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Abstract

Assisted and automated driving functions will rely on machine learning algorithms, given their ability to cope with
real-world variations, e.g. vehicles of different shapes, positions, colors, and so forth. Supervised learning needs
annotated datasets, and several automotive datasets are available. However, these datasets are tremendous in volume,
and labeling accuracy and quality can vary across different datasets and within dataset frames. Accurate and
appropriate ground truth is especially important for automotive, as “incomplete” or “incorrect” learning can negatively
impact vehicle safety when these neural networks are deployed. This work investigates the ground truth quality of
widely adopted automotive datasets, including a detailed analysis of KITTI MoSeg. According to the identified and
classified errors in the annotations of different automotive datasets, this article provides three different criteria
collections for producing improved annotations. These criteria are enforceable and applicable to a wide variety of
datasets. The three annotations sets are created to (i) remove dubious cases; (ii) annotate to the best of human visual
system; and (iii) remove clear erroneous BBs. KITTI MoSeg has been reannotated three times according to the
specified criteria, and three state-of-the-art deep neural network object detectors are used to evaluate them. The results
clearly show that network performance is affected by ground truth variations, and removing clear errors is beneficial for
predicting real-world objects only for somenetworks. The relabeled datasets still present some caseswith “arbitrary”/“-
controversial” annotations, and therefore, this work concludes with some guidelines related to dataset annotation,
metadata/sublabels, and specific automotive use cases.

Impact Statement

The proposed work can strongly impact the automotive community in manifold ways: (i) the development of
several automotive perception algorithms rely on the data from big annotated datasets, highlighting how errors in
annotations can affect neural network performance, andwhich neural networks aremore robust can inform future
algorithm design and deployment; (ii) proposing some clear and enforceable criteria for annotation (applicable to
any automotive datasets), with different levels of formality and enforceability, this work might promote a more
uniform way of labeling in the automotive community.
We believe this work can have strong implications for neural network research, as well as on their deployment in
industry, combined with the use of well-known automotive benchmarking datasets.
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1. Introduction

With the recent advances in the field of artificial intelligence (AI) andmachine learning (ML), deep neural
networks (DNNs) are becoming commonly used in many fields, from agriculture to medical, from
manufacturing to robotics (Dokic et al., 2020; Retson et al., 2019; Park et al., 2021). Compared to
traditional algorithms, ML algorithms can provide better flexibility to unforeseen and uncommon
circumstances. This flexibility is critical for applications like assisted and automated driving (AAD)
functions due to the high variability (of the environment and road stakeholders) that can be encountered
during a vehicle journey. There are countless factors that can affect an AAD sense-perceive-plan-control
pipeline, from the degradation of perception sensor data to unpredictable actor actions, and they can
compromise the overall safety of the vehicle (Chen et al., 2021).

1.1. AAD and DNNs

Assisted driving functions are currently deployed in commercial vehicles, and automated driving is a
major research area in the vehicle industry and academia (Ingle & Phute, 2016; Kukkala et al., 2018; Li &
Shi, 2022; Du, 2023). Functions are developed to reduce driver workload, thus improving safety and
comfort. These functions can range from simple audiovisual warnings for the driver to systems taking
partial or full control of the vehicle. The Society of Automotive Engineers (SAE) has published the J3016
standard, defining six levels of driving automation, fromLevels 0 to 5 (SAE J3016_202104, 2021). As the
level of automation increases, so does the amount of control and driving situations which the AAD
function can handle. Due to the complexity and variability of the driving environment, researchers are
increasingly turning to DNN-based functions for their flexibility and ability to handle previously unseen
inputs (Koopman & Wagner, 2016; Li & Ibanez-Guzman, 2020; Cui et al., 2021).

There are many datasets collected for developing, testing, and benchmarking some of the perception
and prediction functions used to support AAD tasks. They present annotated and labeled ground truth data
appropriate to the different perception/prediction tasks (i.e. bounding boxes (BBs) for object detection,
pixel masks for segmentation) (Guo et al., 2020). Commonly used and established benchmarking datasets
are the KITTI (Geiger et al., 2012), Berkeley DeepDrive (BDD) (Xu et al., 2017), nuScene, (Caesar et al.,
2020) andCityScapes (Cordts et al., 2016). These datasets publish and regularly update leaderboard tables
to compare the performance of novel neural networks (for different tasks), and all developers can submit
their results.

However, for automotive datasets, improvements in detection performance are becoming smaller and
smaller (Valada, 2022). One difficulty is the presence of inaccurate annotations, see Sec. 3.2. In particular,
incorrect labeling of the testing/evaluation data split will lead to wrong classification of the predicted
boxes. In this work, an investigation into different criteria for dataset annotation is performed, and the
effect of different labeling criteria is analyzed.

1.2. Contributions

This article discusses, analyses, and classifies the annotation errors in widely used automotive datasets,
namely KITTI and nuScene (Siam et al., 2017; Geiger et al., 2012; Caesar et al., 2020). These identified
errors are used as a guide to propose some improved criteria for dataset annotation. As the criteria present
some arbitrary aspects (further discussed in the paper), three different sets of criteria are used to generate
an equal amount of annotation versions, and these annotation sets are compared using three DNNs,
covering the state-of-the-art architectures for object detection. In this context, the main contributions are
as follows:

1. the authors demonstrate that incorrect annotations have a detrimental effect on the DNNs’ learning
and performance, and even small improvements in the training labels can improve performance;

2. the performance is dependent on the DNN architecture and the annotation criteria, but overall
training with more accurate labels seems beneficial;
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3. removal of BBs not belonging to visible objects in training is beneficial for the used one and two-
stage detectors but not for the used transformer architecture;

4. proposing different sets of labeling criteria with different levels of formality can be key to better
understand the learning of the DNNs and can support future more accurate annotation processes;

5. proposing annotation criteria which can be applied to any automotive datasets and automatically
enforced.

The results show that by properly improving the quality of the annotations, an increase of up to 9% can be
achieved in theDNNperformancewhen evaluatingmAP50.Moreover, removing obviously incorrect BBs
in the test sets improves the evaluated performance metrics. This step is critical as a better-measured
accuracy improves the public perception related to the use of DNNs for AAD tasks. Errors in BBs labels
may also hinder the maximum potential of the DNN, affecting the training loss and the adjustments of
weights. It is worth noting that this article focuses on the quality of the labeling of the data (real or
synthetic), considering that datasets will be far from ideal and will contain sources of noise and
imperfections, which will make the application of labeling criteria a complex procedure.

2. Background

The training data can highly affect the performance of the trained neural network. In object detection, BBs
are used to define the ground truth. However, the quality of the BBs can differ between datasets, based on
tools/annotators creating the labeling, and also within a dataset due to some ambiguities in the data or
annotation process. This section presents some annotation processes of datasets and works on under-
standing errors in datasets.

2.1. Datasets and annotation criteria

Datasets have moved from simple classification tasks of the MNIST dataset, where each sample contain
one class, to current big curated datasets, which include frames with multiple objects and different
annotations and classes (Deng, 2012; Xiao et al., 2017). Existing works on dataset annotation cover
different issues that are strongly related to the specific task of the neural network. Some datasets used
for object detection have been manually annotated using proprietary software or annotation tools,
e.g. WoodScape (Uřičář et al., 2019), RADIATE (Sheeny et al., 2021), or nuScenes (Caesar et al.,
2020). nuScenes has also published instructions for their labeling; however, these labels are open to
interpretation and produce errors similar to the ones identified in other datasets, e.g. KITTIMoSeg dataset,
as shown in Figure 1. Other datasets have been developed and annotated using deep learningmethods such
as active learning and neural networks (Angus et al., 2018; Janosovits, 2022; Meyer & Kuschk, 2019).
These methods of annotation are otherwise known as semiautomatic. Further techniques include the
development of new annotation tools to adapt current datasets to specific use cases in AAD (Arief et al.,
2020; Wang et al., 2019). However, in the above-mentioned datasets, the specific criteria used to define
how annotations should be implemented are missing, not explicit or ambiguous.

Interestingly, the VOC dataset has published the 2011 annotation guidelines used for labeling
(Everingham et al., 2009). The guidelines provide guidance on which images to label and how they
should be categorized. Examples include categorizing an object as occluded if more than 5% of the object
within a BB is occluded, and there are images considered too difficult to segment and left unlabeled, e.g. a
nest of bicycles.

2.2. Quality of annotations

Due to the effort and complexity required to annotate datasets, there are often errors associated with some
of the labels. Recent works are trying to understand how these errors affect theDNNperformance and how
to improve the quality of the annotations. Notably, Ma et al. have presented a work in which they
reannotated the MS COCO and Google Open Images datasets by providing a description of the object as
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well as providing some common examples of positive or negative cases which are open to the
interpretation of the annotators (Ma et al., 2022). They have trained five neural network models based
on the original labels and the new labels. For the COCO dataset, only some of the considered performance
metrics improved due to reannotation, whereas the results on Google Open Image are improved after
training and/or testing with the new annotations. Northcutt et al. provided a study into commonly used
datasets for ML to understand and categorize the errors in labeling (Northcutt et al., 2021). In addition,
they provided results on benchmarking datasets, comparing the original labels with corrected labels. Their
results showed that lower capacity/simpler networks are more robust against the effects of erroneous
labels. Tsipras et al. have focused on ImageNet dataset (Tsipras et al., 2020). The original ImageNet
dataset provided only one class per image; however, each imagemay contain several secondary objects or
clutter. Tsipras relabeled a subset of the ImageNet database (10 images per class, 10,000 images in total)
and provided multiclass annotations where appropriate in their subset. The neural network performed
worse on images that had multiple object classes in the scene with respect to images with only one object.
Additionally, Tsipras et al. investigated the performance of the trained DNN when evaluating real-world
data by comparing the neural network predictions with the classes identified by human annotators. More
accurate models are in better agreement with the human annotators, and even when some network
predictions are technically wrong, there is often an agreement with the classification by the human
annotators (that is identification of dog breeds by nonspecialists).

2.3. DNN-based object detection

As previously mentioned, DNNs are expected to play a key role in AAD functions. One of the basic and
most important tasks is the detection of the road stakeholders, and particularly vehicles, as they causemost of
the accidents (Feng et al., 2021; Rashed et al., 2021). Object detectors can be broadly divided into two
classes.Moreover, recently, there have been several implementations of object detectors using transformers
(He et al., 2021; Carion et al., 2020); a comprehensive review of object detectors is given in (Zaidi et al.,
2022). Vision transformers are becoming very popular due to their promising performance; however, they
usually require more epochs to converge and typically do not perform well on small objects (Yao et al.,
2021). In terms of the two “traditional” categories of object detectors, the one-stage and two-stage detectors,
several architectures have been proposed through the years. Usually, one-stage detectors are faster but have
lower accuracy than two-stage detectors. However, the two-stage Faster R-CNN have a good balance in
terms of speed and accuracy; hence, they are frequently used for AAD functions.

As a part of the hereby proposed work, the authors have selected one implementation for each type of
object detector (one-stage, two-stage, and transformer) to understand if the observed trends in the results,
when reannotating the datasets, are common across different architectures for the same perception task,
that is object detection.

Figure 1. Examples of errors (highlighted by dotted rectangles) in the BBs (green rectangles) of KITTI
MoSeg (left) and nuScenes (right): upper frames show missing BBs, and lower frames show BBs not

belonging to any objects
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3. Methodology

In this work, the annotations of different automotive datasets were reviewed, and several errors were
identified.Moreover, KITTIMoSeg dataset was reannotated using three different sets of proposed criteria
by the authors, that is C1, C2, and C3, see Section 3.2. Three DNNs were fine-tuned on the dataset four
separate times: with the original ground truth labels as well as with the three new sets of labels generated
according to the defined criteria, resulting in 12 trained networks (4 per DNN type), see Section 3.3. These
12 networks were then used to evaluate the testing datasets on the 4 sets of labels (that isMoSeg original
and C1-C2-C3).

3.1. KITTI MoSeg

The KITTIMoSeg dataset is a subset of the highly cited KITTI Benchmarking Vision Suite dataset (Siam
et al., 2017; Geiger et al., 2012). Compared to the KITTI dataset, KITTI MoSeg provides chronological
sequences of frames, totaling 1449 frames (Siam et al., 2017). The KITTIMoSeg dataset provides 2DBB
labels for car and van; the proposed work merged them into a single vehicle class. This choice was made
due to the poor ratio between the two classes in the dataset.

In the KITTI MoSeg dataset, the original annotations were expanded by using the information
available in the original dataset (3D BB, odometry information), where 3D ground truth BBs were
converted into 2D BBs, associating BBs across chronological frames to obtain estimated velocity per
BB. Finally, a filtering process was applied to keep objects consistently identified across frames (Siam
et al., 2017). As the experiments proposed in this paper entail manually reannotating the same dataset
three times, a dataset with moderate size was the best choice. However, the BB errors tackled in this paper
are common across different automotive datasets.

3.2. Re-annotation criteria

From preliminary findings, the original labels in some automotive datasets were visually inspected to
identify potential BB problems which can affect DNN evaluation metrics. The majority of the identified
errors can be categorized using the definitions below:

• Missing: There are clear and obvious vehicles in the frames which are not labeled.
• Incorrect: There is no object in the labeled class in the BB.
• Bad Fit: The BB size and/or position are not appropriate for the identified object.
• Occlusion: The BB predicts the full size of the object, not only what is visible.

Based on these identified problems, three sets of BB criteria were defined to ensure that the annotation
process ismore consistent, see Table 1. These sets of criteria were implemented one at a time to completely
reannotate the KITTI MoSeg manually, using an ad hoc Matlab app developed by the authors. Although
human labeling error can still exist, some of the criteria can be coded to ensure the drawn BB meets the
criteria. The defined sets of criteria are not specific to this dataset and can be applied to any other datasets.

For Criteria 1 (C1), the guidelines are defined as much as possible in an objective way and based on
what features are expected to be learnt by the neural network (that is wheels, shapes, etc.). C1.1 specifies
the minimum dimension of a BB based on an analysis of box sizes in the original KITTI MoSeg labels. In
the specific automotive use case, vehicles in the far distance cover less pixels, and they are not of
immediate safety concern. However, the minimum BB dimension can be tailored based on the detection
requirements. For C1.2, a 3-pixel error was defined to consider annotation inaccuracies to identify the
exact edge of an object and issues due to the lack of contrast at the edges, but avoiding significant errors at
the smallest size based onC1.1. C1.3 ignores occluded regions from theBB, avoiding incorrect features to
be learnt by the network. A minimum threshold of 20% is applied in C1.4 to determine the minimum
visibility of the object. The 20% visibility is inline with the 20% visibility by nuScenes nuImages
Annotator Instructions (Caesar et al., 2020). However, the determination of the 20% is subjective to the
annotator or even to an “automated” implementation as it is based on estimation.
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In Criteria 2 (C2), the labels were created to the best of the annotator ability to identify vehicles in each
frame but still keeping a small set of guidelines. The annotator was one of the authors. Object identified
according to C2 are expected to be closer to real world, where all the vehicles should be identified by
the DNN.

Finally, in Criteria 3 (C3), the annotator did not resize nor add any BBs, but only removed the BBs not
belonging to real objects; in the case of multiple BBs encompassing the same vehicle, the annotator kept
only the BB deemed as the best fit for that vehicle.

3.3. Neural networks

The four annotated dataset variations were used to train three different network architectures: Faster
R-CNN (Ren et al., 2015), YOLOv5 (Jocher et al., 2022), and DETR (Carion et al., 2020). Faster R-CNN
is an example of two-stage detector, which predicts BBs from region proposals. On the other hand, YOLO
is a single-stage detector that does BB regression from anchors. Finally, DETR directly performs BB
prediction with respect to the input image. For each networkmodel described in the list below, the training
process was performed four times from the base model (one for each dataset variation based on the
annotation criteria, that isOriginal, C1, C2, and C3) on the whole original or relabeled training image set,
leading to four different trained DNNs per architecture.

• Faster R-CNN. The network of choice consists of a ResNet-50 backbone with FPN (Feature
Pyramid Network) feature extractor from the torchvision library (He et al., 2016; Lin et al.,
2017). It was originally pretrained on COCO and then fine-tuned over the dataset of interest. The
training was performed using the AdamW optimizer with a learning rate set to 10�3 and weight
decay set to 0.2. In addition, learning rate scheduler with gamma 0.9 and step size 25 was used.

• YOLOv5. The training was performed starting from the pre-trained yolov5mwith most parameters
left to their default value. The backbone was frozen, image size set to 640 px, and optimiser set to
AdamW.

• DETR. The network of choice consists of a ResNet-50 convolutional feature extractor from the
hugging face library (He et al., 2016). It was originally pretrained onCOCOand then fine-tuned over
the dataset of interest. The training was performed using the AdamWoptimiser with learning rate set
to 10�5 for the backbone and 10�4 for the other layers and weight decay set to 10�4.

Table 1. The three sets of criteria for the reannotation of the KITTI MoSeg dataset for object detection

Criteria 1 (C1) Criteria 2 (C2) Criteria 3 (C3)

1.1 BB shall be no less than 15 pixels in
width or height

2.1 Object is annotated if
human annotator can
identify it

3.1 Incorrect* BBs are
removed from original
KITTI MoSeg labels

1.2 BB shall contain all visible parts of
the object, with an error lower or
equal to 3 pixels

2.2 BB shall contain all visible
parts of the object, with an
error lower or equal to 3
pixels

3.2 Fully occluded BBs are
removed from original
KITTI MoSeg labels

1.3 BB shall not include any estimated
or occluded parts of the object, unless
criteria 1.2 is applicable

2.3 BB shall not include any
estimated or occluded parts
of the object, unless criteria
2.2 is applicable

1.4 BB must be added when more than
20% of one side of the object is
visible

*Incorrect stands for BBs that clearly do not belong to any target objects
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3.4. Evaluation metrics

The trained networks were all evaluated and compared using mAP50, due to the presence of small size
objects in the dataset. In fact, minor location offsets and size errors for predicted boxes can result in amuch
lower Intersection over Union (IoU) for small objects. For safety critical functions in automated vehicle, it
is still important to detect the object, even if the location/size may be slightly off. The YOLOv5 repository
provides this evaluation metric, and the torchmetrics library was used to compute mAP50 for Faster
R-CNN and DETR implementations. Thus, the three reannotation criteria are compared using the three
main types of neural network-based object detectors.

4. Results and discussion

The number of ground truth BBs was computed for each relabeled dataset, see Table 2. According to C3,
which seeks to remove the incorrect or fully occluded BBs, there are 612 BBs (8.2%) which were deemed
to be incorrect in the original dataset. C2 produced the largest amount of BBs based on what the human
annotator could identify.Many of C2BBs differ fromBB identified via C1, due to objects being too small,
or occlusion too high.

During the reannotation process, there were some difficulties in adhering strictly to the identified
criteria, and some labels can be subjective or open to interpretation, roughly representing 10% of the
labels. Some of these cases have been listed in Table 3 and visually demonstrated in Figure 2. For example,
3 pixel error was selected to allow minor flexibility for the annotator and considering situations with low

Table 2. Number of ground truth BBs for each set of annotations, with C# denoting the number of the
set of criteria (1–3), and MoSeg denoting the original labels. The total number of frames (and their

split into training and testing parts) remains the same throughout all the experiments

MoSeg C1 C2 C3

Training 4302 4384 6025 4047
Validation 509 483 653 467
Testing 2648 2889 2852 2315
Total 7459 7756 9530 6829

Table 3. Examples of ambiguous situations when applying the proposed criteria, related visual
examples are given in Figure 2

Case
No. Description

Criterion
applied

1 Small but obvious objects to a human are not labeled 1.1
2 For small objects, 3 pixel error can contribute significantly to the dimension and

position uncertainty of the BB (up to 20% error in width or height)
1.2

3 Objects meeting this criterion can have most of their surface occluded 1.3
4 Judging the percentage of occlusion is subjective 1.4
5 Small object annotation by humans is influenced by the annotator understanding

and interpretation of the scene
2.1

6 In low contrast situations the judgment of object boundaries becomes arbitrary 2.2
7 Object through windows can be annotator dependent, and BB may include

distortion and extensive occluded areas
2.3

8 It can be subjective to judge which BB is “correct” or “incorrect” 3.1
9 Annotated obstructed objects may not have any feature useful for recognition 3.2
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contrast (case 6). However, if the vehicle has a minimum size BB of 15 by 15 pixels (C1.1), a 3 pixel error
results in a BB that is 44% larger than the ‘real’ size (see case 2, Table 3). Moreover, if the BB was drawn
even 1 pixel smaller, it would not meet the criterion 1.1 anymore. This situation is common in the dataset,
particularly for parked vehicles.

Figure 2. Examples of cases that are ambiguous or open to interpretation cases depending on the
criterion applied
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Another common ambiguous scenario is occluded objects, in particular, cases 4, 7, and 9 in Table 3.
For case 4, the object is labeled based on criterion 1.4. The BB may be highly subjective, as the visible
part of the vehicle in the frame prevents the annotator to know the true object size and may require
understanding of vehicle model and pose to truly estimate the occlusion amount. Additionally, case
9 identifies that the occlusion may hide key features of an object that neural networks may look for.
Another peculiar case in the automotive field is that vehicles have windows that are transparent or
translucent (case 7); hence, it is possible to see parts of an occluded object through the vehicle’s
window. In C2, the annotator handled these situations by including the area occluded but seen through
the window; these BBs are again subjective, and the annotated objects might not have any visible
features relevant to DNNs.

Figures 3a to 3c presents the mAP of the three different types of DNNs trained and evaluated on the
datasets with the 4 different sets of annotations (different colors stand for the criteria used for the
annotations of the training dataset). The values for the 48 combinations are reported in Table 4. When
comparing testing on original MoSeg labels with respect to testing on C3 labels, all the networks
performed better on C3. As the erroneous ground truth BBs are removed in C3 annotations, this BB

Figure 3. Calculated mAP50 for a) Faster R-CNN, b) YOLOv3, c) DETR; on the x-axis, there are the
annotations used for the testing datasets, and the different colors stand for the different labels of the

training and validation sets

Table 4. mAP50 of the three network models trained on the different criteria (rows) and tested on the
different criteria (columns)

Testing dataset

C1 C2 C3 MoSeg

Training dataset C1 0.833 0.825 0.842 0.761 F. R-CNN
C2 0.844 0.853 0.867 0.780
C3 0.779 0.796 0.888 0.806
MoSeg 0.796 0.809 0.882 0.802
C1 0.797 0.753 0.861 0.799 YOLOv5
C2 0.814 0.844 0.876 0.806
C3 0.750 0.776 0.865 0.801
MoSeg 0.728 0.753 0.861 0.799
C1 0.678 0.664 0.699 0.620 DETR
C2 0.752 0.755 0.781 0.700
C3 0.575 0.607 0.712 0.630
MoSeg 0.605 0.646 0.743 0.661
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reduction will also decrease the number of false negatives. However, due to the large difference in number
of ground truth BBs in the test set between C3 and the other sets of annotations (~13% lower than the
original MoSeg labels, Table 2), a bias can be created in the results and falsely indicate that the DNN is
performing better in the real-world situation. An important finding is that removing the clearly wrong or
redundant BBs improves the DNN computed performance metrics, improving the public confidence in
automated vehicles’ technology.

Based on the method of annotation, C2 ground truth reflects more accurately the real-world perform-
ance, as the annotator is identifying almost all the vehicles in each frame. The “realism” of C2 is then
followed by C1, where manual labeling has a few stricter requirements. These requirements can be the
basis for a semiautomated labeling procedure in the future. In all of the results when testing for “real
world” performance (that is testing with C1 and C2), training with labels based on C2 performed the best,
followed by C1. Compared to C1, C2 provides ground truth BBs for smaller objects and higher degrees of
occlusion that would otherwise be filtered out. For all the network architectures, trainedwithC2 labels and
tested in the case of improved labels (C1 and C2 for the testing set), the performance is always better than
training with MoSeg labels. There are two factors likely providing the better performance: firstly, the
higher number of training ground truth BBs in C2, and secondly, muchmore smaller (but accurate) BBs to
train from.

For YOLOv5 and Faster R-CNN, the difference in performance between networks trained on MoSeg
labels compared to C3 training the DETR DNN, MoSeg labels always perform better, independently of
the labels used for testing. In fact, for the DETRmodel, see Figure 3c, training with C3 performed around
0.03–0.04 worse in terms of mAP than training with MoSeg labels. The DETR network requires a
significant amount of training data, and overall, the selected dataset was small enough to enable the
manual relabeling process (Carion et al., 2020). In fact, it is noticeable that DETR performs better with the
relabeled dataset with the highest number of ground truth BBs (C2) and worst with the datset with fewer
BBs (C3). It is expected that its overall performance can be improved with bigger datasets and with
hyperparameter tuning, but the trends will remain the same. This reduced performance could be due to the
lower number of training annotations in C3 dataset, or, given the different learning process in transform-
ers, erroneous BBs may actually help the generalization of the DETR network.

Finally, overall, the trends and performance in the plots are similar for the one-stage and two-stage
detectors, whereas, as mentioned before, they are different for the DETR. That again highlights that the
learning process has an impact on the overall outcome.Moreover, even though transformers are supposed
to have worst performance with small objects, when DETR is trained with C2 (including the smallest
vehicle BBs), the performance is the best for all testing labels. In addition, training and testing on original
MoSeg is never the best combination for all the architectures.

5. Conclusion

This work investigated the quality of the annotations in automotive datasets. Three sets of reannotation
criteria are proposed based on the categories of errors identified by visual inspection of commonly used
automotive datasets and their original BBs. The newly generated labels are then used to train different
neural network architectures, in turn used to evaluate the four different set of labels (that is original and the
three proposed criteria). Between the original labels and the reannotations, Criteria 2 (that is labeling
carried out to the best of a human annotator) is likely themost representative of vehicles identification by a
human driver. Overall, when predicting real-world situations, networks trained based on the original
labels and also a set of labels where the obvious labeling errors were removed (Criteria 3), perform worse
than the C1 andC2, set outmore formally for themanual annotation. All three different architectures types
of DNNs used in this work performed better with the stricter labels compared to the original labels. Setting
some strict criteria and guidelines in the annotation process will have a positive effect on both the training
and evaluation of the networks. However, the selection of the criteria parameters will affect the number of
BBs in the annotations and the performance of the DNNs. The proposed criteria can be adopted and
applied to any automotive datasets, and nonsubjective criteria can be automatically enforced.
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This work highlights that, in specific fields, it is imperative to ensure that the ground truth annotations
are appropriately labeled for the specific use case, especially getting it right the first time using clear and
enforceable criteria to avoid reannotation. In the case of AAD, the safety of the vehicle and the control
decisions are important concerns. In this use case, all objects which may compromise the safety should be
appropriately labeled in benchmarking datasets. However, the use case can vary from vehicle to vehicle,
depending on the specific AAD function, the operational design domain, and the selected scenarios, and
therefore it has an implication on which objects have to be detected. It may be unreasonable to create new
datasets per use case, and hence, this work stresses the importance of clear criteria for annotations and the
possibility to add metadata/sublabels to improve label quality for AAD. For example, in this work, by
providing some metadata for C2, such as occlusion, percentage of occlusion, truncation, etc., an
automated filtering process can be used to produce labels aligned to a set of criteria similar to C1.
Metadata can also allow a further understanding of the learning process and the key features for learning
and support a more automated process for producing use case-specific labels. Additionally, metadata can
allow for an understanding ofwhich types of objects in a class are less likely to be identified, and therefore,
ad hoc data augmentation can be carried out for these cases.

Data availability statement. The reannotated labels for the three sets of criteria used in this work are released and can be accessed
at: https://github.com/WMG-IV-Sensors/WMG_MoSeg.
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