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Addition of polymers modifies a turbulent flow in a manner that depends non-trivially
on the interplay of fluid inertia, quantified by the Reynolds number Re, and the elasticity
of the dissolved polymers, given by the Deborah number De. We use direct numerical
simulations to study polymeric flows at different Re and De numbers, and uncover various
features of their dynamics. Polymeric flows exhibit a non-unique scaling of the energy
spectrum that is a function of Re and De, owing to different dominant contributions to the
total energy flux across scales, with the weakening of fluid nonlinearity with decreasing
Re also leading to the reduction of the polymeric scaling range. This behaviour is also
manifested in the real space scaling of structure functions. We also shed light on how
the addition of polymers results in slowing down the fluid nonlinear cascade resulting
in a depleted flux, as velocity fluctuations with less energy persist for longer times in
polymeric flows, especially at intermediate Re numbers. These velocity fluctuations exhibit
intermittent, large deviations similar to that in a Newtonian flow at large Re, but differ
more and more as Re becomes smaller. This observation is further supported by the
statistics of fluid energy dissipation in polymeric flows, whose distributions collapse on
to the Newtonian at large Re, but increasingly differ from it as Re decreases. We also show
that polymer dissipation is significantly less intermittent compared with fluid dissipation,
and even less so when elasticity becomes large. Polymers, on an average, dissipate more
energy when they are stretched more, which happens in extensional regions of the flow.
However, owing to vortex stretching, regions with large rotation rates also correlate with
large polymer extensions, albeit to a relatively less degree than extensional regions.
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1. Introduction
Polymeric flows are very well known to give rise to a wide range of intriguing phenomena.
The pioneering work by Toms (1949) showed that a small concentration of polymers added
to a carrier flow results in the reduction of turbulent drag, which was reviewed in Lumley
(1973), Virk (1975), Toms (1977) and Berman (1978). Ever since this discovery, there
have been numerous theoretical (Tabor & de Gennes 1986; Bhattacharjee & Thirumalai
1991; Sreenivasan & White 2000; L’vov et al. 2004; Procaccia, L’vov & Benzi 2008),
numerical (Benzi et al. 2003; Kalelkar, Govindarajan & Pandit 2005; Perlekar, Mitra &
Pandit 2006; Gillissen 2008; White & Mungal 2008; Choueiri, Lopez & Hof 2018;
Xi 2019; Rosti, Perlekar & Mitra 2023) and experimental (Den Toonder et al. 1997;
Escudier, Presti & Smith 1999; Ptasinski et al. 2001, 2003; Yang & Dou 2010) works in
an attempt to better understand and highlight its origins and the underlying mechanisms.
Lumley (1973) and Hinch (1977) showed that dissolved polymers tend to increase the
effective viscosity of a solution; however, there can be a net reduction in the dissipation of
energy in such turbulent, polymeric flows, as was pointed out by van Doorn et al. (1999),
Kalelkar et al. (2005), Perlekar et al. (2006, 2010) and Cai, Li & Zhang (2010). This rich,
and complex behaviour of polymeric flows is dictated by an interplay of two intrinsic
features: inertia and elasticity. Inertia is a property of the Newtonian, carrier flow, whose
strength is determined by the non-dimensional Reynolds number Re. A large Re is typically
indicative of a highly turbulent flow where flow structures span a wide range of scales.
Elasticity, on the other hand, is a characteristic of the polymers, which determines their
tendency to stretch and is quantified by the non-dimensional Deborah number De. A large
De means the polymers take longer to relax back to their equilibrium lengths and remain
stretched for longer times.

Experiments by Larson (1992), Shaqfeh (1996), Groisman & Steinberg (1998) and Pan
et al. (2013) have shown that flows at small Re develop instabilities when polymers are
added in small concentrations. At extremely small Re, when fluid nonlinearity remains
dormant, instabilities driven by purely elastic effects result in a flow state referred to as
elastic turbulence (ET) which shows qualitatively similar behaviour to classical high Re
turbulence (HIT) in many respects. These include the existence of a chaotic flow state, as
illustrated in the works of Groisman & Steinberg (2000, 2004) and Qin & Arratia (2017),
as well as enhancement of mixing Groisman & Steinberg (2001) and heat transfer Li et al.
(2017). A self-similar distribution of kinetic energy over a wide range of scales was also
observed in numerical simulations of ET (Berti et al. 2008; Berti & Boffetta 2010; Ray &
Vincenzi 2016; Gupta & Vincenzi 2019; Soligo & Rosti 2023; Foggi Rota et al. 2024;
Lewy & Kerswell 2024; Singh et al. 2024). At larger, yet moderate Re, it is now known that
polymer elasticity and the fluid nonlinearity (albeit with a weaker contribution as shown
by Gillissen (2021)) conspire to trigger a turbulence-like behaviour much earlier than
that in a Newtonian flow (Dubief, Terrapon & Soria 2013; Samanta et al. 2013; Valente,
da Silva & Pinho 2016; Dubief, Terrapon & Hof 2023). Such a flow state at moderate Re
is referred to as elastoinertial turbulence. Fluid kinetic energy in elastoinertial turbulence
is also known to exhibit a distinct self-similar, scaling behaviour (Zhang et al. 2021a;
Dubief et al. 2013; Valente et al. 2016). At very large Re numbers, turbulent polymeric
flows (PHIT) exhibit a novel self-similar spectrum whose scaling exponents differ from
those predicted by the Kolmogorov theory (K41) for classical Newtonian turbulence (i.e.
HIT) (Kolmogorov 1941; Frisch 1996). This was uncovered recently in the experiments of
Zhang et al. (2021b) as well as in the numerical simulations of Rosti et al. (2023).

In this work, we study turbulent polymeric flows in a triperiodic box across a wide
range of Re and De numbers, and show how various aspects of their dynamics transition
when moving from low (Singh et al. 2024) to large (Rosti et al. 2023) Reynolds number.
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We show that the addition of polymers results in a non-unique scaling of the energy
spectrum, that emerges as a result of different underlying dominant flux contributions.
The fluxes, furthermore, reveal that polymers slow down the rate of energy transfer via the
fluid nonlinear cascade, signalling a weakened fluid nonlinear cascade. We then discuss
how polymers are, in turn, themselves affected by Newtonian carrier flow. In particular, we
show that the polymers stretch in both the extensional and rotational regions of the flow,
with the correlation being less for the latter. Both fluid and polymer extensions are directly
related to the corresponding dissipations, which show contrasting characteristics. Fluid
dissipation shows more large deviations about the mean at small Re and large De, while
polymer dissipation is less intermittent, and even lesser at large De. We structure all of
the above as follows: the details of numerical simulations are provided in the immediately
following § 2 before moving on to the results in § 3. Finally, we summarise our conclusions
in § 4.

2. Mathematical model and numerical method
We arrive at our results via the direct numerical simulations of polymeric flows that
comprise an incompressible Newtonian carrier fluid whose dynamics is described by a
velocity field u (∇ · u = 0), with dissolved polymers that are described by a conformation
tensor field C. The trace of this conformation field Tr(C) = Cii (x, t) (with i = 1, 2, 3) is
an average measure of the squared end-to-end lengths of the polymers. In particular, we
adopt the Oldroyd-B model of polymers, which has often been used to study polymeric
flows in various settings in a number of works (Vincenzi et al. 2007; Berti et al. 2008;
Bagheri et al. 2012; De Lillo, Boffetta & Musacchio 2012; Gupta & Vincenzi 2019; Zhang
et al. 2021a; Rosti et al. 2023; Aswathy & Rosti 2024). The flow is described by the
simultaneous evolution of the coupled equations,

ρ (∂t u + u · ∇u) = −∇ p + μs∇2u + μp

τp
∇ · C + F, (2.1a)

∂t C + u · ∇C = C∇u + (∇u)T C − 1
τp

(C − I), (2.1b)

where ρ is the fluid density, p the pressure, μs the dynamic viscosity of the Newtonian
fluid (kinematic viscosity ν = μs/ρ), μp the dynamic polymer viscosity and τp is the
unique relaxation time of the polymers. A statistically stationary state is maintained by
energy injection via the forcing F for which we employ the ABC scheme such that F =
ν[(A sin z + C cos y) x̂ + (B sin x + A cos z) ŷ + (C sin y + B cos x) ẑ], where A = B =
C = 1. The total energy injected per unit time εt is dissipated away by both the Newtonian
fluid (ε f ) and the polymers (εp), such that εt = ε f + εp.

The flow is characterised by two dimensionless numbers: the Taylor-scale Reynolds
number, Reλ ≡ urmsλ/ν, where λ≡ urms

√
15ν/ε f is the Taylor length scale and urms the

root mean square velocity, and the Deborah number, De ≡ τp/τL, where τL = L/urms is
the large-eddy turnover time, with L = 2π being the scale of the forcing. We vary Reλ
in the range between 40 and 450 and De ∈ {1/9, 1/3, 1, 3, 9}. Lastly, we fix fluid and
polymer viscosities such that μs/(μs + μp) = 0.9. All cases considered in this work are
listed in table 1; note that, the last six simulations with Reλ ≈ 40 are the same presented by
Singh et al. (2024), while the first six are similar to those discussed by Rosti et al. (2023),
but repeated here with a different forcing scheme for the sake of consistency with the rest
of the study. All the 10 intermediate cases are completely novel, and represent the heart of
the present investigation.
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Reλ De urms ε f εp Ω η τL

450 — 6.6 63.0 — 2.8 × 104 3.7 × 10−3 9.5 × 10−1

470 1/9 6.5 54.1 8.4 2.4 × 104 3.8 × 10−3 9.7 × 10−1

583 1/3 7.0 45.8 25.0 2.0 × 104 4.0 × 10−3 9.0 × 10−1

816 1 6.4 17.1 50.2 7.6 × 103 5.1 × 10−3 9.8 × 10−1

713 3 5.8 14.5 44.2 6.4 × 103 5.3 × 10−3 1.1 × 100

772 9 6.3 17.4 52.7 7.7 × 103 5.1 × 10−3 1.0 × 100

317 — 8.0 60.9 — 1.4 × 104 6.2 × 10−3 9.6 × 10−1

510 1 7.4 16.7 48.2 3.7 × 103 8.6 × 10−3 1.0 × 100

240 — 7.3 83.8 — 9.3 × 103 9.7 × 10−3 8.6 × 10−1

250 1/9 6.9 61.2 12.5 6.8 × 103 1.0 × 10−2 9.1 × 10−1

293 1/3 6.1 26.5 30.7 2.9 × 103 1.3 × 10−2 1.0 × 100

316 1 5.5 15.4 42.6 1.7 × 103 1.5 × 10−2 1.1 × 100

312 3 6.3 26.7 52.5 3.0 × 103 1.3 × 10−2 1.0 × 100

240 9 5.5 27.0 44.3 3.0 × 103 1.3 × 10−2 1.1 × 100

103 — 6.2 58.4 — 1.6 × 103 3.0 × 10−2 1.0 × 100

166 1 6.1 20.3 49.3 5.6 × 102 3.9 × 10−2 1.0 × 100

42 — 6.0 60.9 — 2.3 × 102 9.9 × 10−2 1.0 × 100

56 1/9 6.5 49.2 50.5 2.7 × 102 1.0 × 10−1 1.0 × 100

39 1/3 5.2 39.1 62.3 2.2 × 102 1.1 × 10−1 1.2 × 100

49 1 5.5 31.2 44.7 1.7 × 102 1.2 × 10−1 1.1 × 100

34 3 4.4 25.5 33.9 1.4 × 102 1.2 × 10−1 1.4 × 100

32 9 4.4 30.2 26.8 1.7 × 102 1.2 × 10−1 1.4 × 100

Table 1. Details of the numerical simulations considered in the present study. Here De is the Deborah number,
Reλ is the Reynolds number based on urms and on the Taylor length scale λ, ε f , εp are the mean fluid and
polymer dissipation of energy, Ω is the mean enstrophy, η is the Kolmogorov length scale and τL is the large
eddy turnover time scale of the flow.

We solve the fluid velocity and polymer conformation tensor field given by (2.1a)
and (2.1b) on a staggered, uniform, Cartesian grid, using the in-house flow solver Fujin,
which employs a second-order central finite difference scheme for spatial discretisation.
Time marching is achieved via a second-order Adams–Bashforth scheme coupled with
a fractional step method (Kim & Moin 1985), except for the non-Newtonian stress term
which is advanced in time via the Crank–Nicolson scheme. In the momentum equation
we use the Adams–Bashforth scheme for time advancement for all terms except for the
polymer contribution, because this can be advanced implicitly with the Crank–Nicolson
scheme, since its updated value is found separately from the additional transport equation.
In the polymeric equation, we still use the second-order Adams–Bashforth scheme for all
terms, except for the advection term for which we use the high-order weighted essentially
non-oscillatory scheme (Sugiyama et al. 2011) scheme. A log-conformation formulation is
also used for (2.1b), to ensure positive-definiteness of the conformation tensor at all times
(see Izbassarov et al. 2018). Indeed, all these schemes, together with the use of the log
conformation formulation for the polymeric equation, allows to overcome the notorious
high Deborah numerical instability (Min, Yoo & Choi 2001), without any explicit artificial
diffusion term, as discussed in previous papers (see e.g. Min et al. 2001; Sugiyama et al.
2011; Izbassarov et al. 2018). Obtaining incompressible fluid velocity at each time requires
solving a Poisson equation for pressure, which is done using a solver based on the fast
Fourier transform. The solver is parallelised using the domain decomposition library
2decomp and the MPI protocol.
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Figure 1. Representative snapshots of normalised fluid energy dissipation rates ε f at (a) large and (b) small
Re for De ≈ 1. Large Reλ polymeric flows exhibit a wide range of flow structures, while the small Reλ flows
have only large-scale structures.

We solve (2.1) on a 2π × 2π × 2π-periodic domain that is discretised into N 3 = 10243

points. The smallest spatial scales resolved are equal to 0.05η and η for the smallest and
largest Reλ simulations. We choose two different time steppings of δt = 1.25 × 10−5

and δt = 2.5 × 10−5 for small and large Reλ simulations, which, respectively, equal
1.5 × 10−3τη and 2 × 10−3τη, where τη is the Kolmogorov time scale. Field data is
saved every 2 × 104 time steps in a stationary state for data analysis with the overall
data spanning ≈ 6τL for all cases. This means simulating around 54τp for the smallest
De = 1/9, 6τp for De = 1 and 2τp for the largest De = 9. We have checked by splitting
the data set into half for the largest De that the statistics remain unchanged. We show
representative, two-dimensional slices of the dissipation fields ε f for very large and small
Re in figure 1 while some typical averaged statistical estimates for the simulations are
provided in table 1.

3. Results

3.1. The energy spectra
We begin our study by investigating how energy is distributed across scales in a statistically
stationary state in flows of polymeric fluids. The distribution of energy is given by its
spectrum E(k) which is a measure of the energy content at scale (mode) k such that the
total energy E = 〈|u|2〉/2 = ∫

E(k)dk. The energy spectrum is one of the most commonly
studied quantities in turbulence and was shown by Kolmogorov (1941) to have a self-
similar distribution across scales in (the inertial range of) HIT as E(k) ∼ k−5/3 (see also
Frisch 1996). We now show in figure 2 how this self-similar distribution of fluid kinetic
energy is modified in PHIT, and its dependence on polymer elasticity De in figure 2(a) and
the intensity of turbulence Reλ in figure 2(b).

Figure 2(a) shows how the spectrum E(k) changes with De at large Reλ ≈ 450. When
De is small, i.e. in the limit τp → 0, polymers are stretch minimally, and remain close
to their equilibrium unstretched configuration C ≈ I . This is easily seen by multiplying
(2.1b) by τp, and taking the limit τp → 0,

τp (∂t C + u · ∇C) = τp
(
C∇u + (∇u)T C

) − (C − I)
τp→0
=⇒ C − I = 0. (3.1)
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Figure 2. The non-unique scaling of the fluid energy spectrum E(k) in polymeric flows at different (a) De
and (b) Re numbers. The spectra have been shifted vertically for visual clarity by factors of powers of 10.
Three distinct scaling regimes (in different shades) have been shown in dashed (k−5/3, Newtonian), dash–
dotted (k−2.3, polymeric) and dotted (k−γ ; γ � 4, smooth) lines. All three regimes coexist when De ≈ 1.
(a) The smallest De has a close to Newtonian behaviour as the elastic effects are minimal. (b) The triple scaling
at largest Re gives way to a unique, smooth k−4 regime at the smallest Reλ.

As the fluctuations in C are small, the polymer stresses in (2.1a) have a minimal
contribution: ∇ · C ≈ 0. Thus, elastic effects do not play a significant role at small De, and
the behaviour remains largely Newtonian. This results in the classical K41, Newtonian-like
scaling E(k) ∼ k−5/3 in figure 2(a). (Henceforth, we refer to this classical scaling range as
the Newtonian regime.) This intermediate, Newtonian scaling range is of course followed
by the dissipation range where the spectrum shows an exponential decay, a consequence
of velocity fields being analytic.

As De is increased, polymers begin to stretch to longer lengths so that C now ventures
far from I and has rather large spatiotemporal fluctuations. The resulting stretching and
relaxation of polymers generates large non-Newtonian stresses (given by (μp/τp)∇ · C)
on the carrier fluid, especially for a large enough elasticity as De ≈ 1. The resulting
dominant elastic effects along with a suppressed fluid nonlinearity (see § 3.2 for detailed
discussion) means that the energy spectrum is modified to E(k) ∼ k−2.3 at large Reλ, as
was also observed by Zhang et al. (2021a) and Rosti et al. (2023). (We refer to this as the
polymeric range, henceforth.) Viscous effects begin to dominate beyond this polymeric
range and the fluid nonlinearity ceases to have any contribution. The polymeric stresses,
however, are still active in this range due to the small scale fluctuations in polymer
lengths which, in turn, create fluctuations in the fluid velocity. Consequently, the spectrum
exhibits a steep power-law decay E(k) ∼ k−δ with δ � 4, rather than an exponential fall-
off in the smooth dissipative range. Thus, the elasticity of polymers results in a dual
scaling behaviour of the energy spectrum E(k) ∼ k−δ in PHIT, especially for De ≈ 1
(see figure 2a), with the exponent δ ≈ 2.3 in the intermediate, polymeric range of scales
(6 � k � 60) and δ � 4 for k � 100 in the smooth but steep dissipative range.

On a further increase in polymer elasticity, the back reaction of polymers on the
Newtonian carrier flow begins to diminish. This is because polymers with very large
relaxation times respond to the background flow after a large time lag, thereby staying
in a stretched configuration for long times. This means fluctuations in polymer lengths are
suppressed at large De as polymer lengths do not change appreciably in space. As a result,
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their gradients also remain typically small thereby weakening the elastic stresses ∇ · C
on an average. This is coupled with the fact that a large factor of τp further weakens the
feedback of polymer stresses on the carrier flow. Thus, Newtonian scaling is recovered for
large De, and is seen in the re-emergence of E(k) ∼ k−5/3 regime at De ≈ 9. Indeed, at
even larger De we have an intermediate range of scales with completely Newtonian scaling
behaviour Rosti et al. (2023). Again in the deep dissipation range, small fluctuations in the
polymer lengths result in fluctuations of the flow field, which are rough at the subleading
order with a steep power-law decay of the spectrum as E(k) ∼ k−4.

Figure 2(b) shows the dependence of the energy spectrum on Reλ, where we plot E(k)

for a fixed polymer elasticity of De ≈ 1. The top curve is just the spectrum at Reλ ≈ 450
and De ≈ 1. Now, it is well known that with decreasing Reλ in HIT the fluid nonlinearity
becomes increasingly less important (with respect to viscous dissipation) causing the
inertial range to shrink (and the viscous dissipation range to widen). In PHIT, a decreasing
Reλ entails that now the intermediate polymeric range shrinks as seen from figure 2(b).
This is a consequence of the fluid inertia weakening even further in the presence of
polymers (see § 3.2 for detailed discussion). A further weakened fluid inertia means that
viscosity becomes important at even larger scales. The dissipative range thus widens,
and the steep power-law fall-off begins at even smaller k as Reλ decreases. In fact, at
Reλ ≈ 40, the polymeric regime is completely absent and the smooth dissipation range
spans the entire range of scales (see also Singh et al. 2024). This is indeed very different
from Newtonian turbulence, where a decreasing Reλ results in a shrinking inertial range
that completely disappears as Reλ→ 0 and the spectrum decays exponentially. Polymeric
turbulence, on the other hand, shows a transition from E(k) ∼ k−2.3, as Reλ decreases, to
a steeper power-law spectrum of E(k) ∼ k−4 as Reλ→ 0 for large De.

Next, we discuss how different dominant contributions lead to this non-unique scaling
behaviour in polymeric flows, as a function of Reλ and De.

3.2. The flux contributions
The coexistence of various scaling regimes of the energy spectrum, as discussed in
§ 3.1, can be better understood by looking at the dominant energy transfer mechanisms
across scales (see also Casciola & De Angelis (2007) for a similar discussion on spectral
decomposition with a slightly different approach). We obtain these dominant contributions
from (2.1a) by computing its Fourier transform and its complex conjugate,

∂t ûi (k) +Ni (k) = iki p̂ − νk2ûi (k) + μp

ρτp
ik j Ĉij + F̂i (k), ki ûi = 0; (3.2a)

∂t û
†
i (k) +N †

i (k) = −iki p̂† − νk2û†
i (k) − μp

ρτp
ik j Ĉ

†
ij + F̂†

i (k), (3.2b)

where the hat ·̂ denotes the Fourier transformed variables, ·† denotes the complex
conjugate and Ni (k) is the Fourier transform of the fluid nonlinear term. Summation over
repeated indices is implied. The energy equation for any kth mode can be obtained by
multiplying (3.2a) by u†

i (k), and (3.2b) by ui (k), and adding the two together,

∂tE(k) + Re
(
û†

i (k)Ni (k)
) = −2νk2E(k) + μp

ρτp
Im

(
û†

i (k)k j Ĉij
) + Re

(
û†

i (k)F̂i (k)
)
,

(3.3)
where E(k) = |ûi (k)|2/2 is the energy in mode k, the pressure term vanishes away due to
incompressibility, and Re(·) and Im(·) denote the real and imaginary parts, respectively.
The total energy flux from modes k < K to those k > K can be obtained by integrating
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Figure 3. Normalised flux contributions at (a) Reλ ≈ 450, (b) 240 and (c) 40 for flows with De ≈ 1. The
polymeric contribution P is split into flux Πp and dissipation Dp contributions as P = Πp +Dp as in Rosti
et al. (2023). (a) At large Reλ, three distinct regimes are determined by different dominant contributions: large
scales are dominated by the fluid nonlinear flux Π f ; intermediate scales by the polymer flux Πp; small scales
by the polymer dissipation Dp . (b) At moderate Reλ, the fluid-nonlinearity Π f is weakened and comprises
two distinct regimes dominated by Πp and Dp . (c) At extremely small Reλ, only the dissipative terms Df , Dp
remain important. All terms are normalised by εt.

from 0 to K ,

∂t

∫ K

0
dk E(k) +

∫ K

0
dk Re

(
û†

i (k)Ni (k)
) =

− ν

∫ K

0
dk k2|ûi (k)|2 + μp

ρτp

∫ K

0
dk Im

(
û†

i (k)k j Ĉij
) +

∫ K

0
dk Re

(
û†

i (k)F̂i (k)
)
.

(3.4)
In a statistically stationary state, the total energy in any set of modes is a constant, so

that ∂t
∫ K

0 dk E(k) = 0. Choosing suitable symbols for the remaining integrals, and using
isotropy to argue that their dependence is only on K = |K |, we have

Π ′
f (K ) = −D′

f (K ) −P ′(K ) +F(K ), (3.5)

where Π ′
f , D′

f , P ′ and F are the contributions from fluid nonlinearity, fluid dissipation,

polymer stresses and the external forcing, respectively. Since the forcing F̂i is applied at
only K = 1, we have that F(K ) is a constant for any K > 1,

Π ′
f (K ) +D′

f (K ) +P ′(K ) =F(K ) = εt, (3.6)

where εt is the rate of total energy injection into the system by the forcing F. Thus, upon
normalisation by εt, we obtain

Π f (K ) +Df (K ) +P(K ) = 1, (3.7)

where Π f = Π ′
f /εt, Df =D′

f /εt, P =P ′/εt (see also Abdelgawad, Cannon & Rosti
2023). We show the curves for all the three contributions, Π f , Df and P , as a function
of Reλ in figure 3, for a polymer elasticity of De ≈ 1. Following Rosti et al. (2023), we
partition the polymeric contribution into flux (Πp) and dissipative (Dp) terms as

P(K ) = Πp(K ) +Dp(K ), where Dp(K ) ≡ (εp/ε f )Df (K ). (3.8)

Such a definition is motivated by the requirement that at small scales (or large k) the
polymeric term must get all its contribution from dissipative effects. Indeed, the full
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polymeric contribution P captures both the dissipative and flux contributions. We note
that a purely dissipative part Dp of P must be monotonically growing in k, thus we choose
to model Dp in the very simple and naïve way by prescribing the same scale dependence
as the fluid dissipation Df , which we already know grows monotonically in k. We tried
different prescriptions for Dp under the constraint of Dp = 0 at k = 0, Dp = εp at k = kmax
with a monotonic growth. The results do not change qualitatively but only quantitatively,
in the sense that the boundaries of the different scaling ranges shift only marginally. Since
these changes remain limited, the estimates for where different flux contributions crossover
is reasonably robust. We plot the contributions Πp and Dp thus obtained in figure 3.

At large Reλ, figure 3(a) shows that the fluid nonlinearity Π f has the dominant
contribution to the total energy balance at large scales (i.e. for k � 4). This gives the
Newtonian k−5/3 scaling at the large but slim band of scales in figure 2. Away from
this range, i.e. for k � 10, the polymeric flux contribution Πp begins to dominate. This
dominant non-Newtonian flux results in a polymeric scaling regime with E(k) ∼ k−2.3

up to k ≈ 70 in figure 2 (see also Rosti et al. 2023). At yet smaller scales, i.e. for k � 200,
fluid (Df ) and polymer (Dp) dissipation remove energy from the flow rapidly. The polymer
contribution Πp, has a small, subdominant yet non-zero contribution in this range. (This
aligns with our assertion of small-scale fluctuations in polymer lengths in § 3.1.) This
subdominant contribution results in a fluid velocity spectrum given by a steep power-law
decay at large k, in a manner similar to that in ET at very small Reλ (see Singh et al.
2024). Now, as Reλ is decreased to a moderate value of Reλ ≈ 240, the fluid nonlinearity
is weakened evidently further as seen in figure 3(b), and the flux of energy is primarily via
the fluid–polymer interactions Πp. However, this range is rather limited as a smaller Reλ
also means that viscous effects become important at relatively smaller k. Thus, we have
a restricted polymeric and a wider k−4 regime at Reλ ≈ 240 in figure 2(b). Finally, for
very small Reλ ≈ 40 in figure 3(c), Dp and Df are always large while Π f and Πp remain
subdominant. In fact, Π f at such small Reλ is expected to be dormant and indeed shows
an exponential fall off in wavenumbers k in figure 4(c). Here Πp instead decays only as
a steep power-law, and forces fluctuations in the velocity field that result in the steep, and
extended k−4 range in figure 2(d) .

3.3. Slowing down the energy cascade
While the above discussion in § 3.1 on flux contributions sheds light on the non-unique
scaling nature of the energy spectra, there is more that remains in hiding in figure 3. We
uncover this by plotting the flux contributions on a log–log scale in figure 4 which clearly
reveals the k-dependence of the flux contributions. We are particularly interested in the
fluid Π f and polymeric Πp fluxes.

Figure 4(a) shows that at large Reλ our polymeric regime E(k) ∼ k−2.3 is marked by
a fluid nonlinear flux decaying as Π f ∼ k−1.2, while Πp remains almost constant. Now,
E(k) and Π f can be related to each other using the following simple arguments. Here Π f
is the average rate of net energy transfer through a scale k. This means velocity fluctuations
uk upto the scale k transfer their energy to smaller scales in some characteristic time τk ∼
(kuk)

−1. In HIT, this characteristic time scale is equal to the typical lifetime of an eddy
within the K41 phenomenology. This is because energy flux Π f,N in the inertial range is a
constant, i.e. Π f,N = ε, with ε being the average rate of energy dissipation. Therefore, we
have

Π f,N ∼ u2
k

τk
∼ ku3

k ∼ ε =⇒ uk ∼ k−1/3 (3.9)
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10–2
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Reλ ≈ 450 Reλ ≈ 240 Reλ ≈ 40

Df (k)Πf (k) Dp (k) Πp (k)P (k)

(a) (b) (c)

k –1.4
k –1.0

100

10–1

10–2

Figure 4. The scaling behaviour of flux contributions obtained by replotting figure 3 on a log–log scale. The
approximate scaling forms are shown as dash–dotted lines. The fluid flux Π f decays as a power-law in the
presence of polymers at large to moderate Reλ, implying a slow and weak fluid nonlinear cascade.

in the inertial range of scales. This means that the time to transfer energy to smaller scales
and the typical lifetime of eddies are, respectively, estimated as

τk,N ∼ u2
k

Π f,N
∼ k Ek

k0 ∼ k−2/3; τk,N ∼ (kuk)
−1 ∼ (kk−1/3)−1 ∼ k−2/3. (3.10)

In HIT, these time scales are identical as they both are a consequence of a constant inertial
range energy flux Π f,N. This, however, is no longer true in PHIT where the fluid nonlinear
flux Π f is no longer a constant, but is rather a function of the scale k (and therefore is
no longer the invariant that determines the scaling form of the velocity fluctuations). For
the remainder of this section, we refer to De = 1 as it shows maximal deviation from a
Newtonian behaviour. We can still estimate the eddy turnover time scale in PHIT as

τk ∼ (kuk)
−1 ∼

(
k
√

k Ek

)−1 ∼ k−0.3. (3.11)

So, the typical lifetimes of fluctuations in polymeric turbulence are larger compared with
those in Newtonian turbulent flows as τk now falls off slower with k. Thus, energy is
transferred at a slower rate to smaller scales of the fluid in the presence of polymers. With
this knowledge, we can now determine the fate of the fluid nonlinear flux Π f via the
relation τk ∼ u2

k/Π f as

Π f ∼ u2
k

τk
∼ k Ek

k−0.3 ∼ k−1.0. (3.12)

Clearly, the scale-by-scale energy transfer via the nonlinear cascade is weakened in
polymeric turbulence by the virtue of a smaller proportion of the (total averaged)
fluid kinetic energy u2

k/u2 ∼ k−1.3 being passed onto the larger k at a smaller rate
τk/τL ∼ k−0.3, compared with a Newtonian fluid. The estimated scaling behaviour
of Π f ∼ k−1 is indeed found to hold in figure 4 for the range k ∈ [8, 40] which is
separated from both the forcing effects (acting at k = 1) and fluid dissipation (which
becomes dominant around k ≈ 40). (Recall, however, that the energy spectrum scaling
E(k) ∼ k−2.3 holds for the range k ∈ [4, 40].) This depleted fluid nonlinear flux is
accompanied by a finite rate of energy transfer to the dissolved polymers. The typical
time scale of this transfer can be estimated by making a crude assumption of a constant
polymeric flux, i.e. Πp ≈ k0, in k ∈ [10, 70] from figure 4(a). This assumption then yields
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Reλ ≈ 450

Reλ ≈ 240

(a)

k0.3 · 1/(kuk)
k0.3 · kEk/Πf
k1.3 · kEk/Πp

k0.3 · 1/(kuk)
k–0.1 · kEk/Πf
k1.3 · kEk/Πp

k

τk

(b)

τk

101

k
101102

100

101

10–1

100

101

10–1

Figure 5. The plots of various time scales discussed in § 3.3 for (a) Reλ = 450 and (b) 240, at De = 1. We
show the compensated plots for the eddy turnover time (triangles) and the time obtained from the nonlinear
(squares) and polymer fluxes.

the scale-by-scale energy transfer rate to polymers as

τk ∼ u2
k

Πp
∼ k Ek

k0 ∼ k−1.3. (3.13)

This shows that the remaining energy of fluctuations, that was not handed down to the
smaller active scales of motion of the carrier fluid by the nonlinear flux, is transferred to
the polymers, on an average, at a much faster rate τk ∼ k−1.3. Now, we expect this relation
to hold only approximately for a restricted range of k ∈ [10, 40] as Πp is not exactly
constant in this range. With these caveats in mind, we now plot the compensated time
scales in figure 5(a) for Reλ = 450. The relevant ranges are marked by the flattening of the
curves which are computed using the relations (3.11), (3.12) and (3.13). Of these, the first
two are the estimates of eddy-turnover times/lifetime of velocity fluctuations in polymeric
turbulence. Now, the relations (3.11) and (3.12) must yield the same estimates of τk up to
some constant of O(1). (To obtain τk from the second relation (3.12) we use the estimate
Π f ∼ k−1). This is indeed found to be consistent in figure 5(a) where we show these two
estimates as curves with triangle and square markers, respectively. And while these curves
do not stay flat over a wide range, it is certainly true for the expected range k ∈ [8, 40].
Lastly, the typical time scales of energy transfer to the polymeric mode is given by the
compensated curve in diamond markers which corresponds to the relation (3.13). In
confirmation to our expectations, we indeed find that this curve is (approximately) flat
in the range k ∈ [10, 40] in figure 4(a). So, it is indeed the case that polymers extract
energy at a faster rate from turbulence than the fluid nonlinearity transfers the remaining
to smaller scales, on an average resulting in a weakened cascade/fluid nonlinearity.

We now turn our attention to when Reλ = 240. At the outset, we notice from figure 4(b)
that there is a rather very small set of scales that lies between the forcing scale (k = 1)
and the scale where fluid dissipation becomes important (k = 10). Naturally, it cannot
be expected that the lifetime of fluctuations τk is reliably estimated by relating it to the
nonlinear flux via Π f ∼ u2

k/τk , as this relation does not account for losses due to viscous
dissipation. However, it still estimates the rate at which energy is transferred to smaller
scales. Noting that Π f still has a power-law behaviour of Π f ∼ k−1.4 in k ∈ [3, 12] and
Πp ≈ constant in this range as well, we can now estimate the various time scales at
Reλ = 240 as

τk ∼ (kuk)
−1 ∼ k−0.3 ; τk ∼ k Ek

Π f
∼ k0.1 ; τk ∼ k Ek

Πp
∼ k−1.3. (3.14)
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We plot the corresponding compensated curves of these transfer time scales in figure 5(b).
Consistent with our expectations, all of these curves are fairly constant in the rather small
desired range k ∈ [4, 10].

In a nutshell, the effect of the addition of polymers is to slow down the cascade process
which we quantify using scaling arguments the knowledge of flux contributions, and the
fluid energy spectra. In the next section, we discuss how energy is distributed in the
polymeric scales of motion via the polymer energy spectrum using data as well as scaling
arguments.

3.4. The polymer spectra
The distribution of energy across polymeric scales, in a statistically stationary state, can
be obtained by computing the polymer energy spectrum E p(k) in analogy with the fluid
energy spectrum E(k). To do so, we start by defining the polymer energy spectrum in a
sense similar to that of Casciola & De Angelis (2007), Balci et al. (2011) and Nguyen et al.
(2016). The measure of average total polymer energy Ep is given by the Tr(C) as

Ep = μp

2τp
〈Tr(C)〉 = μp

2τpV

∫
V

Cii (x)dx = μp

2τpV

∫
V

Bij(x)B ji (x)dx, (3.15)

where B (with components Bij) is the positive-definite square root of the conformation
tensor C, i.e. Cij(x, t) = Bik(x, t)Bkj (x, t). One can now define the polymer energy
spectrum E p(k) by employing Parseval’s relation

Ep = μp

2τpV

∫
V

Bij(x)B ji (x)dx = μp

2τpV

∫
R3

Bij(k)B ji (−k)dk =
∫ ∞

0
E p(k) dk

where E p(k) = μp

2τpV

∫
|k|=k

Bij(k)B ji (−k) dΩk, (3.16)

where V is volume of integration and the last integral is defined over a spherical shell of
radius k.

Now, the scale-by-scale energy (μp/2τp)Ck can then be estimated as the energy
contained in the modes ∈ [k, k + dk],

μp

2τp
Ck = E p(k)dk, (3.17)

in analogy with the classical

1
2

u2
k = Ek(k)dk. (3.18)

Thus, it is easy to see using dimensional arguments that Ck ∼ k E p(k), similar to u2
k ∼

k Ek(k). We now use this relation to estimate E p(k) by relating it with E(k).
Let us begin by looking at the Πp curves in figure 3 (or figure 4). For large Reλ, the flux

contribution Πp remains approximately constant for k ∈ [20, 60]. Therefore,
μp

τp
kukCk ∼ k0 =⇒Ck ∼ (kuk)

−1 ∼ k−0.35. (3.19)

This immediately implies, using (3.17), that E p(k) ∼ k−1Ck ∼ k−1.35 for k ∈ [20, 60].
Indeed, we find this to be consistent with the data from simulations plotted in figure 6(a).
At Reλ ≈ 240, this scaling range of E p(k) shows a slight shift to larger scales, in
correspondence to a similar shift of constant Πp in figure 4. We point out here that
in contrast to the behaviour of E(k), the scaling range for E p(k) appear cleaner with
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(b)(a)

k
100 101 102

k

k–1.35
k–1.35

k–3/2

100 101 102

Reλ

Reλ ≈ 450De ≈ 1

1/9 1/3 1 3 9

De

E p
(k

)

105

100

10–5

10–10

E p
(k

)
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102

10–2

10–6

450 320 240 100 40

Figure 6. The dependence of the polymer energy spectrum E p(k) on (a) Reλ (shown for De ≈ 1), and on
(b) De (shown for Reλ ≈ 450). The two different scaling regimes with exponents −1.35 (at large Re) and −1.5
(at small Re) are shown in dash–dotted and dotted lines, respectively. (b) Small De flows at large Re show a
close to Newtonian behaviour and E p(k) remains devoid of any scaling form. As De � 1, the expected scaling
with exponent −1.35 begins to appear. The spectra are shifted vertically for visual clarity by factors of powers
of 10.

decreasing Reλ. This is because the assumption of Πp ∼ k0 is not exactly true, especially
for the largest Reλ, and only provides a rough estimate of the self-similarity of E p(k).
However, the scaling ranges get better with decreasing Reλ also because the fluid
nonlinearity becomes weaker and elastic effects begin to dominate the flux contributions.
This is clearly brought out comparing figures 4(a) and 4(b). More importantly, these
estimates are obtained by relating the polymer statistics to that of the fluid velocity field,
i.e. the knowledge of one is required to obtain the other. However, the relation between
these statistics changes at the smallest Reλ = 40 where the fluid nonlinearity remains
dormant and falls-off exponentially as shown in figure 4(c).

At the smallest Reλ ≈ 40, dissipative effects become dominant so that polymeric
contribution P to the total flux is of the same order as Df for k � 10 in figure 4(c). Hence,
a simple comparison of the fluid dissipation and polymer terms gives (see also Singh et al.
2024)

k2uk ∼ kCk=⇒ E p(k) ∼ uk ∼ √
k Ek ∼ k−3/2, (3.20)

which is also consistent with the data shown in figure 6(a).
We now show the variation of the polymer spectrum with De in figure 6(b) for large Reλ.

At very small De, the polymers barely stretch and they quickly relax back to their
equilibrium lengths. This means fluctuations in their lengths are largely limited to only
small scales and minimal large-scale fluctuations. Thus, at relatively large scales and
small k, for small De polymers, one expects a minimal growth in the spectrum of
fluctuations making it appear rather flat. This can otherwise also be understood in terms
of real space fluctuations as follows. In real space, as the polymers remain small, their
fluctuations are localised to small scales as well such that their fluctuations are correlated
over only small scales. So, at large separations, these fluctuations are decorrelated and
appear as white noise. This gives the spectrum its flat shape over a wide range of k.
However, at very large k, the spectrum E p(k) falls off much rapidly which is just a
consequence of the small scales being well resolved and the polymer fields being analytic.

1018 A24-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
52

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10523


R.K. Singh and M.E. Rosti

Now, as De increases, polymers begin to stretch to longer lengths, so that their
fluctuations are now correlated over longer lengths whose effect begins to be seen in the
spectrum being more pronounced at small k. At largest De, in a close agreement with
the scaling arguments (3.19), we find that the spectrum E p(k) ∼ k−1.35 for a wide range.
The small scale fall-off of the spectra still confirms the analyticity of the polymer stress
field.

We now move on to real space statistics, by first discussing the non-unique scaling nature
using structure functions, complementing the discussion in § 3.1.

3.5. Velocity differences and structure functions
In this section, we discuss how a non-unique scaling behaviour is also manifested in the
real-space statistics of PHIT. This complements the Fourier space discussion of § 3.1. One
of the most common real-space measures that admit a scaling behaviour in turbulence are
the well-known structure functions Sp(r), defined as the pth moments of the longitudinal
velocity increments δru over a separation r ,

δru ≡ [u(x + r) − u(x)] · r̂, (3.21)

Sp(r) = 〈(δru)p〉 = 1
3

3∑
i=1

〈
[ui (xi + ri ) − ui (xi )]p〉. (3.22)

In particular, S2(r) is related to the energy spectrum E(k) via a Fourier transform.
For ease of arguments, we illustrate this using the vector second-order structure functions
defined as (see (6.29), (6.40a) in Davidson (2015))

〈
[u (x + r) − u (x)]2 〉 ≡ 〈

[
u]2 〉 = 1
r2

∂

∂r

[
r3S2(r)

]
. (3.23)

The term on the left-hand side can be expanded as〈
[u (x + r) − u (x)]2 〉 = 2〈u2〉 − 2 〈u (x + r) · u (x)〉

= 4
∫

dk |û(k)|2 − 4
∫

dk|û(k)|2e−i k·r

= 4
∫

dk E(k)

(
1 − sin kr

kr

)
(3.24)

where we have the definition of Fourier transforms to obtain the second line and isotropy
to obtain the last line. The previous relation can then be easily used to relate the power-
law behaviour of S2 and E(k). Consider that the separation r in the real-space is scaled
by a factor b, i.e. r → br , so that the Fourier space wavenumber scales as k → b−1k.
Consequently, if the spectrum scales with an exponent α, i.e. E(k) ∼ k−α , then E(k) →
E(b−1k) = bα E(k). Therefore, the right-hand side of (3.24) can be rewritten under this
rescaling as

〈
[
u]2 〉

rescaled = 4
∫ (

b−1dk
)

E(b−1k)

(
1 − sin kr

kr

)

= 4bα−1
∫

dk E(k)

(
1 − sin kr

kr

)
= bα−1〈 [
u]2 〉

. (3.25)

Thus, it is easy to see that the vector and longitudinal structure functions transform
identically under rescaling since

1018 A24-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
52

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10523


Journal of Fluid Mechanics

(a) (b)

(c) (d )

r/L
10010–110–210–3

r/L
10010–110–210–3

r/L
10010–110–210–3

r/L
10010–110–210–3

r4/3

r4/3

r2/3

r 2/3

r2.6

r2.6
r1.3

r4

r2

r2

r1.3

Reλ

Reλ ≈ 450 Reλ ≈ 450

De ≈ 1De ≈ 1

1/9Newtonian

Newtonian

1/3 1 3 9De

450 320 240 100 40
S 2

(r
)

102

100

10–2

10–4

S 4
(r

)

104

100

10–4

S 2
(r

)

102

101

100

10–1

10–2

S 4
(r

)
104

102

100

10–2

Figure 7. Manifestation of the non-unique scaling behaviour in the structure functions of second (S2: panels
(a) and (c)) and fourth (S4: panels (b) and (d)) orders. Panels (a) and (b) show the dependence on Reλ, while
panels (c) and (d) show the dependence on the polymer elasticity De. Note that the (c) S2(r) and (d) S4(r)

curves fall on top of the Newtonian for small De. At large De, the elastic scaling regime becomes clear as
elasticity begins to play a significant role showing a clear departure from the Newtonian curve.

〈
[
u]2 〉

rescaled = 1
(br)2

∂

∂(br)

[
(br)3S2(br)

] = 1
r2

∂

∂r

[
r3S2(br)

]

= bα−1〈 [
u]2 〉 = 1
r2

∂

∂r

[
r3bα−1S2(r)

]
=⇒ S2(br) = bα−1S2(r). (3.26)

Hence, we have that E(k) ∼ k−α ⇐⇒ S2(r) ∼ rα−1. Note that this relation holds only
for α � 3. For α > 3, the real-space exponent is constrained by the leading order in
Taylor expansion as S2 ∼ r2. In HIT, these arguments imply that S2 ∼ r2/3 given E(k) ∼
k−5/3 whereas in PHIT we now expect S2 ∼ r1.3 using E(k) ∼ k−2.3. Additionally, using
dimensional arguments, one also expects within the K41 phenomenology that S4 ∼ S2

2 .
With these expected results in mind, we show in figure 7(a,b) the plots of S2(r), S4(r)

for PHIT at different Reλ and De ≈ 1 alongside the HIT result. The variation of S2(r)

and S4(r) with De is shown in figure 7(c,d). We of course have that the HIT structure
functions follow the Kolmogorov scaling r p/3 closely in figure 7(a,b), while those for
PHIT show a very clear departure from this behaviour. Indeed, and in consistency with
the discussion above, the polymeric scaling is given by S2 ∼ r1.3(S4 ∼ r2.6) and is seen to
have the widest span at the largest Reλ ≈ 450. This is also consistent with the discussion
in § 3.1 where we show that the polymeric regime shrinks with decreasing Reλ, while
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Figure 8. The kurtosis of velocity differences as a function of scale r . Here K→ 3 as r → L as velocity
differences decorrelate at very large separations. (a) Here K at large Reλ ≈ 450 and different De are almost
coincident implying a very weak dependence of intermittency on De. (b,c) Intermittency in polymeric flows
increases as Reλ is decreased, especially when De is large.

the smooth dissipation range marked by S2 ∼ r2 expands (corresponding to E(k) ∼ k−4 in
figure 2). At the smallest Reλ ≈ 40, the smooth scaling S2 ∼ r2 spans almost a decade.

We show the variation of the structure functions with De in figure 7(c,d). As expected
from figure 2(a), this dependence is rather non-monotonic. The small De cases show an ap-
proximately Newtonian behaviour, owing to the minimal non-Newtonian contributions as
the polymers strongly resist any stretching (see § 3.1 for detailed discussion). As De → 1,
we have a clear polymeric scaling S2 ∼ r1.3(S4 ∼ r2.6). This steeper than Kolmogorov
slope starts to vanish when polymer elasticity is further increased, and the S2/S4 curves
now have a shallower slope. At much larger polymer elasticity one indeed recovers the
Kolmogorov scaling (see Rosti et al. (2023)). This behaviour is again in consistency with
that for the spectrum in § 3.1.

We also make an important note about figure 7(b,d). The S4(r) curves evidently show
smaller scaling ranges compared with those of S2(r) in figure 7(a,c). This means that the
exponents quickly deviate from the naïve expectation of S4(r) ∼ S2

2(r). This is not only an
artefact of the deviations from a K4-like behaviour but also captures the non-Gaussianity
of δru. We quantify these deviations by measuring the kurtosis of the velocity increment
distributions in the next section.

3.6. Kurtosis of velocity differences
Consider the distribution of (longitudinal) velocity differences δru, defined by (3.21), as a
function of the scale r . The kurtosis (or flatness) K(r) of such a distribution is defined as

K(r) ≡
〈
(δru)4〉

〈
(δru)2〉2 . (3.27)

The kurtosis K captures the relative importance of the tails of a distribution and quantifies
their contribution to the overall statistics of δru. For a Gaussian distribution, K = 3. We
expect the velocity increments to be uncorrelated over very large separations, so that the
distribution of δru is close to a Gaussian for large r . This is indeed confirmed in our
data in figure 8 where we find K(r) ≈ 3 for large r , irrespective of Reλ and De. More
importantly, K is not a constant but a function of the scale r . The distributions of δru
are, evidently, devoid of scale-invariance and their departures from Gaussianity become
increasingly stronger at small r . This is a result of more important contributions from
the tails of the distribution of δru, a phenomenon referred to as intermittency, and causes
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deviations from the dimensional expectation of S4 ∼ S2
2 (this would have meant K ∼ r0

from (3.27)). The log–log plots of K in figure 8(a) clearly show a power-law dependence
on r at large Reλ ≈ 450. Crucially, this power-law is very weakly dependent on De as
the curves for different De follow each other closely. Thus, the intermittent nature of the
velocity fluctuations is still largely determined by the fluid nonlinearity. This was also
observed by Rosti et al. (2023) via the multifractal spectrum for energy dissipation. The
influence of polymers on velocity fluctuations, however, is more apparent at small Reλ, as
shown in figure 8(b). At small Reλ, although the fluid nonlinearity becomes considerably
weaker (see figure 4b), the polymer stresses feeding back on the flow result in the velocity
fluctuations δru being more intermittent, and the departure from HIT curve becomes
significant. This is even more pronounced at the smallest Reλ (we considered) where the
presence of polymers results in much large deviations of δru at small r which is manifested
in a much steeper slope of the kurtosis K(r) ∼ r−0.3 compared with the Newtonian.

So, the departure from a Kolmogorov-like behaviour in polymeric flows is not only
due to a modified energy flux – resulting in a different scaling of the spectrum – but
also due to the modified nature of extreme fluctuations that result from the action of the
polymer stresses. This also underlines the fact that intermittency is due not only to fluid
nonlinearity but even polymer stresses can drive highly intermittent velocity fluctuations.
Such intermittent behaviour is also discernible in the statistics of velocity gradients. In the
following sections, we discuss the intermittent nature of velocity gradients, and how they
influence the stretching of polymers. This also forms the basis for the discussion of the
two energy dissipation rates: fluid ε f and polymer εp.

3.7. Polymer stretching, velocity gradients and their relation to the energy dissipation
We now discuss in this section how polymers of different De are themselves affected by
the fluid flow at different Reλ. To this end, we begin by simply looking at the stretching
statistics of the polymers, the measure of the stretching of the polymers is their end-to-
end lengths whose instantaneous squared value is given by Tr(C). We naturally expect
polymers to stretch more with increasing De at any given Reλ. As stated earlier, in the limit
of De → 0 the polymers are almost inextensible and C does not stray far away from its
equilibrium configuration I . On the contrary, the other limit of De → ∞ implies a weak
restoring force, allowing C to grow to large values. That is, polymers take a very long
time to relax back to their equilibrium lengths for a very large τp. Or in other words their
tendency to relax back, when extended, is much less. Evidently, polymers are stretched by
the local velocity gradients given by the first two terms on the right-hand side of (2.1b).

We plot the p.d.f.s of Tr(C) for different Reλ in figure 9. We first note that although
polymers described by the Oldroyd-B model are infinitely stretchable, they can only do
so in the presence of very large and sustained velocity gradients. This is confirmed by
the very fast decay of the tails of the Tr(C)-p.d.f.s in figure 9, clearly suggesting that
the polymer lengths always remain bounded in our simulations. Figure 9(a) shows that,
at large Reλ, the p.d.f.s shift towards the right with increasing De indicating a larger
averaged polymer length. Moreover, the width of the distributions also increases with De,
meaning that polymer lengths also fluctuate over a wider range. This is more accurately
shown by figure 10 where we plot the mean (μTr(C)) and standard deviation (σTr(C)) of
the distributions as a function of Reλ and De. Indeed, the polymer lengths and their
fluctuations increase with both Reλ and De.

Figures 9(b) and 9(c) show the Tr(C) distributions for smaller Reλ. With decreasing
Reλ, turbulence intensity decreases and the velocity gradients become weaker on an
average and stretch the polymers less (as can be seen from (2.1b)). Therefore, the mean
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Figure 9. Probability distribution functions (p.d.f.s) of the end-to-end polymer lengths Tr(C) for different Reλ:
(a) Reλ ≈ 450, (b) Reλ ≈ 240 and (c) Reλ ≈ 40 and all De. A large De polymer has a larger average end-to-end
length, as seen in the right shift of the p.d.f.s.
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Figure 10. (a) Mean μTr(C) and (b) standard deviation σTr(C) of the distributions in figure 9, shown as a
function of Reλ and De.

polymer lengths decrease with decreasing Reλ as the p.d.f.s shift towards smaller values
of Tr(C). Moreover, polymers are also limited in their maximum extensions as Reλ
decreases. At the smallest Reλ, the velocity gradients are unable to stretch the less
extensible, small De polymers considerably. This is captured in figure 9(c), where the
Tr(C)-p.d.f.s fall-off very fast at small De showing that polymer lengths have rather
small fluctuations. (This also implies that polymer stresses remain very small so that
the flow remains laminar for De < 1). However, for a large enough De(≈ 1), polymers
stretch to considerably long lengths, and the resulting large fluctuations are enough
to excite subdominant velocity fluctuations which gives rise to ET with E(k) ∼ k−4

(see figure 2).
The above discussion is largely based on how polymers with different De are stretched

by carrier flows at different Reλ. To understand this better, we now discuss how the
polymer stretching Tr(C) is correlated with the velocity gradients Aij(x, t) ≡ ∂i u j (x, t) in
the flow. To this end, we first decompose Aij into its symmetric Sij and antisymmetric ωij
components that, respectively, capture the purely extensional (compressional) and the
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Figure 11. The plot of the joint distributions of the polymer lengths on log–log scale with the (a–c) dissipation
rate ε f and (d–f ) enstrophy Ω , for different Reλ with De ≈ 1. The colour bar shows the colour coding of the
logarithm of probability log10 p.

purely rotational contributions. The squared magnitude of these components are given
by the fluid dissipation rate ε f and enstrophy Ω ,

Ω = ωijωij ; ε f = 2νSijSij,

where ωij = (∂i u j − ∂ j ui )/2 ; Sij = (∂i u j + ∂ j ui )/2. (3.28)

The presence of the symmetric term C∇u + (∇u)T C = 2Cik Sk j in (2.1b) means that
the extensional (compressional) regions of the flow are directly responsible for the
stretching (relaxation) of the polymers. On the other hand, the absence of any ωij terms
means that there is no direct effect of the rotation in changing the lengths of polymers.
However, turbulence in three dimensions is marked by the stretching and intensification
of vorticity in the direction of local velocity gradients. So, the vortical regions can be
expected to correlate with large polymer lengths, although to a lesser degree than the
straining regions. (A direct computation of Pearson correlation coefficients of the joint
distributions of (Tr(C), ε f ) as well as those of (Tr(C), Ω) yielded values ≈ 0.3 for all
cases, while those of the log of normalised variables which are actually studied, e.g.
of (log[Tr(C)/〈Tr(C)〉], log[ε f /〈ε f 〉]), yielded values ≈ 0.4 showing that indeed these
variables have a non-zero, finite correlation.)

To illustrate the above, we show in figure 11 the joint p.d.f.s (j.p.d.f.s) of the polymer
lengths (given by Tr(C)) with the local stretching rates (given by ε f ) as a function of
Reλ for one instance of polymer elasticity of De = 1 in figure 11(a–c). We observe
that the longest end-to-end lengths of the polymers indeed coincide with the largest
stretching rates, while the smallest polymers are found in regions of the flow with small
extensional rates. This results in a perceivable tilt of the joint distribution in figure 11(a).
With decreasing Reλ, the mean lengths of the polymers decreases (see figure 10) and
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Figure 12. Joint distributions of the polymer lengths with the (a–c) ε f and (d–f ) Ω , for different De
at Reλ ≈ 450. Different colours correspond to the logarithm of probability log10 p as coded by the
colourbar.

their preference for regions with small-scale fluctuations increases. This is evident from
figure 11(b,c) where elongated bottom tails of the j.p.d.f.s imply small polymers lengths
are more probable at smaller Reλ. While we still have that the largest polymer extensions
coincide with the largest velocity gradients, the core of the j.p.d.f.s is now more vertical
which indicates that much larger extensions are now possible at even the average stretching
rates. This hints towards a decreasing degree of correlation between extreme stretching
rates and polymer stretching as Reλ is reduced.

Figure 11(d–f ) show the j.p.d.f.s of Tr(C) and enstrophy Ω . At large Reλ, large
polymer lengths also coincide with extreme vorticity regions. This means polymers are
also stretched in regions of large vorticity (similar to what observed for long, polymer-
like fibres in Picardo et al. (2020)). The maximum enstrophy regions, however, are more
likely to have polymers with close to average lengths, implied by figure 11(d), unlike the
straining regions whose extremes see maximally extended polymers. More importantly,
polymers are likely to be stretched even in regions with very small Ω as suggested by the
left bulge of the j.p.d.f.s. This shows that the polymer stretching–enstrophy correlation
is not as strong as the stretching–straining correlation. This is even more evident with
decreasing Reλ as vortex stretching becomes progressively weaker. Indeed, figure 11( f )
shows that polymer lengths are rather uniformly distributed, especially for small enstrophy,
indicating an even less correlation with polymer stretching.

Figure 12 shows instead how polymer stretching correlates with the local stretching
(figure 12a–c) and rotation rates (figure 12d–f ) of the flow, as a function of polymer
elasticity. It was already shown that large De polymers stretch more and is clearly captured
by their mean lengths in figure 10. At small De, polymers stretch minimally and have
small relaxation times. Therefore, while they are stretched by regions with very large
stretching rates, those regions have rather small lifetimes (a quick estimate gives τ ∼ S−1

ij ).
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So, maximally stretched polymers are more likely to persist for longer in regions with
moderate stretching rates. This means that the maximum of Tr(C) coincides with only
slightly larger than the average values of 〈ε f 〉. However, at larger De, polymers are more
stretchable and easily acquire their maximal lengths upon encountering strong straining
regions (similar to the observation in Singh (2024) that long, elastic, polymer-like fibres
preferentially sample straining regions). At these large De, polymers remain stretched for
longer times so that the fluctuations about the mean become smaller, across all values of
ε f , thus giving the j.p.d.f.s more rounded contours. Figure 12(d–f ) plots the Tr(C) − Ω

joint distributions. We, of course, again have a much wider spread of the distributions
compared with Tr(C) − ε f , yet again suggesting that enstrophy and polymer stretching
are less correlated compared with ε f − Tr(C), as polymers can also be stretched when
enstrophy is very small. Thus, while the maximally stretched polymers are most likely
found in regions with maximal enstrophy at large De, they also tend to be stretched in
regions with very small Ω when De is large.

3.8. Energy dissipation
In this last section, we discuss how the nature of energy dissipation in turbulence is
modified in the presence of polymers. In polymeric flows, energy is dissipated away
by both the carrier fluid ε f and the dissolved polymers εp. The positive-definite fluid
dissipation is given by ε f = 2νSijSij, whereas the positive-definite polymeric dissipation
is related to the average end-to-end polymer length by εp = (μp/2τ 2

p) 〈Tr(C) − 3〉. Both
these relations can be readily obtained by multiplying (2.1a) with u, and using (2.1b) as
follows:

∂t 〈u2〉/2 = ν〈u∇2u〉 + μp

τp
〈u · ∇ · C〉 = −ν

〈
(∇u)2 〉 − μp

τp
〈Tr [C∇u]〉 + 〈F · u〉

=⇒ 0 = −2ν
〈
SijSij

〉 − μp

τp
〈Tr [C∇u]〉 + 〈F · u〉 = −ε f − εp + εI. (3.29)

Similarly,

μp∂t 〈C〉 = μp 〈C (∇u)〉 + μp
〈
(∇u)T C

〉 − μp

τp
〈C − I〉

=⇒ 0 = 2μp

τp
〈Tr [C∇u]〉 − μp

τp
〈Tr(C) − 3〉 =⇒ εp = μp

2τ 2
p

〈Tr(C) − 3〉, (3.30)

where we have used stationarity, periodicity and incompressibility to set time derivatives,
fluid nonlinearity, pressure contribution and polymer advection terms to zero. Note that,
the previous relation εp = (μp/τp) 〈Tr[C∇u]〉 = (μp/2τ 2

p) 〈Tr(C) − 3〉 holds true only
on average, and thus the two processes are equal only in a statistically stationary state,
but very different instantaneously. The Tr[C∇u] term captures the exchange of energy
between fluid and the polymers, and can take both positive and negative values, while
〈Tr(C) − 3〉 is a positive-definite quantity and captures purely dissipative effects. The
interaction term (μp/τp)Tr[C∇u] leads to a net transfer of energy to polymers, which is
dissipated away as (μp/2τ 2

p) 〈Tr(C) − 3〉. This is seen from figure 13, where we plot the
normalised distributions of the two terms using data from our simulations. The positive-
definiteness of ε f and εp means that the total energy injected by the forcing εI is dissipated
away by both polymers and the fluid in a stationary state. The internal energy of the
polymers is proportional to their instantaneous extension so that elongated polymers
dissipate away energy as they relax. We now discuss the nature of these measures of
dissipation in our polymeric flows.
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Figure 13. The p.d.f.s comparing the local dissipation and transfer processes associated with polymers. They
equal each other only on an average, while locally the processes are very different.

(log εf – μlog εf
)/σlog εf

10–2

10–4

10–6

10–8

100

10–2

10–4

10–6

10–8

100

10–2

10–4

10–6

10–8

100

Reλ = 450 Reλ = 240 Reλ = 40

(a) (b) (c)

De 1/9Newtonian 1/3 1 3 9

–10 –5 0 5 10

(log εf – μlog εf
)/σlog εf

–10 –5 0 5 10

(log εf – μlog εf
)/σlog εf

–10 –5 0 5 10

Figure 14. The p.d.f. of the fluid energy dissipation rate ε f , compared with a log-normal distribution, for
different De and Reλ. At (a) Reλ ≈ 450, polymer elasticity has no influence on the intermittent nature of
the distributions. However, at smaller (b) Reλ ≈ 240, the presence of large De polymers leads to more large
deviations, which are even more prominent at (c) Reλ ≈ 40.

We first recall that ε f in HIT has a distribution whose tails deviate from a log-
normal behaviour, in contradiction to the Kolmogorov (1962) prediction. We now show in
figure 14(a) that the normalised log(ε f )-p.d.f.s remain largely unaffected by the addition
of polymers in flows at large Reλ. The curves for different De all collapse over the
Newtonian curve in figure 14(a) which shows that spatiotemporal fluctuations in energy
dissipation are unaffected by the addition of polymers. Polymer stresses, though present,
do not result in yet larger deviations which are still dominated by the fluid nonlinearity.
(Note that the mean fluid dissipation 〈log ε f 〉 is still a function of De.) At a smaller
Reλ ≈ 240, the Newtonian curve shows an even larger deviation from log-normality,
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Figure 15. The p.d.f. of the fluid energy dissipation rate ε f for different De and Reλ. Each panel corresponds
to a decreasing Reλ from (a) to (c), for all the investigated De.

especially at the left tails, suggesting that dissipation field now has relatively more
quiescent regions. There is no appreciable change in the distributions upon the addition
of small De polymers as the polymer stresses remain small. However, when De is large,
elastic effects become appreciable compared with the weakened fluid nonlinearity. The
polymer stresses are now large enough to create significant fluctuations in the flow so that
now there are less quiescent regions and more extreme events. This is apparent from the
shrinking left tails and the widening right tails at De = 1, 3 in figure 14(b). Curiously, at
the largest De = 9, when the elastic effects begin to weaken again, the large deviations
are reduced (this is in parallel to the weakened elastic effects resulting in the shrinking
polymeric range in figure 2b). These effects are most clearly seen at the smallest Reλ = 40
where fluid nonlinearity does not play a role (and decays exponentially in scales, see
figure 4c). The fluctuations in velocity gradients, therefore, only result from the strong
polymer stresses at large De and are manifested in the wide-tailed, super log-normal
distributions of εp in figure 14(c). However, for a large polymer elasticity such as De = 9,
a weakening of elastic effects results in a mild shrinking of the tails of the p.d.f. Figure 15
shows the normalised p.d.f.s of the bare ε f for three different Reλ and all De. It is clear
from these plots that at large Re the presence of polymers does not affect the nature of
extreme events in polymer dissipation, which overlap to the Newtonian curve. This is to
say the intermittency corrections are the same in Newtonian and polymeric turbulence
at large Re, consistently with the collapse of the multifractal spectra presented by (Rosti
et al. 2023). The differences begin to surface at smaller Re where extreme events become
more prominent, especially at large De. This is again consistent with the kurtosis picture
in figures 8(b) and 8(c), where the curves steepen at large De and small Re. A crucial
difference with figure 14 is seen at Reλ = 40, where the log-normal plot shows that the
dissipation distributions vary non-monotonically with De, whereas figure 15 shows that
the dependence is monotonic.

We show the distributions of the polymer dissipation εp in figure 16, which are
sublognormal, unlike ε f , thus indicating a significantly less intermittent behaviour. In
particular, at small De, εp shows more large deviations. These polymers rarely stretch
and even when stretched, they quickly relax back to their small, equilibrium lengths.
This means any deviations about a small mean are more significant. Thus, the polymer
dissipation εp ∝ Tr(C) shows the widest tails at the smallest De = 1/9, which are wider
than even a log-normal distribution, especially at larger Reλ in figure 16(a,b). With
increasing De polymers tend to stretch more and for longer duration owing to the
larger relaxation times. Thus, fluctuations in lengths become less important at large
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Figure 16. The p.d.f. of the logarithm of polymer dissipation εp ∝ Tr(C), as a function of De for different
Reλ given in the panels. The black dashed curve shows a log-normal distribution for reference. The polymer
dissipation becomes less intermittent with increasing De.

De, and consequently, the stored energy is dissipated away in a more uniform and less
intermittent manner, with fewer large deviations. This results in the log εp distributions
becoming progressively sublognormal. This effect is rather persistent across all Reλ, even
into the ET regime at Reλ ≈ 40, as seen from figure 16.

4. Conclusions
In this work, we investigate how various measures that typically characterise classical,
Newtonian turbulence behave in polymeric flows as both elasticity and inertia of the
flow are varied, especially focusing on how the large and small Re regimes connect at
intermediate Reynolds numbers. While turbulence statistics indeed depend on both Re
and De, which quantify fluid inertia and polymer elasticity, respectively, we show that the
addition of polymers has contrasting effects on different turbulence statistics.

We begin by showing that the energy spectrum in polymeric flows shows a non-unique
scaling nature, especially at large Re and moderate De, where three different dominant flux
contributions – viz. fluid nonlinearity, polymeric and the dissipative contributions – lead
to three distinct scaling exponents. This non-unique scaling behaviour is invariably lost at
both very large and very small polymer elasticity, where instead the Newtonian behaviour
is recovered similar to the observation by Rosti et al. (2023). With decreasing Reλ, the
Newtonian and polymeric regimes are progressively lost as the fluid inertia weakens and
viscosity becomes more important. A unique, smooth, dissipative, ET regime spans a
wide range of scales at very small Reλ, when polymer elasticity is large. We further
shed light on the dynamics of our polymeric flows by estimating the typical lifetimes
of velocity fluctuations, and the rates of energy transfer to smaller fluid scales and to the
polymeric mode. We use scaling arguments to show that the classical fluid energy cascade
is slowed and weakened in the presence of polymers. The real space statistics of velocity
fluctuations, captured by the structure functions, also admit different scaling exponents
that are directly related to the Fourier space scaling of the energy spectra.

The real space statistics also additionally reveal the intermittent nature of velocity
fluctuations in polymeric flows. At very large Reλ, the presence of polymers has almost
no effect on the kurtosis of fluctuations. However, with decreasing Reλ, elastic stresses
become increasingly more important than the fluid nonlinearity and result in strongly
intermittent velocity fluctuations. The relative importance of polymer stresses is made
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clear by the end-to-end polymer lengths that are given by the trace of the conformation
tensor. As expected, polymers stretch more as their elasticity increases and they are able to
span a wide range of scales. We further study how polymers stretch in different regions of
the flow by decomposing velocity gradients into extensional and rotational components.
Extensional regions, quantified by the symmetrised velocity gradients, promote the
stretching of the polymers, whereas the local rotation rates, quantified by enstrophy,
play a rather indirect role in their stretching. While we indeed find that local rotation
rates correlate with large polymer lengths, since velocity gradients intensify vorticity by
stretching them in their direction, polymers are shown to also stretch in regions with small
rotation rates, thus indicating a lesser correlation between enstrophy and polymer lengths.

Finally, we relate polymer lengths and velocity gradients to the energy dissipated away
by the carrier fluid and the polymers, and compare them with a log-normal distribution. At
large Reλ, much like the kurtosis of velocity fluctuation, fluctuations of fluid dissipation
remain unchanged upon the addition of polymers. However, polymer stresses become
important at small Reλ and result in large deviations in fluid dissipation. The effect of
polymers is most clear at the smallest Reλ where the fluid nonlinearity is inactive and yet
the fluid dissipation distribution is very far from log-normal. On the other hand, dissipation
by polymers themselves is much less intermittent compared with the fluid dissipation,
with tails shrinking even further as polymer elasticity increases. This is because polymers
are able to stretch more uniformly and hence dissipate away their stored energy in a
less intermittent, more uniform fashion. While this analysis relates the local strain and
rotation rates to the stretching of polymers, it is known that the Lagrangian history of these
quantities can also be crucial in determining the behaviour of polymer stresses, as shown in
the works of Wagner & McKinley (2016), and Kumar, Guasto & Ardekani (2023). Future
Lagrangian studies on PHIT should better shed light on how closely polymer stresses
mirror the local flow topology across such a wide range of Re and De numbers.

With this work, we have connected polymeric turbulence at large Reynolds number
with ET, where inertia effects are vanishing. While the two regimes show substantial
differences, as for example clearly indicated by the non-unique scaling behaviour of the
energy spectra, the transition between the two is rather smooth and continuous in the
chosen framework of homogeneous and isotropic turbulence. Future work should deal
with better characterising and explaining the origin of the various identified exponents of
the energy spectra, as well as extending the analysis to more complex flows.
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