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Constructing surfaces with first Steklov
eigenvalue of arbitrarily large multiplicity

Samuel Audet-Beaumont

Abstract. We construct surfaces with arbitrarily large multiplicity for their first nonzero Steklov
eigenvalue. The proof is based on a technique by Burger and Colbois originally used to prove a similar
result for the Laplacian spectrum. We start by constructing surfaces Sp with a specific subgroup of
isometry Gp ∶= Zp ⋊ Z∗p for each prime p. We do so by gluing surfaces with boundary following the
structure of the Cayley graph of Gp . We then exploit the properties of Gp and Sp in order to show
that an irreducible representation of high degree (depending on p) acts on the eigenspace of functions
associated with σ1(Sp), leading to the desired result.

1 Introduction

Let (S , g) be a smooth, compact, connected, Riemannian surface with boundary ∂S.
The Steklov eigenvalue problem consists of finding ( f , σ) ∈ C∞(S) ×R with f /= 0
satisfying

⎧⎪⎪⎨⎪⎪⎩

Δ f = 0 in S ,
∂ν f = σ f on ∂S ,

where ∂ν is the outward normal derivative on ∂S. The numbers σ are called the
Steklov eigenvalues of (S , g). They form a sequence 0 = σ0 < σ1 ≤ σ2 ≤ ⋯ ↗∞, where
each eigenvalue is repeated according to its multiplicity. This problem has attracted
substantial attention in recent years. See [4] for a survey of recent results and open
problems. The focus of this article is on the multiplicity m1(S , g) of the first nonzero
eigenvalue σ1 > 0. Upper bounds for m1(S , g) have been obtained by many authors
in recent years. Notably, the works of Fraser and Schoen [6], Jammes [9] as well as
Karpukhin, Kokarev, and Polterovich [10] brought multiple results concerning upper
bounds for the multiplicity of Steklov eigenvalues in terms of the topology and the
number of boundary components of the surface. The following result is a particular
case of [10, Theorem 1].

Theorem 1.1 Let (S , g) be an orientable compact Riemannian surface with non-empty
boundary. Let g be the genus of (S , g). Then,

m1(S , g) ≤ 4g + 3.
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2 S. Audet-Beaumont

All known general upper bounds on m1(S , g) involve either the genus of the
surface S, or both the genus and the number of boundary components of the surface
S. These bounds are linear in terms of the genus (and of the number of boundary
components, when applicable). However, none of these bounds are known to be sharp
for all genus and the question to know if surfaces with arbitrarily large multiplicity
m1(S , g) is left open in the literature. The main result of this article gives a positive
answer to that question.

Theorem 1.2 For each prime number p, there exists a compact Riemannian
surface (Sp , gp) of genus gp = (p − 1)2 with 2p boundary components such that
m1(Sp , gp) ≥ p − 1.

The proof of this result is based on a technique that was developed by Burger
and Colbois [1, 3] used originally to obtain a similar result for the eigenvalues of the
Laplacian on closed surfaces. The idea is to construct a surface (Sp , g) with a specific
subgroup of isometry Gp ∶= Zp ⋊Z

∗
p by building the surface around the Cayley graph

of Gp . Using the fact that the problem is invariant by isometry, we can define an
action of Gp on the space of eigenfunctions E1(Sp) associated with σ1. This action
on E1(Sp) is also isometric for the inner product of L2(Sp). This action can then be
decomposed in irreducible representations of the group Gp . By choosing a group with
an irreducible representation of high degree and by showing that this representation
acts on E1(Sp), we show that E1 must be of large dimension, which implies that σ1
has high multiplicity. The presence of boundary components for the Steklov problem
forces us to alter the construction given by Burger and Colbois in a nontrivial way
and allows us to get a slightly stronger result.

Remark 1.3 Note that in the provided constructions, the number of boundary
components also goes to infinity. It is not known whether there exists a similar
sequence of surfaces where the multiplicity and genus go to infinity and the number
of boundary components remains fixed.

1.1 Multiplicity bounds for the Steklov problem with density

In his paper [9], Jammes studied a more general version of the Steklov problem:
⎧⎪⎪⎨⎪⎪⎩

div(γ∇ f ) = 0 in S ,
γ∂ν f = σρ f . on ∂S .

Here, γ ∈ C∞(S) and ρ ∈ C∞(∂S) are strictly positive density functions. The mul-
tiplicity of the first nonzero eigenvalue is now written m1(S , g , γ, ρ) to stress the
dependence on the density functions. Given a surface S of genus g with l boundary
components, let

M1(g, l) ∶= sup
g ,ρ ,γ

m1(S , g , γ, ρ),

where the supremum is over all Riemannian metrics and densities. In his paper [8],
Jammes proposed the following conjecture:
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Surfaces with first eigenvalue of large multiplicity 3

M1(g, l) = Chr0(S) − 1,

where the relative chromatic number Chr0(S) is the number of vertices of the largest
complete graph that can be embedded in S with all vertices on the boundary ∂S. The
conjecture is analogous to a conjecture of Colin de Verdière for closed surfaces [5]. In
his paper [9], Jammes proved part of his conjecture. He showed that

M1(g, l) ≥ Chr0(S) − 1.

He also showed that Chr0(S) = O(√g) as g→ +∞, providing examples where the
multiplicity m1(S , g , γ, ρ) is arbitrarily large. However, the proof of this last inequality
relies heavily on the theory of perturbation and uses the freedom afforded by the
density functions in an essential way.

Outline of this article. In Section 2, we describe the construction of Cayley graphs
�p associated with the groups Gp . In Section 3, we discuss the construction of Sp by
using Gp and discuss the basic properties of such surfaces. In Section 4, we catalog all
irreducible representations of Gp . In Section 5, we prove the main theorem.

2 Construction of the Cayley graphs �p

The Cayley graph �(G , S) of a group G with set of generators S is the oriented graph
with vertices g ∈ G and edges between g1 , g2 ∈ S if and only if there is δ ∈ S such that
g1δ = g2. This relation also induces a natural orientation on each edge of the graph.

Note that the construction of the graph is dependent on the choice of set of
generators S. Also, since the vertices are associated with group elements, the number
of vertices is the same as the number of elements in the group. Finally, since every
generator and its inverse can be applied to an element g ∈ G, the degree of each vertex
in � is equal to 2∣S∣. For more details on Cayley graphs, see [11].

Let p ≥ 3 be a prime number and

Gp ∶= Zp ⋊Z
∗
p ,

where Zp is the cyclic group of p elements and Z
∗
p is the multiplicative group modulo

p. Alternatively, we can represent Gp in terms of generators. Let k be an integer such
that k is a primitive p − 1-root modulo p. Then,

Gp = ⟨δ1 , δ2 ∣ δ p
1 = e , δ p−1

2 = e , δ−1
2 δ1δ2 = δk

1 ⟩.

One can verify that these two groups are isomorphic by considering the isomorphism
ψ that goes from Zp ⋊Z

∗
p to Gp induced by

ψ(1̄, 1̄) = δ1 ,

ψ(0̄, k̄) = δ2 .

This definition allows us to build the Cayley graph of Gp with the generator set
S = {δ1 , δ2}. For example, we obtain the following Cayley graph when performing
this construction for p = 3.
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4 S. Audet-Beaumont

Here, the double arrows represent the action by δ1 and the simple arrows represent
the action by δ2. Since ∣Gp ∣ = p(p − 1), the graphs �(Gp , {δ1 , δ2}) get increasingly
complicated as p grows larger. As a direct consequence of this construction, the graph
�(Gp , {δ1 , δ2}) admits an action of Gp by isometry induced by the action of the
elements of the group G on the vertices of the graph by left multiplication. For the
next sections, we will opt for the more compact notation �p ∶= �(Gp , {δ1 , δ2}).

3 Construction of the surface Sp

Let � ∈ R>0 and

S ∶= {(x , y) ∈ [−2, 2] × [−2, 2] ∶ x2 + y2 > 1}

be the perforated square equipped with the Euclidean metric of R2. Let P(�) be
the pair of hyperbolic pants with one boundary component of length 2π and two
boundary components of length �. Note that by Theorem 3.1.7 of [2], such pants are
uniquely defined (up to isometry) by the lengths of their geodesic boundary compo-
nents. The building block B(�) is then obtained by gluing one boundary component
of the cylinder C ∶= S1 × [0, 1] along the inner circular boundary component of S and
the other boundary component ofC along the boundary component ofP(�) of length
2π. The metric on C is chosen so as to interpolate smoothly between the metric on S

and the metric on P(�). Note that every hyperbolic gluing in this section onward is
performed with no twist.
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Surfaces with first eigenvalue of large multiplicity 5

Figure 1: The building block B(�).

Thus, the building block B(�) posesses three boundary components: one of them
corresponding to the sides of the square S and two of them corresponding to the
boundary components of length � in P(�). In what follows, we will denote by γ+1 and
γ−1 the two boundary components of length � in B(�). We will also denote (γ+2 , γ−2 )
and (b1 , b2) the two pairs of parallel sides of length 4 of the remaining boundary
component in B(�) (Figure 1).

The surface Sp(�) is obtained by gluing copies of B(�) along the Cayley graph �p
of Section 2 via the following procedure. First, we assign to each vertex v of �p a copy
of B(�) labeled Bv(�). We will denote the boundary components γ±i of Bv(�) by γ±i ,v
for i ∈ {1, 2}. Let v , w be two vertices of �p and let Bv(�), Bw(�) be their respective
assigned copy of B(�). We glue Bv(�) along γ+1,v to Bw(�) along γ−1,w if there is an
edge corresponding to δ1 in �p going from v to w. Similarly, we glue Bv(�) along γ+2,v
to Bw(�) along γ−2,w if there is an edge corresponding to δ2 in �p going from v to w
(Figure 2).

Lemma 3.1 The surface Sp has 2p boundary components and genus g = 1 + ∣Gp ∣ =
1 + p(p − 2) = (p − 1)2.

Proof For j ∈ {0, 1, . . . , p − 1}, let

C j ∶= {g ∈ G ∶ ∃m ∈ N, g = δ j
1 δm

2 }

denote the δ2 generated cycles of δ j
1 in �p . Since

∣Gp ∣ ≤
p−1

∑
j=0
∣C i ∣ ≤ p∣C0∣ = p(p − 1) = ∣Gp ∣,
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6 S. Audet-Beaumont

Figure 2: The surface S3 .

Figure 3: Transformation of Cyl j in S5 by gluing disks along its boundary components.

we have that the C i are disjoint and form a partition of G. Since, by construction,
we have two boundary components per δ2 cycles C i , the first assertion of the lemma
follows.

For j ∈ {0, 1, . . . , p − 1}, let

Cyl j ∶= ⋃
g∈C j

Bg(�) ⊂ Sp

be the region of Sp corresponding to the δ2 cycles. It follows that the Cyl j are
pairwise disjoint cylinders with 2(p − 1) additional boundary components for all
j ∈ {0, 1, . . . , p − 1}. In order to compute the genus of Sp , we glue disks along its
boundary components and compute the genus of the resulting closed surface Ŝp .
Note that such gluings transform Cyl j into spheres Sph j with 2(p − 1) boundary
components (Figure 3).
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Surfaces with first eigenvalue of large multiplicity 7

It follows that the Euler characteristic of Sph j is exactly that of the sphere minus
the 2(p − 1) faces removed. Thus, for all j ∈ {0, . . . , p − 1},

χ(Sph j) = 2 − 2(p − 1) = −2(p − 2).

By the additivity of the Euler characteristic, we have that

2 − 2g = χ(Ŝp) = p ⋅ χ(Sph j) = −2p(p − 2).

Solving for p yields

g = (p − 1)2 ,

which concludes the proof. ∎

4 Irreducible representations of Gp

Note that since �p is a Cayley graph of Gp , Gp acts on the vertices �p by isometry via
the group operation. This action can be lifted to an action by isometry of Gp on Sp .
Let

ψv→w ∶ Bv(�) → Bw(�)

be the canonical isometry between Bv(�) and Bw(�). Then, one can explicitly declare
the above-mentioned action by isometry of Gp on Sp via

ϕg ∶ Sp → Sp ,

xv ↦ ϕg(xv) = ψv→g(v)(xv),

where xv is a point of Bv(�). This action of Gp on the surface Sp induces an action of
Gp on the eigenspace of the functions associated with σ1(Sp) through the maps

ϕg∗ ∶ E1(Sp) → E1(Sp),

f ↦ f ○ ϕg .

Since this action is linear, by taking a basis of E1(Sp), one can represent the action
of g ∈ Gp by a matrix Ag ∈ GLN(C), where N represents the dimension of E1(Sp).
Thus, we have a representation of Gp acting on E1(Sp). By changing the basis of
E1(Sp) if necessary, the action of Gp on E1(Sp) can be decomposed as a direct
sum of irreducible representations. This induces a decomposition of E1(Sp) in a
direct sum of subspaces associated with irreducible representations of Gp acting on
E1(Sp). Thus, if we can show that an irreducible representation of high degree acts
on E1(Sp), it follows that there is a subspace of E1(Sp) of high dimension, which in
turn implies that E1(Sp) has high dimension and that σ1(Sp) has high multiplicity.
All of the aforementioned results on representation theory can be seen in greater
detail in [3].

Thus, we will now explicitly discuss the irreducible representations of Gp . Since
it is a well-known topic, we will omit the technical details and simply state the
results.
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8 S. Audet-Beaumont

First, Gp admits (p − 1) irreducible representations of degree 1. Let α be a primitive
(p − 1)-root of 1 in C. Then, for all r such that 1 ≤ r ≤ p − 1, we have the following
irreducible representations:

ρr ∶ Gp → C
∗

induced by

ρr(δ1) = 1,

ρr(δ2) = αr .

One can verify that ρr is a group homomorphism for all r. These representations are
all irreducible and non-equivalent. Observe that since δ1 is in the kernel of ρr , the
subgroup Zp of Gp generated by δ1 lies in the kernel of ρr for all r.

Next, we will show that Gp admits 1 irreducible representation of degree p − 1. Let
ξ be a primitive p-root of 1 in C and k be a primitive (p − 1)-root of 1 modulo p. It
follows that ξk i /= ξk j

if j /= i for all 0 ≤ i , j ≤ p − 2. We have that
ρ ∶ Gp → GLp−1(C)

induced by

ρ(δ1) =
⎛
⎜⎜⎜
⎝

ξ 0
ξk

. . .
0 ξk p−2

⎞
⎟⎟⎟
⎠

, ρ(δ2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 1
1 0 0
0 1

0

0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

constitutes a representation of Gp . We then prove the following lemma.

Lemma 4.1 ρ is an irreducible representation of Gp .

Proof By Schur’s lemma (Lemma 1.7 in [7] for example), it suffices to prove that
the only matrices commuting with ρ(g) for all g ∈ Gp are scalar matrices.

Let A ∈ GLp−1(C) such that it commutes with ρ(g) for all g ∈ Gp . Then, in
particular, it commutes with ρ(δ1). Let

B ∶= Aρ(δ1),

C ∶= ρ(δ1)A.

It follows that B = C since A and ρ(δ1) commute. For all i /= j, we have

b i , j = a i , j ξk j−1
,

c i , j = a i , j ξk i−1
.

Since ξk j−1 /= ξk i−1
if j /= i, it implies that A must be diagonal. Let

X ∶= Aρ(δ2),

Y ∶= ρ(δ2)A.
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Surfaces with first eigenvalue of large multiplicity 9

Once again, we obtain that X = Y since A must commute with ρ(δ2). For all 1 ≤ i ≤
p − 2, we have

x i+1, i = a i , i ,

y i+1, i = a i+1, i+1 .

It implies that

a1,1 = a2,2 = ⋯ = ap−1, p−1 .

It follows that A must be scalar and the proof is complete. ∎

Finally, since the sum of the square of the degrees of these irreducible represen-
tations is equal to ∣Gp ∣, we can conclude that we have all the possible irreducible
representations of Gp .

5 Proof of the main result

What is left to show is that the representation of degree p − 1 acts on E1(Sp(�)) for �
small enough. We will do so by showing that none of the irreducible representations of
degree 1 act on E1(Sp(�)) for � small enough. Our strategy will consist of considering
the quotient of Sp(�) by the action of the normal subgroup Zp of Gp , that we will
denote S′p(�). Since Zp lies in the kernel of every representation of degree 1, if we can
show that σ1(Sp(�)) /= σ1(S′p(�)) for all � < ε for a certain ε, then the result will follow.

In order to show that the first nonzero eigenvalues of Sp(�) and S′p(�) do not
coincide for � small enough, we start by showing the following lemma.

Lemma 5.1

lim
�→0

σ1(Sp(�)) = 0.

To prove this lemma, we will need two classical results.

Theorem 5.2 (Variational characterization of the Steklov eigenvalues)

σk = min
E∈Hk+1

max
0/=u∈E

RS(u),

where Hk+1 is the set of all k + 1-dimensional subspaces in the Sobolev space H1(S) and

RS(u) = ∫S ∣∇u∣2dA
∫∂S ∣u∣2ds

.

The second important result is an application of the collar theorem [2, Theorem
4.1.1]. Let

C(Sp(�)) ∶= ⋃
g∈G p

γ±1, g ⊂ Sp(�)
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10 S. Audet-Beaumont

and the neighborhood of x ∈ Sp(�)

T(x) ∶= {q ∈ Sp(�) ∣ dist(q, x) ≤ w(�)},

where

w(�) ∶= arcsinh(coth( �2 )).

Since the γ±1, g ⊂ Sp(�) are gluing points of hyperbolic pants of constant curvature −1
the collar theorem applies locally to T(α) and we get the following.

Theorem 5.3 For connected components α, β ⊂ C(Sp(�)), then T(α) ∩ T(β) = ∅ if
and only if α ∩ β = ∅. Furthermore, for all connected components α ∈ C(Sp), T(α) is
isometric to the cylinder [−w(�), w(�)] × S

1 with the Riemannian metric ds2 = dρ2 +
�2 cosh2(ρ)dt2 on the Fermi coordinates of the cylinder based on α parametrized with
speed �.

We can now prove Lemma 5.1 using Theorem 5.2 and Lemma 5.3.

Proof Our goal will be to build two test functions f1 , f2 ∈ H1(Sp(�)) such that
RS p(�)( f1) and RS p(�)( f2) go to zero as � goes to zero.

Observe that Sp − C(Sp(�)) has p connected components. This is a direct conse-
quence of the construction of Sp(�) around the Cayley graph of Gp with generators
δ1 , δ2. We will note these connected components M i for i ∈ {1, 2, . . . , p} andC(M i) ⊂
C(Sp(�)) the union of geodesics joining M i to its complement in Sp(�). Thus, C(M i)
is the union of 2p − 2 disjoint geodesics of lengths �.

Let

M0
1 ∶= M1 − ⋃

x∈C(M1)

T(x) ∩ M1 ,

M0
2 ∶= M2 − ⋃

x∈C(M2)

T(x) ∩ M2

and

f1(p) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if q ∈ M0
1

0 if q ∈ M c
1

d ist(q ,α)
w(�) if q ∈ T(α) ∩ M1 for some connected component α ∈ C(M1)

f2(p) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if q ∈ M0
2

0 if q ∈ M c
2

d ist(q ,α)
w(�) if q ∈ T(α) ∩ M2 for some connected component α ∈ C(M2).

Both functions are continuous and weakly differentiable. Since ∣grad(dist(q, α))∣ = 1,
it follows that f1 , f2 ∈ H1(M). Furthermore, since both functions have disjoint sup-
ports, span{ f1 , f2} ⊂ H1(Sp(�)) is a subspace of dimension 2. We can now calculate
RS p(�)( f i)
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Surfaces with first eigenvalue of large multiplicity 11

RS( f1) =
∫S p(�)

∣∇ f1∣2dV

∫∂S p(�)
∣ f1∣2dS

≤
∑α ∫T(α)∩M1

∣∇ f1∣2dV
A

= (2p − 2)
A ∫

T(α̂)∩M1
∣∇ f1∣2dV ,(5.1)

where the sum is taken over all the connected components α ⊂ C(M1). Here, A is a
constant independent of � and α̂ is a given connected component of C(M1). This last
integral yields

∫
T(α̂)∩M1

∣∇ f1∣2dV = 1
w(�)2 ∫T(α̂)∩M1

∣∇dist(q, α̂)∣2dV

= 1
w(�)2 ∫T(α̂)∩M1

dV = Area(T(α̂) ∩ M1)
w(�)2 .(5.2)

We now need to calculate Area(T(α̂) ∩ M1) = Are a(T(α̂))
2 . By Lemma 5.3, T(α̂) is

isometric to the cylinder [−w(�), w(�)] × S
1 with the Riemannian metric ds2 = dρ2 +

�2 cosh2(ρ)dt2 on the Fermi coordinates of the cylinder based on α̂ parametrized with
speed �. Thus,

Area(T(α̂)) = �2 ∫
1

0
∫

w(�)

−w(�)
cosh2(ρ)dρdt

= �2

2 ∫
1

0
[ρ + cosh(ρ) sinh(ρ)]ρ=w(�)

ρ=−w(�)dt = �2w(�).(5.3)

Piecing equations 5.1–5.3 together, we obtain the upper bound

RS( f1) ≤
(2p − 2)�2

4Aw(�) .

Since w(�) goes to ∞ when � goes to 0, we have that

lim
�→0

RS( f1) = 0.

The calculation for f2 is similar. By the variational characterization of the Steklov
eigenvalues, the result follows. ∎

What remains to show is that σ1(S′p(�) does not go to zero when � goes to zero.
Before proving this fact directly, we will discuss some basic properties of the compact
surface

S′p(�) ∶= Sp(�)/Zp .

Since

Gp ∶= Zp ⋊Z
∗
p
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12 S. Audet-Beaumont

Figure 4: The surface S′5 .

it follows that

Gp/Zp ≅ Z
∗
p

via the isomorphism induced by the quotient map. Hence, S′p(�) is composed of
copies of B(�) that we will note Bδ̄ i

2
(�) for 1 ≤ i ≤ p − 1 corresponding to the equiva-

lence classes of elements δ i
2 in Gp under the quotient. Observe that the Bδ̄ i

2
(�) will be

glued together along γ+2, δ̄2
and γ−2, δ̄2

in S′p(�) in the same way that the Bδ i
2
(�) are glued

together along γ+2,δ i
2

and γ−2,δ i
2

in Sp(�). In order to get a better idea of the properties
of S′p(�), we will study how the Bδ̄ i

2
(�) are glued together along γ+1, δ̄ i

2
and γ−1, δ̄ i

2
.

Let j be an integer such that 1 ≤ j ≤ p − 1. Then, there exist κ, an integer such that

jκ ≡ −1 mod p.

Observe that since δ̄ j
2 = δκ

1 δ j
2 then Bδ̄ j

2
(�) = B ¯δκ

1 δ j
2
(�). Note also that in Sp(�), γ+

1,δκ
1 δ j

2
is glued along γ−

1,δκ
1 δ j

2 δ1
. Since we have that

δκ
1 δ j

2δ1 = δ j
2δκ j+1

1 = δ j
2 ,

it follows that in the quotient S′p(�), γ+
1, δ̄ j

2
is glued along γ−

1, δ̄ j
2

for all j. All the gluings
are done with no twist, since the original gluings had no twist.

It follows that S′p(�) can be constructed in the following way. Let B′(�) be the
building block obtained from B(�) by gluing γ+1 along (Figure 4) γ−1 . Then, S′p(�) is
the surface obtained by gluing the building blocks B′(�) along γ±2 following the Cayley
graph of Z∗p with one generator (Figure 5).

A direct consequence of this discussion is that S′p(�) − ∪g∈G p γ±1, ḡ possesses a single
connected component. We will use this information in order to prove the following
lemma and complete the proof of the main result.

Lemma 5.4 There exists a constant C = C(p) > 0 such that for all � > 0,

σ1(S′p(�)) ≥ C .
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Figure 5: The building block B′(�).

In order to prove this, we will need to introduce the mixed Steklov–Neumann
problem. Let A be a domain on the surface S such that ∂S ⊂ A. We note ∂I A = ∂A− ∂S
the interior boundary of A. The Steklov–Neumann problem on A is the eigenvalue
problem that consists of finding σ N ∈ R and f ∶ Ā → R nonzero such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Δ f = 0 in A,
∂ν f = σ N f on ∂S ,
∂ν f = 0 on ∂I A.

Here, ∂ν is the outward normal derivative on ∂A. As in the Steklov problem, the
eigenvalues of this mixed problem form a discrete sequence 0 = σ N

0 (A) < σ N
1 (A) ≤

⋯ ↗∞. We also have the following characterization.

Theorem 5.5 (Variational characterization of the Steklov–Neumann eigenvalues)

σ N
k (A) = min

E∈Hk+1
max
0/=u∈E

RN
A (u),

where Hk+1 is the set of all k + 1-dimensional subspaces in the Sobolev space H1(A) and

RN
A (u) = ∫A ∣∇u∣2dVA

∫∂S ∣u∣2dV∂S
.

With this result in hand, we can prove Lemma 5.4.

Proof By a direct comparison of RN
A and RS , we obtain the inequality

σ N
1 (A) ≤ σ1(S)

for all suitable A ⊂ S. Thus, it suffices to find a candidate A ⊂ S′p such that A is invariant
under change of �. We will start by identifying such a domain in the building block
B′(�) and then lift it to S′p(�).

From the discussion above, B′(�) is obtained by gluing the Euclidian punctured
square S along a cylinder C and a pair of hyperbolic paints P(�) with one boundary
component on length 1 and two of length �. Thus, S when seen as a subset of B′(�) is
invariant under changes of �. Let

S ḡ ⊂ B ḡ(�) ⊂ S′p(�)

Downloaded from https://www.cambridge.org/core. 20 Nov 2025 at 21:31:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 S. Audet-Beaumont

Figure 6: S in B′(�) and A in S′5 , respectively.

be the copy of S in B ḡ(�) for ḡ ∈ Z∗p . Let

A ∶= ⋃
ḡ∈Z∗p

S ḡ

and

C(S′p(�)) ∶= ⋃
ḡ∈Z∗p

γ±1, ḡ ⊂ S′p(�).

Note that A is still connected since S′p − C(S′p) is connected. We also have ∂S′p ⊂ A.
Furthermore, we can observe that A is invariant under the change of (Figure 6) �. Thus,
Theorem 5.5 yields

0 < σ N
1 (A) ≤ σ1(S′p)

completing the proof. ∎

All that is left to do to obtain Theorem 1.2 is to use Lemmas 5.1 and 5.4 in
conjunction with a representation theory argument. By the two aforementioned
lemmas, we know that for � small enough,

σ1(Sp) /= σ1(S′p).

Fix this � as such. Since Zp is in the kernel of every representation of degree 1 of Gp ,
if these representations were to act on E1(Sp), we would have that

σ1(Sp) = σ1(Sp/Zp) = σ1(S′p).

However, it is not the case. It follows that the representation of degree 1 of Gp
cannot be acting on E1(Sp). Thus, the only representation remaining, which is the
representation of degree p − 1, acts on E1(Sp). It follows that the dimension of E1(Sp)
is at least p − 1. This completes the proof of Theorem 1.2.
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