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Abstract

I discuss and clarify the relationship between the recent wave of “intrinsic” coordinate-free
approaches to Maxwell gravitation and the coordinate-based discussions of Saunders (2013)
and Wallace (2020).

1. Introduction
In recent years, philosophers of physics have considered afresh the question of the
appropriate spacetime setting for Newtonian gravitation theory. At the center of this
debate have been two apparently conflicting proposals for what one should take this
geometry to be: on the one hand, Saunders’ (2013) proposal that Corollary VI to the
Laws of Motion in Newton’s Principia reveals that Maxwellian spacetime is the correct
setting for Newtonian physics, and on the other hand, Knox’s (2014) proposal that
Corollary VI motivates a transition to a geometrized formulation of Newtonian
gravitation, known as Newton–Cartan theory (NCT). Their claims have sparked a
series of discussions of theories of Newtonian gravitation set on Maxwellian
spacetime, and their relationship to NCT (Weatherall 2016; Teh 2018; Jacobs 2023;
March et al. 2024; March 2024; Dewar 2018; Chen 2023).

One focus of these discussions has been on how Maxwellian spacetime—which is
supposed to be equipped with a standard of rotation, but not a standard of absolute
acceleration—should best be characterized. Earman (1989) originally defined the
standard of rotation as an equivalence class of derivative operators, and Dewar (2018)
also adopted this definition. But a number of authors have voiced concerns about this
approach. For example, Weatherall (2018, 34) notes that it “makes reference to
structure that one does not attribute to spacetime,” Jacobs (2022) argues that it is not
suitably “intrinsic,”1 and Wallace (2019, 2020) even suggests that the awkwardness of
differential-geometric presentations of Maxwellian spacetime obscures the similarities
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between NCT and theories of Newtonian gravitation set on Maxwellian spacetime, and
(more generally) shows that coordinate-free differential geometry is not an intuitive
way of characterizing certain spacetime structures. In response to these concerns,
Weatherall (2018) developed an “intrinsic” characterization of the standard of rotation,
and Chen (2023) and March (2023) have recently shown that this object can be used to
write down dynamics for Newtonian gravitation on Maxwellian spacetime, a.k.a.
Maxwell gravitation (MG).

However, this new wave of (coordinate-free differential-geometric) presentations
of MG are somewhat removed from Saunders’ original coordinate-based “vector
relationism” (VR). It would be of interest to see how these fit together. It also remains
unclear how Wallace’s (2020) own (also coordinate-based) discussion of VR and NCT
relates to the approaches outlined above.

In this paper, I aim to fill in these remaining pieces of the puzzle, by (a) making
precise the relationship between VR and MG, and (b) translating Wallace’s argument
into the language of coordinate-free differential geometry. I thereby (i) clarify how
Wallace’s argument relates to other arguments concerning the (in)equivalence of MG
and NCT in the literature, and (ii) address Wallace’s concern that coordinate-free
presentations of MG obscure its similarities to NCT. Indeed, I will argue, the same
similarities Wallace discusses can be seen very naturally from a coordinate-free
differential-geometric standpoint. Finally, this (iii) gives us the resources to connect
up to Teh’s (2018) discussion of Wallace and VR, in which he also claims to put Wallace
into the language of coordinate-free differential geometry.

In more detail, the structure of this paper is as follows. In section 2 I recall some
basic details of MG and NCT. I then turn to the task of connecting these coordinate-
free approaches with the work of Saunders (2013) and Wallace (2020). In section 3, I
present Saunders’ VR, and make precise its relationship to MG. Section 4 reconstructs
Wallace’s argument that VR and NCT are theoretically equivalent; section 5 aims to
dispel the remainder of Wallace’s concerns about coordinate-free presentations of
Maxwellian spacetime by showing that the same argument can be made in the
language of coordinate-free differential geometry. To end, in section 6, I compare my
approach to that of Teh (2018). Section 7 concludes.

2. Background: Maxwell gravitation and Newton–Cartan theory
This section reviews some basic details of the coordinate-free approaches to MG and
NCT as presented in, e.g., Chen (2023); March (2024); Malament (2012)—readers
familiar with this material should feel free to skip to the next section. Let M be a
smooth four-manifold (assumed connected, Hausdorff, and paracompact). A temporal
metric ta on M is a smooth, closed, non-vanishing one-form;2 a spatial metric hab on M
is a smooth, symmetric, rank- 2; 0� � tensor field which admits, at each point inM, a set
of four non-vanishing covectors σ

i
a, i � 0; 1; 2; 3, which form a basis for the cotangent

space and satisfy habσ
i
aσ
j
b � 1 for i � j � 1; 2; 3 and 0 otherwise. A spatial and

temporal metric are orthogonal iff hantn � 0. A vector field σa is spacelike iff tnσn � 0,

2 Here and throughout, abstract indices are written in Latin script; component indices are written in
Greek script, with the exception of i; j; k, which are reserved for the spatial components of tensor fields in
some coordinate basis; the Einstein summation convention is used. Round brackets denote
symmetrization, square brackets antisymmetrization.
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and timelike otherwise. Given the structure defined here, ta induces a foliation of M
into spacelike hypersurfaces, and relative to any such hypersurface, hab induces a
unique spatial derivative operator D such that Dahbc � 0.3 hab is flat just in case for any
such spacelike hypersurface, D commutes on spacelike vector fields, i.e. D�aDb�σc � 0
for all spacelike vector fields σa.

Given a structure hM; ta; habi, with ta and hab orthogonal, we can consider two
further pieces of structure on hM; ta; habi: a compatible connection r,4 and a
compatible standard of rotation ⟳.5 In what follows, we will often want to consider
connections and standards of rotation which “agree” with one another in the
following sense: for any vector field ηa on M, r�aηb� � ⟳aηb. In this case, following
March (2024), I will say that the connection and standard of rotation are compatible.6

Likewise, a connectionr is compatible with a spacetime hM; ta; hab;⟳i just in case it is
compatible with the metrics and ⟳. Finally, a spacetime hM; ta; hab;⟳i is rotationally
flat just in case hab is flat and there exists a unit timelike vector field ξa on M such that
⟳aξb � 0 and £ξhab � 0,7 or equivalently, just in case some flat derivative operator is
compatible with hM; ta; hab;⟳i (Weatherall 2018, proposition 1). I will call a structure
hM; ta; hab;⟳i, with M diffeomorphic toR4, and hM; ta; habi complete (in the sense that
every spacelike hypersurface is geodesically complete with respect to D),8 a
Maxwellian spacetime, and a structure hM; ta; hab;ri (under the same conditions) a
Newton–Cartan spacetime.

In both MG and NCT, we will assume that matter fields are associated with a
symmetric rank- 2; 0� � tensor Tab,9 called the mass-momentum tensor, which is
assumed to satisfy the Newtonian mass condition: whenever Tab ≠ 0, Tnmtntm > 0. This
captures the idea that the matter fields we are interested in are massive, in the sense
that there can only be non-zero mass-momentum in spacetime regions where the
mass density ρ :� Tnmtntm is strictly positive.10 Since Tab is symmetric, the Newtonian
mass condition guarantees that whenever Tab ≠ 0, we can uniquely decompose Tab as

Tab � ρξaξb � σab;

3 See Weatherall (2018, 37–38) and Malament (2012, x4.1) for details.
4 Recall that a connection is compatible with the metrics just in case ratb � 0 and rahbc � 0.
5 This was introduced by Weatherall (2018): if ta, hab are orthogonal temporal and spatial metrics onM,

a standard of rotation ⟳ compatible with ta and hab is a map from smooth vector fields ξa on M to
smooth, antisymmetric rank- 2; 0� � tensor fields ⟳bξa on M, such that (i) ⟳ commutes with addition of
smooth vector fields; (ii) given any smooth vector field ξa and smooth scalar field α,
⟳a�αξb� � α⟳aξb � ξ�bda�α; (iii) ⟳ commutes with index substitution; (iv) given any smooth vector
field ξa, if da ξntn� � � 0 then ⟳aξb is spacelike in both indices; and (v) given any smooth spacelike vector
field σa, ⟳aσb � D�aσb�.

6 See Weatherall (2018), proposition 1; any connection determines a unique compatible standard of
rotation, but a standard of rotation does not determine a unique compatible connection.

7 Here and throughout, £ denotes the Lie derivative.
8 These conditions could be dropped; I adopt them here to ease comparison with Saunders’ vector

relationism in x3.
9 One might take the symmetry of Tab as a postulate, as in, e.g., Malament (2012), or to follow from a

variational definition—see, e.g., Duval and Künzle (1978); Weatherall (2019).
10 For example, Weatherall (2012), 211 suggests that “[one] might take [the Newtonian mass condition]

to be a benign and unsurprising characterization of what we mean by ‘massive particle’ in Newtonian
gravitation.”
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where ξa :� ρ�1tnTna is a smooth unit timelike future-directed vector field
(interpretable as the net four-velocity of the matter fields F), and σab is a smooth
symmetric rank- 2; 0� � tensor field which is spacelike in both indices (interpretable as
the stress tensor for F).

We are now in a position to introduce MG and NCT. I will begin with MG.11 Let
hM; ta; hab;⟳i be a Maxwellian spacetime, and let Tab be the mass-momentum tensor
for whichever matter fields are present. Then hM; ta; hab;⟳; Tabi is a model of Maxwell
gravitation just in case

(i) hM; ta; hab;⟳i is rotationally flat; and
(ii) for all points p 2 M such that ρ≠ 0, the following equations hold at p:

£ξρ � 1
2
ρĥmn£ξhmn � 0; (1a)

1
3

X
3
i�1

λ
i

rξ
n
Δn�ξmΔm λr

i
� � � 4

3
πρ � 1

3
Dm�ρ�1Dnσnm�; (1b)

£ξ�⟳c ξa� � 2�⟳n ξ�c�ĥnm£ξha�m �⟳c�ρ�1Dnσna� � 0; (1c)

where ĥab is the spatial metric relative to ξa,12 the λa
i

are three orthonormal
connecting fields for ξa, and Δ is the “restricted derivative operator” defined in
Weatherall (2018, 36–37). This acts on arbitrary spacelike vector fields σa at a point p
according to

ηnΔnσ
a :� £ησa � σn⟳

nηa � 1
2
σn£ηhan;

where ηa is a unit timelike vector at p (the Lie derivative is taken with respect to any
extension of ηa off p). It also has the property that ηnΔnσ

a � ηnrnσ
a for any

derivative operator r compatible with ⟳ (Weatherall 2018, 37).
For NCT, let hM; ta; hab;ri be a Newton–Cartan spacetime, and Tab the mass-

momentum tensor for whichever matter fields are present. Then hM; ta; hab;r; Tabi is
a model of Newton–Cartan theory just in case

rnTna � 0; (2a)

Rab � 4πρtatb; (2b)

Ra cb d � Rc ad b; (2c)

Rabcd � 0: (2d)

The relationship between MG and NCT is summarized by the following pair of
propositions (Chen 2023; March 2023).

11 For details on the relationship between this way of presenting MG and the approach of Dewar
(2018), see Chen (2023).

12 That is, the unique symmetric tensor field on M such that ĥanξn � 0 and hanĥnb � δab � tbξa.
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Proposition 1. Let hM; ta; hab;r; Tabi be a model of Newton–Cartan theory. Then
there exists a unique standard of rotation ⟳ such that r is compatible with ⟳ and
hM; ta; hab;⟳; Tabi is a model of Maxwell gravitation.

Proposition 2. Let hM; ta; hab;⟳; Tabi be a model of Maxwell gravitation. Then there
exists a derivative operator r compatible with ⟳ such that hM; ta; hab;r; Tabi is a
model of Newton–Cartan theory. Moreover, the derivative operator r is not unique. If
r is such a derivative operator, then so is r; tbtcσa� �,13 where σa is any spacelike,
twist-free, and divergence-free vector field such that ρσa � 0.

Corollary (Chen 2023). Let hM; ta; hab;⟳; Tabi be a model of Maxwell gravitation such
that ρ≠ 0 throughout some open region O. Then there exists a unique derivative operator r
compatible with ⟳ such that hM; ta; hab;r; Tabi is a model of Newton–Cartan theory.

3. Maxwell gravitation and vector relationism
In section 2 I have reviewed the recent coordinate-free approaches to MG, and their
relationship to NCT. But as noted in section 1, these presentations of MG are rather
distant from Saunders’ (2013) original discussion of Newtonian gravitation on
Maxwellian spacetime. This distance has three sources, which will occupy us for the
rest of this section:

• Saunders’ preferred characterization of the appropriate setting for his vector
relationist dynamics is as an affine space which he calls Newton–Huygens
spacetime, rather than a differentiable manifold with differential-geometric
objects defined thereon.

• Saunders’ dynamics are presented in the coordinate-based framework.
• Saunders’ theory concerns only the dynamics of point particles, rather than fields.

The first of these is easily dealt with—as Saunders notes, the idea of Newton–
Huygens spacetime is just that (rotationally flat) Maxwellian spacetime can be
redescribed as an affine space, albeit one in which affine structure is appropriately
restricted to spacelike hypersurfaces.14 For the second two bullet points, we need to
recall some details of Saunders’ theory. Saunders presents vector relationism as a
theory of the displacement vectors between point particles, formulated with
reference to some Maxwellian coordinate system. The dynamics are specified by the
following pair of equations:

rij � Xi � Xj; (3a)

13 The notation here follows Malament (2012, proposition 1.7.3):r0 � r; Cabc
� �

iff for all smooth tensor
fields αa1 ...arb1 ...bs

on M,

r0
n � rn� �αa1 ...arb1 ...bs

� α
a1 ...ar
mb2...bs

Cmnb1 � 	 	 	 � α
a1 ...ar
b1 ...bs�1m Cmnbs

� α
ma2 ...ar
b1...bs

Ca1nm � 	 	 	 � α
a1...ar�1m
b1...bs

Carnm:

14 Saunders (2013) only discusses Earman’s (1989) characterization of Maxwellian spacetime, but this
is equivalent to the definition of a rotationally flat Maxwellian spacetime as presented here—see Chen
(2023), proposition 1. See Wallace (2020) for discussion of why rotationally flat Maxwellian spacetime is
the appropriate setting for vector relationism.
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d2rij
dt2

� 1
mi

X
k≠ i

Fik �
1
mj

X
k≠ j

Fjk; (3b)

where Xi t� � denotes the position of particle i at time t with respect to such a
coordinate system, mi its mass, and the Fij denote interparticle forces. These are taken
to be antisymmetric in i and j (this is the import of Newton’s third law) and functions
of rij only. The equations (3) are invariant under the Maxwell group (Wallace 2020)—
transformations of the form

t ! t� τ;

xi t� � ! Rijxj t� � � ai t� �;
where Rij is an arbitrary 3D rotation matrix, ai t� � an arbitrary vector-valued

function of time, and τ an arbitrary scalar.
With this in hand, I will now address the second two bullet points by examining the

relationship between the dynamics (2) and (3) of MG and VR, respectively. First,
following Wallace (2020, 11), we can decompose the forces in (3b) into “universal” and
“non-universal” components—characterized, respectively by whether the ratio qi=mi

is constant for that force, where mi is the inertial mass of a particle and qi its charge.
For the case of only potential forces, (3) may then be written as

d2Xi

dt2
� d2Xj

dt2
��

X
k≠ i

rφ�Xi � Xk� �
X
k≠ j

rφ�Xj � Xk�

� qi
mi

X
k≠ i

rV�Xi � Xk� �
qj
mj

X
k≠ j

rV�Xj � Xk�;
(4)

where φ is the potential associated with the universal force, and V the potential for
the non-universal force (there could be multiple such; I omit them for simplicity).
Now consider the continuum limit, where point-particle trajectories are parametrized
by some continuous spatial parameter x. In this limit, (4) becomes

@i
d2X�x; t�

dt2

� �
δxi � �@i

Z
d3x0rφ�x � x0; t�δxi

� @i

Z
d3x0ρ̃�x; t�ρ�1�x; t�rV�x � x0; t�δxi;

where ρ x; t� � is the mass density, and ρ̃ x; t� � the charge density associated with the
non-universal interaction, so that

@i
d2Xj�x; t�

dt2

� �
� �@i

Z
d3x0�@ jφ�x � x0; t� � ρ̃�x; t�ρ�1�x; t�@ jV�x � x0; t��: (5)

When φ is the familiar gravitational potential, we have

φ x � x0; t� � � ρ x0; t� �
x � x0j j ;
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so that

@i�
d2Xj�x; t�

dt2
� � �@i

Z
d3x0ρ�x0; t�@j�jx � x0j��1

� @i

Z
d3x0ρ̃�x; t�ρ�1�x; t�@jV�x � x0; t�: (6)

We have seen that the appropriate spacetime setting for vector relationism is a
rotationally flat Maxwellian spacetime, hM; ta; hab;⟳i. Since we can always (since M
was assumed diffeomorphic to R4) find a globally defined scalar field t such that
dat � ta, we can then set up an arbitrary Maxwellian coordinate system xµ on M as
follows: we take xµ � t; xi

� �
, where t is as above and the xi are three smooth scalar

fields such that the vector fields �@=@xi�a are spacelike, orthonormal, rigid, and twist-
free (with respect to ⟳).15

Let xµ be such a coordinate system, and let r be the coordinate derivative operator
on M canonically associated with xµ.16 r is flat (since it is a coordinate derivative
operator); it is compatible with ta by construction, and is compatible with hab since the
�@=@xi�a are spacelike and orthonormal. Moreover, since the �@=@xµ�a are all twist-
free with respect to⟳ and ⟳ is rotationally flat, r is also compatible with ⟳.17 Now
consider a smooth unit timelike vector field ξa on M. The integral curves ξ of any such
field can always be parametrized by their temporal length, which differs from t by at
most an arbitrary additive constant. Then on any such curve ξ, we have

ξa � dxµ ξ t� �� �
dt

@

@xµ

� �
a

so that, since r is flat,

ξnrnξ
a � d2xµ ξ t� �� �

dt2
@

@xµ

� �
a
:

Clearly, the only non-vanishing d2xµ=dt2 are the d2xi=dt2. Moreover, if σab is a
(symmetric) tensor field which is spacelike in both indices, then we can write

Dnσna � @µσ
µν

@

@xν

� �
a
;

where the only non-vanishing @µσµν are the @µσµi. If we now take ξa to represent the
four-velocity field of a fluid, and σab the stress tensor for that fluid, then these suggest
the following identifications:

ξnrnξ
m dmxi
� � � d2Xi x; t� �

dt2
; (7a)

ρ�1Dnσnm�dmxi� �
Z

d3x0ρ̃�x; t�ρ�1�x; t�@iV�x � x0; t�: (7b)

15 Existence of such fields follows from the fact that hM; ta; hab;⟳i was assumed complete and
rotationally flat.

16 That is, the unique derivative operator such that all the ra�@=@xµ�b � 0.
17 Note that �@=@t�a is twist-free by construction, since ta is closed.
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Why? Take (7a). We are looking for something with which to identify the (non-
zero) components of the acceleration vector field of a fluid ξnrnξ

m dmxi
� �

with
respect to the coordinate derivative operator canonically associated with some
Maxwellian coordinate system xµ. Not only is this precisely what the d2Xi x; t� �=dt2
represent, we have also seen that when r is such a derivative operator, the
ξnrnξ

m dmxi
� � � d2xi ξ t� �� �=dt2 take this same form. Now consider (7b). The left-hand

side of this equation are the (non-zero) components of a spacelike vector field which
is supposed to describe the acceleration due to non-gravitational interactions—
think of (the geometrized version of) Newton’s second law,

ρξnrnξ
a � �rnσ

na:

And this is precisely the role of the term on the right-hand side. We can then
write (6) as

rr�ξnrnξ
m��dmxj�

@

@xi

� �
r
� �@i

Z
d3x0ρ�x0; t�@ j�jx � x0j��1

� Dr�ρ�1Dnσnm��dmxj�
@

@xi

� �
r
: (8)

Now consider the case where i � j. In this case, carrying out the differentiation in
the right-hand side of (8) gives

rm ξnrnξ
m� � � �4πρ � Dm ρ�1Dnσnm� �;

where we have used the fact that ξnrnξ
a and ρ�1Dnσna are both spacelike. This

immediately yields (1b). Meanwhile, if we take i≠ j in (8), then differentiating and
raising indices we have

rr�ξnrnξ
m��dmxj��drxi� �

Z
d3x0ρ�x0; t� 3

�xj � x0 j��xi � x0i�
jx � x0j5

� �

� Dr�ρ�1Dnσnm��dmxj��drxi�;
so that, since ⟳a�ξnrnξ

b� is spacelike in both indices,

ra ξnrnξ
b

� � � rb ξnrnξ
a� � � �Da ρ�1Dnσnb

� �� Db ρ�1Dnσna� �;
which, given the continuity equation (1a) and the fact that r is flat by construction,
entails (1c) (see the proof of (Chen 2023, proposition 2)). For (1a) itself, note that in
Newtonian point-particle mechanics, mass is transported only by particles along their
(continuous) worldlines, and is a fortiori locally conserved. So we have obtained (2)
from (3), i.e. MG from VR.

Conversely, it is also possible to recover the dynamics (3) from (2), i.e. VR from
MG. Given the identifications (3), we can use (2) to derive expressions for
@i d2Xi=dt2
� �

and @ �i d2Xj�=dt2
� �

in any Maxwellian coordinate system xµ on M. These
are sufficient to specify (5) uniquely, providing that @i d2Xi=dt2

� �
and @ �i d2Xj�=dt2

� �
fall off at least as 1=r2 at spatial infinity. If we then specialize to the case of a point-
particle distribution (which justifies making the above assumptions about d2Xi=dt2),
this gives φ�x � x0; t� ! φ�x � x0; t�Pi δ

3�x0 � Xi�t�� and analogously for V. Hence,
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@i
d2Xj�x; t�

dt2

� �
� �@i

X
k
@ jφ�x � Xk; t� � @i

X
k
ρ̃ρ�1@ jV�x � Xk; t�: (9)

Since ρ̃ρ�1 � P
i qi=miδ

3�x � Xi�t��, (4) then follows from integrating along any
path between Xi t� � and Xj t� �.

So, despite their surface-level differences there is a close relationship between MG
and VR. Both are set on rotationally flat Maxwellian spacetime. Moreover, the
dynamics of MG emerge naturally in the continuum limit of VR, while VR is precisely
what results from restricting MG to the point-particle sector. In turn, this supports
Dewar’s (2018, 268) claim that “Maxwell gravitation : : : represents the natural
extension of Saunders’ remarks to the field-theoretic context.” Dewar argues for this
on the basis that MG, like VR, collapses the distinction between materially identical
models of NCT. However, the fact that MG can be recovered in the continuum limit of
VR, and vice versa, provides a more direct route to this conclusion.

4. Wallace on vector relationism and Newton–Cartan theory
With the relationship between VR and MG on a firmer footing, I will now turn to
Wallace’s (2020) discussion of VR and NCT. Here, Wallace claims to show that
“mathematically speaking, there is no real distinction between Newton–Cartan
theory : : : and vector relationism” (24), and suggests that any differences between
the two theories are partly an artefact of the awkwardness of standard differential-
geometric presentations of Maxwellian spacetime (28). As a result, Wallace adheres to
a coordinate-based presentation of both theories in setting out his argument.

Wallace’s discussion of VR and NCT centers on the behavior of dynamically isolated
subsystems of particles embedded in a larger universe—showing that within VR, such
systems exhibit emergent inertial behavior which can be idealized in terms of test
particles. This forms the basis of his argument that VR and NCT are equivalent. When
non-gravitational interactions vanish, the equations governing the relative
acceleration vectors of infinitesimally separated test particles can be written to
take the same form as the (coordinate-based) equation of geodesic deviation in NCT,
and thus, Wallace claims, may equally well be interpreted as such (Wallace 2020, x8).

Wallace is not explicit about the standard of theoretical equivalence he is working
with here. But it is fairly straightforward to reconstruct from his remarks what he
may have in mind. Having recovered the Newton–Cartan equation of geodesic
deviation within VR, Wallace claims of the two theories:

[Both] are built using Maxwellian spacetime as a background; both have
dynamics that can be expressed as a set of inertial trajectories defined by the
matter distribution and in turn constraining the matter distribution via a matter
dynamics according to which material particles follow those trajectories except
when acted on by non-gravitational forces. (Wallace 2020, 24)

Similarly, in his concluding remarks, Wallace argues that

[There] is essentially no difference between Newton–Cartan theory : : : and
Saunders’s relational version of Newtonian dynamics: at the formal level, the
latter can be reformulated as the former; at the substantive level, the inertial
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structure of Saunders’s theory is well defined and coincides with that defined by
the Newton–Cartan connection. (Wallace 2020, 28)

From these remarks, one can isolate three points which Wallace takes to bear on
whether MG and NCT are equivalent:

(1) They have the same background spacetime structure.
(2) Their central dynamical equations can be (re)written so as to appear

mathematically identical.
(3) They have the same inertial structure.

For our purposes, we can elevate this to a criterion of theoretical equivalence,
though it should be borne in mind both that Wallace does not explicitly endorse this,
and that such a criterion may be more or less well-suited to theories other than VR
and NCT. I will nowmake several comments on this criterion, all of which will indicate
refinements of the points (1)–(3) above.

First, on point (1), what does the “background spacetime structure” of a theory
consist in? In the literature, there are various competing schools of thought about
how this is to be identified. For example, one might take “spacetime structure” to be
objects of a certain object-type that appear between the angle brackets of a theory’s
models á la, e.g., Earman (1989) or Friedman (1983), or one might invoke a criterion
such as Knox’s (2013) spacetime functionalism, according to which “spacetime
structure” is just whatever it is that encodes the local structure of inertial frames.18

Again, Wallace’s remarks give some hint as to what he may have in mind here:

[In] Newton–Cartan theory, the connection does double duty, imposing both the
rotation standard (a piece of absolute structure) and the inertial structure
(something dynamical and contingent) : : : . the Newton–Cartan connection is
naturally understood as an additional piece of structure added to Maxwellian
spacetime; indeed, as the Maxwellian version of the affine connection. (Wallace
2020, 29)

This suggests, for the purposes of point (1), that we should take the “background
spacetime structure” of a theory to be its absolute objects—i.e., those which are the
same in all its dynamically possible models, where “sameness” is sameness up to
isomorphism (see, e.g., Earman (1989, 45)).19 If this is the right precisification of (1),
then MG and NCT do indeed have the same background spacetime structure as
Wallace claims—see March (2024).

18 Though note that Knox’s spacetime functionalism cannot be the right criterion if we are looking to
identify Maxwellian spacetime as the background spacetime structure of MG and NCT, since Maxwellian
spacetime by itself lacks a full inertial frame structure.

19 Note that I am not suggesting, here, that the notion of an absolute object in this sense has anything
to do with “substantive general covariance” (whatever that might mean), nor am I interested in whether
“having an absolute object” in this sense allows one to distinguish, e.g., general relativity from some
desired contrast class of theories—as Pitts (2006) points out, it does not. It is a precise definition one can
consider, and seems to me a reasonable way of cashing out which degrees of freedom of which objects in
the theory are “dynamical and contingent,” in the sense that they may vary from model to model.
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Second, on (2), one might worry about the restriction to the “central” dynamical
equations of a theory. While I won’t attempt to address the question of what it means
for some equation or other to be “central” to a theory here, note that this restriction
is needed because Wallace does not explicitly consider all the equations of NCT in his
analysis (and as we will see in section 5, not all the equations of MG and NCT, or VR
and NCT, for that matter, can be written so as to appear mathematically identical).

Continuing with point (2), one might also ask what it means for the central
equations of two theories to “be rewritten so as to appear mathematically identical.”
For our purposes, we can take this to mean that we can re-express the dynamics of the
theories so that they have some non-empty set of equations (the “central” ones) in
common, while preserving solutionhood.

Finally, on point (3), how, according to Wallace, are we to identify the inertial
structure of a theory? Here, Wallace closely follows Knox (2013): the inertial structure
of a theory is whatever it is that encodes the local structure of inertial frames,
i.e. those with respect to which gravitating but otherwise force-free bodies move with
constant velocities, in which the equations governing non-gravitational interactions
take their simplest form, and which are universal (in the sense that all bodies and
interactions pick out this same class of frames). Crucially, in the case of non-relativistic
theories this means that if there exists a connection such that the geometrized version
of Newton’s second law (NII)—i.e. ρξnrnξ

a � �rnσ
na
—is satisfied, then this (among

other things) qualifies it as encoding the inertial structure of that theory.

5. Understanding Wallace from a coordinate-free perspective
Having presented Wallace’s argument, I will now show that with MG in hand, the
same argument can be made in the language of coordinate-free differential geometry.
For point (1), we have already noted that MG and NCT have the same absolute object
structure (March 2024). For point (2), following Wallace, let us compare the dynamical
equations (2) and (2) of MG and NCT. Let hM; ta; hab;⟳i be a Maxwellian spacetime.
Then for any derivative operator r compatible with hM; ta; hab;⟳i, the following
implications hold (illustrated in Figure 1). Statements and proofs of these
equivalences are contained in appendix A.

Figure 1. Relationships between the equations of Maxwell gravitation and Newton–Cartan theory. Labelled
arrows are to be understood as in the scope of a conditional—so, e.g., the first arrow from the left says that
if NII holds, then (2c) implies (1c).
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There are several features of Figure 1 worth noting. First, while (2d) is equivalent to
the rotational flatness condition, there is no similarly sharp correspondence between
(2c) and (1c). (2c) and NII jointly imply (1c), but (1c) and NII do not imply (2c). This
points to the fact that rotational flatness plays double duty in relating the two theories.
From (1c) and NII we can infer that ξnξm Rc an m � Ra c

m n� � � 0; the rotational flatness
condition allows us to further infer that ξnhbm Rc an m � Ra c

m n� � � 0, which yields (2c).20

Secondly, although (2b) and (1b) are not in general equivalent, they are equivalent
on assumption of NII and rotational flatness. Likewise, given NII, rotational flatness
and (1c) are equivalent to (2d) and (2c). As such, once NII has been fixed, we can then
move freely between the remaining pairs of equations.

Now recall point (2) of Wallace’s argument: for an idealized congruence of test
particle trajectories, the dynamics (3) of VR can be rewritten so as to take the same
form as the equation of geodesic deviation in NCT. But we have just seen that this has
an obvious analogy for MG and NCT: by replacing (1b) with the expression for the
average radial acceleration (2b), we can reformulate MG and NCT so that their central
dynamical equations appear mathematically identical. Within NCT, (1b) encodes the
relative acceleration of neighboring fluid elements due to both spacetime curvature
and non-gravitational interactions, so represents the natural generalization of
Wallace’s geodesic deviation equation to non-test matter. And just as in Wallace’s
example, the only difference, as far as this pair of equations is concerned, is the
interpretation of (1b)—in NCT, the �4πρ=3 term is naturally understood as a
manifestation of geodesic deviation in curved spacetime, whereas in MG it is not.

Moreover, once we move from VR to MG, the case for regarding this disagreement
as merely verbal appears even stronger. After all, in VR, the gravitational field is
explicitly represented elsewhere in the formalism. But in MG, we do not even have
that. Of course, we are always free to ascribe the �4πρ=3 term in (1b) to “the
gravitational field”—but without some further indication of what this is supposed to
be, the gravitational field is simply that whereby neighboring test particles have non-
zero relative acceleration. And since this is precisely the role of the Newton–Cartan
spacetime curvature, the difference between the two begins to look insubstantive. As
such, we seem to have in the relationship between (1b) and (2b) a coordinate-free
realization of point (2) of Wallace’s argument.

However, we can also say a little more about this reasoning. Given the
relationships illustrated in Figure 1, not only are we free to replace (2b) with (1b) in
NCT, we can also replace (2c) with (1c), (2d) with the rotational flatness condition, and
rewrite (2a) as the conjunction of NII and (1a). From this perspective, the only
difference between these sets of equations is the presence of NII in NCT, whose role is
essentially to provide a (partial) gauge fixing of the connection. This provides a
further sense in which point (2) of Wallace’s argument is strengthened when we move
from VR to MG—all the dynamical equations of NCT, with the exception of NII, can be
written so as to appear mathematically identical to the equations of MG.

Note that this also highlights why it is that NCT cannot be the continuum limit of
VR. If one assumes that the dynamics for test particles in NCT are given by the
geodesic equation, then it is possible to show that in both NCT and the continuum
limit of VR, test particles satisfy the equation of geodesic deviation. But precisely

20 Recall that hdnhbm Rc an m � Ra c
m n� � � 0 in any classical spacetime.

12 Eleanor March



what one cannot recover in the continuum limit of VR is the geodesic equation
itself—or rather its generalization to non-test matter, NII.

Finally, this brings us to point (3), viz. the inertial structure of MG, such as it is. For
this, it is helpful to recall proposition 2. This tells us that, providing there is sufficient
matter in one’s spacetime, there exists a unique Newton–Cartan connection which
satisfies NII, i.e. such that massive test bodies follow geodesics. Moreover, providing
that the test bodies of interest are sufficiently far from other massive matter (which
we can idealize as meaning at spatial infinity), then this connection will, at least
locally, be well-approximated by a flat connection. This allows us to recover (and
expand upon) Wallace’s claims about the emergence of inertial structure in MG in
three ways.

First, suppose that we say, with Wallace, that what it is to encode the inertial
structure of a theory just is to be the unique connection such that massive test bodies
follow geodesics. Then it follows that, whenever the conditions of corollary 2 are
satisfied, a model of MG does indeed come equipped with an inertial structure, which
coincides with the Newton–Cartan connection. So while Maxwellian spacetime lacks
full inertial structure by itself, there is an emergent such structure to be had for those
models in which there is sufficient matter available.

Second, continuing with the above theme, if we have antecedent reasons for
adopting NII as an implicit definition of the inertial structure of a theory, then we
might as well go ahead and add this as an extra condition to those models of MG in
which there are open sets throughout which the mass density field is non-vanishing.
In that case, one can also recover the dynamics of NCT from those of MG. So, while one
cannot rewrite the dynamics of MG to appear mathematically identical to those of
NCT by themselves, there is a natural sense in which the dynamics of MG plus
definitions are sufficient to recover the dynamics of NCT, again providing there is
sufficient matter in one’s spacetime. This provides a way of making sense of Wallace’s
claim that “Saunders’s vector relational version of Newtonian dynamics : : : can be
reformulated as [Newton–Cartan theory]” (Wallace 2020, 28).

Third, corollary 2 clarifies just what is needed for the emergence of this inertial
structure. In particular, sufficient for this is that there exist open sets throughout
which the mass density field is non-vanishing. So, providing that we are doing non-
vacuum continuum mechanics (or even for certain point-particle distributions—see
March 2024) then the above arguments can be made; one does not need to consider a
full congruence of particle trajectories.

All this serves to blunt the force of Wallace’s (2019, 2020) recent claims that
Maxwellian spacetime is not naturally characterized in coordinate-free differential-
geometric terms, and that this is partly what obscures the similarities between MG and
NCT. As I have shown, the same formal similarities which Wallace discusses can also be
seen very naturally from a coordinate-free differential-geometric perspective. As such,
one might suspect that the problem (such as there is) lies not with coordinate-free
differential geometry per se, but with formulating a theory in terms of geometric
objects which cannot be defined from the structure it ascribes to the world.21

21 C.f. Pitts (2012); Pitts (2022); Pitts (2006). For an extended discussion of other possible issues relating
to this in the context of the interpretation vs. motivation and reduction vs. sophistication debates,
see Jacobs (2022).
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6. The link with Teh
Finally, I will consider the relationship between my discussion of Wallace and that of
Teh (2018), who adopts a rather different strategy for diffusing Wallace’s concerns
about the coordinate-free framework. Teh’s approach begins by noting that
compatible connections on a classical spacetime can be represented by means of a
special connection (for some unit timelike vector field ξa) and a two-form Ωab

(see Malament (2012, propositions 4.3.4, 4.1.3)). Providing the connection of interest
satisfies (2c), this two-form is closed, and so can (at least locally) be specified by a one-
form Aa, defined up to exact one-form shifts. Since ξa is geodesic with respect to its
special connection, one can therefore view ξa as encoding a “background inertial
structure,” and Ωab as encoding the forces experienced by bodies relative to this
inertial structure. Alternatively, one can view Ωab as encoding the force differences
between different idealized congruences of particle trajectories, and so as realizing
Saunders’ vector relationist dynamics (Teh 2018, 207).

How does this allow one to make Wallace’s argument, and in what ways does this
address Wallace’s concerns about the coordinate-free framework? On this, one can
identify three points:

• As Teh himself (2018, 203, 220) notes, suppose we are given an equivalence class
r� � of rotationally equivalent (not necessarily flat) connections which satisfy (2c).22
Any such connection will be the special connection for some unit timelike vector
field ξa. Now suppose that we are given another special connection r. Then all the
ξa have the same rotation tensor with respect to r. This, Teh claims, furnishes the
notion of rotational equivalence with a physical interpretation in terms of
representations which share the same vorticity.

• Now suppose that the connections in this equivalence class are, in addition, flat.
Then the choice of such a connection is equivalent to a choice of inertial frame
(since the ξa in question must now be rigid). So the equivocation involved in
defining the rotation standard of Maxwellian spacetime as an equivalence class
of rotationally equivalent flat connections á la Earman (one might think) is no
worse than that involved in equivocating between Maxwellian coordinate
systems when writing down, e.g., Saunders’ vector relationist dynamics.

• Teh’s framework emphasizes the way in which the two-formΩab used to pick out
the Newton–Cartan connection of interest can always be reinterpreted as
encoding either forces experienced by test bodies relative to the inertial
structure defined by ξa, or as encoding a connection relative to which those same
test bodies exhibit geodesic motion. Or in other words, there is no mathematical
difference between the universal forces of VR and the geodesic motion in curved
spacetime of NCT, as Wallace argues.23

From this, it is clear that Teh’s concern is not primarily to alleviate worries about
taking equivalence classes simpliciter. Nevertheless, I suggest that his approach
provides a complementary avenue to the one I have considered here—particularly on

22 Recall that two connectionsr, r0 are rotationally equivalent just in case, for all unit timelike vector
fields ξa, r�aξb� � 0 iff r0�aξb� � 0.

23 For a different take on this, see Weatherall and Manchak (2014).
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point three, which provides an alternative route to my earlier conclusion in section 5
that there is little, if any, difference between the interpretation of (1b) in MG and NCT.
On the other hand, insofar as Teh’s framework highlights the fact that equivocating
between rotationally equivalent flat connections is the same as equivocating between
inertial frames, this might just seem like grist to Wallace’s mill: wasn’t one of the
advantages of the coordinate-free approach supposed to be that it avoids all this need
for equivocation, since we can just talk about the objects of interest directly?

Finally, note that the discussion of section 5 highlights which of Teh’s
constructions carry over to Maxwellian spacetime characterized “intrinsically” and
which do not. In particular, Teh’s “proto-Maxwell spacetime”—which he defines
using an equivalence class of rotationally equivalent connections all of which satisfy
(2c)—cannot be defined using just Weatherall’s standard of rotation.

7. Close
In this paper, my aim has been to connect up the recent wave of coordinate-free
approaches to Maxwellian spacetime with the coordinate-based discussions of
Saunders (2013); Wallace (2020). By doing so, I have clarified the relationship between
vector relationism and Maxwell gravitation (the latter is just the continuum limit of
the former, and the former the point-particle sector of the latter, as one would have
hoped); I have also explained why Newton–Cartan theory is not the continuum limit
of vector relationism, contra the appearance of Wallace’s discussion. Finally, I have
shown how the similarities between vector relationism and Newton–Cartan theory
which Wallace discusses can also straightforwardly be seen using the coordinate-free
approach, and used this both to assess Wallace’s argument, and to connect up with
Teh’s discussion of Wallace.

In many ways, the upshot of all this is irenic. Maxwellian spacetime can be
characterized in a variety of ways—whether in terms of privileged coordinates,
equivalence classes of connections, or a primitive standard of rotation. And as far as
the substantive things one can say about Maxwellian spacetime and Maxwell
gravitation are concerned, I hope to have shown that there is little to choose between
these three perspectives.

That is not to say that, depending on the context at hand, one may not have good
reasons for preferring one approach over another—whether for calculational
convenience, ease of presentation, physical (or mathematical, or metaphysical)
perspicuity, etc. But I think it would be a mistake to conclude from this that there is
some objective, once-and-for-all answer as to which approach fares better on any of
these criteria. Put simply, what is most calculationally convenient, or easy to
understand, or physically (or mathematically, or metaphysically) perspicuous for me
need not be so for anyone else—and that is as it should be. The coordinate-based vs.
coordinate-free debate may yet be fought and won on other grounds. But in any case,
I hope to have laid to rest the idea that the example of Maxwellian spacetime provides
a reason to prefer one approach over the other.
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Appendix
A. Statements and proofs of equivalences
Let hM; ta; hab;⟳i be a Maxwellian spacetime, r any compatible connection, and Tab

the mass-momentum tensor, which we assume to satisfy the Newtonian mass
condition. That (2d) holds iff hM; ta; hab;⟳i is rotationally flat is shown by Malament
(2012, proposition 4.2.4); that (2a) holds iff NII and (1a) hold is shown by Malament
(2012, 266), noting that ξnrnρ � £ξρ and rnξ

n � �1=2ĥnm£ξhnm.
For the remaining four implications, assume that NII holds. A straightforward

computation shows that we can use r to rewrite (1c) as

ξnrn ωca� � � 2ωn�cθna� � r�c ρ�1rnσ
nj ja�� �

;

where ωab, θab are the rotation and expansion tensors for ξa, respectively. It follows
that, given NII,

ξnrn ωca� � � 2ωn�cθna� � r�c ξ nj jrnξ
a�� �
: (10)

Likewise, (1b) can be rewritten as

1
3

X
3
i�1

λ
i

rξ
nrn�ξmrm λr

i
� � � 4

3
πρ� 1

3
rm�ξnrnξ

m�: (11)

Now we just need to do some calculations, which follow the proofs of propositions
4.3.6, 1.8.5, and 4.3.2 of Malament (2012) closely. First,

ξnrn ωca� � � r�c ξ nj jrnξ
a�� � � r�cξ nj j� � rnξ

a�� �� Ra cn m � Rc a
m n� �ξnξm

� 2ωn�cθna� � r�c ξ nj jrnξ
a�� �� Ra cn m � Rc a

m n� �ξnξm;
where we have made use of the fact that ωab is spacelike in both indices. So if (2c)
holds, (1c) immediately follows. Conversely, if (1c) holds then comparison with (10)
yields that Ra cn m � Rc a

m n� �ξnξm � 0. Then to establish (2c), we just need to show that
Ra cn m � Rc a

m n� �hnbξm � 0 (since Ra cn m � Rc a
m n� �hnbhmd � 0 in any classical spacetime).

This, in turn, follows from rotational flatness (using the symmetries of the Riemann
tensor). Note that rotational flatness is needed here because ξa need not be twist-free.
Next,
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1
3

X
3
i�1

λ
i

rξ
nrn ξmrm λr

i
� �

� 1
3

X
3
i�1

λ
i

r λn
i
rn ξmrmξ

r� � � Rrnmsξn λm
i
ξs

� �

� 1
3
rn ξmrmξ

n� � � 1
3
Rnmξnξm;

so that if (2b) holds, so does (1b). Conversely, if (1b) holds, then by (11)
Rnmξnξm � 4πρ. If we then assume rotational flatness, we also have that
Ranξn � Rab � 0, which gives us (2b).
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