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Sub-convective wall pressure fluctuations play a critical role in vibroacoustic and noise
analyses of vehicle structures as they serve as the primary forcing function. However,
measuring these fluctuations is challenging due to their weak pressure magnitudes,
typically 10−3−10−5 of convective fluctuations. This study introduces a non-intrusive
measurement technique using an array of multi-pore Helmholtz resonator sensors to
capture sub-convective fluctuations with high resolution. The array features large-
area, spanwise-oriented sensors arranged linearly for optimal sampling. Results provide
a continuous streamwise wavenumber–frequency spectrum, resolving sub-convective
fluctuations with sufficient range and accuracy. Convergence analysis indicates that long
sampling durations, O(106δ∗/U∞), δ∗ is the displacement thickness of the boundary
layer. U∞ is the freestream velocity are necessary to capture true sub-convective
levels. Comparisons with four existing wall pressure models, which account for sensor
area averaging, reveal discrepancies in predicted levels, convection speed relations and
convective ridge characteristics. Notably, the measured data align most closely with the
Chase (1980, J. Sound Vib., vol. 70, pp. 29–67) model at convective peak levels and in
the sub-convective domain. However, the observed roll-off at wavenumbers exceeding the
convective wavenumber decays more slowly than predicted, giving the convective ridge
an asymmetric profile about the convective line. These findings underscore the need for
improved wall pressure models that incorporate frequency-dependent convective speed
relations, ridge asymmetry, and more accurate sub-convective levels. Further validation
using a microphone array from Farabee & Geib (1991) confirms the accuracy of our mea-
surements, which indicate sub-convective pressure levels lower than reported previously.
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1. Introduction
The interaction of a solid surface with a fluid generates a thin region of influence at
the wall responsible for momentum transfer, heat transfer and noise. This region is
referred to as a boundary layer, and the practical importance of these layers is in the
prediction of drag, heat transfer and radiated noise, especially in turbulent flow conditions.
Studying the footprint of turbulent boundary layers on a surface can lead to a fundamental
understanding of wall-bounded turbulence due to their coupling with the velocity field
given by the pressure Poisson equation (Butt et al. 2024c). Pressure fluctuations associated
with turbulent boundary layers have been studied for over 50 years. They are well
documented in the form of the two-point space–time correlations and wavenumber–
frequency spectrum. Figure 1 shows a schematic of the wall pressure spectrum for an
equilibrium two-dimensional turbulent boundary layer that is classified into three regions:
(i) convective ridge (around the red dashed line), (ii) supersonic/acoustic (encompassed
in a cone shown by black dashed lines), and (iii) sub-convective as shown. The axes
represent the streamwise wavenumber (k1), spanwise wavenumber (k3) and frequency.
Pressure fluctuations generated directly by the footprint of convecting turbulent eddies
are located primarily in the convective ridge, characterised by a slope (in streamwise
wavenumber k1 and frequency) equal to the average convection speed of the eddies,
typically between 60 % and 80 % of the boundary layer edge velocity. Grazing sound
waves form an acoustic cone with a surface slope equal to the sound speed, while all
other sound waves appear within the cone due to their supersonic trace velocity across
the wall. This is known as the supersonic region of the spectrum. The boundary layer
also produces weak pressure fluctuations at wavenumber–frequency combinations in
the sub-convective domain, which is the three-dimensional region between the acoustic
cone and the convective ridge. This region is practically relevant in vehicle noise due
to its coupling to the fundamental vibration modes of a rigid or semi-rigid surface.
These fluctuations are presumably associated with elongated turbulent structures, non-
sinusoidal components of convected eddies, and near-field sound waves generated within
the turbulence, and scattered from any non-planar features of the surface. However, there
has been no clear evidence to claim the sources of these pressure fluctuations, and these
presumed sources are based on certain hypotheses and scaling arguments. Recently, Butt
et al. (2024b) showed pressure–velocity correlations in the form of the wavenumber–
frequency spectrum, highlighting the relevance of all three velocity components to
convective wall pressure. Butt (2025) performs additional analysis on correlating wall
pressure with Reynolds stresses (φpu1u1, φpu1u2), highlighting their plausible relevance
in sub-convective contributions.

There are challenges associated with measurements in the sub-convective region, mainly
due to the weak magnitudes of pressure fluctuations, which are easily masked by the
convective fluctuations and the scales associated with these fluctuations. Performing a
wall pressure measurement using a single pressure transducer yields a frequency spectrum
that does not distinguish between the three regions. To study the regions separately,
two-point measurements are needed, which comes with challenges when measuring
the wavenumber–frequency combinations in the sub-convective domain. At least three
techniques have been attempted to separate pressure field components from the intense
fluctuations associated with the convective ridge. One approach, pioneered by Maidanik &
Jorgensen (1967) and further developed by Blake & Chase (1970), Farabee & Geib (1991)
and Kudashev (2007), uses a regularly spaced array of large-area pressure fluctuation
sensors. This technique utilised the convective pressure averaging of the large-area
sensors and wave-vector filtering by selectively phasing the signals. This filtering achieved
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Figure 1. Schematic of the wall pressure wavevector–frequency spectrum (Glegg & Devenport 2024).

high sensitivity towards integral wavenumbers corresponding to the spacing between
sensors, giving rise to measurements in the sub-convective and acoustic region of the
spectrum. However, these measurements were highly selective, providing measurements
at only a handful of wavenumber–frequency combinations. It was difficult to differentiate
further if the levels had contamination from other components or suffered from spatial
aliasing.

A second method for measuring low-wavenumber components of the wall pressure
spectrum involves using a thin, flexible membrane excited by turbulent motions. Martin &
Leehey (1977) studied a Mylar membrane under a plane wall boundary layer in air,
Bonness, Capone & Hambric (2010) conducted measurements on a thin cylindrical
aluminium shell to relate it to fluid excitation in a turbulent pipe flow, and Golubev (2012)
examined thin aluminium alloy and glass plates under a planar turbulent boundary layer.
The concept behind such measurements is an inversion problem that relates the flexible
membranes’ structural modes to the wall pressure excitation. This theory works well at
resolving wavenumbers corresponding to the resonance modes of the flexible membrane
structure. However, its extension to more general flow scenarios, such as pressure gradient
effects, surface roughness and inhomogeneity, is limited. Panel vibration measurements
have provided a vast majority of low-wavenumber (0.8 < ωδ∗/Uc < 5), ω is the angular
frequency, δ∗ is the displacement thickness and Uc is the nominal convective speed,
measurements of the surface pressure spectrum; however, they are limited by the flow
condition, flexible membrane, and boundary conditions on the membrane.

A third approach for measuring the wavenumber–frequency spectrum involves using
large arrays of electret, remote or digital microphones that can resolve smaller turbulent
scales. This method has been popular among researchers studying automobile wind noise,
e.g. Arguillat et al. (2005). The arrangement of the microphones was optimised into
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Figure 2. Comparison between the comprehensive compressible Chase model (Chase 1987) and previous
experimental studies. Adapted from Blake (2017).

‘co-arrays’, and a deconvolution technique was used to back out the wavenumber–
frequency spectrum (Ehrenfried & Koop 2008; Gabriel et al. 2013; Schram & Van de Wyer
2018). This large-array/small-sensor approach has produced maps revealing the convective
ridge and acoustic cone. However, whether this strategy can effectively resolve the low
spectral levels in the subsonic region away from the convective ridge remains uncertain.
Recently, Prigent, Salze & Bailly (2022) showed measurements of the wavenumber–
frequency spectrum obtained using an antenna comprising 63 non-uniformly distributed
remote microphones inserted in a vinyl tube attachment. Comparisons with wall pressure
models such as those of Corcos (1967) and Chase (1987) revealed agreements at the
convective peak but deviations in the sub-convective regime, i.e. k1 < kc. The authors
suggested insufficiency in using deconvolution techniques to resolve pressure fluctuations
in the sub-convective regime. Furthermore, a recent study by Abtahi, Karimi & Maxit
(2024b) reiterated the need for a higher number of realisations (longer sampling duration)
to resolve the gap between the sub-convective and convective levels. This poses another
challenge, as the lower limit of the sub-convective levels is unknown.

A detailed review of the measurement techniques used to quantify sub-convective
pressure fluctuations has been presented in Damani et al. (2022) and Abtahi et al. (2024b).
These works highlight the discrepancies between different studies due to the difference
in flow across various facilities and the uncertainty due to the measurement technique.
The techniques suffer mainly from spatial aliasing, poor signal-to-noise ratios, and the
inability to apply to general flow regimes. Furthermore, no measurement approaches to
date have been able to provide continuous measurement of the sub-convective pressure as a
function of wavenumber and frequency. This makes it challenging to validate wall pressure
models in the sub-convective domain due to limitations in flow data. Figure 2 presents a
comparison from Blake (2017) of the wavenumber–frequency spectrum predicted by the
Chase model (Chase 1987) at two frequencies (ωδ∗/U∞ = 2, 10) against experimental
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data from various studies. The plot contains approximately 40 discrete data points from
four studies representing most of the accepted sub-convective pressure measurements,
showing a limited wavenumber range resolved by each study.

In recent years, there have been attempts to generalise the wall pressure models in terms
of their space–time correlations and wavenumber–frequency spectrum by accommodating
pressure gradient effects and frequency-dependent convective relations. It is important
to note that many of these studies focus purely on the frequency spectrum, which is
not sufficient to study the sub-convective domain. Studies such as Hu & Herr (2016)
and Hu (2021) quantified the dependence of the wall pressure levels, coherence length
scales and convective energy using small microphones under various flow regimes,
including pressure gradients. Caiazzo et al. (2016) extended the Corcos model (Corcos
1967) to a generalised form using a two-dimensional Butterworth filter, which helped
to reduce the sub-convective regime’s levels. Hwang, Bonness & Hambric (2003) and
Smol’yakov (2006) used mixed correlation length scales to accommodate lower sub-
convective levels. Recently, Frendi & Zhang (2020) recommended a semi-empirical model
based on modifications to the Corcos (1967) and Efimtsov (1982) models to improve the
shape and spectral levels in the sub-convective regime.

Also in recent years, there have been developments in wall pressure sensing technology,
with Damani et al. (2025) demonstrating the use of Kevlar-covered sensors under turbulent
boundary layers. These sensors possess convective pressure averaging capabilities and
flexibility in manufacturing. However, the study concludes that a Kevlar interface makes it
challenging to predict the averaging, and alternatives are sought. The study presented here
introduces an alternative approach to selectively filter convective pressure fluctuations with
the overall objective of measuring the sub-convective wall pressure fluctuations. It uses
an array of custom-built sensors based on multi-pore Helmholtz resonators that are non-
intrusive to the overlying flow. High-quality microphones with a large dynamic range are
employed to measure the weak sub-convective pressure fluctuations with high signal-to-
noise ratios. This measurement approach reveals, for the first time, the continuous form
of the sub-convective pressure spectrum in a high Reynolds number turbulent boundary
layer. The measurements are compared against existing wall pressure models.

Section 2 presents a review of wall pressure models used for comparison. Section 3
outlines the method for accounting for area averaging by assuming a lumped system
model for the sensors, and presents results for the array configuration used in this
study. Section 4 describes the flow conditions, sub-resonant sensor array, and calibration.
Section 5 presents a detailed description of the results and their comparison with models
of the cross-spectrum and wavenumber–frequency spectrum. The results showcase a
continuous wavenumber–frequency spectrum with sufficient range and resolution in
the sub-convective regime. Comparisons with wall pressure models show promising
agreement with the incompressible Chase (1980) model, providing the most detailed
validation and assessment of this model to date.

2. Review of wall pressure models
Four well-known wall pressure models were chosen for comparison with acquired data.
The following subsections describe each model with a form for its space–frequency cross-
spectral density function and the resulting wavenumber–frequency spectrum.

2.1. Corcos
The Corcos (1967) model is widely used for the wall pressure spectrum due to
its mathematical form, which separates the correlations in streamwise and spanwise
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directions. In its original form, this model defines the wavenumber–frequency spectrum
(φpp) as

φpp(k1, k3, ω) = Spp(ω) U 2
c

π2ω2
α1α3[

α2
1 + (Uck1/ω − 1)2

] [
α2

3 + U 2
c k2

3/ω2
] , (2.1)

where Spp(ω) is the single-point wall pressure spectrum evaluated using a separate model
such as Goody (2004), Uc is the convective speed of the turbulence, and α1,3 are empirical
constants usually defined as 0.1 and 0.77, respectively. The same model in the space–
frequency domain in terms of cross-spectral density (Γ ), normalised on the autospectrum,
is given by

Γ (�x1, �x3, ω) = ei ω
Uc

�x1 e−α1
ω

Uc
|�x1| e−α3

ω
Uc

|�x3|. (2.2)

This model is well suited for the convective domain; however, it is believed to overpredict
the sub-convective spectrum, especially at low wavenumbers. There has been work
on modifying the original Corcos model to account for the overprediction at lower
wavenumbers, which has given rise to various other forms of the Corcos model, such
as those described by Smol’yakov (2006) and Caiazzo et al. (2016).

2.2. Incompressible Chase
The incompressible Chase model (Chase 1980) and its compressible counterpart (Chase
1987) differ primarily in their spectral predictions within the acoustic cone, a region
outside the wavenumber range of primary interest in this study. Given that the
incompressible formulation provides a convenient closed-form analytical expression for
the cross-spectrum, it is adopted for the present analysis. The wall pressure spectrum from
Chase (1980) is given by

φpp(k1, k3, ω) = ρ2
0u3

τ[
κ2+ + (bδ)−2

]5/2

{
CT κ2

[
κ2+ + (bδ)−2][
κ2 + (bδ)−2

] + CM k2
1

}
. (2.3)

Some constants used in the model are CT = 0.014/h, h = 3, CM = 0.466/h,

b = 0.75, c2 = c3 = 1/6. Some other variables are defined as

κ2 = k2
1 + k2

3, κ2+ = κ2 +
[(

ω

Uc
− k1

)
Uc

huτ

]2

. (2.4)

The model is considered to be the most accurate due to its derivation from first principles.
According to the authors’ knowledge, no work has a sufficient wavenumber range and
resolution to provide detailed validation of this model, specifically in the sub-convective
domain. The cross-spectral density function (Γ ) is given by

Γ (�x1, �x3, ω) = a+τ 2
wω−1 eiω �x1/Uc e−ζ [rM fM(�x1, �x3, ω)

+ rT fT (�x1, �x3, ω)], (2.5)

where the variables are defined as

b = 0.75, h = 3, CT = 0.0047, CM = 0.155,

a+ = 2π

3
(CT h + CM h), rT = CT h

CT h + CM h
, rM = 1 − rT ,

α2 = 1 +
(

bωδ

Uc

)−2

, μ = huτ

Uc
, (2.6)
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ζ 2 = z2
1 + z2

3, z1 = μαω �x1

Uc
, z3 = αω �x3

Uc
,

fM (�x1, �x3, ω) = α−3

[
ζ + 1 + α2μ2

(
1 − z2

1
ζ

)
+ i2αμz1

]
,

fT (�x1, �x3, ω) = α−3

[
ζ + 1 + α2

(
1 − z2

1
ζ

)
+ i2αμz1

]
. (2.7)

The autospectral density for this model is described by

Spp(ω) = a+τ 2
wω−1α−3[rM + rMμ2α2 + rT + rT α2]. (2.8)

2.3. Modified Corcos
A modification to the Corcos model was suggested by Hwang et al. (2003). This model is
known to approximately achieve sub-convective levels similar to the Chase models. The
wavenumber–frequency form of the model is given by

φpp (k1, k3, ω) = Spp(ω) U 2
c

π2ω2

2α3
1α3[

α2
1 + (Uck1/ω − 1)2]2 [α2

3 + U 2
c k2

3/ω2
] . (2.9)

The cross-spectral density (Γ ), normalised on the autospectrum, is defined as

Γ (�x1, �x3, ω) =
(

1 + α1
ω

Uc
|�x1|

)
ei ω

Uc
�x1 e−α1

ω
Uc

|�x1| e−α3
ω

Uc
|�x3|. (2.10)

Since the modified Corcos model replicates the low sub-convective levels of the Chase
spectrum but in an algebraically simpler form, we will use it later in the paper to model
the measurement process and estimate measurement errors.

2.4. Smol’yakov
Smol’yakov (2006) developed a model using measurements with a slightly different
approach. Instead of separating the longitudinal and lateral separations, these were
combined into an oblique spatial separation term. The resulting low-wavenumber levels
were generally lower than those of the Corcos model. The wavenumber–frequency
spectrum is given by

φpp(k1, k3, ω) = Spp(ω)

2π

[
hΛ1Λ3[

1 + (Λ1kc − Λ1k1)2 + (Λ3k3)2
]3/2 (2.11)

− (h − 1)l2
s[

1 + (lsm1ω/Uc − lsk1)2 + (lsk3)2
]3/2

]
,

where the terms are defined as

m0 = 6.45, n = 1.005, (2.12)

A =
{

0.124
(

1 − 0.25
Uc

ωδ∗

)
+
(

0.25
Uc

ωδ∗

)2
}1/2

, (2.13)

B = A

1 + S A ων
Uτ Uc

, m1 = (1 + B)2

5n − 4 + B2 , (2.14)
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Figure 3. Comparison of zero spanwise wavenumber component of different models at frequencies
(a) ωδ∗/Ue = 2, (b) ωδ∗/Ue = 10, as a function of streamwise wavenumber.

G = 1 + B2 − nm1, h =
[

1 − m1 B

m0n2G1/2

]−1

, (2.15)

Λ1 = Uc

Bω
, Λ3 = Uc

m0 Bω
, ls =

(
Uc

ω

) [
n

m1G

]1/2

, (2.16)

with S having a value between 0 and 100. The form for the cross-spectral density (Γ ),
normalised on the autospectrum, is given by

Γ (�x1, �x3, ω) = hγ ei �x1 ω/Uc − (h − 1) �γ eim1 �x1 ω/Uc , (2.17)

where γ and �γ are defined as

γ = e−[(�x1/Λ1)
2+(�x3/Λ3)

2]1/2
,

�γ = e−[(�x1/ ls)2+(�x3/ ls)2]1/2
, (2.18)

which follow the same variable definitions as described earlier.
Figure 3 compares the above-described models at two frequencies when evaluated for

boundary layer parameters shown in table 2. The horizontal axis represents the streamwise
wavenumber (k1) normalised by the convective wavenumber (kc = ω/Uc), while the
vertical axis shows the normalised spectrum levels. All except the Chase model are
classified as Corcos-type models due to their resemblance to the mathematical form of
the Corcos model. The models show good agreement at convective wavenumbers, with
only minor level differences. However, significant discrepancies are observed at sub-
convective wavenumbers (k1/kc < 1). The Chase model also shows some differences,
but the modified Corcos and Smol’yakov models closely align with Chase’s predictions
at higher sub-convective wavenumbers. All models exhibit some wavenumber-white
behaviour in the sub-convective domain, consistent with Kraichnan (1956) criteria at
higher frequencies. The wavenumber-white character breaks down at lower frequencies
for the Chase model. Overall, all models show a large discrepancy at higher wavenumbers
(k1/kc > 1). The Smol’yakov model shows a broader convective peak, and the low-
wavenumber levels are close to those of the modified Corcos model.
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3. Designing an array of sub-resonant sensors for sub-convective pressure
measurements

Area-averaged fluctuating wall pressures were measured using an array of 80 sub-resonant
sensors, each comprised of an acoustic cavity, a microphone and a flow interface, as shown
in figure 4(a). The development of these sensors is described in detail by Damani et al.
(2024) and Damani (2025) and Damani et al. (2025). The sensors provide measurements at
low frequencies where the cavities are too small, i.e. less than half an acoustic wavelength,
for sound waves to exist within them. Surface pressure at the wall is communicated to the
cavity through an array of small-diameter pores drilled through a thin, rigid cover or flow
interface. Thus the sensor, comprising an acoustic cavity and pores, constitutes a multi-
pore Helmholtz resonator. A key feature of these sensors in the present application is their
large sensing area compared to the boundary-layer thickness (50 mm × 5 mm, 0.75δ ×
0.075δ). This allows spatial averaging to filter out a significant fraction of the convective
energy, improving the signal-to-noise ratio for the measurement of sub-convective pressure
fluctuations.

The sub-resonant sensors were 30 mm deep, tapering with depth to prevent interference
between microphones of adjacent sensors, and allow sufficient wall rigidity. Each sensor
featured 80 pores, each 0.4 mm in diameter and 1.1 mm deep. The pores were arranged
in a uniform grid with 1.375 mm spacing along the flow direction, and 2.5 mm across, as
determined by the analysis to be presented in § 3.4. Figure 4(b) shows a plan view of a
short streamwise portion of the array (4 of 80 sensors), showing the relative placement of
adjacent sensors. With 0.5 mm between the sensors in the streamwise direction, the pores
of the sensors combine to make a uniform streamwise distribution. As discussed below,
this minimised aliasing errors on the measurement of the surface pressure wavenumber–
frequency spectrum.

The following subsections describe the methodology involved in optimising the design
of the sub-resonant sensor array. They detail the assumptions and approximations needed
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to reduce a large design space, the derivation of a wavenumber–frequency spectrum
relation for an array of linear sensors accounting for the sensor area averaging, and the
assessment of error. The final sensor array geometry and estimates of its accuracy in the
sub-convective range are then presented.

3.1. Basis for sensor design
The response of a sub-resonant sensor in the array (figure 4) can be approximated
using a lumped system model. Langfeldt, Hoppen & Gleine (2019) demonstrated that the
impedance of a multi-pore Helmholtz resonator can be expressed as the sum of individual
neck impedances, and a similar approximation can be derived via momentum balance
to relate the sensor response to cavity volume and pore geometry (Damani 2025). This
approach assumes a linear response, independent of pore interactions.

Damani et al. (2025) used a localised source to study the pressure field over a sub-
resonant (Kevlar-covered) sensor, and showed that the sensor exhibits area-averaging
characteristics, with its pressure response reconstructable via a summation of monopole
sources distributed over the pores. This confirms a linear relation between the external
pressure above each pore and the cavity pressure, with further formulation details available
in § 5.2 of Damani (2025).

Sensor resonance was found to increase with the number of pores (Langfeldt et al. 2019),
and this linearity provides a practical foundation for performance assessment and error
analysis. The negligible influence of these sensors on the overlying flow is supported by
the findings of Léon et al. (2019), who reported no measurable flow disturbance from
acoustic liners with pore sizes in the range 61 < d+ = duτ /ν < 261. The present study
uses pore diameter d+ = 33.8, further ensuring minimal flow interference.

The spatial sensitivity function A may be represented as a linear summation of weighted
Dirac delta functions:

A (x − y) =
∑

j

s jδ(x − y − z j ), (3.1)

where x denotes the sensor coordinate space defining its area, z j gives the location of the
j th pore relative to the centre y of the sensor, and s j gives the relative sensitivity of the
transducer to the pressure at each pore. Note that we must have∑

j

s j = 1 (3.2)

to preserve the scaling of the measured quantity. While the lumped approximation assumes
uniform sensitivity (s j = const), experimental measurements and COMSOL simulations
(see § 5.4.2 in Damani 2025) indicate sensitivity bias towards the deeper end of the sensor,
where the microphone is located (figure 5). Although this bias decreases with frequency, it
must be accounted for in high-resolution modelling and error evaluation. These sensitivity
distributions are later incorporated into the design error analysis presented in § 3.4.

3.2. Estimating wall pressure spectrum detected by the linear sensor array
To evaluate the likely accuracy of an array of the type shown in figure 4, we can use one
of the model spectra from § 2 to estimate the wavenumber–frequency spectrum that the
array would measure, and compare that back to the model to provide an estimate of the
likely error. This process provides a means to assess the sensitivity of the errors to various
design parameters, such as sensor surface area, pore distribution and sensor spacing, on
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Figure 5. Sensitivity evaluated at each pore from COMSOL simulation for (a) f = 500 Hz, (b) f = 1000 Hz.
The microphone centre was positioned 30 mm below (x1, x3) = (0, 21.5).

the response variable. This works to optimise our design space within manufacturing and
size constraints.

An estimate for the cross-spectral density function (Sqq(�x1, ω)) as measured by an
array of sub-resonant sensors can be formulated based on a convolution between the
true wall pressure and the sensor area sensitivity given by Blake & Chase (1970). This
is represented using the equation

Sqq(�y, ω) = 16π4
∫∫ ∞

−∞
φpp(k, ω) |A(k)|2 eik·�y dk1 dk3, (3.3)

which uses the relation by White (1967) for an area-averaged wall pressure spectrum.
Here, φpp is the wavenumber–frequency spectrum from a wall pressure model such as
described in § 2, and A(k) is the wavenumber transform of the area sensitivity function.
The exponential term (eik·�y) is referred to as the array term, which accounts for the cross-
correlation between different sensors distributed in space.

The wavenumber transform of the sensitivity function (3.1) is given by

A (k) = 1

(2π)2

∑
j

s j e−ik·z j . (3.4)

Using this relation in (3.3), one can represent the cross-spectral density function as

Sqq(�y(m,n), ω) =
∑

N

∑
M

s(n)
N

∗
s(m)

M Spp

(
y(n) + z(n)

N − y(m) − z(m)
M , ω

)
, (3.5)

where n, m represent two different sensors, N , M are the numbers of pores on each
sensor, and Spp(�y, ω) refers to the pointwise cross-spectral density function evaluated
at different pore locations. It is important to note that this equation provides an expression
for Sqq , representing the estimate of cross-spectral density function as measured using a
distribution of finite area-averaging sensors, whereas Spp corresponds to the true pointwise
pressure spectrum. For a linear sensor array, the wavenumber–frequency spectrum is
obtained by performing a Fourier transform in the spatial domain represented as

φqq(k1, ω) = �y1

2π

√
w2

DFT
(

S(w)
qq (�y(m,n)

1 , ω)
)

, (3.6)
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where φqq is the wavenumber–frequency spectrum estimate, w2 is the windowing energy
factor, and DFT is the discrete Fourier transform operator.

3.3. Spanwise-averaged wall pressure spectrum estimate
Equation (3.6) provides the streamwise wavenumber–frequency spectrum that would be
inferred from the array φqq , given the actual spectrum φpp. We can estimate the accuracy
of the array by using a model for φpp and then comparing φqq with the original model
spectrum spanwise averaged over the array width. Consider a streamwise line of points at
a given spanwise location; the Fourier transform of the pressure measured by these points
can be represented by p(k1, x3, ω). For a sensor with a finite spanwise extent, the Fourier
transform of the pressure averaged over this extent is expressed as

pA(k1, ω) = 1
L3

∫ L3

0
p(k1, x3, ω) dx3, (3.7)

where L3 is the spanwise length of the sensor. We use this to obtain the wavenumber–
frequency spectrum

φpp(k1, ω) = π2

LT
E
[

p∗
A(k1, ω) pA(k1, ω)

]
, (3.8)

where L and T are the half-ranges of the Fourier transforms for k1 and ω. Substituting for
pA,

φAA(k1, ω) = 1
L2

3

∫ L3

0

∫ L3

0
φpp

(
k1, x3 − x ′

3, ω
)

dx3 dx ′
3. (3.9)

This can be evaluated numerically by assuming a discrete number of subdivisions of the
spanwise length as N �x3 = L3. We rewrite the above equation in its discretised form as

φAA(k1, ω) = �x3 �x3

L2
3

N∑
n=1

N∑
p=1

φpp(k1, n �x3 − p �x3, ω). (3.10)

This can be reorganised as

φAA(k1, ω) = 1
N 2

N−1∑
q=1−N

(N − |q|) φpp(k1, q �x3, ω). (3.11)

This formulation requires a choice of the φpp spectrum, N and �x3 based on the sensor
dimensions. We chose to use the modified Corcos model of § 2.3 to perform the initial
error calculations used in array design, since its independent form for streamwise and
spanwise scales makes it mathematically convenient, and its low sub-convective pressure
levels (figure 3) make it a conservative choice for error estimation. The modified Corcos
spectrum can be integrated over spanwise wavenumber as

φpp(k1, �x3, ω) =
∫ ∞

−∞
φpp(k1, k3, ω) eik3 �x3 dk3,

φpp(k1, �x3, ω) = Spp(ω) Uc

πω

2α3
1 e−|�x3 ωα3

Uc
|[

α2
1 + (Uck1/ω − 1)2]2 . (3.12)

As described in § 3.1, the sensor pore placement largely determines the
sensitivity distribution, and this in turn will dictate the precise projection of the
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Constants Goody (2004) This study

a 3.0 2.87
b 2.0 3.20
c 0.75 2.20
d 0.5 0.73
e 3.7 1.81
f 1.1 1.12
g −0.57 −0.45
h 7.0 7.88
i 1.0 1.62

Table 1. List of constants in Goody model obtained from fitting measured data.

wavenumber–frequency spectrum as measured by a linear array of sensors given by (3.6).
The predictions were studied against (3.11), which represented the ideal wavenumber–
frequency spectrum targeted by an array of infinite sensors in the streamwise direction and
finite spanwise extent.

All Corcos-type models require a pointwise autospectrum model. The Goody model
was chosen for this purpose; however, the empirical constants were adjusted to fit the wall
pressure behaviour measured in the present flow. The choice was based on past studies
(Fritsch et al. 2023) showing good agreement with measurements. The form of the Goody
model used for this study is

G pp(ω) Ue

τ 2
wδ

= a(ωδ/Ue)

[i(ωδ/Ue)c + d]e + [(
f Rg

T

)
(ωδ/Ue)

]h , (3.13)

where RT is the ratio of pressure time scales and is defined as uτ δ/ν
√

c f /2. The choices of
constants for the model varied slightly from those of Goody (2004) based on a regression
fit of measured data obtained by Damani et al. (2022), and are listed in table 1. The
array tested was designed based on the modified Corcos model, hence the measured data
were used to alter the constants for the modified Corcos model, namely the decorrelation
coefficients. These were obtained by performing a nonlinear fit in a least squares sense,
using the MATLAB function lsqcurvefit of the measured coherence to (2.10). The constant
values (α1, α3) obtained were 0.3275 and 0.77, respectively, as opposed to 0.1 and 0.77
recommended by Corcos (1967).

3.4. Array configuration and modelling results
The above approach applied to a series of candidate array designs, and using the boundary
layer parameters of the present flow (table 2) quickly showed that arrays of streamwise-
oriented sensors, such as suggested by Blake & Chase (1970) and investigated in our early
work (Damani et al. 2022), can be subject to large errors due to aliasing, and even slight
misalignment between the flow and the sensor axis. A variety of other configurations were
considered before finalising the sensor array design; see § 5.3 of Damani (2025). A key
finding of the mathematical model revealed that an array of spanwise-oriented sensors
placed closely together along the flow direction was ideal for sub-convective pressure
measurements.

Figure 6 represents the final design. The array comprised 80 sensors covering length
440 mm, with 5.5 mm spacing between the sensors. Modelling results also showed
better performance for continuous pore distributions along the flow direction, i.e. no
discontinuity between sensor boundaries. This shows closer sensor spacing that reduces
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Parameters Units Value

Clauser pressure gradient parameter (β) – −0.317
Freestream velocity (U∞) m s−1 38.19
Edge velocity (Ue) m s−1 38.51
Friction to edge velocity ratio (uτ /Ue) – 0.036
Freestream Mach number (M∞) – 0.11
Boundary layer thickness (δ) mm 66.2
Displacement thickness (δ∗) mm 9.6
Momentum thickness (θ) mm 6.9
Momentum thickness Reynolds number (Reθ ) – 15.46 × 103

Friction Reynolds number (Reτ ) – 4.48 × 103

Viscous length scale (ν/uτ ) μm 14.76
Shape factor (H ) – 1.38
Coefficient of friction (C f ) – 2.4 × 10−3

Table 2. Boundary layer statistics for Rec = cU∞/ν = 2 × 106 at x1 = 2.64 m.

439.5 mm

20

0

–20

–150Flow –100 –50 0 50 100 150 200

Figure 6. Full array layout showcasing 80 linearly arranged spanwise elongated sensors.

aliasing at lower wavenumbers by pushing the Nyquist limit to higher wavenumbers while
still averaging a significant fraction of the convective energy by preserving the large
area of the sensor. Unlike the array studied by Damani et al. (2022), which aimed to
minimise aliasing and contamination from convective pressure fluctuations in the sub-
convective region by using long sensors in the flow direction, this design acknowledges
that while aliasing cannot be eliminated, it can be pushed to higher wavenumbers,
making low wavenumbers free from aliasing. The linear arrangement also allowed multiple
independent measurements of two-point correlations at separations smaller than the array
length, which proved to be crucial in resolving the sub-convective pressure fluctuations.

Figure 7(a) shows the modified Corcos wavenumber–frequency spectrum averaged over
the 50 mm span of the array. This result serves as the reference for comparing the linear
80-sensor array performance. Figure 7(b) shows the wavenumber–frequency spectrum
that would be measured by the array for uniform sensor sensitivity as modelled using
the approach described in § 3.2. This plot is very similar to figure 7(a), indicating the
capability of the 80-sensor array to regenerate the reference. The plots are cut off at
3500 Hz due to the sensors’ resonance frequency limit, which is based on the first cross-
mode of the acoustic cavity. The differences are highlighted in figure 8(a), which plots the
error between the predicted wavenumber–frequency spectrum and the spanwise-averaged
spectrum evaluated using the modified Corcos model. Notice that the error in the low-
wavenumber and low-frequency (sub-convective) domain is near 0 dB, showing that this
pore distribution is an ideal candidate to manufacture the array. This also reflects on the
performance of the array, showing that the levels in the sub-convective domain would be
free of aliasing.
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Figure 7. (a) Wavenumber–frequency spectrum averaged over a 50 mm span of the array.
(b) Wavenumber–frequency spectrum estimate for an 80-sensor linear array. The red dashed line represents
the convective line (Uc = 0.7Ue), and the white dashed line shows the sound line.
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Figure 8. Error with respect to spanwise-averaged wavenumber–frequency spectrum: (a) modified Corcos
model with uniform sensitivity; (b) Chase model with weighted sensitivity. The red dashed line represents
the convective line (Uc = 0.7Ue), and the white dashed line shows the sound line.

The final error calculations for the array were performed after the wind tunnel
experiment, at which point the Chase-like form of the actual pressure spectrum and the
non-uniformity of the actual sensor sensitivity (figure 5) were known. The error estimates
performed assuming a Chase spectrum and using the true non-uniform sensitivity are
shown in figure 8(b). The results reveal aliasing artefacts at low wavenumbers and
frequencies above 2000 Hz due to the biased sensitivity. Despite this, the error remains
minimal in the sub-convective domain, indicating that the measurements are reliable in
the region of interest, and that the specific model choice does not significantly affect the
accuracy of the predictions in this regime.

4. Experimental methodology

4.1. Experimental set-up and boundary layer flow conditions
Measurements were carried out using the boundary layer grown on the port-side test wall
of the Virginia Tech Stability Wind Tunnel. A top-down schematic of the experimental set-
up is presented in figure 9. The port wall comprised a grid of modular panels (represented
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Contraction wall Origin
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U∞

Figure 9. Top-down schematic of experimental test section in the Stability Wind Tunnel at Virginia Tech. The
vertical black markings on the port wall represent individual panels that make up the test section. The yellow
band represents the location of the sub-convective pressure sensing array.

by the vertical black markings on the port wall in the figure), which were replaced with
different instrumentation depending on the measurement. The turbulent boundary layer
was initiated using a trip strip in the contraction chamber of the facility, resulting in a
fully developed boundary layer at the inlet (marked as the origin in orange) of the test
section. The inlet was the reference point for length measurements along the test section.
The test section included a NACA 0012 aerofoil with the quarter chord (c = 0.914 m)
located 3.45 m from the origin, spanning the full height of the test section. This imposed
varying pressure gradients on the wall; however, this study focuses on a single pressure
gradient condition corresponding to zero angle of attack, as shown in figure 9. The pressure
variation along the test section was measured using static pressure taps distributed on the
wall in the flow direction. The boundary layer profile was measured at x1 = 2.64 m using a
Pitot-static boundary layer rake (BLR) comprising 30 ports arranged logarithmically away
from the wall. This set-up was similar to that of Vishwanathan (2023) and Fritsch et al.
(2023). Results from these studies will be compared to the data presented in this paper, as
the flow conditions were very similar. The sub-convective pressure sensing array (marked
in yellow) was placed with its first sensor located 2.47 m from the origin.

Figure 10(a) shows the mean static pressure distribution along the centreline of the port-
side test wall, with the aerofoil leading edge shown at x1 = 3.22 m spanning the region
between the dash-dotted lines. It also marks the location and extent of the sub-convective
array with dotted lines. Figure 10(b) compares the boundary layer profile acquired from
this study with Vishwanathan (2023). It is important to note that the acquisition location
of the rake in the present study was 0.1 m upstream of the study by Vishwanathan
(2023), and the test section underwent a structural upgrade between the two datasets.
Furthermore, the BLR instruments used in the two studies were different. Nonetheless,
the profiles observe close agreement, with the differences lying within uncertainty. The
boundary layer was spanwise uniform, as shown in Butt et al. (2023) using particle image
velocimetry measurements, and Butt et al. (2024a) using spanwise boundary layer traverse
measurements. Relevant boundary layer parameters have been tabulated in table 2 for the
flow condition considered in this study. The results from the modelling and the array
design are described in detail in the following subsections.

4.2. Production array and calibration
Figure 11(a) shows a computer-aided design (CAD) view of the array (green), microphone
holder (blue), microphones (grey) and O-rings (black) to ensure a seal of individual
sensors. The array was 3-D printed from Accura 60 (SLA) in two parts: an upper part
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Figure 10. (a) Mean static pressure (error bars showing 1.96σ band for C p) profile along test section with
array marked with dashed black lines and aerofoil with dash-dotted lines. (b) Boundary layer profile compared
against Vishwanathan (2023) (error bars showing 1.96σ band for u1/Ue).

Flow side

Alignment

grooves

Cavities

V-split

Flow

Mic holder

O-rings

Mics inserted here Mics

Pores ∅0.4 mm

440 mm
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Figure 11. (a) A CAD model of the sensor array, highlighting its components and a cross-sectional view of a
single cavity (pores omitted for clarity). (b) Photographic images of the fabricated array, showing the smooth
top surface with pores, and the back side housing the microphones.

including the flow surface and the upper portions of the sub-resonant cavities, and a
lower part including the remainder of the cavities and the microphone supports. The
two parts were joined along the 146◦ V-shaped channel shown in the cross-sectional
view of figure 11(a) using grease. Each sensor was pressure-checked to ensure a seal.
The pores were drilled using a CNC machine after joining the parts. G.R.A.S. 40PH-S5
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1/4” microphones were used, each with frequency range 10–20 kHz (flat frequency
response within ±1 dB) and dynamic range 32 dB(A) to 135 dB. The sensors were linearly
arranged with 5.5 mm spacing (Nyquist wavenumber 571.2 rad m−1), with adjacent
sensors mirrored along the streamwise axis. The maximum centre-to-centre separation
between sensors was 434.5 mm, corresponding to wavenumber resolution 7.23 rad m−1.

Data were sampled using an 18-bit, 128-channel simultaneous sampling system at
25 600 Hz over 320 s for each flow condition. This long sampling duration was chosen
to improve the signal-to-noise ratio for the low-magnitude sub-convective pressure
fluctuations, which agrees with observations made by Abtahi et al. (2024a). This duration
was also limited by the volume of data stored in the data acquisition memory. The
frequency spectrum was analysed by dividing the time signal into 5000 records, each
consisting of 4096 samples. Each record represented 0.16 s of data, and the spectrum was
calculated using the pwelch method with 50 % overlap and a Hanning window.

The array of multi-pore Helmholtz resonating sensors required a bulk dynamic
calibration to account for cavity dynamics and any phase discrepancies between the
microphones. This was obtained using a two-step calibration procedure involving a
surface pressure measurement and an array measurement. An omnidirectional source
(HBK Type 4292-L) placed in the far field was used. The surface pressure measurement
used HBK Type 4144 and 4145 1 inch microphones. The individual sensors on the
array were calibrated simultaneously, utilising a time delay factor based on source path
length relations. Dividing out the spectral response from the two measurements yielded
individual sensor response functions accounting for magnitude and phase corrections.
Their form was similar to observations made by Damani et al. (2025) on cavity sensors.
Each sensor experienced a shift in response due to impedance changes from grazing flow
effects (Fritsch et al. 2021; Li & Choy 2024). The shift in resonant frequency was found
to be within 300 Hz, and the magnitude observed a variation within 2 dB relative to 1
V Pa−1. The modelling approach described in § 3 was utilised to back out the shift in
response functions. Specifically, (3.5) was evaluated for the distribution of 80 pores on the
sensor, and the Goody model (3.13) was used as the autospectral density function. A more
precise calibration technique would employ a direct relation between the shear stress and
its effects on the resonance of an arbitrarily shaped cavity; however, this was not available.

4.3. Additional measurements
Comparative measurements were also taken using six linearly spaced HBK Type 4144
and 4145 1 inch microphones (23.7 mm diaphragm size), this being the same as the
microphone array used by Farabee & Geib (1991). This array is referred to as the F&G
array hereafter, and a green colour will be used for its results. When used, it was installed
at the same location as the sub-convective pressure sensing array with its first microphone
at x1 = 2.51 m, equivalent to the position of the seventh sensor on the sub-convective
array. Note that a single microphone on the F&G array covered a streamwise extent just
short of four sensors of the sub-convective array. Figure 12 shows the view of the array
with the microphone diaphragms that were exposed to the flow. Data were acquired at
sampling rate 65 536 Hz for 256 s using an HBK Type 3050 Multipurpose 6-channel
DAQ module. The spectrum analysis was conducted using record size 8192 samples, 50 %
overlap, and a Hanning window. It is important to highlight the differences between the
measurements by the array and the F&G array. This mainly concerns their spanwise extent
(sensor 50 mm, and F&G microphone 23.7 mm), which creates a difference in averaging.
Comparing the results when normalised on their autospectrum helps to account for this
averaging difference, as will be discussed in § 5.1.
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HBK Type 4144/4145

1′′ microphones

26.9 mm

Figure 12. An array of six 1 inch HBK type 4144/4145 microphones used by Farabee & Geib (1991).

Only the first four microphones were usable in the present study due to inconsistencies
observed in the last two. Farabee & Geib (1991) analysed data using sum and difference
modes to isolate wall pressure levels in the sub-convective and acoustic regions. The sum
mode, which phases signals in unison, filters out all but wavelengths corresponding to
λ= L/m, where L is the microphone spacing, and m is an integer. The difference mode,
applying an alternating phase, isolates wavelengths at (λ= 2L/(2m + 1)), corresponding
to wavenumbers k1L = (2m + 1)π and k1L = 2mπ for difference and sum modes,
respectively. Using this methodology, a working wavenumber k1δ

∗ = 1.12 and frequencies
2.5 kHz (ωδ∗/U∞ = 3.9) for the sub-convective region, and 6 kHz (ωδ∗/U∞ = 9.4) for
the acoustic region, were identified. A more refined wavenumber–frequency spectrum can
be obtained through cross-spectral density analysis and spatial Fourier transformation.
However, the small number of microphones, large sensing areas and wide spacing limit
the wavenumber range and resolution. The Nyquist limit is 116.78 rad m−1, with resolution
38.9 rad m−1. Measurements were conducted at a lower Reynolds number (δ = 69.7 mm,
δ∗ = 10.4 mm, θ = 7.4 mm, Reτ = 3320) to prevent damage to exposed microphone
diaphragms. The measurements were scaled to the high Reynolds number data shown in
this study based on normalisations.

5. Results and discussion
This section presents measurements from the wall pressure sensing array for the case
described in table 2 in the form of cross-spectrum and wavenumber–frequency spectrum.
First, a note on the flow statistics convergence is presented to establish noise floor levels
and limitations of the measurements, which is crucial for inferences. Each subsection
details a description of the measured data and its comparison with model estimates that
account for area averaging of the sensors. The wall pressure wavenumber–frequency
models do not account for pressure gradient, but in the past have been used for comparison
with both zero and non-zero pressure gradient flows (Goody 2004; Hwang, Bonness &
Hambric 2009). Hence the choice of wall pressure models for this study is justifiable.
Also, the overall aim was to perform a rudimentary comparison to highlight the differences
in the sub-convective domain. Measurements from the F&G array are also compared at
overlapping wavenumbers and frequencies.

5.1. Flow convergence and homogeneity
Multiple datasets were combined to understand the statistics of the wall pressure
fluctuations. Flow convergence is studied using the average coherence between all possible
sensor pairs on the array. As an example, the averaged 12th-octave binned coherence
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Figure 13. Average binned coherence between sensors (�x1/δ
∗ = 15.3) for different sampling durations,

showing convergence of statistics. Uncertainty estimates are shown for the longest temporal duration case.

corresponding to �x1/δ
∗ = 15.3 is shown in figure 13. The average represents the mean

of 51 possible sensor pair combinations corresponding to �x1/δ
∗ = 15.3. The plots

present the coherence as a function of frequency for different sampling durations. The
frequency has been normalised on the time scale δ∗/U∞, and the legend indicates the
durations as multiples of the same time scale. The curves represent time scales from
7 × 105 to 107 times δ∗/U∞, corresponding to 4000–60 000 spectral averages. The lowest
coherence levels drop to −35 dB for the shortest average time, to approximately −45
dB for the longest. The continuing drop in levels with averaging time implies that the
results are still converging, and that the measurement system’s noise floor has not been
reached. We speculate that this very slow convergence is due to the meandering nature of
superstructures (Hutchins & Marusic 2007). This convergence limitation is also observed
in the flow visualisation results discussed in Butt et al. (2023), and is per the observations
of Abtahi et al. (2024a).

Figure 14 compares the measured pressure autospectra for the sub-resonant array with
estimates from various wall pressure models of § 2, scaled using the boundary layer
parameters of table 2, and averaged over the 50 mm × 5 mm sensor area. Also included is
the autospectrum measured by the F&G array of microphones, which represents averaging
over the 23.6 mm diameter of its sensors. The plot levels are presented in sound pressure
level (dB/Hz relative to 20 μPa). The Corcos, Smol’yakov and modified Corcos models use
the Goody pointwise model of § 3.2 to evaluate the area-averaged form. Results from the
F&G array estimated by a model are also shown in solid green. The agreement between the
sub-resonant array measurement and all models except the Smol’yakov is excellent at low
frequencies, with minor discrepancies emerging at higher frequencies as area-averaging
effects become more significant. This shows that the flow-based calibrations discussed in
§ 4.2 are independent of the model chosen, except the Smol’yakov model. The Smol’yakov
model significantly underestimates the levels because of the much larger (and apparently
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Figure 14. Autospectra comparison between area-averaged model predictions, measured data and pointwise
estimates. The uncertainty in the array measurement is ±1 dB.

unrealistic) effect of sensor area averaging on its result. The F&G microphones show a
pressure spectrum with a steeper roll-off at 1000 Hz, attributed to the larger surface area
of the microphones and their Bessel-function-like area sensitivity.

Uncertainty estimates presented with the cross-spectra and wavenumber–frequency
spectra in the following subsections were obtained by classifying sources as bias or random
uncertainty. Sources of bias uncertainty include variations in flow speed inside the test
section throughout the sampling period, the bias due to boundary layer growth over the
array, and the bias due to sensor calibrations. The uncertainty in the flow speed was
found to be 0.11 m s−1 (0.3 % error). This corresponds to pressure uncertainty 0.025
dB, which was accounted for in cross-spectrum and wavenumber–frequency spectrum
uncertainty calculations. The boundary layer growth and favourable pressure gradient
experienced at the measurement location make it challenging to separate the uncertainties.
The autospectrum had uncertainty 1 dB, considering the sensor-to-sensor variation and
flow inhomogeneity across the array’s length. Random uncertainty was evaluated using
relations given by Bendat & Piersol (2010), mainly for autospectrum, cross-spectrum
and phase. An uncertainty propagation analysis was performed to find the random
uncertainty in the wavenumber–frequency spectrum. Random uncertainty is also observed
in individual sensor responses, which show a variation of 0.6 dB relative to 20 μPa.
This shows consistency with the sensor–sensor variation, and can be used in the total
uncertainty estimate.

5.2. Cross-spectrum
Figure 15 shows the averaged cross-spectrum magnitude and the unwrapped phase. The
averaged cross-spectrum was evaluated by considering all possible combinations of sensor
pairs as a function of streamwise separation, and obtaining the average. Both contours
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Figure 15. (a) Measured cross-spectrum magnitude and (b) unwrapped phase, as functions of frequency and
streamwise separation. The red axes represent non-dimensional streamwise distance (�x1/δ

∗) and frequency
(ωδ∗/U∞).

are shown as a function of frequency in hertz, and streamwise distance in metres. The
colour scale on the cross-spectrum plot (figure 15a) represents the spectrum levels in dB
relative to 20 μPa. Non-dimensional axes have also been indicated in red, with the non-
dimensional spectra levels (not shown) scaled as SqqU∞/τ 2

wδ∗, i.e. a factor 1026.1p2
re f =

−63.8 dB. Regions in high frequencies and separations are omitted (seen as white) due
to a minimum coherence criterion (γ 2

min = 0.002). An exponentially decaying form can be
observed as a function of spatial separation at a fixed frequency. Considering a frequency
slice at low frequencies (below 300 Hz), the variation in levels shows a periodic drop in
levels (associated with the green colour) at specific separations. For instance, at f = 125
Hz, one observes a drop in levels at �x1 = 0.11 and 0.33 m. As we will see later, this
side-lobe-type behaviour is a result of the surprising compactness of the convective ridge
in the wavenumber domain. The uncertainty in the magnitude of the cross-spectrum is
approximately 3 dB in the region shown, and higher in the omitted high-frequency and
larger-separation region. The magnitude plot shows faint vertical comb-like features in the
streamwise direction at intervals of 0.011 m, particularly around 1 kHz and �x1 = 0.05 m.
This artefact is an attribute of the non-uniform area sensitivity over the sensor, as discussed
in § 3.1.

The phase (figure 15b) represents an interesting behaviour comprising a main lobe
where the phase increases almost linearly with both frequency and streamwise separation.
Showing the phase contour is important to identify the plausible relationship between
sub-convective pressure fluctuations and the coherent motions in the boundary layer.
Considering the physical flow, the coherent motions move at a bulk speed in the range
60−80 % of the edge velocity. The pressure perturbations matching the convective motion
are registered in the convective ridge. It has been established that the convective phase
evolves nonlinearly with frequency (as modelled by Smol’yakov 2006), but the quantity of
interest is the relation of phase to sub-convective wavenumbers. Considering a specific
frequency, the phase relation for convective pressure fluctuations is known; however,
the unwrapped phase shows deviations from this relation, representing the dispersion of
pressure waves into wavenumbers not corresponding to convective motions. This yields
much higher phase speeds of pressure waves, which may or may not correlate with
anything physical in the fluid. This deviation can be sourced from various possibilities,
including convective motions tracing the surface at angles, or the evolution of coherent
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Figure 16. Cross-spectra estimates from various models for the array of sensors superimposed with the
measured data as dashed contour lines.

motions in space and time. Further investigation is needed to clearly show the relation
between sub-convective pressure fluctuations and coherent motions.

Figure 16 compares the measured cross-spectral magnitude with the predictions made
using the models of § 3. The colour scale depicts the magnitude of the cross-spectra
estimates in dB rel. 20 μPa. The non-dimensional axes are avoided here to prevent visual
clutter; however, the same axes as figure 15 apply, along with the colour bar scaling. The
model predictions are made using (3.5), accounting for the sensor averaging. They show
exponentially decaying behaviour with respect to frequency and streamwise separation,
similar to the measurements. The contour levels have been limited for convenience to
compare with figure 15. This creates a white region at high frequencies, and separations
representing omitted colour levels. Each contour also shows dashed contour lines from the
measured data within colour limits 45 and 75 dB. The Corcos and modified Corcos models
have very similar predictions except for a minor difference in their decay behaviour,
with the Corcos model showing a sharper decay. The Chase estimate shows much slower
decay, which agrees closely with the measured data identified by the hard-to-distinguish
measured data (dashed lines) from the filled contours. The Chase model has a large
spread in separation, while the Smol’yakov model seems to have the fastest decay as a
function of separation. The behaviour at larger separations appears to be different for
the Smol’yakov model compared to the others. It shows a truncated nature, while other
models show a smoother decay. A comparison between the colour contours from the
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Figure 17. Comparison of cross-spectral magnitude at f = 510 Hz (ωδ∗/U∞ = 0.8).

model predictions and the dashed contour lines from the measurements reveals differences
in decay behaviour. Both the Corcos and Smol’yakov models predict faster decay with
streamwise distance than observed in the measurements. In contrast, the Chase and
modified Corcos models show better agreement with the experimental data, with the Chase
model exhibiting the closest match.

An example slice of the cross-spectrum magnitude relative to 20 μPa is shown in
figure 17. This yields a direct comparison of levels and the behaviour as a function
of streamwise separation at a fixed frequency (ωδ∗/U∞ = 0.8, f = 510 Hz). It shows
considerably better agreement with the Chase model than with any of the others. The
behaviour at higher separations (0.3 ��x1 � 0.43), including the sharp feature at �x1 =
0.36, is in the region where the measurement coherence is only marginally significant, as
seen in figure 15(a). It can be seen from this comparison that the other models – Corcos,
modified Corcos and Smol’yakov – perform poorly in predicting the trend of the cross-
spectrum decay. These overpredict the decay rate, giving rise to much steeper plots. The
Smol’yakov model shows a discrepancy at �x1 = 0 due to the difference observed in the
autospectrum in figure 14.

5.3. Wavenumber–frequency spectrum
Taking the Fourier transform of the cross-spectrum along the spatial separation direction
yields the wavenumber–frequency spectrum. Figure 18 presents this spectrum, with
wavenumber on the x-axis and frequency on the y-axis. Non-dimensional axes have also
been indicated in red, with the non-dimensional spectra levels (not shown) scaled as
φqqU∞/τ 2

wδ∗2, i.e. a factor of 1.06 × 105 p2
re f = −43.7 dB. The figure highlights three

distinct regions: supersonic (left of the white dashed line), sub-convective (between
the dashed lines), and convective (around the red dashed line). The white dashed line
marks the sound line, while the red dashed line represents the nominal convective line
(ωc/kc = 0.7Ue). The pressure spectrum peaks near the convective line, representing
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Figure 18. Measured wavenumber–frequency spectrum. The red axes represent non-dimensional streamwise
wavenumber (k1δ

∗) and frequency (ωδ∗/U∞). The white dashed line is the sound line (k1 = ω/c0), the red
dashed line is the convective line assuming constant convective velocity (kc = ω/Uc), and the red dotted line
is the locus of the convective ridge peak.

the fluctuations moving with the mean bulk motion of the fluid. The region inside the
white dashed line represents sound waves grazing the surface. These can arise due to
acoustics in the facility, and convective motions giving rise to near-field acoustics. The
area between the lines is the focus of this study, which highlights a wavenumber-dependent
behaviour at low frequencies, and a wavenumber-white behaviour at higher frequencies.
There appears to be a strict boundary on the left-hand side of the convective ridge (in the
sub-convective domain) beyond which a rapid reduction in levels is observed. Additionally,
the convective ridge shows a decrease in slope with increasing wavenumber, indicating
a frequency-dependent convective velocity. This is marked using the dotted red line,
which tracks the peak of the spectral levels. The right-hand side of the convective ridge
shows a larger spread, implying that the convective ridge is not symmetric. The diagonal
features at low frequencies and high wavenumber in the super-convective regime indicate
a lack of sufficient resolution in frequency. The uncertainties in the cross-spectrum were
propagated in the wavenumber–frequency domain, yielding uncertainty bounds ±1.5
dB. This includes the bias uncertainty in the freestream velocity, inhomogeneity due
to boundary layer growth, and random uncertainty due to sensor–sensor variation. The
boundary layer growth was very small, with maximum variation 6 % in the boundary
layer parameters between the most upstream and downstream points. This difference was
modelled and propagated to the wavenumber–frequency spectrum. The errors were within
±1.5 dB, with the largest errors seen at the transition between the convective ridge and the
sub-convective domain.

Figure 19 illustrates the predicted wavenumber–frequency spectrum based on the four
models described in § 2. The models do not account for acoustics, hence the absence of
the acoustic regime. The axes and colour scale ranges of the contours are kept consistent
with the measured data plot (figure 18), which makes comparison with the measured
data appropriate. The non-dimensional axes are avoided here to prevent visual clutter;
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Figure 19. Wavenumber–frequency spectrum estimates from various models for the array of sensors.

however, the same axes as in figure 18 apply, along with the colour bar scaling. Figure 19
shows that the models capture the convective ridge; however, there are discrepancies.
Most wall pressure models show a symmetric convective ridge. This unrealistic symmetry
persists even if the models are run with the observed variable, convection velocity. This
suggests the need for modifications to the convective ridge models. The Corcos and
Smol’yakov models show very similar behaviour, with the Smol’yakov model showing
lower overall levels. This is mainly due to their same overall form, with differences in
modelling the correlation length scales. Both models show a broad convective ridge with
a smoother transition into the sub-convective regime, in contrast to the measured data.
Figure 18 shows a frequency-dependent convective ridge, whereas the models assume a
fixed convection ratio (Uc/Ue = 0.7). The Chase model aligns closely with the measured
data and shows a tightly constrained convective ridge similar to the measurements. This
has further relevance as the array design was based on the modified Corcos model, and
the flow data show a larger overlap with the Chase model, indicating independence in the
choice of model. It also shows that the measured data truly capture the flow dynamics.
An interesting observation for the Chase model prediction is the broadening observed
as frequencies approach zero. This is due to the dependence of the model’s cross-spectral
density function on ω−1. Such a broadband behaviour is not observed in the measured data.
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Figure 20. Frequency slices from the measured and estimated wavenumber–frequency spectra.

The modified Corcos model introduces variations in the convective ridge compared to
the original Corcos and Smol’yakov models, allowing the ridge to narrow, aligning more
closely with the measured data. However, the transition to the sub-convective regime
shows a slow decay of levels, which is not observed in the data. The Chase model
estimates a symmetric convective ridge; however, the data show an asymmetric ridge with
slower decay at higher wavenumbers. The sub-convective behaviour predicted by Chase
tends towards a complex, wavenumber-dependent form at lower wavenumbers, consistent
with the measured data. Generally, Chase has the lowest levels, Corcos overpredicts,
Smol’yakov underpredicts, and the modified Corcos is the best of Corcos and Smol’yakov.
Moreover, the sub-convective regime levels predicted by the models are higher than the
measured data, indicating a need for wall pressure model adjustments.

Figure 20 compares the measured data and the model predictions through horizontal
slices of the wavenumber–frequency spectrum. The spectrum is normalised on the
autospectrum of the sensor to account for area averaging. The x-axis is normalised
on the nominal convective wavenumber (kc = ω/Uc) to align the convective peaks.
Fixed frequencies ωδ∗/U∞ = 1 and 2 are chosen for the comparison. Wavenumbers
with k1/kc < 1 correspond to the sub-convective regime. The convective peak aligns
well for the models due to a constant convective relation; however, the measured data
observe a shift in the peak due to frequency-dependent convective speed. Differences are
observed in the levels and the width of the convective peak. The levels for the modified
Corcos and Chase models agree best with the measurements, while for others, these are
underpredicted. There is a distinct difference in the convective peak shape for different
cases. The measurements exhibit a much faster roll-off into the sub-convective ridge
than all models except Chase, with peak slope 124.5 dB/(k1/kc) in the measurements
compared to 25.5 dB/(k1/kc) in the modified Corcos model. Among all models, the Chase
model predicts the lowest levels in the sub-convective regime; however, it falls above the
measured data by 5–10 dB. This inconsistency can be attributed to modelling assumptions
in § 3.1 and the inaccuracies in wall pressure models. The measured data (red) also show
a rise in levels at very small wavenumbers (k1/kc < 0.1), corresponding to the acoustic
cone. The Corcos and Smol’yakov models overpredict the levels by 10–15 dB in the sub-
convective regime, and show a broad convective ridge. None of the models captures the
asymmetry in the convective ridge observed in the measurements.

1014 A26-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
31

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10313


S. Damani, H. Butt, E. Totten, W.J. Devenport and T. Lowe

10–1 100 101 10–1 100 101
–60

–50

–40

–30

–20

–10

0

10

Chase
Corcos
Modified Corcos
Smol’yakov
Array
F&G

F&G (ωδ∗/U∞ = 3.94)

–50

–40

–30

–20

–10

0

10

(a) (b)
1
0
 l

o
g

1
0

 (
φ

pp
 (

k 1
, 
ω

) 
U

∞
/
τ2 w

 (
δ∗

)2
)

k1δ
∗

 = 0.42, k1 = 43 rad m–1 k1δ
∗

 = 0.76, k1 = 79 rad m–1

ωδ∗/U∞ ωδ∗/U∞

Figure 21. Wavenumber slices from the measured and estimated wavenumber-frequency spectra.

Figure 21 presents two vertical slices of the wavenumber–frequency spectrum
normalised on boundary layer parameters (δ∗, U∞, τw). Normalised wavenumbers k1δ

∗ =
0.42 and 0.76 are chosen for comparisons. The convective peak levels agree for all models
(within ±2 dB) except the Smol’yakov model. There is a difference in the peak location
due to the frequency dependence of the convection velocity. The region on the right-
hand side of the convective peak is the sub-convective region. The Chase model predicts
significantly lower levels in the sub-convective domain than the other models. These
predictions are close to the measured array data, but there are some differences observed,
including the transition to the sub-convective regime (ωδ∗/U∞ > 0.3 for the k1δ

∗ =
0.42 slice). The measured data (red) show a rise in levels towards higher frequencies
(ωδ∗/U∞ > 2 for the k1δ

∗ = 0.42 slice); while this may well be real, it also might
represent the impact of the residual high frequency low-wavenumber aliasing error visible
in figure 8(b). The Smol’yakov model has an overall profile similar to the array data in
the sub-convective regime, although it severely underpredicts the convective peak. This
could imply a mixed-length correlation factor for wall pressure model improvements due
to the Smol’yakov model using mixed-length correlations (2.17) instead of separating the
spanwise and streamwise correlations as done by the Corcos and modified Corcos models.
The Corcos and modified Corcos models agree near the convective peak but diverge in the
sub-convective regime, with a variation within 5 dB. At higher wavenumbers, the trends
are consistent with low-wavenumber behaviour.

Figures 20 and 21 compare the F&G array data (green) with the sub-resonant sensor
array data (red). In interpreting these plots, it is important to remember that Farabee &
Geib (1991) identified a single wavenumber–frequency point (k1δ

∗ = 1.12, ωδ∗/U∞ =
3.94) to reveal the sub-convective levels based on the analogue data processing system
available at the time. Here, all possible wavenumbers and frequencies have been identified
based on the discrete Fourier transform algorithms available today. Figure 20 presents
the frequency slice for the F&G array. Despite differences in sensor areas, normalisation
on the autospectrum ensures some comparability. The F&G array exhibits a broadened
convective peak due to limited wavenumber resolution and spatial aliasing, with sub-
convective levels at least 10 dB higher than the sub-resonant array measured data.
A coincidental agreement is observed in figure 20(a) at k1/kc ≈ 0.8. For the wavenumber
slices shown in figure 21, one can clearly identify the broadened convective peak and
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the aliased bump at slightly higher frequencies. Beyond the aliased bump, the frequency
(ωδ∗/U∞ = 3.94) is shown with a blue star, indicating the point where the levels can
be trusted. At k1δ

∗ = 1.12 (k1 = 116.7 rad m−1) and ωδ∗/U∞ = 3.94 (2.5 kHz), F&G
data were 0.5 dB above the array levels, a difference likely suppressed by aliasing of
sub-resonant array measurements. These results demonstrate the limitations of sparse
microphone arrays in resolving sub-convective pressure fluctuations while confirming an
agreement between the new sub-resonator-based sensor array and the F&G array. To the
best of our knowledge, all comparisons shown in the preceding section uncover the gaps
in sub-convective pressure levels between experiments and models. This also serves as a
validation of the Chase (1980) model, which has been difficult in the past. This attests to
the measurement technique and uncovers possibilities in wall pressure modelling.

6. Conclusions
This study presents a novel measurement technique for the measurement of sub-convective
pressure fluctuations in turbulent boundary layers. Sensors with a high aspect ratio, large
area (0.75δ × 0.075δ) aligned perpendicular to the flow are chosen to filter convective
pressure fluctuations, and their arrangement in space is optimised by a mathematical
modelling approach. An array of 80 multi-pore Helmholtz resonator-based sensors
comprising an acoustic cavity, rigid flow interface with pores and a microphone is used
to measure the wall pressure fluctuations. A detailed comparison is conducted between
existing wall pressure models and wind tunnel data on sub-convective pressure fluctuations
for a near-zero pressure gradient condition. The models used include incompressible
(Corcos 1967; Chase 1980; Smol’yakov 2006) and modified Corcos (Hwang et al. 2003).
The sensor area sensitivity is approximated as a spatial summation of weighted delta
functions based on the discrete distribution of pores over the sensor area.

Measurements were conducted for long sampling durations, and a convergence study
showed a drop in coherence levels as low as −45 dB with an increase in sampling
duration from 7 × 105δ∗/U∞ to 107δ∗/U∞. This conveyed the need for long temporal
scales to resolve the sub-convective fluctuations, as observed by Abtahi et al. (2024a).
This inference is crucial due to its implications on the cost of computational studies
and data requirements of large-scale measurements. The cross-spectrum was studied as a
function of frequency and streamwise separation, showing an exponential decay, as often
modelled. A side-lobe-type behaviour was observed due to a surprising compactness of
the convective ridge in the wavenumber domain. A continuous wavenumber–frequency
spectrum was obtained using the array of sensors, showing a distinction between the
supersonic, sub-convective and convective ridge. The spectrum revealed sufficient range
and resolution in the sub-convective domain. It covered a range of wavenumbers (0 <

k1δ
∗ < 11) and frequencies (0.16 < ωδ∗/U∞ < 5.5). The convective ridge was observed

to have an asymmetric behaviour about the convective line, with a sharp transition into
the sub-convective domain. This reflects the physical nature of the flow, with no pressure
disturbances other than sound occupying group speeds beyond the convective ridge. The
convective speed was observed to be a function of frequency, with decreasing values at
increasing frequencies.

Comparisons with the F&G array estimates reveal the inability of the large-
sensor/small-array (F&G array) to resolve sub-convective pressure levels as low as in the
array developed in this study. However, some agreements with the measured data validate
the results and suggest that the results from Farabee & Geib (1991) were truly remarkable
for their capabilities. Comparisons with wall pressure models show some agreement at a
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range of frequencies, but large discrepancies exist. All models except Chase underpredict
the cross-spectral levels and overpredict the correlation decay rate. The Chase model
captures the sharp transition from the convective ridge to the sub-convective domain in the
wavenumber–frequency space. Measured levels in the sub-convective regime are less than
in all models at lower frequencies, but higher at larger frequencies, indicating a difference
in the dynamic range between the models and the measured data. The results suggest that
an optimal model might combine the Chase and Smol’yakov models at lower and higher
frequencies, respectively. Alternatively, this hints towards a modification of the Chase
model accounting for the convective peak’s dependence on frequency and the asymmetry
in the convective ridge.
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