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Constructing surfaces with first Steklov
eigenvalue of arbitrarily large multiplicity

Samuel Audet-Beaumont

Abstract. We construct surfaces with arbitrarily large multiplicity for their first nonzero Steklov
eigenvalue. The proof is based on a technique by Burger and Colbois originally used to prove a similar
result for the Laplacian spectrum. We start by constructing surfaces S, with a specific subgroup of

isometry G := Zy x Zj, for each prime p. We do so by gluing surfaces with boundary following the

structure of the Cayley graph of G,. We then exploit the properties of G, and S, in order to show
that an irreducible representation of high degree (depending on p) acts on the eigenspace of functions
associated with 01(S, ), leading to the desired result.

1 Introduction

Let (S, ) be a smooth, compact, connected, Riemannian surface with boundary 9S.
The Steklov eigenvalue problem consists of finding (f, o) € C=(S) x R with f #0
satisfying

Af=0 in S,
o f=0f on dS,

where 0, is the outward normal derivative on 9S. The numbers ¢ are called the
Steklov eigenvalues of (S, g). They form a sequence 0 = gy < 0y < 05 < -+ 7 00, where
each eigenvalue is repeated according to its multiplicity. This problem has attracted
substantial attention in recent years. See [4] for a survey of recent results and open
problems. The focus of this article is on the multiplicity m; (S, g) of the first nonzero
eigenvalue o1 > 0. Upper bounds for m; (S, g) have been obtained by many authors
in recent years. Notably, the works of Fraser and Schoen [6], Jammes [9] as well as
Karpukhin, Kokarev, and Polterovich [10] brought multiple results concerning upper
bounds for the multiplicity of Steklov eigenvalues in terms of the topology and the
number of boundary components of the surface. The following result is a particular
case of [10, Theorem 1].

Theorem1.1 Let (S, g) be an orientable compact Riemannian surface with non-empty
boundary. Let g be the genus of (S, g). Then,

m(S,g) <4g+3.
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2 S. Audet-Beaumont

All known general upper bounds on m;(S, g) involve either the genus of the
surface S, or both the genus and the number of boundary components of the surface
S. These bounds are linear in terms of the genus (and of the number of boundary
components, when applicable). However, none of these bounds are known to be sharp
for all genus and the question to know if surfaces with arbitrarily large multiplicity
my (S, g) is left open in the literature. The main result of this article gives a positive
answer to that question.

Theorem 1.2 For each prime number p, there exists a compact Riemannian
surface (Sp,gp) of genus gp = (p—1)* with 2p boundary components such that

mi(Sp.gp) 2P~ 1.

The proof of this result is based on a technique that was developed by Burger
and Colbois [1, 3] used originally to obtain a similar result for the eigenvalues of the
Laplacian on closed surfaces. The idea is to construct a surface (S, g) with a specific
subgroup of isometry G, := Z), x Z,, by building the surface around the Cayley graph
of G,. Using the fact that the problem is invariant by isometry, we can define an
action of G, on the space of eigenfunctions E;(S,) associated with ¢;. This action
on E(S,) is also isometric for the inner product of L,(S,). This action can then be
decomposed in irreducible representations of the group G,. By choosing a group with
an irreducible representation of high degree and by showing that this representation
acts on E;(S,), we show that E; must be of large dimension, which implies that o
has high multiplicity. The presence of boundary components for the Steklov problem
forces us to alter the construction given by Burger and Colbois in a nontrivial way
and allows us to get a slightly stronger result.

Remark 1.3 Note that in the provided constructions, the number of boundary
components also goes to infinity. It is not known whether there exists a similar
sequence of surfaces where the multiplicity and genus go to infinity and the number
of boundary components remains fixed.

1.1 Multiplicity bounds for the Steklov problem with density

In his paper [9], Jammes studied a more general version of the Steklov problem:

div(yvf) =0 inS§,
yo, f = apf. on dS.

Here, y € C*(S) and p € C*(9S) are strictly positive density functions. The mul-
tiplicity of the first nonzero eigenvalue is now written m;(S, g,y,p) to stress the
dependence on the density functions. Given a surface S of genus g with I boundary
components, let

Mi(g,1) = sup m(S, g, y,p),
&pP>Y

where the supremum is over all Riemannian metrics and densities. In his paper [8],
Jammes proposed the following conjecture:
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Surfaces with first eigenvalue of large multiplicity 3
Ml(g, l) = Chro(S) -1,

where the relative chromatic number Chry(S) is the number of vertices of the largest
complete graph that can be embedded in S with all vertices on the boundary dS. The
conjecture is analogous to a conjecture of Colin de Verdiere for closed surfaces [5]. In
his paper [9], Jammes proved part of his conjecture. He showed that

Ml(g, l) > Chro(S) -1

He also showed that Chro(S) = O(,/g) as g — +oo, providing examples where the
multiplicity m; (S, g, y, p) is arbitrarily large. However, the proof of this last inequality
relies heavily on the theory of perturbation and uses the freedom afforded by the
density functions in an essential way.

Outline of this article. In Section 2, we describe the construction of Cayley graphs
I", associated with the groups G,. In Section 3, we discuss the construction of S, by
using G, and discuss the basic properties of such surfaces. In Section 4, we catalog all
irreducible representations of G,,. In Section 5, we prove the main theorem.

Construction of the Cayley graphs I,

The Cayley graph I'(G, S) of a group G with set of generators S is the oriented graph
with vertices ¢ € G and edges between g, g; € S if and only if there is § € S such that
€10 = g,. This relation also induces a natural orientation on each edge of the graph.

Note that the construction of the graph is dependent on the choice of set of
generators S. Also, since the vertices are associated with group elements, the number
of vertices is the same as the number of elements in the group. Finally, since every
generator and its inverse can be applied to an element g € G, the degree of each vertex
in T is equal to 2|S|. For more details on Cayley graphs, see [11].

Let p > 3 be a prime number and

Gp =7y x Z;,

where Z, is the cyclic group of p elements and Zj, is the multiplicative group modulo
p. Alternatively, we can represent G, in terms of generators. Let k be an integer such
that k is a primitive p — 1-root modulo p. Then,

Gp={01,0, |00 =¢, 88 = ¢, 8,'0,6, = 6F).

One can verify that these two groups are isomorphic by considering the isomorphism
y that goes from Z, x Zj to G, induced by

y(1,1) = 8y,

l//((-), ]_C) = 62.

This definition allows us to build the Cayley graph of G, with the generator set
S = {61, 8, }. For example, we obtain the following Cayley graph when performing
this construction for p = 3.
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0102

0 / 7’//\

» 626,

Here, the double arrows represent the action by §; and the simple arrows represent
the action by ;. Since |G,| = p(p — 1), the graphs I'(G,, {81, 02 }) get increasingly
complicated as p grows larger. As a direct consequence of this construction, the graph
I'(Gy, {61, 62}) admits an action of G, by isometry induced by the action of the
elements of the group G on the vertices of the graph by left multiplication. For the
next sections, we will opt for the more compact notation I'y := I'(G,, {81, 82 }).

3 Construction of the surface S,

Let £ € R, and
8:={(x,y) € [-2,2] x[-2,2] : x* +y*>1}

be the perforated square equipped with the Euclidean metric of R?. Let P(¢) be
the pair of hyperbolic pants with one boundary component of length 27 and two
boundary components of length ¢. Note that by Theorem 3.1.7 of [2], such pants are
uniquely defined (up to isometry) by the lengths of their geodesic boundary compo-
nents. The building block B(¢) is then obtained by gluing one boundary component
of the cylinder C := S' x [0, 1] along the inner circular boundary component of § and
the other boundary component of € along the boundary component of P(£) of length
2. The metric on C is chosen so as to interpolate smoothly between the metric on §
and the metric on P(£). Note that every hyperbolic gluing in this section onward is
performed with no twist.

@ 0
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Surfaces with first eigenvalue of large multiplicity 5

Figure 1: The building block B(¢).

Thus, the building block B(¢) posesses three boundary components: one of them
corresponding to the sides of the square § and two of them corresponding to the
boundary components of length ¢ in P(¢). In what follows, we will denote by y; and
y; the two boundary components of length ¢ in B(¢). We will also denote (y3,y5)
and (b, by) the two pairs of parallel sides of length 4 of the remaining boundary
component in B(¢) (Figure 1).

The surface S, (¢) is obtained by gluing copies of B(¢) along the Cayley graph I,
of Section 2 via the following procedure. First, we assign to each vertex v of I', a copy
of B(¢) labeled B, (). We will denote the boundary components y; of B, (¢) by y;,
for i € {1,2}. Let v, w be two vertices of I', and let B, (¢), B,,(£) be their respective
assigned copy of B(¢). We glue B, (¢) along y;, to B,,(¢) along y7,, if there is an
edge corresponding to &) in I', going from v to w. Similarly, we glue B, (¢) along y; ,
to By, (¢) along y; ,, if there is an edge corresponding to §, in I, going from v to w
(Figure 2).

Lemma 3.1 The surface S, has 2p boundary components and genus g =1+ |G| =
1+ p(p-2)=(p-1)%

Proof Forje{0,1,...,p—1},1let
Ci={geG: ImeN, g=0/6m}
denote the §, generated cycles of 6{ in I'p. Since

p-1
|Gyl < 30 ICil < plCol = p(p 1) = |Gy,

i=0
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6 S. Audet-Beaumont

C

Figure 2: The surface S3.

Figure 3: Transformation of Cyl; in S5 by gluing disks along its boundary components.

we have that the C; are disjoint and form a partition of G. Since, by construction,
we have two boundary components per 8, cycles C;, the first assertion of the lemma
follows.

Forje{0,1,...,p -1}, let

Gl = U Bg(¢) c S,
geC;j

be the region of S, corresponding to the &, cycles. It follows that the Cyl; are
pairwise disjoint cylinders with 2(p —1) additional boundary components for all
j€{0,1,...,p—1}. In order to compute the genus of S,, we glue disks along its
boundary components and compute the genus of the resulting closed surface §p.
Note that such gluings transform Cyl; into spheres Sph; with 2(p -1) boundary
components (Figure 3).
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Surfaces with first eigenvalue of large multiplicity 7

It follows that the Euler characteristic of Sph; is exactly that of the sphere minus
the 2(p — 1) faces removed. Thus, for all j € {0,...,p -1},

x(Sph;) =2-2(p-1) =-2(p-2).
By the additivity of the Euler characteristic, we have that

2-2g=x(S,) = p- x(Sph;) = ~2p(p - 2).
Solving for p yields

g=(p-17%

which concludes the proof. [ ]

4 Irreducible representations of G,

Note that since I';, is a Cayley graph of G;,, G, acts on the vertices I", by isometry via
the group operation. This action can be lifted to an action by isometry of G, on S,,.
Let

Vysw ¢ Bv(g) - Bw(é)

be the canonical isometry between B, (¢) and B,, (¢). Then, one can explicitly declare
the above-mentioned action by isometry of G, on S, via

bg:Sp = Sps

Xy > pg(xy) = Wv—»g(v)(xV)’

where x, is a point of B, (£). This action of G, on the surface S,, induces an action of
G, on the eigenspace of the functions associated with 01(S,) through the maps

bg* 2 E1(Sp) = Ei(Sp)s

frfodg

Since this action is linear, by taking a basis of E;(S,), one can represent the action
of g € G, by a matrix A, € GLy(C), where N represents the dimension of E;(S,).
Thus, we have a representation of G, acting on E;(S,). By changing the basis of
E (S,) if necessary, the action of G, on E;(S,) can be decomposed as a direct
sum of irreducible representations. This induces a decomposition of E;(S,) in a
direct sum of subspaces associated with irreducible representations of G, acting on
E((Sp). Thus, if we can show that an irreducible representation of high degree acts
on E(S,), it follows that there is a subspace of E;(S,) of high dimension, which in
turn implies that E;(S,) has high dimension and that 01(S,) has high multiplicity.
All of the aforementioned results on representation theory can be seen in greater
detail in [3].

Thus, we will now explicitly discuss the irreducible representations of G,. Since
it is a well-known topic, we will omit the technical details and simply state the
results.
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8 S. Audet-Beaumont

First, G, admits (p — 1) irreducible representations of degree 1. Let a be a primitive
(p—1)-root of 1 in C. Then, for all r such that 1< r < p —1, we have the following
irreducible representations:

pr:G, = C”
induced by

pr(81) =1,

pr(02) =a’.

One can verify that p, is a group homomorphism for all r. These representations are
all irreducible and non-equivalent. Observe that since §; is in the kernel of p,, the
subgroup Z, of G, generated by & lies in the kernel of p, for all .

Next, we will show that G, admits 1 irreducible representation of degree p — 1. Let
& be a primitive p-root of 1 in C and k be a primitive (p —1)-root of 1 modulo p. It

follows that &' # & if j # i forall 0 < 4, j < p — 2. We have that
p:Gp—>GLy,,(C)

induced by
0 0 1
¢ 0 1 0 0
&k 1
p(&1) = , p(82) = 0
0 g
0 1 0

constitutes a representation of G,. We then prove the following lemma.
Lemma 4.1 p is an irreducible representation of G,.

Proof By Schur’s lemma (Lemma 1.7 in [7] for example), it suffices to prove that
the only matrices commuting with p(g) for all g € G, are scalar matrices.

Let A€ GL,_1(C) such that it commutes with p(g) for all g€ G,. Then, in
particular, it commutes with p(J;). Let

B:= Ap(dy),
C:=p(8)A.
It follows that B = C since A and p(&;) commute. For all i # j, we have
bi,j = ai,jgk]_ N
Ci,j = ﬂi,jfk,_ .

Since £ # e f j # i, it implies that A must be diagonal. Let
X :=Ap(82),

Y = p(82)A
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Surfaces with first eigenvalue of large multiplicity 9

Once again, we obtain that X = Y since A must commute with p(8,). Forall1<i <
p — 2, we have

Xitl,i = Qii>

Yi+l,i = Aitl,i+1-

It implies that

al,l = a2,2 = e = ap—l,p—l'
It follows that A must be scalar and the proof is complete. ]

Finally, since the sum of the square of the degrees of these irreducible represen-
tations is equal to |Gp|, we can conclude that we have all the possible irreducible
representations of G,.

5 Proof of the main result

What is left to show is that the representation of degree p — 1 acts on E;(S,(¢)) for £
small enough. We will do so by showing that none of the irreducible representations of
degree lact on E;(S,(¢)) for ¢ small enough. Our strategy will consist of considering
the quotient of S,(¢) by the action of the normal subgroup Z, of G, that we will
denote S (£). Since Z, lies in the kernel of every representation of degree 1, if we can
show that 1(S,(¢)) # 01(S},(£)) forall £ < e for a certain ¢, then the result will follow.

In order to show that the first nonzero eigenvalues of S,(¢) and S}, (¢) do not
coincide for ¢ small enough, we start by showing the following lemma.

Lemma 5.1

lim 61(S,(¢)) = 0.
£—0
To prove this lemma, we will need two classical results.

Theorem 5.2  (Variational characterization of the Steklov eigenvalues)

or = min max Rg(u),
EeJyy1 04ucE

where 3y, is the set of all k + 1-dimensional subspaces in the Sobolev space H'(S) and

[sIvul*dA

R ==

The second important result is an application of the collar theorem [2, Theorem
4.1.1]. Let

C(Sp(0) = U vig € Sp(0)

8¢Gp
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10 S. Audet-Beaumont
and the neighborhood of x € S, (¢)
T(x) ={qeS,(0) | dist(q, x) <w(0)},
where
w(l) := arcsinh(coth(f)).

Since the y7, © S,(¢) are gluing points of hyperbolic pants of constant curvature -1
the collar theorem applies locally to T(a) and we get the following.

Theorem 5.3  For connected components a, 3 c C(S,(£)), then T(a) nT(B) = @ if
and only if a 0 3 = @. Furthermore, for all connected components a € C(S,), T(a) is
isometric to the cylinder [-w(£), w(£)] x S' with the Riemannian metric ds* = dp* +
2 cosh®(p)dt* on the Fermi coordinates of the cylinder based on « parametrized with
speed £.

We can now prove Lemma 5.1 using Theorem 5.2 and Lemma 5.3.

Proof  Our goal will be to build two test functions fi, f> € H'(S,(¢)) such that
Rs,(0)(fi) and Rs,(¢) (f2) go to zero as £ goes to zero.

Observe that S, — C(S,(¥)) has p connected components. This is a direct conse-
quence of the construction of S, (¢) around the Cayley graph of G, with generators
01, 82. We will note these connected components M; fori € {1,2,...,p}and C(M;) c
C(S,(¢)) the union of geodesics joining M; to its complement in S, (£). Thus, C(M;)
is the union of 2p — 2 disjoint geodesics of lengths £.

Let
M =M - |J T(x)nM,
xeC(My)
M)=M,- |J T(x)nM,
xeC(M3)
and
1 if g e M?
filp) = 0' ifqe My
d’iﬁgg;“) if g € T(a) N M; for some connected component a € C(M;)
1 ifge MY
f(p) =10 if g < M
dlf:gg;'x) if g € T(a) N M, for some connected component a € C(M,).

Both functions are continuous and weakly differentiable. Since |grad(dist(q, a))| =1,
it follows that f;, f, € H'(M). Furthermore, since both functions have disjoint sup-
ports, span{fi, f»} ¢ H'(S,(¢)) is a subspace of dimension 2. We can now calculate

Rs, o) (fi)
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s, IVAPAV
Jas, 0 1AI7dS

. Yo Jr(ynm, [VAPAV
- A

Rs(fi) =

(2p-2) 2
51 =—" VA|FdV,
G A T(&)nM, A
where the sum is taken over all the connected components a c C(M;). Here, A is a
constant independent of £ and & is a given connected component of C(M; ). This last

integral yields
1
24y - [ dist(q, &
/:r(a)nm'vfl' w(l)? ‘J’(&)nM1|v ist(q, &)

1 _ Area(T(&) n M)
= W0 fm)li v w0

qv

(5.2)

We now need to calculate Area(T (&) n M) = w. By Lemma 5.3, T(&) is
isometric to the cylinder [-w(¢), w(£)] x S! with the Riemannian metric ds* = dp* +
2 cosh®(p)dt? on the Fermi coordinates of the cylinder based on & parametrized with

speed ¢. Thus,
1 w(l) )
Area(T(&)) = £2 f f o <o (p)dpdt
0 -w
63 =2 1o com(p)simn() 0, e = ()
. == J, Lp+cosh(p)sinh(p) [~ G dt = Ew(l).
Piecing equations 5.1-5.3 together, we obtain the upper bound
(2p - 2)¢*
R <.
sUD < 0)

Since w(¢) goes to oo when £ goes to 0, we have that
Eli% Rs(fi) =0.

The calculation for f, is similar. By the variational characterization of the Steklov
eigenvalues, the result follows. ]

What remains to show is that 01(S},(¢) does not go to zero when ¢ goes to zero.
Before proving this fact directly, we will discuss some basic properties of the compact
surface

Sp(0) =8, (0)/Z,.
Since

Gy =17, NZ;
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12 S. Audet-Beaumont

Figure 4: The surface S;.

it follows that
GplZy 27,
via the isomorphism induced by the quotient map. Hence, S; (¢) is composed of
copies of B(¢) that we will note B 5 (¢) for1< i < p—1 corresponding to the equiva-
lence classes of elements 8} in G, under the quotient. Observe that the B 5 (¢) will be
glued together along y] ; andy, ; in §,(£) in the same way that the By; (¢) are glued
together along y; ,; and y; 4, in S,(¢). In order to get a better idea of the properties
72 272
of S;,(£), we will study how the Bj;; (¢) are glued together along 5 and y; i
Let j be an integer such that1 < j < p — 1. Then, there exist «, an integer such that

jk=-1 mod p.

Observe that since 6; = 8{‘“6% then B; (¢) = B, (¢). Note also that in S (¢), y;maj

is glued along y . Since we have that

1,65816,
7850, = 05077 = 8},
it follows that in the quotient S}, (¢), yl+ 5 1 glued along Y s for all j. All the gluings

are done with no twist, since the original gluings had no twist.

It follows that S,(£) can be constructed in the following way. Let B'(¢) be the
building block obtained from B(¢) by gluing y;" along (Figure 4) y; . Then, S, (¢) is
the surface obtained by gluing the building blocks B’ (¢) along y5 following the Cayley
graph of Z with one generator (Figure 5).

A direct consequence of this discussion is that S}, (£) — Ugeg, Y1z possesses a single
connected component. We will use this information in order to prove the following
lemma and complete the proof of the main result.

Lemma 5.4  'There exists a constant C = C(p) > 0 such that for all £ > 0,

Downloaded from https://www.cambridge.org/core. 20 Nov 2025 at 21:31:26, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Surfaces with first eigenvalue of large multiplicity 13
=
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Figure 5: The building block B (¢).

In order to prove this, we will need to introduce the mixed Steklov-Neumann
problem. Let A be a domain on the surface S such that 0S c A. We note d;A = dA - 9S
the interior boundary of A. The Steklov—-Neumann problem on A is the eigenvalue
problem that consists of finding o™ € R and f : A - R nonzero such that:

Af=0 in A,
o, f=oNf on dS,
9,f=0 on 0jA.

Here, 0, is the outward normal derivative on dA. As in the Steklov problem, the
eigenvalues of this mixed problem form a discrete sequence 0 = o{¥ (A) < o{¥(A) <
-« /1 oo, We also have the following characterization.

Theorem 5.5 (Variational characterization of the Steklov—-Neumann eigenvalues)

N . N
0. (A) = min max R, (u
K (4) E€H st 04ucE au),

where Hy,, is the set of all k + 1-dimensional subspaces in the Sobolev space H'(A) and

fA |Vu|2dVA

RNy =244""""72
A = Vi

With this result in hand, we can prove Lemma 5.4.

Proof By a direct comparison of RYY and R, we obtain the inequality
o (4) < a($)

forall suitable A c S. Thus, it suffices to find a candidate A c S}, such that A is invariant
under change of ¢. We will start by identifying such a domain in the building block
B'(¢) and then lift it to S}, (¢).

From the discussion above, B’(¢) is obtained by gluing the Euclidian punctured
square 8 along a cylinder € and a pair of hyperbolic paints P(¢) with one boundary
component on length 1 and two of length ¢. Thus, § when seen as a subset of B'({) is
invariant under changes of /. Let

8z c Bg(£) c S,(¢)

Downloaded from https://www.cambridge.org/core. 20 Nov 2025 at 21:31:26, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

14 S. Audet-Beaumont

Figure 6: 8 in B’ (¢) and A in S§, respectively.

be the copy of 8 in Bg(¢) for § € Zj. Let

A= U Sg
gely
and

S(f) UYIgCS(E)

geZ*

Note that A is still connected since S}, — €(S},) is connected. We also have S, c A.
Furthermore, we can observe that A is invariant under the change of (Figure 6) £. Thus,
Theorem 5.5 yields

0<oN(A) < a(Sy)
completing the proof. [ ]

All that is left to do to obtain Theorem 1.2 is to use Lemmas 5.1 and 5.4 in
conjunction with a representation theory argument. By the two aforementioned
lemmas, we know that for ¢ small enough,

01(Sp) # a1(S}).

Fix this / as such. Since Z,, is in the kernel of every representation of degree 1 of G,
if these representations were to act on E; (S, ), we would have that

O'I(SP) = O'l(Sp/Zp) = O'](S;)

However, it is not the case. It follows that the representation of degree 1 of G,
cannot be acting on E;(S,). Thus, the only representation remaining, which is the
representation of degree p — 1, acts on E; (S, ). It follows that the dimension of E; (S, )
is at least p — 1. This completes the proof of Theorem 1.2.
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