(𝐺, ·); 𝑒

)
=

(
G(H(𝐺); 𝑒), ⊲𝑒

)
� (𝐺, ·) via the translation automorphism

𝜏0𝐺
𝑒 , for every pointed T-module (𝐺, ·).

We conclude the section with an equivalent description of heaps of modules which will play a key
role at the end of Section 4.

Recall that if 𝐻, 𝐻 ′ are abelian heaps, then we may perform the tensor product 𝐻 ⊗ 𝐻 ′ of abelian
heaps and this satisfies the properties analogous to those of the tensor product of modules. Since the
base change property (2.4) entails that, for a fixed 𝑡 ∈ 𝑇 and 𝑛 ∈ 𝑀 , the map 𝑀 → 𝑀 , 𝑚 ↦→ 𝑡 ⊲𝑚 𝑛 is a
heap homomorphism as well, a heap of T-modules can be described as an abelian heap (𝑀, [−,−,−])
together with a heap homomorphism

⊲ : 𝑇 ⊗ 𝑀 ⊗ 𝑀 → 𝑀, 𝑡 ⊗ 𝑚 ⊗ 𝑛 ↦→ 𝑡 ⊲𝑚 𝑛 (2.6)

which is T-associative

𝑡𝑠 ⊲𝑚 𝑛 = 𝑡 ⊲𝑚

(
𝑠 ⊲𝑚 𝑛

)
(2.7)

and satisfies the base change property

𝑡 ⊲𝑚 𝑛 =
[
𝑡 ⊲𝑒 𝑛, 𝑡 ⊲𝑒 𝑚, 𝑚

]
(2.8)

for all 𝑚, 𝑛, 𝑒 ∈ 𝑀 and 𝑡, 𝑠 ∈ 𝑇 . Now, if we take advantage of the fact that − ⊗ 𝑀 : Ah → Ah is left
adjoint to Ah(𝑀,−) for every abelian heap M (see [11, Proposition 3.7]) and that Ah is a symmetric
monoidal category (see [11, Remark 3.11]), then the datum of (2.6) is equivalent to the datum of a heap
homomorphism

Δ : 𝑀 −→ Ah(𝑇, E(𝑀)), (2.9)

where E(𝑀) = Ah(𝑀, 𝑀) is the truss of endomorphisms of the abelian heap M. Essentially, Δ (𝑚) (𝑡) =
𝑡 ⊲𝑚 − for all 𝑚 ∈ 𝑀 , 𝑡 ∈ 𝑇 . In this setting, the T-associativity (2.7) is equivalent to the fact that Δ takes
values in Trs(𝑇, E(𝑀)), that is, Δ (𝑚) is a morphism of trusses for every 𝑚 ∈ 𝑀 .

Lemma 2.17. Given an abelian heap M together with a ⊲ structure as in (2.6), we have that it satisfies
the base change property (2.8) if and only if Δ from (2.9) satisfies

(a) Δ (𝑒) (𝑡) ◦ 𝑐𝑒 = 𝑐𝑒, the constant map 𝑐𝑒 : 𝑀 → 𝑀, 𝑚 ↦→ 𝑒, for all 𝑒 ∈ 𝑀 , 𝑡 ∈ 𝑇 , and
(b) 𝜏

𝑓
𝑒 ◦ Δ (𝑒) (𝑡) ◦ 𝜏𝑒𝑓 = Δ ( 𝑓 ) (𝑡) for all 𝑒, 𝑓 ∈ 𝑀 , 𝑡 ∈ 𝑇 .

Proof. Let us begin by supposing that ⊲ satisfies the base change property. Then(
Δ (𝑒) (𝑡) ◦ 𝑐𝑒

)
(𝑚) = 𝑡 ⊲𝑒 𝑒 = 𝑒 = 𝑐𝑒 (𝑚)

and (
𝜏
𝑓
𝑒 ◦ Δ (𝑒) (𝑡) ◦ 𝜏𝑒𝑓

)
(𝑚) =

[
𝑡 ⊲𝑒 [𝑚, 𝑓 , 𝑒], 𝑒, 𝑓

]
=
[
𝑡 ⊲𝑒 𝑚, 𝑡 ⊲𝑒 𝑓 , 𝑒, 𝑒, 𝑓

]
= 𝑡 ⊲ 𝑓 𝑚 = Δ ( 𝑓 ) (𝑡) (𝑚),
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for all 𝑚, 𝑒, 𝑓 ∈ 𝑀 , 𝑡 ∈ 𝑇 . Conversely, suppose that Δ satisfies (𝑎) and (𝑏). Then[
𝑡 ⊲𝑒 𝑛, 𝑡 ⊲𝑒 𝑚, 𝑚

]
=
[
Δ (𝑒) (𝑡) (𝑛),Δ (𝑒) (𝑡) (𝑚), 𝑚

] (𝑎)
=

[
Δ (𝑒) (𝑡)

(
𝜏𝑒𝑚(𝑛)

)
, 𝑒, 𝑚

]
(𝑏)
= Δ (𝑚) (𝑡) (𝑛) = 𝑡 ⊲𝑚 𝑛,

for all 𝑒, 𝑚, 𝑛 ∈ 𝑀 , 𝑡 ∈ 𝑇 . �

Summing up,
Proposition 2.18. An abelian heap M is a heap of T-modules if and only if there exists a morphism of
abelian heaps

Δ : 𝑀 → Trs
(
𝑇, E(𝑀)

)
such that
(a) Δ (𝑒) (𝑡) ◦ 𝑐𝑒 = 𝑐𝑒, the constant map 𝑐𝑒 : 𝑀 → 𝑀, 𝑚 ↦→ 𝑒, for all 𝑒 ∈ 𝑀 , 𝑡 ∈ 𝑇 , and
(b) 𝜏

𝑓
𝑒 ◦ Δ (𝑒) (𝑡) ◦ 𝜏𝑒𝑓 = Δ ( 𝑓 ) (𝑡) for all 𝑒, 𝑓 ∈ 𝑀 , 𝑡 ∈ 𝑇 .

3. Heaps of modules over a truss and affine modules over a ring

Aiming at studying the categorical aspects of the theory of pointed T-modules and heaps of T-modules,
let us relate these with modules and affine modules over rings, respectively.

3.1. Pointed modules over a truss and modules over a ring

Let T be a truss and recall from Section 2.4 the existence of its associated universal ring R(𝑇).
Theorem 3.1. The category 𝑇-Mod• of pointed T-modules is isomorphic to the usual, ring-theoretic,
category R(𝑇)-Mod of R(𝑇)-modules. In particular, it is an abelian category. Furthermore, if T is
unital, then the foregoing isomorphism restricts to the categories of unital pointed T-modules and unital
R(𝑇)-modules as well.
Proof. A pointed T-module G is an abelian group with a truss homomorphism 𝑇 → T

(
Ab(𝐺, 𝐺)

)
(see

Remark 2.8). Since Ab(𝐺, 𝐺) is a ring, this induces a unique ring homomorphism R(𝑇) → Ab(𝐺, 𝐺)
as above, making of G an R(𝑇)-module. Conversely, given an R(𝑇)-module M with module structure
given by 𝜇 : R(𝑇) → Ab(𝑀, 𝑀), the composition

𝑇
𝜄𝑇
−−→ TR(𝑇)

T(𝜇)
−−−−→ T(Ab(𝑀, 𝑀))

makes M into a pointed T-module. These two constructions are functorial and one is the inverse of the
other. �

Therefore, in the category of pointed T-modules all categorical (co)limits can be constructed as in
the category of modules over a ring, that is, by realizing them in the category of abelian groups and then
endowing them with the natural T-action.
Remark 3.2. If a truss T is nonempty and R(𝑇) is constructed on G(𝑇 ; 𝑜) ⊕ Z as in Remark 2.10, then
the action of R(𝑇) on a pointed T-module G comes out as

(𝑡, 𝑛) · 𝑔 = 𝑡 · 𝑔 + (𝑛 − 1)𝑜 · 𝑔,

for all 𝑡 ∈ 𝑇 , 𝑛 ∈ Z and 𝑔 ∈ 𝐺. Conversely, if M is an R(𝑇)-module, then it is a pointed T-module with
the action

𝑡 · 𝑚 = (𝑡, 1) · 𝑚,

for all 𝑡 ∈ 𝑇 and 𝑚 ∈ 𝑀 .
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Remark 3.3. Let G be a pointed T-module. The pointed T-submodule 〈𝑋〉𝑇 generated by a set 𝑋 ⊆ 𝐺
is the R(𝑇)-submodule of G generated by X. For instance, if 𝑋 = {𝑥}, then

〈𝑥〉𝑇 =
{
𝑟 · 𝑥 + 𝑚𝑥 | 𝑟 ∈ R(𝑇), 𝑚 ∈ Z

}
=
{
𝑎1 (𝑡1 · 𝑥) + · · · + 𝑎𝑛 (𝑡𝑛 · 𝑥) + 𝑚𝑥 | 𝑛 ∈ N, 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇, 𝑎1, . . . , 𝑎𝑛, 𝑚 ∈ Z

}
.

Without loss of generality we fix 𝑒 ∈ 𝑇 , and then

〈𝑥〉𝑇 =
{
𝑡 · 𝑥 + 𝑛(𝑒 · 𝑥) + 𝑚𝑥 | 𝑚, 𝑛 ∈ Z, 𝑡 ∈ 𝑇

}
,

since 𝑡 · 𝑥 + 𝑠 · 𝑥 = [𝑡, 𝑒, 𝑠] · 𝑥 + 𝑒 · 𝑥 for all 𝑠, 𝑡 ∈ 𝑇 .

Proposition 3.4. Let T be a truss. The forgetful functor 𝑈 : 𝑇-Mod• → Set admits a left adjoint
𝐹𝑇 : Set → 𝑇-Mod• on objects given by sending any set X to the pointed T-module R(𝑇)𝑢 (𝑋 ) =⊕

𝑥∈𝑋 R(𝑇)𝑢 , where R(𝑇)𝑢 is the Dorroh extension of R(𝑇).

Proof. Notice that the isomorphism between 𝑇-Mod• and R(𝑇)-Mod from Theorem 3.1 is compatible
with the forgetful functors to Set. Therefore, the left adjoint to U is uniquely determined by sending any
X to the R(𝑇)𝑢-module R(𝑇)𝑢 ⊗ZZ(𝑋 ) � R(𝑇)𝑢 (𝑋 ) and then restricting the action along the composition
𝑇 → R(𝑇) → R(𝑇)𝑢 . �

Remark 3.5. For unital pointed modules over a unital truss T, the free unital pointed T-module functor
is given, on objects, by sending any set X to the pointed T-module R(𝑇) (𝑋 ) .

Corollary 3.6. (a) If 𝑇 = ∅, then the free pointed T-module 𝐹𝑇 (∗) over the singleton {∗} is the free
abelian group Z.
(b) If T is not empty and 𝑜 ∈ 𝑇 , then 𝐹𝑇 (∗) is the abelian group G(𝑇 ; 𝑜) ⊕ Z ⊕ Z with left T-action

𝑡 · (𝑠, 𝑛, 𝑝) = (𝑡𝑠 + (𝑛 − 1)𝑡𝑜 + 𝑝𝑡, 𝑛 + 𝑝, 0)

for all 𝑠, 𝑡 ∈ 𝑇 , 𝑛, 𝑝 ∈ Z.
(c) If T is unital, then the free object over the singleton set in the category of unital pointed T-modules

is the abelian group G(𝑇 ; 1𝑇 ) ⊕ Z with left T-action

𝑡 · (𝑠, 𝑛) = (𝑡𝑠 + (𝑛 − 1)𝑡, 𝑛)

for all 𝑠, 𝑡 ∈ 𝑇 , 𝑛 ∈ Z.

Proof. For the reader’s convenience, let us exhibit an explicit proof of the second claim. Let T be a truss
and let us fix 𝑜 ∈ 𝑇 , then R(𝑇) � G(𝑇 ; 𝑜) × Z is a T-module with the following action

𝑡 · (𝑠, 𝑛) � (𝑡, 1) (𝑠, 𝑛) = (𝑡𝑠 + (𝑛 − 1)𝑡𝑜, 𝑛) for all 𝑡, 𝑠 ∈ 𝑇 and 𝑛 ∈ Z; (3.1)

see Remark 2.10. Moreover, since R(𝑇) is a ring its Dorroh extension R(𝑇)𝑢 is a module over R(𝑇) �
G(𝑇 ; 𝑜) × Z × Z. Thus, by the restriction of the operations from Remark 2.10 and the usual Dorroh
extension, we obtain a T-module action

𝑡 · (𝑠, 𝑛, 𝑝) � ((𝑡, 1), 0) · ((𝑠, 𝑛), 𝑝) = ((𝑡, 1) (𝑠, 𝑛) + (𝑡, 1)𝑝, 0)
= (𝑡𝑠 + (𝑛 − 1)𝑡𝑜 + 𝑝𝑡, 𝑛 + 𝑝, 0)),

for any 𝑡, 𝑠 ∈ 𝑇 and 𝑛, 𝑝 ∈ Z. This is a free object with a basis {(𝑜, 0, 1)}. To see this, it is enough to
observe that every element (𝑡, 𝑛, 𝑝) ∈ R(𝑇)𝑢 has a unique decomposition of the form

(𝑡, 𝑛, 𝑝) = 𝛼 · (𝑜, 0, 1) + 𝑢(𝑜 · (𝑜, 0, 1)) + 𝑣(𝑜, 0, 1),
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with 𝛼 ∈ 𝑇 , and 𝑢, 𝑣 ∈ Z. More precisely, 𝛼 = 𝑡, 𝑢 = 𝑛 − 1, and 𝑣 = 𝑝. Therefore, for every pointed T-
module M and every 𝑔 ∈ 𝑀 , there exists at most one morphism of pointed T-modules 𝜙 : R(𝑇)𝑢 → 𝑀
such that 𝜙(𝑜, 0, 1) = 𝑔. This morphism is defined by the formula

𝜙(𝑡, 𝑛, 𝑝) := 𝑡 · 𝑔 + (𝑛 − 1) (𝑜 · 𝑔) + 𝑝𝑔, where 𝑔 = 𝜙(𝑜, 0, 1). (3.2)

Let us show that it is a morphism of pointed T-modules. First of all

𝜙
(
(𝑡, 𝑚, 𝑢) + (𝑠, 𝑛, 𝑣)

)
= 𝜙(𝑡 + 𝑠, 𝑚 + 𝑛, 𝑢 + 𝑣)

= [𝑡, 𝑜, 𝑠] · 𝑔 + (𝑚 + 𝑛 − 1) (𝑜 · 𝑔) + (𝑢 + 𝑣)𝑔

= 𝑡 · 𝑔 − 𝑜 · 𝑔 + 𝑠 · 𝑔 + 𝑚(𝑜 · 𝑔) + (𝑛 − 1) (𝑜 · 𝑔) + 𝑢𝑔 + 𝑣𝑔

= 𝜙(𝑡, 𝑚, 𝑢) + 𝜙(𝑠, 𝑛, 𝑣),

whence it is a morphism of abelian groups. Furthermore, since in M

(𝑛𝑡) · 𝑔 = [𝑡, 𝑜, . . . , 𝑡, 𝑜, 𝑡] · 𝑔 = 𝑛(𝑡 · 𝑔) − (𝑛 − 1) (𝑜 · 𝑔) , for 𝑛 ≥ 0,

(𝑛𝑡) · 𝑔 = [𝑜, 𝑡, 𝑜, . . . , 𝑡, 𝑜] · 𝑔 = (−𝑛 + 1) (𝑜 · 𝑔) + 𝑛(𝑡 · 𝑔) , for 𝑛 < 0,

for all 𝑛, 𝑝 ∈ Z, it follows that

𝜙
(
𝑡 · (𝑠, 𝑛, 𝑝)

)
= 𝜙

(
𝑡𝑠 + (𝑛 − 1)𝑡𝑜 + 𝑝𝑡, 𝑛 + 𝑝, 0

)
=
(
𝑡𝑠 + (𝑛 − 1)𝑡𝑜 + 𝑝𝑡

)
· 𝑔 + (𝑛 + 𝑝 − 1) (𝑜 · 𝑔)

= 𝑡𝑠 · 𝑔 − 𝑜 · 𝑔 + ((𝑛 − 1)𝑡𝑜) · 𝑔 − 𝑜 · 𝑔 + (𝑝𝑡) · 𝑔 + (𝑛 + 𝑝 − 1) (𝑜 · 𝑔)
= 𝑡𝑠 · 𝑔 + (𝑛 − 1) (𝑡𝑜 · 𝑔) − (𝑛 − 2) (𝑜 · 𝑔) − 2(𝑜 · 𝑔) + 𝑝(𝑡 · 𝑔)

− (𝑝 − 1) (𝑜 · 𝑔) + 𝑛(𝑜 · 𝑔) + (𝑝 − 1) (𝑜 · 𝑔)
= 𝑡𝑠 · 𝑔 + (𝑛 − 1) (𝑡𝑜 · 𝑔) + 𝑝(𝑡 · 𝑔)

= 𝑡 · (𝑠 · 𝑔 + (𝑛 − 1) (𝑜 · 𝑔) + 𝑝 · 𝑔) = 𝑡 · 𝜙(𝑠, 𝑛, 𝑝).

Therefore, 𝜙 is a morphism of pointed T-modules. The uniqueness of 𝜙 follows directly by the fact that
𝜙 is uniquely given by the image of (𝑜, 0, 1) in the formula (3.2). �

Example 3.7. Let us consider the truss Z6,3 � (6Z + 3, [−,−,−], ·), where [𝑎, 𝑏, 𝑐] = 𝑎 − 𝑏 + 𝑐, for
all 𝑎, 𝑏, 𝑐 ∈ 6Z + 3, and +, · are the addition and multiplication of integers, respectively. The free Z6,3-
module over {∗} is the group G(Z6,3; 3) × Z × Z together with the Z6,3-module operation, expressed in
terms of the standard addition and multiplication of integers as

(6𝑧 + 3) · (6𝑡 + 3, 𝑛, 𝑝) := (36𝑧𝑡 + 18𝑡 + 18𝑧𝑛 + 6𝑛 + 6𝑝𝑧 + 3, 𝑛 + 𝑝, 0),

where 𝑧, 𝑡, 𝑛, 𝑝 ∈ Z.

3.2. Heaps of modules over a truss and affine modules over a ring

Let R be a not necessarily unital ring. Then, by adapting [6, Definition 4.8] to the present setting, we
refer to a heap of T(𝑅)-modules (𝑀, ⊲) such that 0𝑅 ⊲𝑚 𝑛 = 𝑚 for all 𝑚, 𝑛 ∈ 𝑀 as to an affine module
over R. If R is unital, then we also require that M is isotropic, that is, 1𝑅 ⊲𝑚 𝑛 = 𝑛 for all 𝑚, 𝑛 ∈ 𝑀 (in
the unital setting, this definition is equivalent to that in [16, §1], see [6, Proposition 4.9]). A morphism
of affine R-modules is simply a morphism of the corresponding heaps of T(𝑅)-modules.

Theorem 3.8. The category of heaps of T-modules is isomorphic to the category of affine R(𝑇)-modules.

Proof. Since the empty heap of T-modules corresponds to the empty affine R(𝑇)-module, we may work
with nonempty objects without loss of generality. A (nonempty) heap of T-modules (𝑀, ⊲) is converted
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into an affine R(𝑇)-module (𝑀, ⊲̃) by setting, for all 𝑚, 𝑛 ∈ 𝑀 and 𝑡 ∈ 𝑇 ,

𝑡 ⊲̃𝑚 𝑛 = 𝑡 ⊲𝑚 𝑛 & 0 ⊲̃𝑚 𝑛 = 𝑚, (3.3)

and extending uniquely to the whole of R(𝑇). To see that this action is well-defined, one can first use a
specific realization of R(𝑇) (for example the one in Remark 2.10, in which the zero of R(𝑇) is given by
(𝑜, 0) ∈ 𝑇 × Z and T is embedded as (𝑇, 1) ⊂ 𝑇 × Z) and choose an element 𝑒 ∈ 𝑀 to convert (𝑀, ⊲)
into a pointed T-module (𝑀, +𝑒, ⊲𝑒). By Theorem 3.1, (𝑀, +𝑒, ⊲𝑒) is an R(𝑇)-module (𝑀, +𝑒, ·) with
the action provided by Remark 3.2,

(𝑡, 𝑘) · 𝑚 = 𝑡 ⊲𝑒 𝑚 +𝑒 (𝑘 − 1)𝑜 ⊲𝑒 𝑚,

for all 𝑡 ∈ 𝑇 , 𝑘 ∈ Z, and 𝑚 ∈ 𝑀 . To the latter module, we may assign a heap of TR(𝑇)-modules by setting

[𝑚, 𝑛, 𝑝]+𝑒 � 𝑚 −𝑒 𝑛 +𝑒 𝑝 = [𝑚, 𝑛, 𝑝]

and ⊲̃ : TR(𝑇) × 𝑀 × 𝑀 → 𝑀 by

(𝑡, 𝑘) ⊲̃𝑚 𝑛 � (𝑡, 𝑘) · 𝑛 −𝑒 (𝑡, 𝑘) · 𝑚 +𝑒 𝑚

=
[
𝑡 ⊲𝑒 𝑛, 𝑡 ⊲𝑒 𝑚, 𝑚

]
+𝑒 (𝑘 − 1)𝑜 ⊲𝑒 (𝑚 −𝑒 𝑛)

= 𝑡 ⊲𝑚 𝑛 +𝑒 (𝑘 − 1)𝑜 ⊲𝑒 (𝑚 −𝑒 𝑛),

for all 𝑡 ∈ 𝑇 , 𝑚, 𝑛 ∈ 𝑀 and 𝑘 ∈ Z. In particular, for elements (𝑡, 1) and (𝑜, 0) one obtains formulae
(3.3), from which the above form of ⊲̃ has been uniquely derived.

The formulae (3.3) indicate that the assignment sending any heap of T-modules (𝑀, ⊲) to the affine
R(𝑇)-module (𝑀, ⊲̃) induces the functor

𝑇-HMod −→ AffR(𝑇 ) ,

which acts on morphisms as the identity.
In the opposite direction, any heap of R(𝑇)-modules (𝑁, ⊲) becomes a heap of T-modules (𝑁, ⊲̂) by

restriction of scalars along 𝜄𝑇 : 𝑇 → TR(𝑇):

𝑡 ⊲̂𝑚 𝑛 � 𝑡 ⊲𝑚 𝑛 ,

for all 𝑚, 𝑛 ∈ 𝑀 and for all 𝑡 ∈ 𝑇 . This construction is functorial, too, inducing

AffR(𝑇 ) −→ 𝑇-HMod.

It is clear that if we extend the scalars from T to R(𝑇) and then we restrict them again to T, we find the
same heap of T-modules we started with and that this equality is natural. Analogously, any affine R(𝑇)-
module (𝑀, ⊲) has ⊲ uniquely determined by the elements 𝑡 ⊲𝑚 𝑛, because 0 ⊲𝑚 𝑛 = 𝑚 for all 𝑚, 𝑛 ∈ 𝑀 ,
and therefore the proof is concluded. �

4. Categorical aspects of heaps of modules

In this section we explore categorical aspects of heaps of modules over a truss.

4.1. Limits

Heaps of modules over a truss T, as well as (abelian) heaps and T-modules, form a category of 〈Ω, 𝐸〉-
algebras in the sense of universal algebra (see, e.g., [15, page 120] for a short recall). As such, the
category of heaps of modules over T is monadic over Set (see, e.g., [15, Chapter VI, §8, Theorem 1])
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and hence all limits in 𝑇-HMod can be computed in Set and then endowed with the obvious heap of
modules structure (see, e.g., [4, Propositions 4.3.1]). In what follows, we work explicitly with heaps of
T-modules, but the interested reader may easily adapt the examples to the case of T-modules.

Example 4.1 (Equalizers). Let 𝑓 , 𝑔 : 𝑀 → 𝑁 be a pair of morphisms of heaps of T-modules. Then
𝐸 � {𝑥 ∈ 𝑀 | 𝑓 (𝑥) = 𝑔(𝑥)} is a sub-heap of T-modules of M. Since E together with the inclusion map
𝑖 : 𝐸 → 𝑀 is the equalizer of the pair ( 𝑓 , 𝑔) in the category of sets, it is easy to see that (𝐸, 𝑖) is also
the equalizer of ( 𝑓 , 𝑔) in the category 𝑇-HMod. We note that E can be the empty heap.

Example 4.2 (Products). Let (𝑀𝑖)𝑖∈𝐼 be a family of heaps of T-modules. The product of the family
(𝑀𝑖)𝑖∈𝐼 in𝑇-HMod can be realized by endowing their Cartesian product Prod𝑖∈𝐼𝑀𝑖 with the component-
wise heap of modules structure, together with the canonical projections 𝜋𝑖 : Prod𝑖∈𝐼𝑀𝑖 → 𝑀𝑖 , 𝑖 ∈ 𝐼.

Notice that the heap bracket [−,−,−] : 𝑀 × 𝑀 × 𝑀 → 𝑀 becomes then a morphism of heaps of
T-modules for every M in 𝑇-HMod. Firstly, the fact that the heap M is abelian entails that the bracket
is a morphism of abelian heaps. Secondly, the base change property entails that, for all 𝑒 ∈ 𝑀 ,

𝑡 ⊲ [𝑎,𝑏,𝑐 ] [𝑥, 𝑦, 𝑧]
(2.4)
=

[
𝑡 ⊲𝑒 [𝑥, 𝑦, 𝑧], 𝑡 ⊲𝑒 [𝑎, 𝑏, 𝑐], [𝑎, 𝑏, 𝑐]

]
=

[
𝑡 ⊲𝑒 𝑥, 𝑡 ⊲𝑒 𝑦, 𝑡 ⊲𝑒 𝑧, 𝑡 ⊲𝑒 𝑎, 𝑡 ⊲𝑒 𝑏, 𝑡 ⊲𝑒 𝑐, 𝑎, 𝑏, 𝑐

]
(2.4)
=

[
𝑡 ⊲𝑎 𝑥, 𝑡 ⊲𝑏 𝑦, 𝑡 ⊲𝑐 𝑧

]
,

(4.1)

which is exactly [−,−,−] applied to 𝑡 ⊲(𝑎,𝑏,𝑐) (𝑥, 𝑦, 𝑧) = (𝑡 ⊲𝑎 𝑥, 𝑡 ⊲𝑏 𝑦, 𝑡 ⊲𝑐 𝑧).

Example 4.3 (Pullbacks). Let 𝑀
𝑓
−→ 𝑂

𝑔
←− 𝑁 be a pair of morphisms in 𝑇-HMod. Then 𝑃 � {(𝑚, 𝑛) ∈

𝑀 ×𝑁 | 𝑓 (𝑚) = 𝑔(𝑛)} is a sub-heap of T-modules of the product 𝑀 ×𝑁 and, together with the obvious
maps 𝜋𝑀 : 𝑃→ 𝑀, (𝑚, 𝑛) ↦→ 𝑚, and 𝜋𝑁 : 𝑃→ 𝑁, (𝑚, 𝑛) ↦→ 𝑛, it forms the pullback of the pair ( 𝑓 , 𝑔).

4.2. Colimits

In this subsection we describe some (less obvious) colimits in the categories of (abelian) heaps, T-
modules, and heaps of T-modules. Existence of the colimits follows from the general theory of algebraic
theories (see, e.g., [4, §3.4]); here we present their explicit descriptions.

4.2.1. Modules
Let T be a truss. Colimits in the category of T-modules can be computed in the category of abelian
heaps and then endowed with the obvious T-module structure. This is a consequence of the following
result, which collects the observations and conclusions of [11, pages 24 and 25], and of [4, Propositions
4.3.2], in view of the fact that the tensor product 𝑇 ⊗ − : Ah → Ah is a left adjoint functor and hence
preserves all colimits.

Proposition 4.4. Let T be a truss.

(1) If T is unital, then the forgetful functor from the category of unital T-modules to that of abelian
heaps admits as left adjoint the free T-module functor 𝑇 ⊗ − and it is monadic.

(2) If T is not necessarily unital, then the forgetful functor from the category of not necessarily unital
T-modules to that of abelian heaps admits as left adjoint the free T-module functor 𝑇𝑢 ⊗ −, where
𝑇𝑢 is the unital extension of T, and it is monadic.

4.2.2. Heaps of modules
Colimits in the category of heaps of T-modules are more delicate and cannot be reduced to colimits in
Ah, as it happens for T-modules. In fact, the converse is true: since Ah is (isomorphic to) ∅-HMod, as
in Example 2.15, colimits of abelian heaps are particular cases of colimits of heaps of modules.
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Construction 4.5 (Quotients - see [6, Proposition 3.8]). Let (𝑀, [−,−,−], ⊲) be a heap of T-modules
and let 𝑁 ⊆ 𝑀 be a sub-heap of T-modules. Consider the sub-heap relation ∼𝑁 from Remark 2.1. For
𝑡 ∈ 𝑇 , 𝑚1 ∼𝑁 𝑚′1 and 𝑚2 ∼𝑁 𝑚′2,[

𝑡 ⊲𝑚′1 𝑚′2, 𝑡 ⊲𝑚1 𝑚2, 𝑛
]
=
[
𝑡 ⊲𝑚′1 𝑚′2, 𝑡 ⊲𝑚1 𝑚2, 𝑡 ⊲𝑛 𝑛

]
(4.1)
= 𝑡 ⊲ [𝑚′1 ,𝑚

′
2 ,𝑛]
[𝑚1, 𝑚2, 𝑛] ∈ 𝑁,

for some 𝑛 ∈ 𝑁 and hence ∼𝑁 is a congruence over (𝑀, [−,−,−], ⊲). Therefore, the set of equivalence
classes 𝑀/𝑁 is a heap of T-modules with[

𝑚1, 𝑚2, 𝑚3

]
� [𝑚1, 𝑚2, 𝑚3] and 𝑡 ⊲𝑚1 𝑚2 � 𝑡 ⊲𝑚1 𝑚2 ,

and the canonical projection 𝜋 : 𝑀 → 𝑀/𝑁 is a morphism of heaps of T-modules satisfying the natural
universal property: if 𝑔 : 𝑀 → 𝑀 ′ is a morphism of heaps of T-modules such that 𝑔(𝑛) = 𝑒′ ∈ 𝑀 ′ for all
𝑛 ∈ 𝑁 , then there exists a unique morphism of heaps of T-modules 𝑔̃ : 𝑀/𝑁 → 𝑀 ′ such that 𝑔̃ ◦ 𝜋 = 𝑔.

Furthermore, if ∼ is any congruence on M, then ∼ = ∼𝑁 for the sub-heap of modules

𝑁 � {𝑚 ∈ 𝑀 | 𝑚 ∼ 𝑒 for a fixed 𝑒 ∈ 𝑀} ⊆ 𝑀.

Indeed, we already know that N has to be a (normal) sub-heap and, in addition, for 𝑡 ∈ 𝑇 and 𝑛, 𝑛′ ∈ 𝑁 ,

𝑡 ⊲𝑛 𝑛′ ∼ 𝑡 ⊲𝑒 𝑒 = 𝑒 ∈ 𝑁,

so that 𝑡 ⊲𝑛 𝑛′ ∈ 𝑁 .

In the following we will rely on the correspondence between heaps of T-modules and pointed
T-modules as it is described in [6] (see Remark 2.16). In order to simplify the notation, if there is no
danger of confusion, we suppress the index e and we denote by (𝑀, +) the pointed T-module associated
with (𝑀, [−,−,−], ⊲). Recall also that with these notations, every morphism 𝑓 : 𝑀 → 𝑁 of heaps of
T-modules has the form 𝑓 = 𝛼+ 𝑓 (0), where 𝛼 : (𝑀, +) → (𝑁, +) is a morphism of pointed T-modules.

Proposition 4.6 (Coequalizers). For every pair of parallel arrows ( 𝑓 , 𝑔) from G to H in 𝑇-HMod,
let [[ 𝑓 , 𝑔]]𝑒 denote the sub-heap of T-modules of H generated by a chosen 𝑒 ∈ 𝐻 and the elements
[ 𝑓 (𝑥), 𝑔(𝑥), 𝑒] for all 𝑥 ∈ 𝐺. Then, the coequalizer of ( 𝑓 , 𝑔) can be realized as 𝐻/[[ 𝑓 , 𝑔]]𝑒 with the
canonical projection.

Proof. For the sake of simplicity, we will take advantage of the conventions from the end of Section
2.5. Let 𝑓 , 𝑔 : 𝐺 → 𝐻 be two parallel morphisms of heaps of T-modules. If 𝐺 = ∅ then it is easy to
see that the coequalizer of the pair ( 𝑓 , 𝑔) is H with the identity map. Suppose then that G is not empty,
whence 𝐻 ≠ ∅, too. Without loss of generality, pick 𝑒 ∈ 𝐻 and consider the set

[[ 𝑓 , 𝑔]] �
{
[ 𝑓 (𝑥), 𝑔(𝑥), 𝑒] ∈ 𝐻 | 𝑥 ∈ 𝐺

}
.

This is a sub-heap of T-modules of H since

𝑡 ⊲ [ 𝑓 (𝑥) ,𝑔 (𝑥) ,𝑒]
[
𝑓 (𝑦), 𝑔(𝑦), 𝑒

] (4.1)
=

[
𝑡 ⊲ 𝑓 (𝑥) 𝑓 (𝑦), 𝑡 ⊲𝑔 (𝑥) 𝑔(𝑦), 𝑡 ⊲𝑒 𝑒

]
=
[
𝑓 (𝑡 ⊲𝑥 𝑦), 𝑔(𝑡 ⊲𝑥 𝑦), 𝑒

]
,

for all 𝑥, 𝑦 ∈ 𝐺. Let [[ 𝑓 , 𝑔]]𝑒 be the sub-heap of T-modules of H generated by [[ 𝑓 , 𝑔]] and e. Then we
claim that coeq( 𝑓 , 𝑔) = 𝐻/[[ 𝑓 , 𝑔]]𝑒 with the canonical projection 𝜋 : 𝐻 → 𝐻/[[ 𝑓 , 𝑔]]𝑒 as coequalizer
morphism. First of all, since 𝑒 ∈ [[ 𝑓 , 𝑔]]𝑒 and [ 𝑓 (𝑥), 𝑔(𝑥), 𝑒] ∈ [[ 𝑓 , 𝑔]]𝑒, too, Construction 4.5 entails
that 𝜋( 𝑓 (𝑥)) = 𝜋(𝑔(𝑥)) for all 𝑥 ∈ 𝐺. Secondly, if ℎ : 𝐻 → 𝐾 is a morphism of heaps of T-modules
such that ℎ ◦ 𝑓 = ℎ ◦ 𝑔, then

ℎ
(
[ 𝑓 (𝑥), 𝑔(𝑥), 𝑒]

)
=
[
ℎ 𝑓 (𝑥), ℎ𝑔(𝑥), ℎ(𝑒)

]
= ℎ(𝑒).
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This implies that ℎ
(
[[ 𝑓 , 𝑔]]

)
= {ℎ(𝑒)}, that ℎ

(
𝑡 ⊲𝑢 𝑣

)
= 𝑡 ⊲ℎ (𝑢) ℎ(𝑣) = 𝑡 ⊲ℎ (𝑒) ℎ(𝑒) = ℎ(𝑒), for all

𝑢, 𝑣 ∈ [[ 𝑓 , 𝑔]] ∪ {𝑒}, and hence that ℎ
(
[[ 𝑓 , 𝑔]]𝑒

)
= {ℎ(𝑒)}. Thus, by Construction 4.5, there exists a

unique morphism ℎ̃ : 𝐻/[[ 𝑓 , 𝑔]]𝑒 → 𝐾 such that ℎ̃ ◦ 𝜋 = ℎ. �

Remark 4.7. Let M be a nonempty heap of T-modules, 𝑒 ∈ 𝑀 , and 𝑁 ⊆ 𝑀 be a sub-heap of T-modules.
For the sake of making the construction from the proof of Proposition 4.6 a bit more concrete, let us
explicitly construct the sub-heap of T-modules 𝑁𝑒 generated by N and e. Consider the sub-heap 𝑃 ⊆ 𝑀
generated by the set 𝑋 � {𝑒} ∪ 𝑁 ∪ {𝑡 ⊲𝑒 𝑛 | 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇}, that is, the set 𝑊 (𝑋) of all the odd-length
brackets [𝑥1, 𝑥2, · · · , 𝑥2𝑛+1] in M with 𝑥1, . . . , 𝑥2𝑛+1 ∈ 𝑋 . Since for all 𝑠 ∈ 𝑇 we have that

𝑠 ⊲𝑒 𝑒 = 𝑒 ∈ 𝑋, 𝑠 ⊲𝑒 𝑛 ∈ 𝑋, 𝑠 ⊲𝑒 𝑡 ⊲𝑒 𝑛 = 𝑠𝑡 ⊲𝑒 𝑛 ∈ 𝑋,
(
∀ 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇

)
and since 𝑠 ⊲𝑒 (−) : 𝑀 → 𝑀 is a morphism of heaps, 𝑊 (𝑋) is closed under the ternary operation

𝑇 ⊗ 𝑀 ⊗ 𝑀 −→ 𝑀, 𝑡 ⊗ 𝑎 ⊗ 𝑏 ↦−→ 𝑡 ⊲𝑎 𝑏 = [𝑡 ⊲𝑒 𝑏, 𝑡 ⊲𝑒 𝑎, 𝑎],

and so it is a sub-heap of T-modules. It is clearly the smallest one containing e and N, whence
𝑊 (𝑋) = 𝑁𝑒. A less canonical, but equivalent, construction in case 𝑁 ≠ ∅ allows us to realize 𝑁𝑒 as
the sub-heap generated by the set 𝑋 ′ � 𝑁 ∪ {𝑒} ∪ {𝑡 ⊲ 𝑓 𝑒 | 𝑡 ∈ 𝑇} for 𝑓 ∈ 𝑁 (the construction does
not depend on the choice of f ). That is to say, for 𝑁 ≠ ∅ and 𝑓 ∈ 𝑁 , 𝑁𝑒 can be equivalently described
as the R(𝑇)-submodule of (𝑀, +𝑒, ·𝑒) generated by the congruence class 𝑓 + 𝜏𝑒𝑓 (𝑁) of the equivalence
modulo the R(𝑇)-submodule 𝜏𝑒𝑓 (𝑁), or as the R(𝑇)-submodule of (𝑀, + 𝑓 , ⊲ 𝑓 ) obtained by appending
e to the submodule N.

Construction 4.8 (Coequalizers). Let us explicitly construct the coequalizer for the pair of morphisms of
heaps of T-modules 𝑓 , 𝑔 : 𝐺 → 𝐻 by taking advantage of the associated pointed T-module construction.
Suppose that G is not empty. Hence 𝐻 ≠ ∅. In order to construct the coequalizer for the pair ( 𝑓 , 𝑔),
we fix two pointed T-module structures (𝐺, +) and (𝐻, +). Then 𝑓 = 𝛼 + 𝑎 and 𝑔 = 𝛽 + 𝑏 with
𝛼, 𝛽 ∈ 𝑇-Mod•(𝐺, 𝐻) and 𝑎, 𝑏 ∈ 𝐻.

Let ℎ : 𝐻 → 𝐾 be a morphism of heaps of T-modules. We also fix a pointed T-module structure
(𝐾, +). Then ℎ = 𝛾 + 𝑐 with 𝛾 ∈ 𝑇-Mod•(𝐻, 𝐾) and 𝑐 ∈ 𝐾 . We observe that

ℎ 𝑓 = ℎ𝑔 ⇔ 𝛾𝛼 + 𝛾(𝑎) + 𝑐 = 𝛾𝛽 + 𝛾(𝑏) + 𝑐 ⇔ 𝛾𝛼 − 𝛾𝛽 = 𝛾(𝑎) − 𝛾(𝑏).

Since 𝛾𝛼 − 𝛾𝛽 is a morphism of pointed T-modules, it follows that ℎ 𝑓 = ℎ𝑔 if and only if 𝛾𝛼 = 𝛾𝛽 and
𝛾(𝑎) = 𝛾(𝑏).

This suggests choosing as the group associated to the coequalizer of ( 𝑓 , 𝑔) the factor group 𝐶 =
𝐻/(Im(𝛼 − 𝛽) + 〈𝑎 − 𝑏〉𝑇 ) (where 〈𝑎 − 𝑏〉𝑇 is the pointed T-submodule generated by 𝑎 − 𝑏) together
with the canonical surjection 𝜋𝐶 : 𝐻 → 𝐶.

Using the definition of C it follows that 𝜋𝐶 𝑓 = 𝜋𝐶𝑔. Let ℎ = 𝛾 + 𝑐 : 𝐻 → 𝐾 be a morphism
of heaps of T-modules such that ℎ 𝑓 = ℎ𝑔. Then 𝛾𝛼 = 𝛾𝛽 and 𝛾(𝑎) = 𝛾(𝑏). Then ℎ : 𝐶 → 𝐾 ,
ℎ(𝑥 + (Im(𝛼 − 𝛽) + 〈𝑎 − 𝑏〉𝑇 )) = 𝛾(𝑥) + 𝑐 is well defined and ℎ𝜋𝐶 = 𝛾 + 𝑐 = ℎ. Moreover, since 𝜋𝐶
is a surjective map, it follows that ℎ is the unique map 𝐶 → 𝐾 which provides a factorization of h
through 𝜋𝐶 . Hence (𝐶, 𝜋𝐶 ) is the coequalizer for the pair ( 𝑓 , 𝑔), as the argument does not depend on
the particular choice of the pointed T-module structures.

Now, we would like to construct the coproduct of a family of heaps of T-modules. In order to do this,
we need the following

Lemma 4.9. Let C be a pointed T-module, and let (𝑐 𝑗 ) 𝑗∈𝐽 be a family of elements of C such that for
every pointed T-module H and every family (𝑎 𝑗 ) 𝑗∈𝐽 of elements of H there exists a morphism of pointed
T-modules 𝛼 : 𝐶 → 𝐻 such that 𝛼(𝑐 𝑗 ) = 𝑎 𝑗 . Then C admits a decomposition 𝐶 = 𝐵 ⊕ 𝐹, where F is a
free pointed T-module and (𝑐 𝑗 ) 𝑗∈𝐽 is a basis for F.
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Proof. Let 𝐹 = 〈𝑐 𝑗 | 𝑗 ∈ 𝐽〉𝑇 ≤ 𝐶. Using the hypothesis, it follows that F is free and that (𝑐 𝑗 ) 𝑗∈𝐽 is a
basis for F. Moreover, there exists a morphism of pointed T-modules 𝜋 : 𝐶 → 𝐹 such that 𝜋(𝑐 𝑗 ) = 𝑐 𝑗
for all 𝑗 ∈ 𝐽. If 𝜄 : 𝐹 → 𝐶 is the inclusion map then 𝜋𝜄 = id𝐹 , hence F is a direct summand of C as an
abelian group. Since 𝜋 and 𝜄 are morphisms of pointed T-modules, the conclusion is immediate. �

Construction 4.10 (Coproducts). The coproduct of an empty family is the initial object of the category
of heaps of T-modules (the empty heap). Since the empty heap of T-modules is the initial object in our
category, it is enough to study the coproduct of a family of nonempty members.

Let (𝐺𝑖)𝑖∈𝐼 be a family of nonempty heaps of T-modules. In order to construct a coproduct for it, we
proceed as follows:

(a) for every 𝑖 ∈ 𝐼 we fix a pointed T-module structure (𝐺𝑖 , +) associated to 𝐺𝑖;
(b) we fix an index 𝑖0 ∈ 𝐼 and a family of symbols (𝑏𝑖)𝑖∈𝐼\{𝑖0 };
(c) let C be the heap associated with the pointed T-module (⊕𝑖∈𝐼𝐺𝑖) ⊕ 𝐹, where F is the free pointed

T-module which has as a basis the family (𝑏𝑖)𝑖∈𝐼\{𝑖0 };
(d) if 𝑢𝑖 : 𝐺𝑖 → ⊕𝑖∈𝐼𝐺𝑖 are the canonical morphisms, we define 𝜐𝑖0 = 𝑢𝑖0 , and 𝜐𝑖 = 𝑢𝑖 + 𝑏𝑖 for all

𝑖 ∈ 𝐼 \ {𝑖0}.

Then the pair (𝐶, (𝜐𝑖)𝑖∈𝐼 ) represents a coproduct of the family (𝐺𝑖)𝑖∈𝐼 in 𝑇-HMod.
Indeed, let 𝛼𝑖 : 𝐺𝑖 → 𝐻, 𝑖 ∈ 𝐼, be a family of morphisms of heaps of T-modules. We fix a pointed T-

module structure on H. Then 𝛼𝑖 = 𝑓𝑖 +𝑎𝑖 , where 𝑓𝑖 are morphisms of pointed T-modules and 𝑎𝑖 ∈ 𝐻, for
all 𝑖 ∈ 𝐼. There exists a unique morphism of pointed T-modules 𝑓 :

⊕
𝑖∈𝐼 𝐺𝑖 → 𝐻 such that 𝑓𝑖 = 𝑓 𝑢𝑖

for all 𝑖 ∈ 𝐼. Moreover, we consider the morphism 𝛾 : 𝐹 → 𝐻 defined by the rules 𝛾(𝑏𝑖) = 𝑎𝑖 − 𝑎𝑖0 .
We define 𝛼 : 𝐶 → 𝐻 by the rule

𝛼(𝑔 + 𝑐) = 𝑓 (𝑔) + 𝛾(𝑐) + 𝑎𝑖0 for all 𝑔 ∈
⊕
𝑖∈𝐼

𝐺𝑖 and 𝑐 ∈ 𝐹.

Note that 𝛼 is well defined since the representation of the elements of C as 𝑔 + 𝑐 with 𝑔 ∈
⊕

𝑖∈𝐼 𝐺𝑖 and
𝑐 ∈ 𝐹 is unique. Putting 𝑏𝑖0 = 0, we have

𝛼𝜐𝑖 (𝑥) = 𝛼(𝑢𝑖 (𝑥) + 𝑏𝑖) = 𝑓 𝑢𝑖 (𝑥) + 𝛾(𝑏𝑖) + 𝑎𝑖0 = 𝑓𝑖 (𝑥) + 𝑎𝑖 ,

hence 𝛼𝜐𝑖 = 𝛼𝑖 for all 𝑖 ∈ 𝐼.
Suppose that 𝛼′ : 𝐶 → 𝐻 is a morphism such that 𝛼′𝜐𝑖 = 𝛼𝑖 for all 𝑖 ∈ 𝐼. Keeping the pointed

T-modules fixed in (a) for the 𝐺𝑖 and above for H, we observe that

𝛼′(𝑔 + 𝑏) = 𝑓 ′(𝑔) + 𝛾′(𝑏) + 𝑎,

with 𝑓 ′ :
⊕

𝑖∈𝐼 𝐺𝑖 → 𝐻 and 𝛾′ : 𝐹 → 𝐻 morphisms of pointed T-modules, and 𝑎 ∈ 𝐻.
From 𝛼′𝜐𝑖0 = 𝛼𝑖0 we obtain 𝑓 ′𝑢𝑖0 + 𝑎 = 𝛼𝑖0 , hence 𝑎 = 𝑎𝑖0 and 𝑓 ′𝑢𝑖0 = 𝑓𝑖0 .
For 𝑖 ≠ 𝑖0 we obtain 𝑓 ′𝑢𝑖 + 𝛾(𝑏𝑖) + 𝑎𝑖0 = 𝑓𝑖 + 𝑎𝑖 , hence 𝑓 ′𝑢𝑖 = 𝑓𝑖 and 𝛾(𝑏𝑖) = 𝑎𝑖 − 𝑎𝑖0 . Now the

equality 𝑓 = 𝑓 ′ follows from the universal property of the direct sum
⊕

𝑖∈𝐼 𝐺𝑖 .

Example 4.11 (Pushouts). Since pushouts have a particularly nice form when compared to the other
colimits, let us construct the pushout of the diagram 𝐾

𝑓
←− 𝐺

𝑔
−→ 𝐻 in 𝑇-HMod for G nonempty. Pick

𝑒 ∈ 𝐺. Then G
(
𝐾; 𝑓 (𝑒)

) 𝑓
←− G

(
𝐺; 𝑒

) 𝑔
−→ G

(
𝐻; 𝑔(𝑒)

)
is a diagram in 𝑇-Mod•, whose pushout can be

realized as (
𝑃 � G

(
𝐾; 𝑓 (𝑒)

)
⊕ G

(
𝐻; 𝑔(𝑒)

)
/〈 𝑓 − 𝑔〉, 𝜂𝐾 : 𝐾 → 𝑃, 𝜂𝐻 : 𝐻 → 𝑃

)
.

We claim that the heap of T-modules arising from P is the pushout in the category of heaps of T-
modules. In fact, if 𝐾

𝑘
−→ 𝐿

ℎ
←− 𝐻 in 𝑇-HMod are such that 𝑘 ◦ 𝑓 = ℎ ◦ 𝑔, then 𝑘 𝑓 (𝑒) = ℎ𝑔(𝑒) and
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G
(
𝐾; 𝑓 (𝑒)

) 𝑘
−→ G

(
𝐿; ℎ𝑔(𝑒)

) ℎ
←− G

(
𝐻; 𝑔(𝑒)

)
are arrows in 𝑇-Mod• such that 𝑘 ◦ 𝑓 = ℎ ◦𝑔, whence there

exists a unique morphism 𝑙 : 𝑃 → 𝐿 of pointed T-modules such that 𝑙 ◦ 𝜂𝐾 = 𝑘 and 𝑙 ◦ 𝜂𝐻 = ℎ. This
is also a morphism of heaps of T-modules and if 𝑙 ′ : 𝑃 → 𝐿 is another such morphism satisfying the
same property, then

𝑙 ′
(
( 𝑓 (𝑒), 𝑔(𝑒))

)
= 𝑙 ′𝜂𝐾

(
𝑓 (𝑒)

)
= 𝑘 𝑓 (𝑒) = ℎ𝑔(𝑒) ,

and hence 𝑙 ′ : 𝑃 → G(𝐿; ℎ𝑔(𝑒)) is a morphism of pointed T-modules, which has to coincide with l by
uniqueness. Therefore, the functor G from Remark 2.16, determined by retracting at a chosen element,
creates pushouts.

Example 4.12 (★�★). Recall that we denote by ★ the singleton {∗}. It has a natural heap of T-modules
structure given by [∗, ∗, ∗] = ∗ and 𝑡 ⊲∗ ∗ = ∗ for all 𝑡 ∈ 𝑇 . The (unique) associated group structure is
the trivial group {0}. If T admits an identity 1𝑇 , then the coproduct ★�★ in 𝑇-HMod can be realized
as the heap of T-modules associated to the free pointed T-module R(𝑇) from Corollary 3.6; that is, the
set G(𝑇 ; 1𝑇 ) × Z with heap of T-modules structure[

(𝑡, 𝑛), (𝑡 ′, 𝑛′), (𝑡 ′′, 𝑛′′)
]
=
(
[𝑡, 𝑡 ′, 𝑡 ′′], 𝑛 − 𝑛′ + 𝑛′′

)
𝑡 ⊲(𝑡′,𝑚) (𝑡

′′, 𝑛) =
[
𝑡 · (𝑡 ′′, 𝑛), 𝑡 · (𝑡 ′, 𝑚), (𝑡 ′, 𝑚)

]
=
(
𝑡𝑡 ′′ + (𝑛 − 1)𝑡 − 𝑡𝑡 ′ − (𝑚 − 1)𝑡 + 𝑡 ′, 𝑛

)
=
(
𝑡 ⊲𝑡′ 𝑡 ′′ + (𝑛 − 𝑚)𝑡, 𝑛

)
and canonical maps 𝜂1 : ★ → R(𝑇), ∗ ↦→ (1𝑇 , 0) and 𝜂2 : ★ → R(𝑇), ∗ ↦→ (1𝑇 , 1). This is easily
checked directly by observing that 𝑡 ⊲(1𝑇 ,0) (𝑠, 𝑛) = 𝑡 · (𝑠, 𝑛), since (1𝑇 , 0) is the zero of the ring R(𝑇),
and therefore (see (3.1))

(𝑡, 𝑛) = 𝑡 ⊲(1𝑇 ,0) (1𝑇 , 1) + (𝑛 − 1) (1𝑇 , 1)

=

{[
𝑡 ⊲(1𝑇 ,0) (1𝑇 , 1), (1𝑇 , 0), (1𝑇 , 1), (1𝑇 , 0), . . . , (1𝑇 , 1)

]
, 𝑛 − 1 ≥ 0,[

𝑡 ⊲(1𝑇 ,0) (1𝑇 , 1), (1𝑇 , 1), (1𝑇 , 0), . . . , (1𝑇 , 1), (1𝑇 , 0)
]
, 𝑛 − 1 < 0,

which means that any morphism of heaps of T-modules 𝜙 : R(𝑇) → 𝑀 is uniquely and freely determined
by 𝜙(1𝑇 , 0) and 𝜙(1𝑇 , 1), and that any morphism of heaps of T-modules 𝜓 : 𝑀 → R(𝑇) such that
{(1𝑇 , 0), (1𝑇 , 1)} ⊆ Im(𝜓) is automatically surjective.

If T does not have identity, then we carry on the same argument by replacing R(𝑇) with its Dorroh
extension R(𝑇)𝑢 , which is unital. In particular, if 𝑇 = ∅, then ★�★ = H(Z), the abelian heap associated
with the group of integers. This is consistent with the fact that ∅-HMod � Ah.

Our next result, Theorem 4.14, relies deeply on the categorical constructions we performed above,
but it also provides a novel and easier way of realizing them. It also supports once more the interpretation
of heaps of T-modules as “affine spaces over T”.

We first need a short technical lemma. Let us recall from Section 2.5 that, for a unital truss T a heap
of T-modules is isotropic if 1𝑇 ⊲𝑚 𝑛 = 𝑛, for all 𝑚, 𝑛 ∈ 𝑀 and that the category of isotropic heaps of
T-modules is denoted by 𝑇-HModis.

Lemma 4.13. Let T be a truss. Then the categories of heaps of T-modules and of isotropic heaps of
𝑇𝑢-modules are isomorphic.

Proof. Let M be a heap of T-modules. In view of Proposition 2.18, this is equivalent to claim that we
have a morphism of abelian heaps

Δ𝑀 : 𝑀 → Trs(𝑇, E(𝑀))
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satisfying (a) and (b). Since for every 𝑚 ∈ 𝑀 we have that Δ𝑀 (𝑚) : 𝑇 → E(𝑀) is a truss morphism
and E(𝑀) is unital, the universal property of the Dorroh extension 𝑇𝑢 ensures that there is a unique
unital extension Δ̃𝑀 (𝑚) : 𝑇𝑢 → E(𝑀) such that Δ̃𝑀 (𝑚) ◦ 𝚥𝑇 = Δ𝑀 (𝑚) (see the end of Section 2.4).
The uniqueness part allows us to define a heap morphism

Δ̃𝑀 : 𝑀 → Trs(𝑇𝑢 , E(𝑀)),

which still satisfies (a) and (b) and converts M into an isotropic heap of 𝑇𝑢-modules. In fact, since pre-
and postcomposing by heap morphisms is a heap morphism, it suffices to check that (a) and (b) are
satisfied on elements 𝑡 ∈ 𝑇 (which is obviously the case) and on ∗ = 1𝑇𝑢 (which is the case because
Δ̃𝑀 (𝑚) (∗) = id for every 𝑚 ∈ 𝑀). Summing up, we can construct a functor

Φ : 𝑇-HMod→ 𝑇𝑢-HModis, (𝑀, ⊲) ↦→ (𝑀, ⊲̃),

(where ⊲̃ is associated with Δ̃𝑀 as in Proposition 2.18) and acts as the identity on morphisms. Concretely,
⊲̃ is uniquely determined by

𝑡 ⊲̃𝑚 𝑛 = 𝑡 ⊲𝑚 𝑛 and ∗ ⊲̃𝑚 𝑛 = 𝑛

for all 𝑡 ∈ 𝑇 , 𝑚, 𝑛 ∈ 𝑀 . In the opposite direction, let us consider the “restriction of scalars” functor

Ξ : 𝑇𝑢-HModis → 𝑇-HMod, (𝑀, ⊲) ↦→ (𝑀, ⊲ ◦ ( 𝚥𝑇 × id𝑀 × id𝑀 )),

where 𝚥𝑇 : 𝑇 → 𝑇𝑢 is a canonical embedding, and which acts as the identity of morphisms. One can
easily check that Ξ is a well-defined functor.

Now, Ξ ◦ Φ = id𝑇 -HMod for if (𝑀, ⊲) ∈ 𝑇-HMod, then extending and restricting the scalars gives
back the original heap of modules:

(Ξ ◦Φ) (𝑀, ⊲) = (𝑀, ⊲̃ ◦ ( 𝚥𝑇 × id𝑀 × id𝑀 )) = (𝑀, ⊲),

by definition of ⊲̃. Similarly Φ ◦ Ξ = id𝑇𝑢-HModis , because if (𝑀, ⊲) ∈ 𝑇𝑢-HModis, then

(Φ ◦ Ξ) (𝑀, ⊲) =
(
𝑀, �⊲ ◦ ( 𝚥𝑇 × id𝑀 × id𝑀 )

)
= (𝑀, ⊲),

where the last equality follows from the fact that the unique way of extending the restricted heap of
module structure ⊲ ◦ ( 𝚥𝑇 × id𝑀 × id𝑀 ) to 𝑇𝑢 is by letting ∗ act as the identity, which is already the case
on M since it is isotropic. �

Suppose that T is a (possibly unital) truss. Recall that the slice category of (possibly unital) pointed
T-modules over R(𝑇) has as objects the pairs (𝐺, 𝐺 → R(𝑇)) consisting of a (possibly unital) pointed T-
module G and a morphism of pointed T-modules 𝐺 → R(𝑇), and it has as morphisms those morphisms
of pointed T-modules that make the obvious triangles commute. If we consider its full subcategory
consisting of all (𝐺, 𝜋𝐺 : 𝐺 → R(𝑇)) such that 𝜋𝐺 is surjective, then we may expand it harmlessly by
allowing

(
{0}, 0: {0} → R(𝑇)

)
to be the initial object. Denote the resulting category by 𝑇-Mod•

�

R(𝑇).
It will be clear from the context if we are in the unital case or not.

Theorem 4.14. Let T be a unital truss. The category of isotropic heaps of T-modules is equivalent to
the category 𝑇-Mod•

�

R(𝑇), the full subcategory of slice category of pointed T-modules over R(𝑇)
described above.

Proof. The two initial objects,
(
{0}, 0: {0} → R(𝑇)

)
in 𝑇-Mod•

�

R(𝑇) and ∅ in 𝑇-HMod, correspond
to each other, so let us ignore them in what follows.
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Let (𝐺, 𝜋𝐺) be an object in 𝑇-Mod•

�

R(𝑇) and consider ℳ(𝐺) � {𝑥 ∈ 𝐺 | 𝜋𝐺 (𝑥) = (1𝑇 , 1)}. It is
a heap of T-modules with respect to

[𝑥, 𝑦, 𝑧] � 𝑥 − 𝑦 + 𝑧 and 𝑡 ⊲𝑥 𝑦 � 𝑡 · 𝑦 − 𝑡 · 𝑥 + 𝑥

for all 𝑥, 𝑦, 𝑧 ∈ ℳ(𝐺) and 𝑡 ∈ 𝑇 . Furthermore, since a morphism from (𝐺, 𝜋𝐺) to (𝐻, 𝜋𝐻 ) in
𝑇-Mod•

�

R(𝑇) is a morphism of pointed R(𝑇)-modules 𝑓 : 𝐺 → 𝐻 such that 𝜋𝐻 ◦ 𝑓 = 𝜋𝐺 , it is
clear that we can (co)restrict f to ℳ( 𝑓 ) : ℳ(𝐺) → ℳ(𝐻) and the latter is a morphism of heaps of
T-modules. This construction induces a functor

ℳ : 𝑇-Mod•

�

R(𝑇) −→ 𝑇-HMod.

In the opposite direction, let M be a nonempty heap of T-modules and let ∗𝑀 : 𝑀 → ★ be the
associated (unique) morphism of heaps of T-modules to the terminal object. We can consider the
coproduct ★� 𝑀 in 𝑇-HMod and the corresponding pointed R(𝑇)-module obtained by retracting at ∗,
that is, G (★�𝑀; ∗), as in Remark 2.16. By taking the coproduct of id★ and ∗𝑀 and by keeping in mind
Example 4.12, we realize that𝒢(𝑀) � G (★�𝑀; ∗) comes endowed with a morphism of pointed R(𝑇)-
modules 𝜋𝒢 (𝑀 ) : G (★ � 𝑀; ∗) → G (★ � ★; ∗) � R(𝑇) which is surjective, since 𝜋𝒢 (𝑀 ) (∗) = (1𝑇 , 0)
and 𝜋𝒢 (𝑀 ) (𝑚) = (1𝑇 , 1) for all 𝑚 ∈ 𝑀 . Thus, 𝒢(𝑀) is an object in 𝑇-Mod•

�

R(𝑇). Furthermore, if
𝑓 : 𝑀 → 𝑁 is a morphism of heaps of T-modules, then we have the morphism of heaps of T-modules
id★ � 𝑓 : ★ �𝑀 → ★ � 𝑁 induced by the universal property of the coproduct and, since it maps ∗ to
∗, it induces a morphism of pointed R(𝑇)-modules 𝒢( 𝑓 ) : 𝒢(𝑀) → 𝒢(𝑁). In this way the functor is
obtained

𝒢 : 𝑇-HMod −→ 𝑇-Mod•

�

R(𝑇).

Now, observe that if M is a heap of T-modules, then 𝑀 ⊆ ℳ𝒢(𝑀) by construction of 𝜋𝒢 (𝑀 ) . Denote
by 𝜁𝑀 this inclusion, which is the corestriction of the canonical morphism 𝜂𝑀 : 𝑀 → ★ � 𝑀 . It is a
morphism of heaps of T-modules, natural in M.

On the other hand, let (𝐺, 𝜋𝐺) be an object in 𝑇-Mod•

�

R(𝑇). Consider the obvious inclusion
𝛾𝐺 : ℳ(𝐺) → 𝐺 (which is a morphism in 𝑇-HMod if we look at G with its heap of T-modules
structure H(𝐺) from Remark 2.16) and 𝛾★ : ★ → H(𝐺), ∗ ↦→ 0𝐺 . By the universal property of the
coproduct, these induce a unique morphism of heaps of T-modules 𝜃𝐺 : ★�ℳ(𝐺) → H(𝐺) which, in
turn, induces a morphism of pointed R(𝑇)-modules

𝜖𝐺 : 𝒢ℳ(𝐺) = G (★�ℳ(𝐺); ∗) −→ G (H(𝐺); 0𝐺) = 𝐺.

It is straightforward to check that 𝜃𝐺 is natural in G, thus 𝜖𝐺 is natural in G, too.
We leave it to the reader to check that the resulting natural transformations 𝜁 and 𝜖 satisfy the

conditions to be unit and counit of an adjunction, respectively.
To conclude, we show that 𝜁 and 𝜖 are, in fact, natural isomorphisms. Let us begin with 𝜁 . By keeping

in mind Construction 4.10, pick 𝑒 ∈ 𝑀 and consider the isomorphism

★� 𝑀 � H
(
G
(
𝑀; 𝑒

)
⊕ R(𝑇)

)
, (4.2)

uniquely determined by ∗ ↦→ (𝑒, 0R) and 𝑚 ↦→ (𝑚, 1R), for all 𝑚 ∈ 𝑀 . The projection 𝜋𝒢 (𝑀 ) : G (★ �
𝑀; ∗) → R(𝑇) from above coincides, up to the aforementioned isomorphism (4.2), with the canonical
projection on the second summand

G
(
𝑀; 𝑒

)
⊕ R(𝑇) −→ R(𝑇), (𝑚, 𝑟) ↦−→ 𝑟.

This makes it clear that 𝜁𝑀 (𝑀) = ℳ𝒢(𝑀) and hence that 𝜁 is bijective.
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To prove that 𝜖 is a natural isomorphism, let (𝐺, 𝜋𝐺) be in 𝑇-Mod•

�

R(𝑇) and let 𝑥 ∈ 𝐺 be such that
𝜋𝐺 (𝑥) = (1𝑇 , 1). In view of Construction 4.10, ★ �ℳ(𝐺) is isomorphic to H

(
G
(
ℳ(𝐺); 𝑥

)
⊕ R(𝑇)

)
in such a way that ∗ corresponds to (𝑥, 0R), so that

𝒢ℳ(𝐺) = G
(

★�ℳ(𝐺); ∗
)
� G

(
ℳ(𝐺); 𝑥

)
⊕ R(𝑇).

Furthermore, consider the split short exact sequence of pointed R(𝑇)-modules

0→ ker(𝜋𝐺)
𝑗
−→ 𝐺

𝜋𝐺
−−→ R(𝑇) → 0

with chosen splitting 𝑥 : R(𝑇) → 𝐺, 𝑟 ↦→ 𝑟 · 𝑥. Since ℳ(𝐺) = 𝑥 + ker(𝜋𝐺), the automorphism
𝜏0𝐺
𝑥 : 𝐺 → 𝐺 induces an isomorphism of pointed R(𝑇)-modules G

(
ℳ(𝐺); 𝑥

)
� ker(𝜋𝐺). Therefore,

we obtain an isomorphism of heaps of T-modules

★�ℳ(𝐺) → H
(
G
(
ℳ(𝐺); 𝑥

)
⊕ R(𝑇)

) H(𝜏0𝐺
𝑥 ⊕idR)

−−−−−−−−−−→ H
(

ker(𝜋𝐺) ⊕ R(𝑇)
) H( 𝑗+𝑥̄)
−−−−−−→ H(𝐺)

such that: if we precompose it with 𝜂★, it maps ∗ to (𝑥, 0R), (0𝐺 , 0R) and, finally, to 0𝐺 ; if we
precompose it with 𝜂ℳ (𝐺) then it maps every 𝑦 ∈ ℳ(𝐺) to (𝑦, 1R), (𝑦 − 𝑥, 1R) and, finally, to
(𝑦 − 𝑥) + 1R · 𝑥 = 𝑦 (because unital pointed T-modules are unital R(𝑇)-modules). By the uniqueness
part of the universal property of the coproduct, this isomorphism of heaps of T-modules must be equal
to 𝜃𝐺 . As a consequence, 𝜖𝐺 is an isomorphism as well. �

Corollary 4.15. Let T be a truss, not necessarily unital. Then the category of heaps of T-modules is
equivalent to the full subcategory 𝑇-Mod•

�

R(𝑇)𝑢 of the slice category of pointed T-modules over R(𝑇)𝑢 .

Proof. For the sake of clarity and only in this proof and Example 4.16, let us denote by 𝑅-Mod

�

𝑀
the slice category of R-modules projecting onto M, together with 0. In this way, the slice category of
pointed unital 𝑇𝑢-modules over R(𝑇𝑢) would be R(𝑇𝑢)1-Mod

�

R(𝑇𝑢), where the index (−)1 highlights
the fact that the modules are supposed to be unital. For T an arbitrary truss, Lemma 4.13 entails that
𝑇-HMod � 𝑇𝑢-HModis. Then, from Theorem 3.1 and Theorem 4.14 it follows that

𝑇𝑢-HModis � R(𝑇𝑢)1-Mod

�

R(𝑇𝑢).

By applying further Remark 2.11, we get that

R(𝑇𝑢)1-Mod

�

R(𝑇𝑢) � R(𝑇)𝑢1-Mod

�

R(𝑇)𝑢 � R(𝑇)-Mod

�

R(𝑇)𝑢 ,

where the last equivalence is a well-known consequence of the universal property of the Dorroh extension
for rings. Therefore,

𝑇-HMod � R(𝑇)-Mod

�

R(𝑇)𝑢 ,

as claimed, by Theorem 3.1 again. �

Example 4.16. For 𝑇 = ∅, Example 2.15 and Corollary 4.15 entail that

Ah = ∅-HMod � R(∅)-Mod

�

R(∅)𝑢 � Ab

�

Z.

The description granted by Theorem 4.14 and Corollary 4.15 makes it easier, even if less “ele-
mentary”, to describe some familiar categorical constructions in the category of heaps of T-modules.
For example, if (𝐺, 𝜋𝐺) and (𝐻, 𝜋𝐻 ) are two heaps of T-modules, then their coproduct is simply
(𝐺 ⊕𝐻, 𝜋𝐺 +𝜋𝐻 ) where the direct sum is taken in R(𝑇)-Mod. Similarly, the coequalizer of two parallel
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morphisms 𝑓 , 𝑔 : (𝐺, 𝜋𝐺) → (𝐻, 𝜋𝐻 ) is
(
𝐻/Im( 𝑓 − 𝑔), 𝜋̃𝐻

)
, where 𝜋̃𝐻 : 𝐻/Im( 𝑓 − 𝑔) → R(𝑇) is the

factorization of 𝜋𝐻 through the quotient.

Remark 4.17. For the convenience of the reader, let us spend a few words more on the case of coproducts.
Recall that we already saw an explicit realization of the coproduct in 𝑇-HMod in Construction 4.10.
This is consistent with the one offered by Theorem 4.14. Let us show this for the coproduct of three
heaps of T-modules 𝑀, 𝑁, 𝑃. The latter would be, according to Theorem 4.14, the preimage of 1R(𝑇 )
along the unique morphism

𝜋 : 𝒢(𝑀) ⊕𝒢(𝑁) ⊕𝒢(𝑃) → R(𝑇),

induced by 𝜋𝒢 (𝑀 ) , 𝜋𝒢 (𝑁 ) and 𝜋𝒢 (𝑃) . As we did in the proof of Theorem 4.14 itself, we may realize
(𝒢(𝑀), 𝜋𝒢 (𝑀 ) ) as G(𝑀; 𝑜𝑀 ) ⊕ R(𝑇) for some 𝑜𝑀 ∈ 𝑀 , with the projection on the second summand,
and analogously for N and P. Therefore, up to these realizations,

𝜋 : G(𝑀; 𝑜𝑀 ) ⊕ R(𝑇) ⊕ G(𝑁; 𝑜𝑁 ) ⊕ R(𝑇) ⊕ G(𝑃; 𝑜𝑃) ⊕ R(𝑇) −→ R(𝑇),
(𝑚, 𝑥, 𝑛, 𝑦, 𝑝, 𝑧) ↦−→ 𝑥 + 𝑦 + 𝑧,

and hence

𝑀 � 𝑁 � 𝑃 = ℳ
(
G(𝑀; 𝑜𝑀 ) ⊕ R(𝑇) ⊕ G(𝑁; 𝑜𝑁 ) ⊕ R(𝑇) ⊕ G(𝑃; 𝑜𝑃) ⊕ R(𝑇)

)
� H

(
G(𝑀; 𝑜𝑀 ) ⊕ G(𝑁; 𝑜𝑁 ) ⊕ G(𝑃; 𝑜𝑃) ⊕ R(𝑇) ⊕ R(𝑇)

)
as prescribed by Construction 4.10.

5. Exact sequences of heaps of modules

In this section we are concerned with the description of (short) exact sequences of abelian heaps and
heaps of T-modules. In view of Example 2.15, it is enough to deal with exact sequences of heaps of
T-modules.

5.1. Exact sequences of heaps of modules: ring-theoretic approach

Let T be a truss. By adapting the definition presented in [11, §6.1], let

𝑀
𝑓
−→ 𝑁

𝑔
−→ 𝑃 (5.1)

be a sequence of heaps of T-modules and morphisms of heaps of T-modules. We may suppose, without
loss of generality, that 𝑃 ≠ ∅.

Definition 5.1. We say that the sequence (5.1) is exact in N at e if there exists 𝑒 ∈ 𝑔(𝑁) such that
𝑓 (𝑀) = 𝑔−1(𝑒).

Remark 5.2. Definition 5.1 can also be interpreted as follows. Suppose that (5.1) is exact in N at
𝑜𝑃 ∈ 𝑔(𝑁) ⊆ 𝑃. If we fix an element 𝑜𝑁 ∈ 𝑁 such that 𝑔(𝑜𝑁 ) = 𝑜𝑃 , then the induced pointed T-
module structures (see Remark 2.16) on N and P are such that 𝑜𝑁 and 𝑜𝑃 are the neutral elements
of the corresponding R(𝑇)-modules (see Theorem 3.1) and g is a morphism of R(𝑇)-modules. If
moreover we fix an element 𝑜𝑀 ∈ 𝑀 such that 𝑓 (𝑜𝑀 ) = 𝑜𝑁 and we consider the induced R(𝑇)-
module structure on M, then f will be also a morphism of R(𝑇)-modules. In this context, the sequence
G (𝑀; 𝑜𝑀 )

𝑓
−→ G (𝑁; 𝑜𝑁 )

𝑔
−→ G (𝑃; 𝑜𝑃) is an exact sequence of R(𝑇)-modules. The converse clearly

holds: if there are 𝑜𝑀 ∈ 𝑀 , 𝑜𝑁 ∈ 𝑁 , 𝑜𝑃 ∈ 𝑃 such that the sequence of R(𝑇)-modules G (𝑀; 𝑜𝑀 )
𝑓
−→

G (𝑁; 𝑜𝑁 )
𝑔
−→ G (𝑃; 𝑜𝑃) is exact, then (5.1) is exact in N at 𝑜𝑃 .
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By a slight abuse of notation, we may often simply refer to the R(𝑇)-module M instead of G (𝑀; 𝑜𝑀 ),
once 𝑜𝑀 has been chosen. Since the underlying set is the same, this allows us to lighten the notation
and increase the readability.
Definition 5.3. A sequence of morphisms of heaps of T-modules

· · · → 𝑀𝑛−1
𝑓𝑛
→ 𝑀𝑛

𝑓𝑛+1
→ 𝑀𝑛+1 → . . .

is exact if it is exact in 𝑀𝑛 for all n.

Remark 5.4. In view of Remark 5.2, it follows that for every n we can find R(𝑇)-module structures on
𝑀𝑛−1, 𝑀𝑛, and 𝑀𝑛+1 such that 𝑀𝑛−1

𝑓𝑛
→ 𝑀𝑛

𝑓𝑛+1
→ 𝑀𝑛+1 is an exact sequence of R(𝑇)-modules. However,

it is easy to see that if we consider chains with more than two morphisms, then the definition does not
necessarily allow us to choose group structures on all heaps of T-modules such that the sequence is an
exact sequence of R(𝑇)-modules.

A bit more generally than Remark 5.2, but at the price of changing the morphisms involved, we have
the following result.

Proposition 5.5. Let 𝑀
𝑓
→ 𝑁

𝑔
→ 𝑃 be a sequence of heap of T-modules morphisms. Suppose that

the structures on M, N, and P are induced by some corresponding R(𝑇)-module structures G (𝑀; 𝑜𝑀 ),
G (𝑁; 𝑜𝑁 ), G (𝑃; 𝑜𝑃), such that 𝑓 = 𝛼 + ℎ, 𝑔 = 𝛽 + 𝑘 , where 𝛼 and 𝛽 are morphisms of R(𝑇)-modules,
ℎ = 𝑓 (𝑜𝑀 ) ∈ 𝑁 , and 𝑘 = 𝑔(𝑜𝑁 ) ∈ 𝑃. Then 𝑀

𝑓
→ 𝑁

𝑔
→ 𝑃 is an exact sequence of heaps of T-modules

if and only if 𝑀
𝛼
→ 𝑁

𝛽
→ 𝑃 is an exact sequence of R(𝑇)-modules.

Proof. Suppose that 𝑀
𝑓
→ 𝑁

𝑔
→ 𝑃 is exact in N at 𝑒 ∈ 𝑔(𝑁). That is, 𝑓 (𝑀) = 𝑔−1(𝑒). It follows that

𝑒 = 𝑔 𝑓 (𝑚) = 𝛽𝛼(𝑚) + 𝛽(ℎ) + 𝑘 for all 𝑚 ∈ 𝑀 and hence 𝛽𝛼 = 𝑜𝑃 and 𝛽(ℎ) + 𝑘 = 𝑒. Remark that
ℎ + ker(𝛽) ⊆ 𝑔−1(𝑒), but also the reverse inclusion holds: if 𝛽(ℎ) + 𝑘 = 𝑒 = 𝑔(𝑛) = 𝛽(𝑛) + 𝑘 , then
𝑛 ∈ ℎ + ker(𝛽). Since 𝑓 (𝑀) = 𝛼(𝑀) + ℎ, it follows that 𝑓 (𝑀) = 𝑔−1(𝑒) entails that Im(𝛼) = ker(𝛽),
and hence that 𝑀

𝛼
→ 𝑁

𝛽
→ 𝑃 is exact in N.

Conversely, take 𝑒 � 𝛽(ℎ) + 𝑘 . Then 𝑔 𝑓 = 𝑒 and so 𝑓 (𝑀) ⊆ 𝑔−1 (𝑒). In the opposite direction, if
𝑔(𝑥) = 𝑒 then 𝛽(𝑥) + 𝑘 = 𝛽(ℎ) + 𝑘 and hence 𝑥 ∈ ℎ + ker(𝛽) = ℎ + Im(𝛼) = 𝑓 (𝑀). �

Remark 5.6. If 𝑀
𝑓
→ 𝑁

𝑔
→ 𝑃 is an exact sequence of heaps of T-modules, then all the “perturbed”

sequences 𝑀
𝑓 +𝑛
−−−→ 𝑁

𝑔+𝑝
−−−→ 𝑃, for 𝑛 ∈ 𝑁 and 𝑝 ∈ 𝑃, are exact sequences of heaps of T-modules, where

+ is with respect to a certain choice of 𝑜𝑀 ∈ 𝑀 , 𝑜𝑁 ∈ 𝑁 and 𝑜𝑃 ∈ 𝑃.

In this framework, we may say that a sequence 𝑀
𝑓
−→ 𝑁

𝑔
−→ 𝑃 is a short exact sequence if it is exact

in the above sense and, moreover, f is injective and g is surjective.

5.2. Exact sequences of heaps of modules: Barr’s approach

For the sake of completeness, in this section we would like to rely on the fact that 𝑇-HMod, being an
algebraic category (i.e., a category of models for an algebraic theory in the sense of, e.g., [4, §3.9]), is
an exact category in the sense of Barr [3] (see also [4, §2.6] or [5, A.5] for a more concise introduction).
Hence, we may discuss short exact sequences of heaps of T-modules in the sense of, for example,
[4, §2.3]. In this framework, a short exact sequence (in the sense of Barr) of heaps of T-modules is a
sequence

𝑀
𝑓 ��
𝑔

�� 𝑁
ℎ �� 𝑃

such that ( 𝑓 , 𝑔) is the kernel pair of h and h is the coequalizer of ( 𝑓 , 𝑔).
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In a way similar to the case of abelian categories [4, Proposition 2.3.2], there is a close, but not
completely direct, correspondence between short exact sequences of heaps of T-modules in the sense
of Barr and in the ring-theoretic sense.

Theorem 5.7. Let

𝑀
𝑓 ��
𝑔

�� 𝑁
ℎ �� 𝑃 (5.2)

be a diagram of heaps of T-modules. Then the following statements are equivalent:

(1) The sequence (5.2) is exact in the sense of Barr.
(2) For any 𝑜 ∈ 𝑁 , the map

ℎ𝑜 : 𝑁 × 𝑁 −→ 𝑃, (𝑎, 𝑏) ↦−→ ℎ
(
[𝑎, 𝑏, 𝑜]

)
=
[
ℎ(𝑎), ℎ(𝑏), ℎ(𝑜)

]
,

makes

𝑀
( 𝑓 ,𝑔) �� 𝑁 × 𝑁

ℎ𝑜 �� 𝑃 (5.3)

into a short exact sequence of heaps of T-modules, exact in 𝑁 × 𝑁 at ℎ(𝑜).
(3) There exists 𝑜 ∈ 𝑁 such that the map ℎ0 makes (5.3) a short exact sequence of heaps of T-modules,

exact in 𝑁 × 𝑁 at ℎ(𝑜).

Proof. Assume that assertion (1) holds and take any 𝑜 ∈ 𝑁 . Define ℎ𝑜 as in assertion (2). Since h
and [−,−,−] are morphisms of heaps of T-modules (see Example 4.2), ℎ𝑜 is a morphism of heaps
of T-modules, too, and since (5.2) is a fork of homomorphisms of heaps of T-modules, we ob-
tain that ℎ𝑜 ◦ ( 𝑓 , 𝑔) ≡ ℎ(𝑜) and so Im( 𝑓 , 𝑔) ⊆ ℎ−1

𝑜

(
ℎ(𝑜)

)
. Conversely, if (𝑎, 𝑏) ∈ ℎ−1

𝑜

(
ℎ(𝑜)

)
, then

[ℎ(𝑎), ℎ(𝑏), ℎ(𝑜)] = ℎ(𝑜) and so ℎ(𝑎) = ℎ(𝑏). Thus, (𝑎, 𝑏) is an element of the kernel pair of h. By as-
sumption, M is such a kernel pair and f and g are its structural maps, which implies that (𝑎, 𝑏) ∈ Im( 𝑓 , 𝑔).
Therefore, Im( 𝑓 , 𝑔) = ℎ−1

𝑜

(
ℎ(𝑜)

)
. Since h is the structural map of a coequalizer, it is an epimorphism

and hence surjective (because 𝑇-HMod is an algebraic category and so [4, Corollary 3.5.3] applies).
Therefore, for any 𝑝 ∈ 𝑃 there exists 𝑛 ∈ 𝑁 , such that 𝑝 = ℎ(𝑛) = [ℎ(𝑛), ℎ(𝑜), ℎ(𝑜)] = ℎ𝑜 (𝑛, 𝑜). This
means that ℎ𝑜 is a surjective homomorphism. The map ( 𝑓 , 𝑔) is injective by the realization of the kernel
pair as {(𝑚, 𝑛) ∈ 𝑁 × 𝑁 | ℎ(𝑚) = ℎ(𝑛)}. In summary, the assertion (2) holds.

The implication (2)⇒ (3) is obvious.
Now assume that assertion (3) holds. First we show that (5.2) is a kernel pair. Since, by hypothesis,

Im( 𝑓 , 𝑔) ⊆ ℎ−1
𝑜

(
ℎ(𝑜)

)
, we have that

ℎ(𝑜) =
(
ℎ𝑜 ◦ ( 𝑓 , 𝑔)

)
(𝑚) =

[
(ℎ ◦ 𝑓 ) (𝑚), (ℎ ◦ 𝑔) (𝑚), ℎ(𝑜)

]
,

for all 𝑚 ∈ 𝑀 , which implies that ℎ ◦ 𝑓 = ℎ ◦ 𝑔. Hence (5.2) is a fork. Let 𝛼, 𝛽 : 𝑄 → 𝑁 be morphisms
of heaps of T-modules such that ℎ ◦𝛼 = ℎ ◦ 𝛽. Then ℎ𝑜 ◦ (𝛼, 𝛽) = ℎ(𝑜), and so, by exactness of (5.3) in
𝑁 × 𝑁 at ℎ(𝑜), for all 𝑞 ∈ 𝑄, there exists 𝑚𝑞 ∈ 𝑀 , such that 𝛼(𝑞) = 𝑓 (𝑚𝑞) and 𝛽(𝑞) = 𝑔(𝑚𝑞). Since
( 𝑓 , 𝑔) is injective, for a given q, 𝑚𝑞 is unique. This allows one to define a homomorphism of heaps of T-
modules 𝛾 : 𝑄 → 𝑀, 𝑞 ↦→ 𝑚𝑞 . By construction, this is the unique homomorphism such that 𝛼 = 𝑓 ◦ 𝛾
and 𝛽 = 𝑔◦𝛾. Therefore, (5.2) is a kernel pair. To check that it is coequalizer, take any heap of T-modules
morphism 𝛼 : 𝑁 → 𝑄 such that 𝛼 ◦ 𝑓 = 𝛼 ◦ 𝑔. Set 𝛼𝑜 : 𝑁 × 𝑁 → 𝑄, (𝑎, 𝑏) ↦→

[
𝛼(𝑎), 𝛼(𝑏), 𝛼(𝑜)

]
.

Then 𝛼𝑜 ◦ ( 𝑓 , 𝑔) = 𝛼(𝑜) and hence there exists unique 𝛽 : 𝑃→ 𝑄 such that 𝛼𝑜 = 𝛽 ◦ ℎ𝑜. Note that, for
all 𝑛 ∈ 𝑁 ,

(𝛽 ◦ ℎ) (𝑛) = 𝛽
(
[ℎ(𝑛), ℎ(𝑜), ℎ(𝑜)]

)
= (𝛽 ◦ ℎ𝑜) (𝑛, 𝑜) = 𝛼𝑜 (𝑛, 𝑜) = [𝛼(𝑛), 𝛼(𝑜), 𝛼(𝑜)] = 𝛼(𝑛),
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that is, 𝛼 = 𝛽 ◦ ℎ. Finally, by surjectivity of ℎ𝑜, for all 𝑝 ∈ 𝑃 there exists (𝑎, 𝑏) ∈ 𝑁 × 𝑁 such that
𝑝 = ℎ𝑜 (𝑎, 𝑏) =

[
ℎ(𝑎), ℎ(𝑏), ℎ(𝑜)

]
= ℎ

(
[𝑎, 𝑏, 𝑜]

)
and hence h is surjective. This completes the proof

that (5.2) is a short exact sequence in the sense of Barr. �
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