
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1–32, 2025

DOI:10.1017/prm.2025.10080

Log geometric models for little disks operads in
even dimensions

Oliver Lindström
Department of Mathematics, Stockholm University, Stockholm, Sweden
(oliver.lindstrom@math.su.se)

(Received 25 March 2025; revised 15 August 2025; accepted 15 August 2025)

We construct a model for the (non-unital) S1-framed little 2d-dimensional disks
operad for any positive integer d using logarithmic geometry. We also show that the
unframed little 2d-dimensional disks operad has a model which can be constructed
using log schemes with virtual morphisms.

Keywords: Loop space machines and operads in algebraic topology; Operads
(general); Topological and simplicial operads; Logarithmic algebraic
geometry, log schemes

2020 Mathematics Subject Classification: 55P48; 18M60; 18M75; 14A21

1. Introduction

A recent construction of Dmitry Vaintrob [26, 27], shows that the framed little
2-dimensional disks (pseudo)-operad can be modeled as the analytification of a
pseudo-operad in log schemes whose underlying schemes are M0,n+1, the moduli
spaces of stable (n+1)-pointed rational curves of genus 0. See also the expositions
of Vaintrob’s construction in [4] and [8].

This article gives a generalization of Vaintrob’s construction to arbitrary even
dimension. For every positive integer d, we construct a pseudo-operad in the cate-
gory of log varieties whose analytification is weakly equivalent to the 2d -dimensional
S1-framed little disks. We write S1 for the group U(1) ∼= SO(2) and when we
refer to an operad O framed by some group G which acts on O, what is meant
is the semidirect operadic product O o G [24]. The underlying spaces of the log

varieties in CGKlog
d are the moduli spaces for stable n-pointed rooted trees of

d -dimensional projective spaces, introduced by Chen, Gibney, and Krashen in
[5] and denoted Td,n. The connection to Vaintrob’s result is that these mod-
uli spaces are higher dimensional analogs of M0,n+1 and in particular we have

that T1,n ∼= M0,n+1. Specifically, we show that the analytification CGKlog
d is

homeomorphic to FM2d o S1, the S1-framed Fulton–MacPherson operad. By a
result of Salvatore [23] FMn is SO(n)-equivariantly weakly equivalent to LDn, the

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society
of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-
use, distribution and reproduction, provided the original article is properly cited.

1

https://doi.org/10.1017/prm.2025.10080 Published online by Cambridge University Press

mailto:oliver.lindstrom@math.su.se
https://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2025.10080&domain=pdf
https://doi.org/10.1017/prm.2025.10080


2 O. Lindström

classical little disks operad in dimension n. Thus, this homeomorphism gives a weak
equivalence between the analytification of CGKlog

d and LD2d o S1.

Theorem 5.12. The Kato–Nakayama analytification of CGKlog
d is homeomorphic

to FM2d o S1.

We will also show that the individual spaces FM2d(n) are analytifications of log
varieties; however, it will not be possible to construct an operad of log schemes with
these as objects whose analytification is FM2d. Nevertheless, an operad with this
property, which we denote CGKV-log

d , can be constructed in the category of log
schemes with virtual morphisms. Virtual morphisms of log schemes were introduced
by Howell [12] and further studied by Dupont, Panzer, and Pym in a recent article
[8], in which they also show that FM2 is homeomorphic to the analytification of
an operad in log schemes with virtual morphisms.

Theorem 5.13. The Kato–Nakayama analytification of CGKV-log
d is homeomor-

phic to FM2d.

This has interesting consequences for the cohomology of LD2d o S1 and LD2d.
First, CGKlog

d and CGKV-log
d are defined over Q (and even over Z). This induces

a Galois action on the corresponding étale cohomology cooperads which lifts to an
action on the level of étale cochains. If the weights of cohomology are pure in a suit-
able sense the existence of such lifts implies formality of the corresponding operad.
See for example Petersen [22]. Additionally, using the log geometric structure of
these operads one can define mixed Hodge structures on the respective cohomol-
ogy cooperads. Such mixed Hodge structures can also be tools for proving operad
formality. In fact, Dupont, Panzer, and Pym use the fact that the Hodge structure
on the kth cohomology of CGKV-log

1 is pure of weight 2k to re-prove that LD2 is
formal. It should be noted that all log varieties studied in this article are either
smooth varieties with log structure associated to a smooth strict normal crossings
divisor or smooth, closed, strong deformation retracts thereof with pulled back log
structures. Therefore, it is known how one should define mixed Hodge structures
for the log varieties studied in this article but in general the theory of Hodge struc-
tures in logarithmic geometry is still under development and there is, to the authors
knowledge, no explicit construction of a mixed Hodge structure functor on fs log
varieties, even if we restrict to the case of Deligne–Faltings log varieties. Naturally,
there is even less material on the matter for log varieties with virtual morphisms.
Considering this, it is debatable if the results of this article alone proves that there
is a mixed Hodge structure on the cohomologies of LD2d and LD2doS1 but hope-
fully it will be clear to the familiar reader how one can define such a structure using
our constructions.

From this one may expect that the construction of this article would imply that
either of these formality arguments could be used to prove that the S 1-framed little
disks are formal in arbitrary even dimension. However, the argument requires, in
some sense, that the weights of cohomology are pure and this is no longer the case for
CGKlog

d when d ≥ 2. For example, we can create a zig-zag of homotopy equivalences

coming from morphisms of log-schemes from CGKlog
d (n) to Confn(Ad

C)×Gn
m and

thus the MHS (mixed Hodge structures) on both these spaces are isomorphic. We
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Log geometric models for little disks operads in even dimensions 3

know that the MHS on H1(Gm,Q) is pure of weight 2 and similarly, the MHS on
H2d−1(Confn(Ad

C),Q) is pure of weight 2d. For d =2 this implies that the MHS on
H3(Conf3(A2

C)×G3
m,Q) ∼= Q(−2)⊕Q(−3) is mixed with weights 4 and 6. In fact,

the real model for LDn o SO(n) by Khoroshkin and Willwacher in [14] can be
used to construct a real model for LD2m o S1 and using this model one can show
that LD2m o S1 is not formal.1 On the other hand, the (unframed) little disks are
famously known to be formal in every dimension [16, 17].

Even before Vaintrob’s article it had long been expected that the little disks,
and the framed little disks are in some sense motivic, or algebro-geometric. A first
clue towards this expectation was the Galois action on C∗(LD2) via Grothendieck-
Teichmüller theory [3, 7]. This circle of ideas has been developed by a large number
of people, including [6, 16, 21, 22].

1.1. Structure and results

Section 2 gives a short introduction of logarithmic geometry and in particular we
give a definition of Deligne–Faltings, or DF, log schemes and describe their rela-
tionship with “normal” log schemes. We also define the real oriented blow-up of a
topological space in a section of a vector bundle and we explain how this can be
used to give an equivalent definition of the so called Kato–Nakayama analytifica-
tion [13] of a DF log scheme. Finally, we use the notion of virtual morphisms of log
schemes [8, 12] to give a definition of a virtual morphism of DF log schemes and
explain why this is interesting.

In section 3 we recall the definition of the topological Fulton–MacPherson com-
pactification and the Fulton–MacPherson model of the little D-dimensional disks
operad, denoted FMD [2, 10, 15, 25]. We describe an action by SO(D) on FMD

which is compatible with the corresponding action on LDD, the D-dimensional
little disks operad. In the case where D = 2d is even this gives an induced action
by S1 ∼= SO(2) via the diagonal embedding SO(2) ↪→ SO(d). This action allows
us to define the S1-framed Fulton–MacPherson operad FM2doS1 which is weakly
equivalent to the S1-framed little disks operad.

In section 4 we recall the definition of the schemes Td,n introduced by Chen,
Gibney, and Krashen [5]. We use a functor of points description of these schemes to
define an operad in schemes with objects Td,n for each fixed d. We call this operad
the Chen, Gibney, Krashen operad, denoted CGKd.

Building on this, in section 5 we define Deligne–Faltings log varieties Td,n whose
underlying varieties are Td,n and we extend the symmetry and composition mor-
phisms (but not the unit morphism) of CGKd to maps of these log varieties. This

defines a pseudo-operad of log schemes, CGKlog
d . We then show that the analytifi-

cation of CGKlog
d is FM2d o S1. We describe how to define the unit morphism of

CGKlog
d as a virtual morphism of log schemes and furthermore we show that with

virtual morphisms of log schemes we can also define an operad CGKV-log
d whose

analytification is FM2d.

1This was made clear to the author through comments from Thomas Willwacher.
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4 O. Lindström

2. Deligne–Faltings log schemes

We will give all definitions and results relating to logarithmic geometry in this
article in terms of Deligne–Faltings log structures. The main reasons for this are that
some definitions and results are easier to state using this terminology and, perhaps
more importantly, the Kato–Nakayama analytification of a Deligne–Faltings log
scheme can be explicitly described in terms of real oriented blow-ups which will
turn out to be very useful for the purposes of this article. The precise definition
of a DF log scheme may vary between articles but we will use that of Bergström,
Diaconu, Petersen, and Westerland [4]. In this section we will on some occasions
reference “normal” log structures and therefore we will spell out the prefix “DF”.
This will not be the case in remaining sections and therefore “log scheme” should
be taken to mean “DF log scheme” outside of section 2.

Definition 2.1. A Deligne–Faltings (or DF) log structure on a scheme X is
a finite tuple L = (si : OX → Li)1≤i≤n of invertible sheaves with sections. A
morphism of log structures on X,

(si : OX → Li)1≤i≤n → (tj : OX → Mj)1≤j≤m

is a collection {eij} of non-negative integers together with n isomorphisms of line
bundles

Li

∼=−→
⊗

1≤j≤m

M⊗eij
j

which also identify the sections si to the corresponding sections
⊗

1≤j≤m t
⊗eij
j .

Remark. For those with a sufficient background in log geometry: A DF log
structure L = (si : OX → Li)1≤i≤n on some scheme X induces a log structure
M(L) = Mlog → OX where Mlog is the logification of the pre-log structure

M(U) =
⊔

αi≥0

((L∨
1 )

⊗α1)∗ ⊗ · · · ⊗ ((L∨
n)

⊗αn)∗

with the obvious monoid structure and with the map to OX induced by s∨i : L∨
i →

OX . The superscript ∗ here indicates the subsheaf of invertible sections. A mor-
phism of DF log structures induces a map of corresponding log structures in the
obvious, functorial, way.

Definition 2.2. A DF log scheme X = (X,L) is a scheme X with a DF log struc-
ture L. We call X the underlying scheme of X, sometimes denoted X. A morphism
of DF log schemes (X,L) → (Y,M) is a morphism of schemes f : X → Y and a
morphism of DF log structures f∗M → L. Such a morphism is said to be strict if
f∗M → L is an isomorphism of DF log structures.

An important special case of a DF log scheme is a scheme with the trivial DF
log structure, i.e. no line bundles. For a scheme X we call (X, ∅) the log scheme
associated to X and we will, by abuse of notation, simply denote this by X. If Y is
a log scheme and f : Y → X is a map of schemes then there is a unique morphism
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of log schemes Y → X with underlying map f . Similarly a morphism f : X → Y
gives a morphism of log schemes X → Y if and only if the pullbacks via f of all
line bundles with sections in the log structure of Y are trivial with a unit section
and if this is the case then this morphism of log schemes is unique.

2.1. Blow-Ups

In this section we define real oriented blow-ups in sections of line bundles and prove
some results relating to these. These will be used to define the Kato–Nakayama
analytification of a log scheme.

First, let X be a topological space, let η : E → X be a rank n vector bundle
and let s : X → E be a section. Furthermore, let E0 denote the image of the zero
section and let E′ := E \ E0. Note that the action by R>0 (and in fact the action
by R∗) on E restricts to a free action on E’. We define the real oriented blow-up
of X in s, denoted BlRs X as the space

{p ∈ E′ | ∃ α ∈ R≥0 : p = α · (s ◦ η)(p)}/R>0

and we define the blow-down map ρ : BlRs X → X as the map induced by passing
p : E → X to the quotient. Note that ρ has an inverse away from the zero locus of
s and for any x in the zero locus of s we have that ρ−1(x) ∼= Sn−1.

The “usual” definition of the real oriented blow-up of a smooth manifold X in
a smooth closed sub manifold Y , denoted BlRY X is that it is the complement of
a tubular neighbourhood of Y in X and the blow-down map is then taken to be
a retraction of this neighbourhood onto Y . It is also possible to give a functo-
rial definition as in [1]. The following result, whose proof I will omit, relates this
construction to the usual notion of a blow-up in a smooth closed submanifold.

Proposition 2.3. Let M be a (smooth) manifold, let E be a vector bundle, let
s : M → E be a smooth section whose image intersects E0 transversally, and let
Y = s−1(E0) be the zero locus of s. Then there is a unique isomorphism of spaces
over M ,

BlRs M ∼= BlRY M.

Remark. Note that a necessary, but not sufficient, condition here is that the codi-
mension of Y is the rank of the vector bundle. This resembles the algebraic situation
where if X is smooth and Y is a locally complete intersection the blow-up BlY X
is locally a closed subscheme of a projective bundle over X.

Despite these properties one should be aware that BlRs X does not always resem-
ble the “usual” definition of a blow-up. For example if we take the blow-up in the
zero section of E the result is (up to canonical isomorphism) the sphere bundle of
E which, in the case where X is a manifold, has higher dimension than X. Even
stranger situations are also possible and the blow-up of a manifold is not even
necessarily a manifold with corners. For example let s : S2 → R2, considered as
a section of a trivial bundle on S2, be defined by s(x, y, z) = (x − 1, 0). The real
oriented blow-up BlRs S

2 is the wedge sum S1 ∨ S2.
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Lemma 2.4. Let X be a topological space, let π : E → X be a complex line bundle,
and let E’ be the complement of the zero section in E. Then π|∗E′E → E′ is trivial.

Proof. The diagonal map E → E×XE restricts to a nowhere 0 section, E′ → π|∗E′E.
Thus π|∗E′E is a line bundle with a nowhere 0 section and is hence trivial. �

Remark. If X is a smooth manifold and E is a smooth bundle then π|∗E′E → E′

is trivial as a smooth bundle by the same argument.

Corollary 2.5. Let s : X → E be any section. The pullback of E → X to the
blow-up BlRs X is a trivial bundle.

Proof. By introducing a Hermitian metric, the blow-up can be embedded into Eʹ

and the blow-down map factors via this embedding. Thus, the pullback of E to this
blow-up is trivial by lemma 2.4. �

Corollary 2.6. Let L1, L2, . . . , Ln be complex line bundles on a manifold X and
let L =

⊗n
i=1 L

⊗ei
i where ei are integers and ⊗ is the complex tensor product. Let

σ1, . . . , σn be sections σi : X → Li. Then, there is an isomorphism

BlRσ̃0
BlRσ̃n

. . . BlRσ1
X

∼=−→
(
BlRσ̃n

. . . BlRσ1
X
)
× S1

where σ̃i denotes the pullback of σi through all previous morphisms and σ0 : X → L
is the zero section.

Proof. This is immediate from the previous corollary. �

2.2. Kato–Nakayama analytification

For a DF log scheme X = (X, (si : OX → Li)1≤i≤n) such thatX is of finite type over
C one can construct an associated topological space XKN called its Kato–Nakayama
analytification. This space is defined as the sequence of real oriented blow-ups

BlRs̃n BlRs̃n−1
. . . BlRs1 X

an

where s̃i is the section si of the vector bundle Li pulled back via all previous blow-
ups. This is order independent up to canonical isomorphism since, at each step, we
are blowing up in the pullback (i.e. total, not strict, transform) of the corresponding
line bundle with section. Regardless of order we let ρX : X

KN → Xan denote the
corresponding blow-down map. This construction can be made functorial in the
following way.

First, if f : (X, (si : OX → Li)1≤i≤n) → (Y, (ti : OX → Mi)1≤i≤n) is a strict
morphism of log-schemes, i.e a morphism such that the log structure morphism is
given by isomorphisms f∗Mi → L⊗1

i for each i, then we can form the following
commutative and cartesian (with respect to the downward vertical arrows) diagram
where we have E1

X = Lan
1 and E1

Y = Man
1 and where s, t are the corresponding

sections. The blow-ups BlRs1 X(C) and BlRt1 Y (C) are subspaces of the quotients by
an equivalence relation ∼ on E1

X and E1
Y respectively where two vectors in a fibre are

identified if they are equal up to positive scalar multiplication. By commutativity
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of the diagram, the subspace corresponding to the blow-up of X(C) is mapped to
the blow-up of Y (C) as subspaces of E1

X/ ∼ and E1
X/ ∼ by the induced quotient

space map. Thus, we get an induced subspace map BlRs1 X(C) → BlRt1 Y (C).
Iterating this gives the desired map of the entire sequence of blow-ups.

Next, let φ : M = (tj : OX → Mj)1≤j≤m → L = (si : OX → Li)1≤i≤n

be a morphism of DF log structures on X given by integers {eij} and isomor-
phisms φi : Mi →

⊗
j L⊗eij . For simplicity assume that all line bundles are

trivial. The general case can be constructed from this by gluing. Furthermore, let
π : (X,L)KN → X(C) and ρ : (X,M)KN → X(C) denote the corresponding blow-
down maps. Then, by composing with the trivializing isomorphisms, we obtain
a unique invertible algebraic function λi : X → C such that we can identify the
analytification of φi with a map φ̃i : X(C) × C → X(C) ×

⊗
1≤j≤n C⊗eij which

sends

(x, z) 7→ (x, λi(x)z
⊗

1≤j≤n

1⊗eij ).

This gives a map of spaces over X(C), X(C)× (C∗)n → X(C)× (C∗)m given by

(x, (z1, . . . , zn)) 7→ (x, (λ1(x)
∏
j

z
e1j
j , . . . , λn(x)

∏
j

z
enj

j )).

By definition of λi this map sends

(x, s1(x), . . . , sn(x)) 7→ (x, t1(x), . . . , tm(x))

and hence induces a morphism of blow-ups as quotients of subspaces of these
bundles.

Since any morphism of log schemes is the composition of a strict morphism and
a morphism given by the identity on underlying spaces these two cases are enough
to define the analytification of an arbitrary map of log schemes.

One can verify that this definition of the analytification functor for DF log scheme
agrees with the analytification of its associated log scheme originally introduced by
Kato and Nakayama in [13]. This can be checked through direct computation but
for a less tedious argument see [4]. From section 3 onward we will drop the “DF”
prefix and let “log scheme” mean “DF log scheme”. All log schemes referenced in
this article will indeed be DF log schemes but because of the above the distinction
is not important for our purposes anyway.

Remark. In [13], XKN is also given an associated sheaf of rings which, provided
that X is smooth and that the divisor associated to all non zero sections of line bun-
dles is a smooth normal crossings divisor, gives XKN the structure of a smooth real
manifold with corners. This motivates the name “analytification”. These conditions
are all satisfied for the log schemes we consider in this article and we could, with
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a little more work, replace the word “homeomorphism” with “diffeomorphism” in
theorems 5.12 and 5.13.

We will not need to use this explicit definition of the analytification of a morphism
at any point in this article. Instead, all we will need is that the analytification of a
map exists, is functorial, and satisfies the following properties:

• For a log scheme X with log structure L = (si : OX → Li)1≤i≤n the analyti-
fication of the map X → X given by the identity on underlying schemes is
the blow-down map

XKN = BlRs̃n BlRs̃n−1
. . . BlRs1 X(C) → X(C).

• For a strict morphism of log schemes f : X → Y the following is a Cartesian
diagram:

Both of these properties are standard and easy to verify so we omit a proof and
will use them freely without reference.

2.3. Virtual logarithmic geometry

In this section we will give a short introduction to virtual morphisms of log schemes
which were introduced by Howell [12] and further studied by Dupont, Panzer, and
Pym [8]. Such virtual morphisms will be irrelevant for most sections of this article
but in section 5.4 we include a discussion on how one can generalize some of our
results using virtual morphisms in ways that are not possible otherwise. In the
language of normal, i.e. non DF, logarithmic geometry a log structure on a scheme
X is a sheaf of monoids M with a morphism of sheaves of monoids α : M → OX

which restricts to an isomorphism α−1(O×
X) → O×

X . A map of log structures is then
a map of sheaves of monoids over OX , M1 → M2. Note that such a map commutes
with the maps from O× by definition.

A virtual morphism of log structures is a morphism of the groupificationsMgp
1 →

Mgp
2 which makes the diagram

commute. Note that the groupifications Mgp
1 ,M

gp
2 do not have maps to OX which

is why we use this weaker condition. Also note that the category of virtual log struc-
tures has more morphisms but we define it to have the same objects as the category
of log structures. For a short motivation regarding why it makes sense to introduce
such virtual morphisms it is worth mentioning that the log Betti and log de Rham
cohomology functors are well defined for log schemes with virtual morphisms and
the same is also true for the Kato–Nakayama analytification functor.
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Log geometric models for little disks operads in even dimensions 9

Although Dupont, Panzer, and Pym do define virtual morphisms of DF log
structures their definition of a DF log structure is different from ours. Thus, we
give a somewhat different definition here.

Definition 2.7. A virtual morphism of DF log structures on a scheme X

(si : OX → Li)1≤i≤n → (tj : OX → Mj)1≤j≤m

is a collection {eij} of integers together with isomorphisms of line bundles

Li

∼=−→
⊗

1≤j≤m

M⊗eij
j

for each 1 ≤ i ≤ n satisfying the following if si 6= 0

• eij ≥ 0 for every j.

• the sections si are mapped to the corresponding sections
⊗

1≤j≤m t
⊗eij
j

Remark. Although the constructions are closely related, our category of DF log
schemes and the category of log schemes in [8] are not equivalent categories nor are
they subcategories of each other and thus this definition cannot be “derived” from
that of Dupont, Panzer, and Pym in any meaningful way.

Remark. For non connected schemes this definition must be appropriately
modified for sections that are identically zero on some, but not all, components.

The category of DF log schemes with virtual morphisms, V DF-Log fits into a
commutative diagram of categories:

We will omit the construction of the functor V DF-LogX →V LogX but the
interested reader is encouraged to construct it themselves and/or verify that our
definition of the Kato–Nakayama analytification functor is still well defined for
virtual morphisms. Doing this hopefully sheds some light on why this definition is
a reasonable one.

Example 2.8. There is no morphism of log schemes Spec k → (Spec k, 0: Ok →
Ok) but there is such a morphism of virtual log schemes (one for each automor-
phism Ok → Ok). For k = C, the Kato–Nakayama analytification of these maps
are the inclusions of a point in S1. Similarly, the group inverse map i : S1 → S1

is not the analytification of any map of log schemes (Spec C, 0: OC → OC) →
(Spec k, 0: OC → OC) but it is a virtual map of log schemes corresponding to the

isomorphism OC ∼= O⊗(−1)
C .
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Example 2.9. Let X be a smooth scheme and let D be a smooth effective Cartier
divisor. By definition

(X, sD : OX → OX(D))KN = BlRD(C) X(C).

By our definition of the real oriented blow-up there is an embedding of BlRD(C) X(C),
into the unit circle bundle of (the analytification of) OX(D) with some arbitrarily
chosen metric. This unit circle bundle is, again by definition, the KN analytification
of (X, 0: OX → OX(D)). The inclusion

(X, sD : OX → OX(D))KN ↪→ (X, 0: OX → OX(D))KN

is not the analytification of any map of log schemes since the zero section cannot
be pulled back to a non zero section. It is however the analytification of a virtual
map given by the identity on both underlying spaces and OX(D) → OX(D)⊗1.

3. Topological Fulton–MacPherson and Kontsevich spaces

In this section we recall the topological Fulton–MacPherson spaces, FMtop
n (RD),

and the closely related Kontsevich spaces, KD,n
∼= FMtop

n (RD)
/
R>0 nRD.

3.1. The Fulton–MacPherson compactification of a manifold

Let X be a smooth manifold, let n be a positive integer and let P2(n), denote the
set of subsets of [n] with at least 2 elements. For a set I ∈ P2(n) let ∆I denote the
corresponding diagonal in Xn, i.e.

∆I = {(x1, . . . , xn) ∈ Xn| xi = xj ∀ i, j ∈ I}.

By abuse of notation we will also use ∆I to denote the (small) diagonal in XI .

Definition 3.1. The Fulton–MacPherson compactification, FMtop
n (X) is the

closure of the image of the map

Confn(X) ↪→
∏

I∈P2(n)

BlR∆I
XI .

We let fI : FMtop
n (X) → BlR∆I

(X) denote the restrictionof the corresponding pro-

jection to FMtop
n (X) and we let ρ : FMtop

n (X) → Xn denote the surjective extension
of the embedding Confn(X) ↪→ Xn to FMtop

n (X).

Remark. This definition is the one used by Axelrod and Singer in [2] but
many sources use a different definition of the topological Fulton–MacPherson
compactification introduced by Sinha [25]. These can easily be shown to be
equivalent.

Definition 3.2. The Kontsevich space of n points in dimension d, KD,n, is
defined as the fibre ρ−1((0, 0, . . . , 0)) ⊆ FMtop

n (RD).
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Remark. It is more common to define KD,n as FMtop
m (RD)

/
R>0nRD but one can

show that the composition ρ−1((0, 0, . . . , 0)) ↪→ FMtop
n (RD) → FMtop

m (RD)
/
R>0n

RD is an isomorphism and this equivalent definition will be more useful for our
purposes.

The fibre over the origin of BlR∆I
(RD)I is SD(|I|−1)−1. Thus,

fI : FMtop
n (RD) → BlR∆I

(RD)I restricts to a map πI : KD,n → SD(|I|−1)−1.
These maps give a closed embedding

KD,n ↪→
∏

I∈P2(n)

SD(|I|−1)−1,

i.e. an element x ∈ KD,n is uniquely determined by its components xI = πI(x).
Note that while we have chosen to use [n] = {1, . . . , n} as coordinate indices

in the definitions above we could have used any (finite) index set N instead.
We can thus define FMtop

N (X) and Kd,N with maps ρ : FMtop
N (X) → XN ,

fI : FMtop
N (X) → BlR∆I

(X)I , and πI : KD,N → SD(|I|−1)−1 in the analogous
way. Here I is a subset of N .

3.2. The Fulton–MacPherson operad

For a fixed dimension D the collection {KD,n}n∈N can be given the structure of a
topological operad as follows.

The permutation action of Σn on Confn(RD) extends to a free action on
FMtop

n (RD) which gives an induced action on the fibre over the origin, KD,n. This
is the symmetry action of the operad.

Next, any surjection ϕ : I � J of sets induces a monomorphism (RD)J ↪→
(RD)I such that the inverse image of ∆I is ∆J . This gives a map
BlR∆J

(RD)J → BlR∆I
(RD)I which restricts to a map of fibres over the origin

gϕ : S
D(|J|−1)−1 → SD(|I|−1)−1.

Let q : M � [n] be a surjection of finite sets. By abuse of notation we will also
let q denote the restriction of this function I � q(I) for any I ⊆ M . The above
construction allows us to define a map

γ : KD,[n] ×
∏
i∈[n]

KD,q−1(i) → Kd,M

by

γ(x, y1, . . . , yn)I =

yiI I ⊆ q−1(i)

gq(xq(I)) else
.

This defines the composition maps of the operad.

Remark. We use the standard notation for an operad defined in terms of finite sets
here. See for example [20, Part II, section 1.7] for an introduction to the notation.
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Finally, Kd,1 is the one point space so there is only one choice for the identity
map, η : ∗ → Kd,1. The operad axioms can be verified manually for this collection
of maps.

Definition 3.3. We call the operad with spaces {KD,n} (for a fixed D) and the
above composition, symmetry, and identity maps the Fulton–MacPherson operad
in dimension D, denoted FMD.

By a result of Salvatore, the Fulton–MacPherson operad is weakly equivalent to
the operad of little d -dimensional disks [23, proposition 3.9].

The action of SO(D) on RD induces an action on Confn(RD) which extends to
FMtop

n (RD). Since all rotations map the zero vector to itself this restricts to an
action on the fibre KD,n. One can check that this gives an action by SO(D) on the
FMD operad in the sense of [24]. Furthermore the weak equivalence FMD ∼ LDD

can be shown to commute with this action which gives a weak equivalence between
FMD o SO(D) and LDD o SO(D), the framed little disks operad.

With the notable exception of the case D =2, the framed little disks operad is,
however, not the operad studied in this article. Instead we are interested in the
following construction. When the dimension is an even number D = 2d there is an
embedding of topological groups

S1 ∼= U(1)
diag.
↪→ U(d) ↪→ SO(2d)

This induces an action of S 1 on the FM2d operad and we can form the semidirect
product FM2d o S1.

The main goal of this article is to construct a (non-unital) operad of log schemes
whose Kato–Nakayama analytification is FM2d oS1 which is weakly equivalent to
the S 1-framed little disks operad.

4. The Chen, Gibney, Krashen operad

Fix a base field k for the remainder of the article. In this section we recall the
definition of the moduli spaces of stable n-pointed rooted trees of d -dimensional
projective spaces, Td,n, and describe an operad of (smooth) k-varieties with spaces
Td,n for a fixed d which generalizes the operad of pointed stable curves of genus
0. For a more in depth description of the spaces Td,n, including a definition of a
rooted tree of projective spaces, see [5].

4.1. Fulton–MacPherson compactifications

Let us recall some important aspects of the Fulton–MacPherson compactification
[9]. Let X be a smooth k-variety. For an integer n and a subset I ⊆ [n] with |I| ≥ 2
let II denote the sheaf of ideals on Xn corresponding to the I-diagonal, ∆I ⊆ Xn.
Recall that we denote the set of subsets of [n] with at least 2 elements by P2(n).

Let ρ : FMalg
n (X) → Xn denote the Fulton–MacPherson compactification of

Confn(X). We call this a “compactification” of Confn(X) since ρ restricted to
ρ−1(Confn(X)) is an isomorphism and FMalg

n (X) is compact provided that X
is. The remainder of this section will be dedicated to recalling some important
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results relating to the Fulton–MacPherson compactification. First, we just state
the following facts, all of which can be found with proofs in [9].

• The scheme FMalg
n (X) is a smooth variety.

• There is an ordering of the elements in P2(n), such that ρ : FMalg
n (X) → Xn

is given by a sequence of blow-ups where we start with Xn and at step t
of the sequence we blow-up in the dominant transform of the tth diagonal
through all previous blow-ups.

• The closed subset D(I) ⊆ FMalg
n (X) given by the dominant transform of

∆(X) through all these blow-ups is a smooth, effective Cartier divisor.
• The divisors D(I) form a strict normal crossings divisor, i.e. any set of the
divisors meets transversely.

• The intersection D(I1, . . . , Ik) := D(I1) ∩ · · · ∩ D(Ik) is non-empty if and
only if the sets I1, . . . , Ik are nested i.e. for each i, j we have Ii ⊆ Ij , Ij ⊆ Ii
or Ii ∩ Ij = ∅.

• We have FMalg
n (X) \ Confn(X) =

⋃
I∈P2(n)

D(I).

• We have that ρ−1(∆(I)) =
⋃

I⊆I′ D(I ′), i.e. the pullback of the ideal
inclusion II ↪→ OXn factors via a quotient

ρ∗II �
∏
I⊆I′

ID(I′)
∼=
⊗
I⊆I′

OFMalg
n (X)(−D(I ′)).

• The composition FMalg
n (X) → Xn → XI factors as

FMalg
n (X)

fI−→ Bl∆I
XI ρI−→ XI , where ρI is the blow-down map.

Remark. Recall that for a blow-up BlY X → X the dominant transform of a
closed subscheme Z ⊆ X is defined as the strict transform of Z if Z 6⊆ Y and the
pullback of Z to BlY X if Z ⊆ Y .

Note that by the last two points we have that if E∆I
⊆ Bl∆I

XI denotes the
exceptional divisor then there is an isomorphism

f∗I O(E∆I
) ∼=

⊗
I⊆I′

OFMalg
n (X)(D(I ′))

which sends corresponding sections to each other.
In addition to this geometric description of FMalg

n (X) there is also a functorial
description which we will make great use of in this article.

Definition 4.1. A screen on a scheme H is a map f : H → Xn together with the
following data

• an invertible quotient f∗II � LI for each I ∈ P2(n)
• a map LI → LJ for each I ⊆ J

such that the following diagram commutes for every I ⊆ J
where f∗II → f∗IJ is the pullback of the corresponding inclusion.
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We say a screen satisfies the I-vanishing property for some I ∈ P2(n) if pri ◦
f : H → X = prj ◦ f : H → X for each i, j ∈ I and, for every J ∈ P2(n), if J 6⊆ I
and |I ∩ J | ≥ 2 then LI∩J → LJ is the zero morphism.

We can define a screen on FMalg
n (X) by taking f = ρ, LI =⊗

I⊆I′ OFMalg
n (X)(−D(I ′)) and letting the invertible quotients be the maps

ρ∗II �
⊗
I⊆I′

OFMalg
n (X)(−D(I ′)).

The maps LI → LJ here are induced by the ideal inclusions OFMalg
n (X)(−D(I)) ↪→

OFMalg
n (X). We call this screen the universal screen on FMalg

n (X).

Definition 4.2. Let Xn : Schop → Set be the functor which sends a scheme H
to the set of screens on H up to isomorphism of the screen data.

Similarly let X (I1, . . . , Ik) denote the subfunctor sending H to the set of screens
on H up to isomorphism which satisfy the Ir-vanishing property for each 1 ≤ r ≤ k.

Proposition 4.3. The Fulton–MacPherson compactification FMalg
n (X) represents

the functor Xn. Furthermore, the natural isomorphism hom(−,FMalg
n (X)) → Xn

is given by sending the element f : H → FMalg
n (X) to the pullback to H of the

universal screen on FMalg
n (X) described above.

Similarly D(I1, . . . , Ik) ⊆ FMalg
n (X) represents X (I1, . . . , Ik). The natural

isomorphism is given in the same way here as above.

Proof. This is theorem 4 in [9]. �

4.2. Pointed rooted trees of projective spaces

Chen, Gibney, and Krashen [5] introduced stable pointed rooted trees of projec-
tive spaces as a higher-dimensional analogue of stable pointed rational curves, and
showed that Td,n (defined in section 4.3) is the moduli space of stable rooted
n-pointed trees of d -dimensional projective spaces. Here we recall the definition
and describe the morphisms in the operad CGKd (defined in section 4.3), with
CGKd(n) = Td,n in terms of natural operations on such trees. The discussion is
intended to convey geometric intuition for section 4.3, and we therefore suppress
most proofs and technical details.

Definition 4.4. A rooted tree of d-dimensional projective spaces is a connected,
reduced, projective scheme T with a closed embedding r0 : Pd−1 ↪→ T , called the
root hyperplane, obtained by the following finite inductive process:
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1. Start with T ∼= Pd and choose a hyperplane embedding

r0 : Pd−1 ↪→ T.

This embedding is the root hyperplane.
2. Given a tree of d-dimensional projective spaces T produced in a previous

step, choose a smooth point x ∈ T disjoint from the singular locus and the
root hyperplane r0 : Pd−1 ↪→ T . The next iteration T ʹ is defined by forming
the blow-up Blx T and gluing along its exceptional divisor Pd−1 a new copy
of Pd along some hyperplane Pd−1 ⊆ Pd. Since x was chosen to be disjoint
from the root hyperplane r0 induces an embedding r′0 : Pd−1 ↪→ T ′, which we
take to be the new root hyperplane. Repeat finitely many times.

An n-pointed rooted tree is such a rooted tree of projective spaces T together with
n distinct points

p1, . . . , pn : Spec k ↪→ T

lying outside the singular locus Sing(T ) and outside the root hyperplane.

Remark. When d =1, blowing up in a smooth point does nothing and hyperplanes
are points so an n-pointed rooted tree of 1-dimensional projective spaces is just an
n +1-pointed genus 0 curve with at worst nodal singularities.

Decompose T =
⋃

i Ti into irreducible components and let T0 denote the root
component, i.e. the component containing the root hyperplane. Each Ti is isomor-
phic to Pd blown up at a closed subscheme Qi consisting of finitely many disjoint
k-points, hence admits a canonical blow-down map

bi : Ti −→ Pd.

Furthermore, there is an embedding ri : Pd−1 ↪→ Ti for each Ti such that bi ◦
ri : Pd−1 → Pd is the inclusion of a hyperplane. For the root component r0 is the
root hyperplane and for other components ri is the embedding of the hyperplane
along which the component was attached. Note that the disjoint union of ri and
the exceptional divisor Ei of the blow-up Ti → Pd is precisely the intersection
Ti ∩ Sing(T ).

Definition 4.5. With notation as above, the n-pointed rooted tree T is stable if,
for every component Ti, there are at least two corresponding special points, meaning
the marked points {p1, . . . , pn} ∩ Ti and the blown-up points Qi.

Remark. This condition is equivalent to T having no non-trivial automorphisms
restricting to the identity on the marked points and the root hyperplane.

Remark. When d =1, the above condition is equivalent to there being three spe-
cial points on each component if we think of the corresponding hyperplanes as
special points as well. This is the usual stability condition for pointed genus 0
curves with at worst nodal singularities.
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By theorem 3.4.4. in [5] the smooth varieties Td,n are moduli spaces of stable
n-pointed rooted trees of d -dimensional projective spaces. There are no stable 1-
pointed trees but in this case we define Td,1 = Spec k. As mentioned before, a
hyperplane in P1 is just a point and thus we have T1,n ∼= M0,n+1, the moduli
space of stable n +1-pointed rational curves where the additional point is the root
hyperplane.

Each variety Td,n comes with a canonical action by the symmetric group Σn

corresponding to permutation of the marked points. Furthermore, for each 1 ≤ i ≤
n there is a morphism

Td,n × Td,m
◦i−→ Td,n+m−1

which takes an n-pointed tree T and anm-pointed tree T ʹ and maps them to the n+
m− 1 pointed tree formed by blowing-up T in the ith marked point and gluing the
resulting exceptional divisor to the root hyperplane in T ʹ. It is clear from definitions
that these maps give rise to an operad of varieties, which we denote CGKd, with
spaces CGKd(n) = Td,n. In the case d =1 this construction is classical, see for
example [11].

4.3. Definition and properties of Td,n

In this section we recall the definition and some important properties of the Td,n
spaces from [5]. We also introduce a functor of points for these spaces and use this
to define the operad CGKd with spaces CGKd(n) = Td,n which was informally
described in section 4.2. We will not explicitly prove that CGKd is isomorphic to
the operad described in section 4.2 but it is not hard to show using theorem 3.4.4.
in [5].

If pri : X
n → X denotes the projection to the ith component it is clear from

definitions that the composition

D([n]) ↪→ FMalg
n (X)

ρ−→ Xn pri−−→ X

is independent of the integer i. We denote this morphism by π : D([n]) → X. In
[5], Chen, Gibney, and Krashen show that for any k-valued point x ∈ X the fibre
π−1(x), depends only on n and dimX up to (non-canonical) isomorphism provided
that X is smooth. We define Td,n as π−1(0) for the map π : D([n]) → Ad but by
the above we could equally well have taken any other smooth variety instead of
X = Ad.

Remark. Just like the topological case notice that while we have up until this
point indexed coordinates with [n] we are free to use any finite index set I and

FMalg
I (X) and Td,I together with all related maps and divisors are defined in the

analogous way.

The variety Td,n is smooth and comes equipped with a smooth closed subscheme
Td,n(I) for every non empty I ⊆ [n]. For I ∈ P2(n), i.e. I 6= [n] and |I| ≥ 2, we

define Td,n(I) as the pullback of D(I) ⊆ FMalg
n (X) to Td,n. For other I (i.e. I is [n]

or a one point set) we take Td,n(I) := Td,n. Similarly, for a collection of (distinct)
subsets I1, . . . , Ik ⊆ [n] we define Td,n(I1, . . . , Ik) :=

⋂
i Td,n(Ii). For I 6= [n] and
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|I| ≥ 2 the subscheme Td,n(I) is a smooth divisor of Td,n and the union of all these
divisors is a normal crossings divisor. Additionally, the intersection Td,n(I1, . . . , Ik)
is non empty if and only if (I1, . . . , Ik) is nested. All this essentially follows from
the analogous results for FMalg

n (X) recalled in section 4.1. Details can be found
in [5].

Remark. In terms of pointed trees Td,n(I), where I ∈ P2([n]), parameterizes trees
which have two (not necessarily irreducible) components such that the component
which does not contain the root hyperplane contains exactly those marked points
indexed by I.

The first goal of this section will be to give a functor of points description of the
schemes Td,n(I1, . . . , Ik). For this we introduce the following.

Definition 4.6. For a scheme H, an integer d, and a finite, non-empty, set I
with at least two element we let FH,d

I denote the quasi-coherent sheaf of modules
defined by

FH,d
I :=

〈
{tkij}

1≤k≤d
i,j∈I

〉 /
∼ .

Here
〈
{tkij}

1≤k≤d
i,j∈I

〉
denotes the free module with generators tkij and ∼ is generated

by sections of the form tkij + tkjl − tkil. We will also denote this by Fd
I or FI if H or

H, d are clear from context.
For every function of sets ϕ : I → J we let Fϕ : FH,d

I ↪→ FH,d
J denote the sheaf

morphism defined by sending tkij 7→ tkϕ(i)ϕ(j).

Remark. Note that FH,d
I is free of rank d(|I| − 1). Furthermore, note that the

sheaves FH,d
I and the maps Fϕ are pullbacks of corresponding vector bundles with

morphisms on Spec k. For all I ∈ P2(n) these are in turn isomorphic to the pull-

backs of the ideal sheaves I∆I
on (Ad)n ∼= Spec k[xki ]

1≤k≤d
1≤i≤n via the inclusion of the

origin Spec k ↪→ (Ad)n. Here we identify the section tkij of Fd
I with the pullback

of the global section xki − xkj ∈ I∆I
⊆ k[xki ]. Additionally, if I ⊆ J ⊆ [n] the map

FI↪→J of sheaves on Spec k is the pullback of the ideal inclusion map I∆I
↪→ I∆J

.

Definition 4.7. Let Td,n : Schop → Set be the functor which sends H to the set
of collections of invertible quotients,

{φI : FH,d
I � LI}I∈P2(n),

such that for every I ⊆ J there is a morphism LI → LJ making the following
diagram commute.

Such a collection will sometimes be referred to as a simple screen. Similarly let
Td,n(I1, . . . , Ik) denote the subfunctor of Td,n with the added condition that for
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every Ir, the simple screens satisfy the Ir-vanishing property, i.e. if J * Ir and
|J ∩ Ir| ≥ 2 then LJ∩Ir → LJ is the zero morphism.

Remark. Note that Td,n([n]) = Td,n({i}) = Td,n.

There is a natural simple screen on Td,n which can be constructed as follows. Let

i : Td,n ↪→ FMalg
n (Ad) denote the inclusion of the fibre over the origin in (Ad)n. The

ideal sheaves II pull back to i∗II ∼= Fd
I and for I ⊆ J the inclusion II ↪→ IJ pulls

back to the map FI⊆J : Fd
I → Fd

J . Thus, the universal screen on FMalg
n (Ad) pulls

back to a simple screen on Td,n via i. We will refer to this as the universal simple

screen on Td,n. Let FI � Md,n
I denote the invertible quotient corresponding to

I ∈ P2(n) of the universal simple screen on Td,n. We will also denote this by MI if
d, n are clear from context.

Lemma 4.8. Let i : Td,n → FMalg
n (Ad) denote the inclusion of the fibre over the

origin. There are unique isomorphisms⊗
I⊆I′

i∗O(−D(I ′))
∼=−→ MI

such that for I ⊆ R the following diagram commutes

where tR′ : O(−D(R′)) ↪→ O denotes the ideal inclusion.

Proof. This follows from the analogous result for the universal screen on
FMalg

n (X). �

Proposition 4.9. The functor Td,n is represented by Td,n and similarly
Td,n(I1, . . . , Ik) is represented by Td,n(I1, . . . , Ik). Furthermore, the natural iso-
morphism hom(−, Td,n) → Td,n is given by sending a map f : H → Td,n to the
pullback of the universal simple screen on Td,n to H. The analogous result holds for
hom(−, Td,n(I1, . . . , Ik)) → Td,n(I1, . . . , Ik).

Proof. First note that if i0 : Spec k → (Ad)n denotes the inclusion of the origin
then we have seen that i∗0II = FI for every I ∈ P2(n), where II is the ideal sheaf
corresponding to the I -diagonal in (Ad)n. Since

Td,n = π−1(0) = D([n])×Ad Spec k ∼= D([n])×(Ad)n Spec k

the result follows immediately from proposition 4.3. The same argument also gives
the Td,n(I1, . . . , Ik) case. �

This functorial description simplifies the proof of many of the following results
greatly. Let n be a positive integer, and let q : [n] �M be a surjection of sets. We
also let q to denote the restriction of this map J → q(J) for any J ⊆M .
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Proposition 4.10. The composition map described in section 4.2 is well defined
and gives an isomorphism

Td,n ×
n∏

r=1

Td,q−1(r)
∼= Td,M (q−1(1), . . . , q−1(n)).

Proof. We will construct an explicit natural isomorphism between the functors
represented by the left and the right side. Identifying the induced isomorphism of
schemes with the map described in section 4.2 is left as an unimportant exercise
for the reader.

We define this natural transformation

Td,n ×
n∏

r=1

Td,q−1(r) → Td,M (q−1(1), . . . , q−1(n))

by sending simple screens (on some k-scheme H)

{φI : FI →L0
I}I∈P2(n)×

n∏
r=1

{ψr
J : FJ →Lr

J}J∈P2(q−1(r))→{ρK : FK → LK}K∈P2(M),

where {ρK : FK → LK}K∈P2(M) is defined as follows. We define the line bundles
LK as

LK =

Lr
K K ⊆ q−1(r) some r

L0
q(K) else

and the corresponding quotients as

ρK =

ψr
K K ⊆ q−1(r), some r

φq(K) ◦ Fq else
.

For the definition of Fq : FK → Fq(K), see definition 4.6. We define the maps
LK1

→ LK2
, for K1 ⊆ K2, to be

Lr
K1

→ Lr
K2

K2 ⊆ q−1(r) some r

L0
q(K1)

→ L0
q(K2)

K1 6⊆ q−1(r) any r

0 K1 ⊆ q−1(r) and K2 6⊆ q−1(r)

.

It is easy to check that {ρK}K∈P2(M) with the maps LK1 → LK2 above is a simple
screen with the q−1(r)-vanishing property for every r and so this transformation is
well defined on the level of sets. Furthermore, the map is clearly natural and so we
have defined a natural transformation as desired.

To show that this gives a natural isomorphism first note that that this map is
clearly injective. Surjectivity follows from the fact that if {ρK : FK → LK}K∈P2(M)

is a simple screen satisfying the q−1(r)-vanishing property for every r then, for every
K not contained in any q−1(r) the map ρK : FK → LK factorizes uniquely as
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by the universal property of the quotient. �

Remark. Since we defined Td,n({i}) = Td,n([n]) = Td,n this statement is true even
in the case n =1 or |q−1(r)| = 1.

Corollary 4.11. For any I ∈ P2(n), the isomorphism of the proposition restricts
to an isomorphism of closed subvarieties

Td,n(I)×
n∏

r=1

Td,q−1(r)
∼= Td,M (q−1(1), . . . , q−1(n), q−1(I)).

Similarly, for any Ir ∈ P2(q
−1(r)), the isomorphism of the proposition restricts

to an isomorphism of closed subschemes

Td,n×Td,q−1(1)×· · ·×Td,q−1(r)(Ir)×· · ·×Td,q−1(n)
∼= Td,M (q−1(1), . . . , q−1(n), Ir).

Proof. The proof is analogous. �

Corollary 4.12. Let γ : Td,n ×
∏n

i=1 Td,q−1(i) → Td,M be the composition of the
isomorphism above with the inclusion into Td,M and let π0 : Td,n×

∏n
i=1 Td,q−1(i) →

Td,n and πr : Td,n×
∏n

i=1 Td,q−1(i) → Td,q−1(r) denote the corresponding projections.
There are unique isomorphisms relating the elements of the corresponding universal
screens

γ∗Md,M
I

∼=−→

π∗
rM

d,q−1(r)
I I ⊆ q−1(r) some r

π∗
0M

d,n
q(I) else

.

making (one of) the following diagrams commute:

Proof. This follows immediately from the construction and the definition of the
universal screen on Td,n. �

The next relevant property of the Td,n spaces is that the Σn action informally
described in section 4.2 is well defined. Indeed, this action is precisely the restriction
to Td,n of the Σn action on the Fulton–MacPherson compactification FMalg

n (Ad).
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For each σ ∈ Σn, it is easy to verify that this action corresponds to the action on
Td,n given by

{φI : FI �LI}I∈P2(n)∈Td,n(H) 7→ {φσ−1(I) ◦ σ−1
I :FI �Lσ−1(I)}I∈P2(n)∈Td,n(H),

where

σI : FI → Fσ(I)

is defined by sending tkij 7→ tkσ(i)σ(j).
With the maps we have constructed so far we can define the operad of schemes

CGKd which was informally described in section 4.2. Its objects are CGKd(n) =
Td,n, its composition maps are the morphisms of proposition 4.10 (composed with
the inclusion Td,M (q−1(1), . . . , q−1(n)) ↪→ Td,M ), and its symmetry action is the one
described above. There is only one candidate for the unit morphism of the operad
since Td,1 ∼= Spec k. It is easy to, at least intuitively, see why these maps satisfy
the operad axioms using their n-pointed rooted tree descriptions from section 4.2.
Verifying that the axioms hold using the functorial descriptions of all relevant maps
here is a more tedious, but easy, exercise.

Definition 4.13. The Chen, Gibney, Crashen operad, CGKd is the operad with
objects CGKd(n) = Td,n and with morphisms as described above.

Remark. This is an operad of smooth k-varieties where all composition morphisms
are closed embeddings and the unit map is the identity.

The case d =1 here is of special interest. The operad CGK1 is isomorphic to the
“Deligne–Mumford”-operad whose objects are the moduli spaces of stable n +1-
pointed curves of genus 0, M0,n+1. Indeed, as mentioned earlier, Chen, Gibney,
and Krashen show that there are isomorphisms T1,n ∼= M0,n+1 and one can verify
that these isomorphisms can be chosen such that they commute with the respective
operad morphisms.

5. Log geometric constructions

In this section we define log structures on the smooth varieties encountered in sec-
tion 4 and extend the various morphisms to morphisms of log schemes. To this end
the following lemma will be used repeatedly.

Lemma 5.1. Let f : X → Y be a map of schemes and let D ⊆ X, E ⊆ Y be
effective Cartier divisors such that f−1(E) = D (scheme theoretically). Then there
is a unique isomorphism

f∗OY (E)
∼=−→ OX(D)

taking f∗sE 7→ sD.

Proof. First note that since f−1(E) = D there is an epimorphism f∗IE � ID
commuting with the corresponding maps to OX . Since IE and ID are ideal sheaves
of divisors they are line bundles and since any quotient map of line bundles is an
isomorphism this is an isomorphism. Taking duals now yields the result. Uniqueness
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is clear since an isomorphism of line bundles is uniquely determined by its value
for a single generically non-zero section. �

5.1. The log schemes FMlog
n (X), Kd,n and Td,n

First, let us define the log geometric Fulton–MacPherson compactification which
has the nice property that its analytification is the topological Fulton–MacPherson
compactification of Confn(Cd), FMtop

n (Cd).

Definition 5.2. For a smooth variety X, the log geometric Fulton–MacPherson
compactification (of Confn(X)), denoted FMlog

n (X), is the log variety with under-
lying scheme FMalg

n (X) together with the line bundles with sections corresponding
to the divisors D(I) for every I ∈ P2(n).

Note that all of the line bundles with sections OFMalg
n (X)(D(I)) pull back to the

trivial line bundle with a nowhere-vanishing section on Confn(X). This induces
a morphism of log schemes Confn(X) → FMlog

n (X). Furthermore, the following
diagram commutes:

Similarly, we can define a log geometric analog of Td,n, denoted Kd,n, by taking
the underlying scheme to be Td,n and the log structure given by the pullback of this

log structure on FMalg
n (Ad) via the inclusion Td,n ↪→ FMalg

n (Ad). Note that for each
I ∈ P2(n) with I 6= [n] the line bundle with section corresponding to the divisor
D(I) pulls back to the line bundle with section corresponding to Td,n(I) and for
I = [n] the pullback of the corresponding line bundle has the zero section. We will
let sI : OTd,n

→ OTd,n
(I) denote the pullback of sI : OFMalg

n (Ad) → OFMalg
n (Ad)(D(I))

for each I ∈ P2(n).
The operad composition morphisms of the CGKd operad do not extend to maps

of log-schemes for the objects Kd,n. Instead, in order to extendCGKd to a (pseudo)-
operad of log-schemes we must let its objects be the log-schemes Td,n, whose log
structures are given by one line bundle with section sI : OTd,n

→ OTd,n
(I) for each

non-empty I ⊆ [n] defined as above for |I| ≥ 2 and defined by

OTd,n
({i}) :=

⊗
I3i

OTd,n
(I)∨,

with s{i} = 0 for one element sets. For n =1 we define OTd,1
({1}) := OTd,1

with
the zero section.
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5.2. The log geometric CGK operad

As mentioned, the symmetry and composition morphisms of the CGKd operad
can be extended to morphisms of log schemes Td,n. To see this for the sym-
metry morphisms note that, for σ ∈ Σn we have that the corresponding
automorphism on FMalg

n (X), sends each divisor D(I) isomorphically to D(σ(I)).
This induces isomorphisms of line bundles (with sections) σ∗OFMalg

n (X)(D(I)) →
OFMalg

n (X)(D(σ−1(I))). These maps extend the symmetry action on FMalg
n (X) to

a symmetry action on FMlog
n (X). This in turn gives symmetry actions on Kd,n and

Td,n in the same way.
Extending the composition morphisms is slightly trickier. Again, let n be a

positive integer and let q : M � [n] be a surjection of sets. As before, let
π0 : Td,n ×

∏n
i=1 Td,q−1(i) → Td,n and πr : Td,n ×

∏n
i=1 Td,q−1(i) → Td,q−1(r) denote

the corresponding projections, and let

γ : Td,n ×
n∏

i=1

Td,q−1(i) → Td,M

be the composition morphism of CGKd. We can immediately show the following.

Lemma 5.3. Let I ( M with |I| ≥ 2. Then there is a unique isomorphism of line
bundles with sections

(a) γ∗OTd,M
(I)

∼=−→ π∗
rOTd,q−1(r)

(I) if I ( q−1(r).

(b) γ∗OTd,M
(I)

∼=−→ π∗
0OTd,n

(q(I)) if I =
⊔

i∈q(I) q
−1(r) and q(I) ≥ 2.

(c) γ∗OTd,M
(I)

∼=−→ OTd,n×
∏

Td,q−1(i)
, where the right hand side is taken with the

unit section, if (I, q−1(1), . . . , q−1(n)) are not nested, i.e. I is not contained
in any q−1(r) and also not equal to a union of any collection of q−1(r).

Proof. Cases (a) and (b) follow directly from corollary 4.11 and lemma 5.1. Case (c)
follows from the fact that the image of γ is Td,M (q−1(1), . . . , q−1(n)) (proposition
4.10) which is disjoint with Td,M (I) since Td,M (I, q−1(1), . . . , q−1(n)) is empty by
the nestedness criterion. �

This alone is almost enough to extend the operad composition morphisms to
maps of corresponding log-schemes but we must also express γ∗OTd,M

(I) as a tensor
product of the line bundles on Td,n×

∏n
i=1 Td,q−1(i) for I =M , I = q−1(r), and |I| =

1. Note that in all of these cases the pullback of the sections of these corresponding
line bundles are all 0. To this end, recall that that lemma 4.8 gives isomorphisms
of line bundles on Td,n

MI

∼=−→
⊗
I⊆I′

OTd,n
(I ′)∨,

where MI are the line bundles of the universal simple screen on Td,n (section 4.3),
such that the following diagram commutes for every I ⊆ J ,
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where the bottom arrow is the map

⊗
I⊆I′, J 6⊆I′

s∨I′ .

In particular, this means that we have isomorphisms

OTd,n
(I) ∼= M∨

I

⊗
I(I′

OTd,n
(I)∨.

Lemma 5.4. There are canonical isomorphisms of line bundles

(a) γ∗OTd,M
(M)

∼=−→ π∗
0OTd,n

([n]).

(b) γ∗OTd,M
(q−1(r))

∼=−→ π∗
0OTd,n

({r})⊗ π∗
rOTd,q−1(r)

(q−1(r)).

(c) γ∗OTd,M
({i})

∼=−→ π∗
rOTd,q−1(r)

({i}), if i ∈ q−1(r).

Proof. First note that by the above we have OTd,M
(M) ∼= (Md,M

M )∨. By Corollary

4.12 we have γ∗Md,M
M

∼= π∗
0M

d,n
[n] . From this part (a) follows. For part (b) note that

lemma 5.3 gives an isomorphism

⊗
q−1(r)(S

γ∗OTd,M
(I) ∼= γ∗OTd,M

(M)
⊗

r∈J([n]

π∗
0OTd,n

(J) ∼=
⊗

r∈J⊆[n]

π∗
0OTd,n

(J)

where the last isomorphism follows from part (a). By definition, this is just
π∗
0OTd,n

({r})∨ and so we get an isomorphism

γ∗OTd,M
(q−1(r))

∼=−→ γ∗(Md,M
q−1(r))

∨
⊗

q−1(r)(I′

γ∗OTd,M
(I ′)∨

∼=−→ π∗
rOTd,q−1(r)

(q−1(r))⊗ π∗
0OTd,q−1(r)

({r}).

This gives part (b). Part (c) follows from a similar argument. �

Remark. If n =1 the left hand sides of (a) and (b) are equal. In this case, both
statements are true but we must choose (b) to be the isomorphism defining our
map of log schemes for the operad axioms to be satisfied. Similarly, if |q−1(r)| = 1
we must also choose the map in (b).
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With this we have defined isomorphisms of line bundles extending the operad
composition maps of CGKd to morphisms of log-schemes

γlog : Td,n ×
n∏

i=1

Td,q−1(i) → Td,M .

Unfortunately, there are no maps of log schemes

Spec k → (Spec k,Ok
0−→ Ok)

and therefore we cannot extend our unit map to a map of log schemes. However, it

is easy to verify that despite this the ◦i-operations, Td,n × Td,m
◦i−→ Td,m+n−1, do

extend to maps of log schemes Td,n×Td,m
◦i−→ Td,m+n−1. One can verify that these

maps, together with the symmetry morphisms satisfy the pseudo-operad axioms.

Definition 5.5. The log-geometric Chen, Gibney, Krashen pseudo-operad,
CGKlog

d is the pseudo-operad with objects Td,n and with morphisms as described
above.

Remark. In the case d =1 this is isomorphic to the framed little curves pseudo-
operad constructed by Vaintrob in [27].

5.3. Kato–Nakayama analytifications

In this section we show that the Kato–Nakayama Analytification of CGKlog
d is

homeomorphic to the S1-framed Fulton–MacPherson operad in dimension 2d,
FM2d o S1, which in turn is a model for the S1-framed little 2d -disks operad
LD2d o S1 as mentioned in section 3.

We begin by showing that there is a homeomorphism of spaces over Xn(C),

FMlog
n (X)KN ∼= FMtop

n (X(C)),

which commutes with the corresponding inclusions of Confn(X(C)). The rough idea
behind our proof of this statement is that the left hand side is the Kato–Nakayama
space of a sequence of logarithmic blow-ups of Xn and the right hand side is a
sequence of real blow-ups of X(C)n and under sufficiently nice circumstances these
two agree.

Definition 5.6. Let X = (X,L) be a log scheme and let Y be a closed subscheme

of X. Then we let BllogY X denote the log scheme with underlying scheme BlY X and
log structure given by the log structure L pulled back to BlY X and the line bundle
with section corresponding to the exceptional divisor of the blow-up. We also define
the blow-down map, BllogY X → X to be given by the normal blow-down map on
underlying schemes and by “forgetting” the added line bundle with section.

Proposition 5.7. Let X be a smooth C-variety and let Y be a smooth subvariety
of codimension k. If Y is the zero locus of a section of a rank k vector bundle on
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X then there is an isomorphism of spaces over X(C)

(BllogY X)KN ∼= BlRY (C) X(C).

Proof. This isomorphism is easy to construct when Y is a complete intersection,
i.e. the zero locus of a section of O⊕k

X . The general case follows by gluing. �

Corollary 5.8. Let X = (X,L) be a log-scheme whose log structure is given by
line bundles with sections cutting out smooth divisors D1, . . . , Dn such that D1∪· · ·∪
Dn is a strict normal crossings divisor and let Y be as in the proposition with the
additional constraint that Y intersects all intersections Di1 ∩ . . . Dik transversally.
Then there is an isomorphism of spaces over XKN

(BllogY X)KN ∼= BlR
Ỹ

XKN

where Ỹ denotes the strict transform of Y (C) under the sequence of blow-down
maps

XKN → X(C).

Proof. Let t : OX → V denote the vector bundle section cutting out Y . It is clear
from the proposition that there is an isomorphism

(BllogY X)KN ∼= BlRt̃ XKN

where t̃ denotes the pullback (i.e. total transform) to XKN of the vector bundle
section t seen as a section of a topological vector bundle t ∈ Γ(X(C),V). The
transversallity conditions for intersections with Y imply that Ỹ is the zero locus of
the section t̃. This completes the proof. �

Proposition 5.9. There is a unique homeomorphism of spaces over Xn(C),

FMlog
n (X)KN ∼= FMtop

n (X(C)),

which commutes with the corresponding inclusions of Confn(X(C)).

Proof. First, recall from [18] that the Fulton–MacPherson space FMalg
n (X) is

isomorphic to the sequence of blow-ups

Bl∆̃IN
. . . Bl∆̃I1

Xn

where I1, . . . , IN are the sets in P2([n]) in any order satisfying the conditions of
theorem 1.3 in [18] and ∆̃Ii denotes the dominant transform of the diagonal ∆Ii ⊆
Xn under all previous blow-ups. Furthermore, recall that the divisors D(Ii) are the
dominant transforms of the exceptional divisor D̃(Ii) from the blow-up

Bl∆̃Ii
Bl∆̃Ii−1

. . . Bl∆̃I1
Xn → Bl∆̃Ii−1

. . . Bl∆̃I1
Xn

taken under all subsequent blow-ups Bl∆̃IN
. . .Bl∆̃Ii+1

. Additionally, the topolog-

ical Fulton–MacPherson space FMtop
n (X(C)) can also be written as a sequence of

real oriented blow-ups of Xn(C) in its diagonals in a similar manner.
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The proposition would now follow from corollary 5.8 by induction if there was an
ordering I1, . . . , IN of the sets in P2([n]) satisfying the aforementioned conditions
such that for every 1 ≤ i ≤ n

∆̃Ii+1
⊆ Bl∆̃Ii

Bl∆̃Ii−1
. . . Bl∆̃I1

Xn

meets any intersection of the divisors D̃(I1) . . . D̃(Ii) transversally. It is not hard
to show that any ordering where the sets I ∈ P2([n]) appear in decreasing order of
size, i.e. |Ii| ≥ |Ii+1|, satisfies all criteria and thus we are done. �

Remark. Note that the transversality conditions here are not implied by the
arrangement conditions in theorem 1.3 of [18]. Hence, there is no obvious analogue
of the above proposition for general wonderful compactifications.

Corollary 5.10. There are isomorphisms

• FMlog
n (X)KN ∼= FMtop

n (X(C))
• KKN

d,n
∼= K2d,n

• Td,n
∼= (S1)n × K2d,n

which commute with all relevant maps, i.e. inclusions of Confn(X(C)), maps to
Xn(C), inclusions of fibres, etc.

Proof. We have already constructed the isomorphism
FMlog

n (X)KN ∼= FMtop
n (X(C)). Since the morphism Kd,n ↪→ FMlog

n (Ad) is
strict, the top square in the following diagram is Cartesian.

We already know that the bottom square is Cartesian and thus the entire dia-
gram is Cartesian, i.e. KKN

d,n → (FMlog
n (Ad))KN is the inclusion of the fibre over

the origin in (Cd)n and thus (FMlog
n (Ad))KN ∼= FMtop

n (Cd) restricts to an isomor-
phism KKN

d,n
∼= K2d,n. Notice that we get 2d on the right hand side since C ∼= R2.

Furthermore, we know that

TKN
d,n = BlR0∈O({1}) . . .Bl

R
0∈O({n}) K

KN
d,n .

By corollary 2.6 this is homeomorphic to (S1)n × K2d,n, i.e. the nth space in the
FM2d o S1 operad. It is easy to show that these choices of isomorphisms make all
relevant maps commute as claimed. �

Next, we will show that the maps fI : FMtop
n (X(C)) → BlR∆I

XI , πI : K2d,n →
S2d(|I|−1)−1 (which were defined in section 3) and the projections to the S1 com-
ponents πi : (S

1)n × K2d,n → S1 are all identified with analytifications of explicit
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maps of corresponding log schemes under the isomorphisms described in the proof
of corollary 5.10.

Let Sm denote the log scheme (Pm, 0: O → O(−1)). Its Kato–Nakayama space
SKN
m homeomorphic to S2m+1 and the map S2m+1 ∼= SKN

m → Pm(C) is the Hopf
fibration (proving this using proposition 5.7 may provide some insight into the idea
behind the arguments to come). Recall from section 4.1 that the composition

FMalg
n (X) → Xn → XI

factors via a map fI : FMalg
n (X) → Bl∆I

XI for any I ∈ P2(n), and furthermore
that there is an isomorphism of line bundles with sections

f∗I O(E∆I
) ∼=

⊗
I⊆I′

O(D(I ′)).

This isomorphism defines a map of log schemes

f logI : FMlog
n (X) → Bllog∆I

XI .

Also recall that the fibre over the origin for the blow-down map Bl∆I
XI →

XI is Pd(|I|−1)−1 and that, if i denotes the inclusion of this fibre, we have that
i∗O(E∆I

) ∼= O(−1). This means that Sd(|I|−1)−1 = (Pd(|I|−1)−1, 0: O → O(−1)) is

the fibre over the origin of the log blow-down map Bllog∆I
XI → XI and f logI restricts

to a map πlog
I : Kd,n → Sd(|I|−1)−1.

The maps we have described fit together in the following diagram:

The analytification of this diagram is:
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Since Confn(R2d) is dense in FMtop
n (R2d) and since the blow-down map

ρI : BlR∆I
(R2d)I → (R2d)I has an inverse on ConfI(R2d) there is only one pos-

sible set of maps (f logI )KN and (πlog
I )KN which can make this diagram commute.

By definition, this diagram also commutes if we insert the maps fI , πI defined in
section 3 and thus we must have (f logI )KN = fI and (πlog

I )KN = πI .

Finally, let πlog
i be the map

πlog
i : Td,n → S0 = (Spec C, 0: OC → OC)

given by the only possible map on the level of schemes and the isomorphism of log
structures

(πlog
i )∗OC

∼=−→
⊗
i∈S

OTd,n
(I).

It is clear that the analytification of this map is the projection map
πi : (S

1)n × K2d,n → S1 as desired.
We are now ready to show that the analytifications of the composition

and symmetry maps in CGKlog
d are the composition and symmetry maps of

FM2d o S1. For the symmetry action this is trivial as we can again use that
Confn(Cd) ⊆ FMtop

n (Cd) is dense to conclude this using an argument similar
to the one above.

A somewhat more complicated argument is needed to prove that the ana-
lytifications of the CGKlog

n composition morphisms and ◦i-operations are the
corresponding maps of the FM2d o S1 operad. We merely give an outline of this
argument. First note that for any surjection of finite sets ϕ : I � J the induced
map (Ad)J → (Ad)I extends uniquely to a map Bllog∆J

(Ad)J → Bllog∆I
(Ad)I which

restricts to a map glogϕ : Sd(|J|−1)−1 → Sd(|I|−1)−1. By the same argument as above

the analytification of this map must be the map gϕ : S
2d(|J|−1)−1 → S2d(|I|−1)−1

defined in section 3. Using this one can verify that the analytification of γlog is
the composition morphism of FM2d oS1 componentwise. That is, if γ denotes the
composition map in FM2d o S1 we can verify that

πI ◦ γ = πI ◦ (γlog)KN = (πlog
I ◦ γlog)KN

for every I ⊆ M and from this γ = (γlog)KN immediately follows. The ◦i case
is analogous. We include the proof for one important step which hopefully also
provides some insight into the methods used to fill in the remaining steps of the
argument.

Let f : S0×Sn → Sn be the map given by the canonical isomorphism f : Spec C×
Pn → Pn on underlying schemes and by the obvious isomorphism f∗OPn(−1)

∼=−→
π∗
1OSpec C⊗π∗

2OPn(−1) for the log structures. Here π1, π2 denote the corresponding
projection maps from the product Spec C× Pn.

Proposition 5.11. The analytification fKN : S1 × S2n−1 → S2n−1 is the
S1 ∼= SO(2) action on S2n−1 induced by the diagonal inclusion SO(2) ↪→ SO(2n).

Proof. First, let F : A1 × An → An be the map (z, (x1, . . . , xn)) 7→
(zx1, . . . , zxn). By the universal property of the blow-up this induces a map
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F̃ : A1 × Blp An → Blp An, where p denotes the origin in An. Furthermore,

F̃−1(Ep), where Ep is the exceptional divisor in Blp An, is the scheme theoretic
union o×Blp An ∪A1×Ep. By lemma 5.1 this gives a commutative diagram of log
varieties:

where F̃ log denotes the map F̃ extended to a map log varieties in the obvious way
and where i, j are the strict morphisms induced by the inclusions of fibres over
the origin for the underlying schemes. The analytification of this diagram is of the
following form:

where F̃ ′ = F̃KN and f ′ = fKN. Since ρ is a homeomorphism on a dense subset
there is only one pair f ′, F̃ ′ which can make the diagram commute by the same
argument as above. It is easy to construct a function F̃ ′ such that the diagram
commutes with f ’ equal to the group action morphism and from this the lemma
follows. �

The results of this section taken together give our main theorem.

Theorem 5.12. The Kato–Nakayama analytification of CGKlog
d is homeomorphic

to FM2d o S1.

5.4. Virtual log geometric generalizations

We end this article by discussing some apparent generalizations of these results in
the category of virtual log schemes. The most immediate improvement we get with
virtual morphisms is that, by example 2.8, we there are virtual morphisms

Spec C → S0.

It is not hard to show that we can choose such a morphism such that it satisfies
the unit axiom for our operad. Hence, in the category of log schemes with virtual
morphisms we can define CGKlog

d to be an operad, not just a pseudo-operad. It is
clear that theorem 5.12 still holds for this operad.

Virtual morphisms also allow us to construct the (unframed) Fulton–MacPherson
operad FM2d as the analytification of an operad of log schemes with virtual
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morphisms. Indeed, the operad composition map

γ : Td,n ×
n∏

i=1

Td,q−1(i) → Td,M

extends to a virtual morphism of log schemes

Kd,n ×
n∏

i=1

Kd,q−1(i) → Kd,M .

This map is defined using lemmas 5.3 and 5.4 but this time we replace the
isomorphism in lemma 5.4, (b) with the isomorphism

γ∗OTd,M
(q−1(r))

∼=−→

(⊗
r∈I

π∗
0OTd,n

(I)⊗(−1)

)
⊗ π∗

rOd,q−1(r)(q
−1(r)).

This gives a well defined virtual morphism of log structures by our definitions.
These maps define an operad CGKV-log

d in log schemes with virtual morphisms.
Using the same methods as before one can show that the analytification of the
resulting operad is FM2d.

Theorem 5.13. The Kato–Nakayama analytification of CGKV-log
d is homeomor-

phic to FM2d.
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