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1. Introduction

A recent construction of Dmitry Vaintrob [26, 27], shows that the framed little
2-dimensional disks (pseudo)-operad can be modeled as the analytification of a
pseudo-operad in log schemes whose underlying schemes are Mg 11, the moduli
spaces of stable (n + 1)-pointed rational curves of genus 0. See also the expositions
of Vaintrob’s construction in [4] and [8].

This article gives a generalization of Vaintrob’s construction to arbitrary even
dimension. For every positive integer d, we construct a pseudo-operad in the cate-
gory of log varieties whose analytification is weakly equivalent to the 2d-dimensional
St framed little disks. We write S* for the group U(1) & SO(2) and when we
refer to an operad O framed by some group G which acts on O, what is meant
is the semidirect operadic product O x G [24]. The underlying spaces of the log
varieties in CGK%;g are the moduli spaces for stable n-pointed rooted trees of
d-dimensional projective spaces, introduced by Chen, Gibney, and Krashen in
[5] and denoted Ty,. The connection to Vaintrob’s result is that these mod-
uli spaces are higher dimensional analogs of mo,n—&-l and in particular we have
that T, = ﬂo,nH. Specifically, we show that the analytification CGKLOg is
homeomorphic to FMag x S, the S'-framed Fulton-MacPherson operad. By a
result of Salvatore [23] FM,, is SO(n)-equivariantly weakly equivalent to LD,,, the
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2 O. Lindstrom

classical little disks operad in dimension n. Thus, this homeomorphism gives a weak
equivalence between the analytification of C(S‘:Kldog and LDyg x S

THEOREM 5.12. The Kato—Nakayama analytification of CGK?g is homeomorphic
to FMQd A Sl.

We will also show that the individual spaces FMy,(n) are analytifications of log
varieties; however, it will not be possible to construct an operad of log schemes with
these as objects whose analytification is FIMs,. Nevertheless, an operad with this
property, which we denote CGK;”Og, can be constructed in the category of log
schemes with virtual morphisms. Virtual morphisms of log schemes were introduced
by Howell [12] and further studied by Dupont, Panzer, and Pym in a recent article
[8], in which they also show that FMj is homeomorphic to the analytification of
an operad in log schemes with virtual morphisms.

THEOREM 5.13. The Kato—Nakayama analytification of CGK;/'log is homeomor-
phic to FMo,.

This has interesting consequences for the cohomology of LDsg x S' and LDag.
First, CGK'?® and CGK) % are defined over Q (and even over Z). This induces
a Galois action on the corresponding étale cohomology cooperads which lifts to an
action on the level of étale cochains. If the weights of cohomology are pure in a suit-
able sense the existence of such lifts implies formality of the corresponding operad.
See for example Petersen [22]. Additionally, using the log geometric structure of
these operads one can define mixed Hodge structures on the respective cohomol-
ogy cooperads. Such mixed Hodge structures can also be tools for proving operad
formality. In fact, Dupont, Panzer, and Pym use the fact that the Hodge structure
on the kth cohomology of CGK) 8 is pure of weight 2k to re-prove that LD; is
formal. It should be noted that all log varieties studied in this article are either
smooth varieties with log structure associated to a smooth strict normal crossings
divisor or smooth, closed, strong deformation retracts thereof with pulled back log
structures. Therefore, it is known how one should define mixed Hodge structures
for the log varieties studied in this article but in general the theory of Hodge struc-
tures in logarithmic geometry is still under development and there is, to the authors
knowledge, no explicit construction of a mixed Hodge structure functor on fs log
varieties, even if we restrict to the case of Deligne—Faltings log varieties. Naturally,
there is even less material on the matter for log varieties with virtual morphisms.
Considering this, it is debatable if the results of this article alone proves that there
is a mixed Hodge structure on the cohomologies of LDyy and LDog xS I but hope-
fully it will be clear to the familiar reader how one can define such a structure using
our constructions.

From this one may expect that the construction of this article would imply that
either of these formality arguments could be used to prove that the S'-framed little
disks are formal in arbitrary even dimension. However, the argument requires, in
some sense, that the weights of cohomology are pure and this is no longer the case for
CGK;’g when d > 2. For example, we can create a zig-zag of homotopy equivalences

coming from morphisms of log-schemes from CGK;Og (n) to Conf,(A) x G?, and
thus the MHS (mixed Hodge structures) on both these spaces are isomorphic. We
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know that the MHS on H'(G,,,Q) is pure of weight 2 and similarly, the MHS on
H?4=1(Conf, (AL),Q) is pure of weight 2d. For d =2 this implies that the MHS on
H3(Conf3(A%) x G2,,Q) 2 Q(—2) ® Q(—3) is mixed with weights 4 and 6. In fact,
the real model for LD,, x SO(n) by Khoroshkin and Willwacher in [14] can be
used to construct a real model for LD,,, x S* and using this model one can show
that LDs,, x S! is not formal.! On the other hand, the (unframed) little disks are
famously known to be formal in every dimension [16, 17].

Even before Vaintrob’s article it had long been expected that the little disks,
and the framed little disks are in some sense motivic, or algebro-geometric. A first
clue towards this expectation was the Galois action on C,(LDs) via Grothendieck-
Teichmiiller theory [3, 7]. This circle of ideas has been developed by a large number
of people, including [6, 16, 21, 22].

1.1. Structure and results

Section 2 gives a short introduction of logarithmic geometry and in particular we
give a definition of Deligne-Faltings, or DF, log schemes and describe their rela-
tionship with “normal” log schemes. We also define the real oriented blow-up of a
topological space in a section of a vector bundle and we explain how this can be
used to give an equivalent definition of the so called Kato—Nakayama analytifica-
tion [13] of a DF log scheme. Finally, we use the notion of virtual morphisms of log
schemes [8, 12] to give a definition of a virtual morphism of DF log schemes and
explain why this is interesting.

In section 3 we recall the definition of the topological Fulton—-MacPherson com-
pactification and the Fulton—-MacPherson model of the little D-dimensional disks
operad, denoted FMp [2, 10, 15, 25]. We describe an action by SO(D) on FMp
which is compatible with the corresponding action on LDp, the D-dimensional
little disks operad. In the case where D = 2d is even this gives an induced action
by S' = SO(2) via the diagonal embedding SO(2) < SO(d). This action allows
us to define the S!'-framed Fulton-MacPherson operad FMsyy x S which is weakly
equivalent to the S'-framed little disks operad.

In section 4 we recall the definition of the schemes Ty, introduced by Chen,
Gibney, and Krashen [5]. We use a functor of points description of these schemes to
define an operad in schemes with objects Ty, for each fixed d. We call this operad
the Chen, Gibney, Krashen operad, denoted CGKy.

Building on this, in section 5 we define Deligne-Faltings log varieties T4, ,, whose
underlying varieties are Ty, and we extend the symmetry and composition mor-
phisms (but not the unit morphism) of CGK, to maps of these log varieties. This
defines a pseudo-operad of log schemes, CGKilog. We then show that the analytifi-
cation of CGKldOg is FMyy x S1. We describe how to define the unit morphism of
CGKY® as a virtual morphism of log schemes and furthermore we show that with
virtual morphisms of log schemes we can also define an operad CGK, "' whose
analytification is FMoay.

I This was made clear to the author through comments from Thomas Willwacher.
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2. Deligne—Faltings log schemes

We will give all definitions and results relating to logarithmic geometry in this
article in terms of Deligne—Faltings log structures. The main reasons for this are that
some definitions and results are easier to state using this terminology and, perhaps
more importantly, the Kato—Nakayama analytification of a Deligne-Faltings log
scheme can be explicitly described in terms of real oriented blow-ups which will
turn out to be very useful for the purposes of this article. The precise definition
of a DF log scheme may vary between articles but we will use that of Bergstrom,
Diaconu, Petersen, and Westerland [4]. In this section we will on some occasions
reference “normal” log structures and therefore we will spell out the prefix “DF”.
This will not be the case in remaining sections and therefore “log scheme” should
be taken to mean “DF log scheme” outside of section 2.

DEFINITION 2.1. A Deligne-Faltings (or DF) log structure on a scheme X is
a finite tuple £ = (s;: Ox — L;)i<i<n of tnvertible sheaves with sections. A
morphism of log structures on X,

(Sii Ox — Ei)lgign — (tj: Ox — Mj)lgjgm

is a collection {e;;} of non-negative integers together with n isomorphisms of line

bundles
Reij
& M;

1<j<m

1

L;

which also identify the sections s; to the corresponding sections ®1<j<m t?e”
REMARK. For those with a sufficient background in log geometry: A DF log
structure £ = (s;: Ox — L;)1<i<n on some scheme X induces a log structure

M(L) = M™°e — Ox where M8 is the logification of the pre-log structure

M) = || (e @ o (L))

017‘,20

with the obvious monoid structure and with the map to Ox induced by sy : £} —
Ox. The superscript * here indicates the subsheaf of invertible sections. A mor-
phism of DF log structures induces a map of corresponding log structures in the
obvious, functorial, way.

DEFINITION 2.2. A DF log scheme X = (X, £) is a scheme X with a DF log struc-
ture £. We call X the underlying scheme of X, sometimes denoted X. A morphism
of DF log schemes (X, £) — (Y, M) is a morphism of schemes f: X =Y and a
morphism of DF log structures f* — £. Such a morphism is said to be strict if
[ — £ is an isomorphism of DF log structures.

An important special case of a DF log scheme is a scheme with the trivial DF
log structure, i.e. no line bundles. For a scheme X we call (X, () the log scheme
associated to X and we will, by abuse of notation, simply denote this by X. If Y is
a log scheme and f:Y — X is a map of schemes then there is a unique morphism
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of log schemes Y — X with underlying map f. Similarly a morphism f: X — Y
gives a morphism of log schemes X — Y if and only if the pullbacks via f of all
line bundles with sections in the log structure of Y are trivial with a unit section
and if this is the case then this morphism of log schemes is unique.

2.1. Blow-Ups

In this section we define real oriented blow-ups in sections of line bundles and prove
some results relating to these. These will be used to define the Kato—Nakayama
analytification of a log scheme.

First, let X be a topological space, let n: E — X be a rank n vector bundle
and let s: X — F be a section. Furthermore, let Ey denote the image of the zero
section and let E' := E'\ Ey. Note that the action by Rs¢ (and in fact the action
by R*) on E restricts to a free action on E’. We define the real oriented blow-up
of X in s, denoted BIY X as the space

{peFE |FaeRsy: p=a-(son)(p)}/Rso

and we define the blow-down map p: Bl]}} X — X as the map induced by passing
p: E — X to the quotient. Note that p has an inverse away from the zero locus of
s and for any 7 in the zero locus of s we have that p=1(z) = "1,

The “usual” definition of the real oriented blow-up of a smooth manifold X in
a smooth closed sub manifold Y, denoted Bl%{i X is that it is the complement of
a tubular neighbourhood of Y in X and the blow-down map is then taken to be
a retraction of this neighbourhood onto Y. It is also possible to give a functo-
rial definition as in [1]. The following result, whose proof I will omit, relates this
construction to the usual notion of a blow-up in a smooth closed submanifold.

PROPOSITION 2.3. Let M be a (smooth) manifold, let E be a vector bundle, let
s: M — E be a smooth section whose image intersects Eg transversally, and let
Y = s7Y(Ey) be the zero locus of s. Then there is a unique isomorphism of spaces
over M,

Bl M=~ B M.

REMARK. Note that a necessary, but not sufficient, condition here is that the codi-
mension of Y is the rank of the vector bundle. This resembles the algebraic situation
where if X is smooth and Y is a locally complete intersection the blow-up Bly X
is locally a closed subscheme of a projective bundle over X.

Despite these properties one should be aware that BI]E X does not always resem-
ble the “usual” definition of a blow-up. For example if we take the blow-up in the
zero section of E the result is (up to canonical isomorphism) the sphere bundle of
FE which, in the case where X is a manifold, has higher dimension than X. Even
stranger situations are also possible and the blow-up of a manifold is not even
necessarily a manifold with corners. For example let s: S? — R2, considered as
a section of a trivial bundle on S?, be defined by s(x,y,z) = (z — 1,0). The real
oriented blow-up BIE 52 is the wedge sum S!V S2.

https://doi.org/10.1017/prm.2025.10080 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10080

6 O. Lindstrom

LEMMA 2.4. Let X be a topological space, let m: E — X be a complex line bundle,
and let E’ be the complement of the zero section in E. Then |5 E — E' is trivial.

Proof. The diagonal map E — Ex x E restricts to a nowhere 0 section, E' — 7|5 E.
Thus 7|}, E is a line bundle with a nowhere 0 section and is hence trivial. O

REMARK. If X is a smooth manifold and E is a smooth bundle then n|}, E — E’
is trivial as a smooth bundle by the same argument.

COROLLARY 2.5. Let s: X — FE be any section. The pullback of E — X to the
blow-up BIE X is a trivial bundle.

Proof. By introducing a Hermitian metric, the blow-up can be embedded into E’
and the blow-down map factors via this embedding. Thus, the pullback of E to this
blow-up is trivial by lemma 2.4. O

COROLLARY 2.6. Let Ly, Lo, ..., L, be complex line bundles on a manifold X and
let L=@Q._, L?ei where e; are integers and Q is the complex tensor product. Let
01,...,0, be sections 0;: X — L;. Then, there is an isomorphism

BI, BIE, ... BIE, X 5 (B}, ... BI, X) x 8’

where &; denotes the pullback of o; through all previous morphisms and og: X — L
is the zero section.

Proof. This is immediate from the previous corollary. O

2.2. Kato—Nakayama analytification

For a DF log scheme X = (X, (s;: Ox — £;)1<i<n) such that X is of finite type over
C one can construct an associated topological space XXN called its Kato—Nakayama
analytification. This space is defined as the sequence of real oriented blow-ups

BIf BIf ... BL Xx™

where §; is the section s; of the vector bundle £; pulled back via all previous blow-
ups. This is order independent up to canonical isomorphism since, at each step, we
are blowing up in the pullback (i.e. total, not strict, transform) of the corresponding
line bundle with section. Regardless of order we let px: XKN — X3 denote the
corresponding blow-down map. This construction can be made functorial in the
following way.

First, if f: (X, (Sil Ox — £i)1§i§n) — (Y, (til Ox — Mi)lgign) is a strict
morphism of log-schemes, i.e a morphism such that the log structure morphism is
given by isomorphisms f*M,; — ﬁl@l for each i, then we can form the following
commutative and cartesian (with respect to the downward vertical arrows) diagram
where we have EY = £§" and Ej = Mj™ and where s,t are the corresponding
sections. The blow-ups Blig1 X(C) and Bl]ig1 Y (C) are subspaces of the quotients by
an equivalence relation ~ on E} and E3 respectively where two vectors in a fibre are
identified if they are equal up to positive scalar multiplication. By commutativity
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.
X(C)

—— Y(C)

of the diagram, the subspace corresponding to the blow-up of X (C) is mapped to
the blow-up of Y (C) as subspaces of E%/ ~ and E%/ ~ by the induced quotient
space map. Thus, we get an induced subspace map Bl]f‘1 X(C) — Blﬂf1 Y (C).
Iterating this gives the desired map of the entire sequence of blow-ups.

Next, let ¢: M = (tj: Ox — Mj)lgjgm — £ = (Sz Ox — ﬁi)1§i§n
be a morphism of DF log structures on X given by integers {e;;} and isomor-
phisms ¢;: M; — ®j L®%i . For simplicity assume that all line bundles are
trivial. The general case can be constructed from this by gluing. Furthermore, let
7 (X, 2)KN — X(C) and p: (X, 9)EN — X(C) denote the corresponding blow-
down maps. Then, by composing with the trivializing isomorphisms, we obtain
a unique invertible algebraic function A\;: X — C such that we can identify the
analytification of ¢; with a map ¢;: X(C) x C — X(C) x @,<;<, C®¢i which
sends

(x,2) = (x, \(x)z ® 19¢is).

1<j<n

This gives a map of spaces over X (C), X(C) x (C*)™ — X(C) x (C*)™ given by

(@, (21, 2) = (o a @ T 257 @) T 2570

By definition of \; this map sends

(x,81(2), ..., s$n(x)) = (x,t1(2),. .., tm(x))

and hence induces a morphism of blow-ups as quotients of subspaces of these
bundles.

Since any morphism of log schemes is the composition of a strict morphism and
a morphism given by the identity on underlying spaces these two cases are enough
to define the analytification of an arbitrary map of log schemes.

One can verify that this definition of the analytification functor for DF log scheme
agrees with the analytification of its associated log scheme originally introduced by
Kato and Nakayama in [13]. This can be checked through direct computation but
for a less tedious argument see [4]. From section 3 onward we will drop the “DF”
prefix and let “log scheme” mean “DF log scheme”. All log schemes referenced in
this article will indeed be DF log schemes but because of the above the distinction
is not important for our purposes anyway.

REMARK. In [13], X¥N is also given an associated sheaf of rings which, provided
that X is smooth and that the divisor associated to all non zero sections of line bun-
dles is a smooth normal crossings divisor, gives XX the structure of a smooth real
manifold with corners. This motivates the name “analytification”. These conditions
are all satisfied for the log schemes we consider in this article and we could, with
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a little more work, replace the word “homeomorphism” with “diffeomorphism” in
theorems 5.12 and 5.13.

We will not need to use this explicit definition of the analytification of a morphism
at any point in this article. Instead, all we will need is that the analytification of a
map exists, is functorial, and satisfies the following properties:

e For a log scheme X with log structure £ = (s;: Ox — £;)1<i<n the analyti-
fication of the map X — X given by the identity on underlying schemes is
the blow-down map

XKN'= BIf BIf ... BL, X(C)— X(C).

1
e For a strict morphism of log schemes f: X — Y the following is a Cartesian
diagram:
XKN YKN

| |

X(C) — ¥(C)

Both of these properties are standard and easy to verify so we omit a proof and
will use them freely without reference.

2.3. Virtual logarithmic geometry

In this section we will give a short introduction to virtual morphisms of log schemes
which were introduced by Howell [12] and further studied by Dupont, Panzer, and
Pym [8]. Such virtual morphisms will be irrelevant for most sections of this article
but in section 5.4 we include a discussion on how one can generalize some of our
results using virtual morphisms in ways that are not possible otherwise. In the
language of normal, i.e. non DF, logarithmic geometry a log structure on a scheme
X is a sheaf of monoids M with a morphism of sheaves of monoids av: M — Ox
which restricts to an isomorphism a~'(O%) — O%. A map of log structures is then
a map of sheaves of monoids over Ox, M1 — M. Note that such a map commutes
with the maps from O* by definition.

A virtual morphism of log structures is a morphism of the groupifications M5" —
MS5P which makes the diagram

0%
MEI’;I) M§P
commute. Note that the groupifications M$P, M5P do not have maps to Ox which
is why we use this weaker condition. Also note that the category of virtual log struc-
tures has more morphisms but we define it to have the same objects as the category
of log structures. For a short motivation regarding why it makes sense to introduce
such virtual morphisms it is worth mentioning that the log Betti and log de Rham
cohomology functors are well defined for log schemes with virtual morphisms and
the same is also true for the Kato—Nakayama analytification functor.
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Although Dupont, Panzer, and Pym do define virtual morphisms of DF log
structures their definition of a DF log structure is different from ours. Thus, we
give a somewhat different definition here.

DEFINITION 2.7. A wvirtual morphism of DF log structures on a scheme X
(Si: Ox — Ez’)1§¢§n — (tj: Ox — Mj)lgjgm

is a collection {e;;} of integers together with isomorphisms of line bundles

ﬁi i ® M;@eij

1<j<m

for each 1 < i < n satisfying the following if s; # 0

e ¢;; > 0 for every j.

. . . Reij
e the sections s; are mapped to the corresponding sections ®1§j§m tj g
REMARK. Although the constructions are closely related, our category of DF log
schemes and the category of log schemes in [8] are not equivalent categories nor are
they subcategories of each other and thus this definition cannot be “derived” from
that of Dupont, Panzer, and Pym in any meaningful way.

REMARK. For non connected schemes this definition must be appropriately
modified for sections that are identically zero on some, but not all, components.

The category of DF log schemes with virtual morphisms, ¥ DF-Log fits into a
commutative diagram of categories:

DF-Logy —— Logy

l l

VDF-Logy —— VLogy

We will omit the construction of the functor ¥ DF-Logy —V Logy but the
interested reader is encouraged to construct it themselves and/or verify that our
definition of the Kato—Nakayama analytification functor is still well defined for
virtual morphisms. Doing this hopefully sheds some light on why this definition is
a reasonable one.

ExAaMPLE 2.8. There is no morphism of log schemes Spec k — (Spec k,0: Ok —
Ok) but there is such a morphism of virtual log schemes (one for each automor-
phism Ox — Ok). For k = C, the Kato-Nakayama analytification of these maps
are the inclusions of a point in S!. Similarly, the group inverse map i: St — S*
is not the analytification of any map of log schemes (Spec C,0: O¢ — O¢) —
(Spec k,0: O¢c — O¢) but it is a virtual map of log schemes corresponding to the

isomorphism O¢ = (9?(71).
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ExXAMPLE 2.9. Let X be a smooth scheme and let D be a smooth effective Cartier
divisor. By definition

(X,sp: Ox = Ox(D))*N = Blj¢) X(C).

By our definition of the real oriented blow-up there is an embedding of Blﬂj%(c) X(C),
into the unit circle bundle of (the analytification of) Ox (D) with some arbitrarily
chosen metric. This unit circle bundle is, again by definition, the KN analytification
of (X,0: Ox — Ox(D)). The inclusion

(X,SD: OX — Ox(D))KN — (X,O: OX — Ox(D))KN

is not the analytification of any map of log schemes since the zero section cannot
be pulled back to a non zero section. It is however the analytification of a virtual
map given by the identity on both underlying spaces and Ox (D) — Ox(D)®!.

3. Topological Fulton—-MacPherson and Kontsevich spaces

In this section we recall the topological Fulton-MacPherson spaces, FM!P(RP),
and the closely related Kontsevich spaces, Kp , = FM>’(RP)/R-o x RP.

3.1. The Fulton—MacPherson compactification of a manifold

Let X be a smooth manifold, let n be a positive integer and let P2(n), denote the
set of subsets of [n] with at least 2 elements. For a set I € Po(n) let Ay denote the
corresponding diagonal in X", i.e.

Ar=A{(z1,...,2n) € X" x; =x; Vi, j eI}
By abuse of notation we will also use A; to denote the (small) diagonal in X7.

DEFINITION 3.1. The Fulton-MacPherson compactification, FM?(X) is the
closure of the image of the map

Conf,,(X) — H Bl]il X1
IeP>(n)

We let fr: FMYP(X) — Blﬂij (X) denote the restrictionof the corresponding pro-

jection to FM'P(X) and we let p: FM'P(X) — X" denote the surjective extension
of the embedding Conf,(X) — X™ to FM'?(X).

REMARK. This definition is the one used by Axelrod and Singer in [2] but
many sources use a different definition of the topological Fulton-MacPherson
compactification introduced by Sinha [25]. These can easily be shown to be
equivalent.

DEFINITION 3.2. The Kontsevich space of n points in dimension d, Kp,, is
defined as the fibre p=1((0,0,...,0)) C FM?(RP).
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REMARK. It is more common to define Kp ,, as FM-P(R”) /R~ x R” but one can
show that the composition p=1((0,0,...,0)) < FM;??(RP) — FM?(RP) /R x
RP is an isomorphism and this equivalent definition will be more useful for our
purposes.

The fibre over the origin of BIY, (RP)! is SPWI=D-1 " Thus,
fr: FMYPP(RP) — Blﬂil (RP) restricts to a map m;: Kp, — SPUI=D-1
These maps give a closed embedding

Kpn— [ sP07-0-1,
IEPZ(")

i.e. an element x € Kp, is uniquely determined by its components z; = m(z).

Note that while we have chosen to use [n] = {1,...,n} as coordinate indices
in the definitions above we could have used any (finite) index set N instead.
We can thus define FM'OP(X) and Ky n with maps p: FMYP(X) — XV,
fre FMWP(X) — BIX, (X)!, and 7;: Kpny — SPUI=D=1 in the analogous
way. Here I is a subset of V.

3.2. The Fulton—MacPherson operad

For a fixed dimension D the collection {Kp ,}nen can be given the structure of a
topological operad as follows.

The permutation action of ¥, on Conf,(RP) extends to a free action on
FM!°P(RP) which gives an induced action on the fibre over the origin, Kp ,. This
is the symmetry action of the operad.

Next, any surjection ¢: I — J of sets induces a monomorphism (RP)7
(RP)! such that the inverse image of A; is Ajy. This gives a map
Blx, (RP)7 — BIR, (RP)! which restricts to a map of fibres over the origin

gy SD(\J|—1)—1 —>SD(|I|_1)_1.

Let q: M — [n] be a surjection of finite sets. By abuse of notation we will also
let ¢ denote the restriction of this function I — ¢(I) for any I C M. The above
construction allows us to define a map

v: KD,[n] X H KD7q—1(i) — Kgum

i€[n]
by
Y ICq (i)

’Y(x?y17 L] 7yn)l =
gq(xq(j)) else

This defines the composition maps of the operad.

REMARK. We use the standard notation for an operad defined in terms of finite sets
here. See for example [20, Part II, section 1.7] for an introduction to the notation.
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Finally, K41 is the one point space so there is only one choice for the identity
map, 1: * = Kg1. The operad axioms can be verified manually for this collection
of maps.

DEFINITION 3.3. We call the operad with spaces {Kpn} (for a fited D) and the
above composition, symmetry, and identity maps the Fulton-MacPherson operad
in dimension D, denoted FMp.

By a result of Salvatore, the Fulton—-MacPherson operad is weakly equivalent to
the operad of little d-dimensional disks [23, proposition 3.9].

The action of SO(D) on R? induces an action on Conf, (RP) which extends to
FM!P(RP). Since all rotations map the zero vector to itself this restricts to an
action on the fibre Kp ,. One can check that this gives an action by SO(D) on the
FMp, operad in the sense of [24]. Furthermore the weak equivalence FMp ~ LDp
can be shown to commute with this action which gives a weak equivalence between
FMp x SO(D) and LDp x SO(D), the framed little disks operad.

With the notable exception of the case D =2, the framed little disks operad is,
however, not the operad studied in this article. Instead we are interested in the
following construction. When the dimension is an even number D = 2d there is an
embedding of topological groups

St U1) Y U(d) < SO(2d)

This induces an action of S! on the FMs, operad and we can form the semidirect
product FMay, x ST

The main goal of this article is to construct a (non-unital) operad of log schemes
whose Kato—Nakayama analytification is FMaq x S which is weakly equivalent to
the S'-framed little disks operad.

4. The Chen, Gibney, Krashen operad

Fix a base field k for the remainder of the article. In this section we recall the
definition of the moduli spaces of stable n-pointed rooted trees of d-dimensional
projective spaces, Ty, and describe an operad of (smooth) k-varieties with spaces
T4, for a fixed d which generalizes the operad of pointed stable curves of genus
0. For a more in depth description of the spaces Ty ., including a definition of a
rooted tree of projective spaces, see [5].

4.1. Fulton—MacPherson compactifications

Let us recall some important aspects of the Fulton—MacPherson compactification
[9]. Let X be a smooth k-variety. For an integer n and a subset I C [n] with || > 2
let Z; denote the sheaf of ideals on X™ corresponding to the I-diagonal, A; C X™.
Recall that we denote the set of subsets of [n] with at least 2 elements by Pa(n).
Let p: FMY8(X) — X" denote the Fulton-MacPherson compactification of
Conf, (X). We call this a “compactification” of Conf,, (X) since p restricted to
p~(Conf,(X)) is an isomorphism and FM*2(X) is compact provided that X
is. The remainder of this section will be dedicated to recalling some important

https://doi.org/10.1017/prm.2025.10080 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10080

Log geometric models for little disks operads in even dimensions 13

results relating to the Fulton—-MacPherson compactification. First, we just state
the following facts, all of which can be found with proofs in [9].

e The scheme FM#(X) is a smooth variety.

e There is an ordering of the elements in Py(n), such that p: FM™8(X) — X"
is given by a sequence of blow-ups where we start with X" and at step ¢
of the sequence we blow-up in the dominant transform of the ¢th diagonal
through all previous blow-ups.

e The closed subset D(I) € FM8(X) given by the dominant transform of
A(X) through all these blow-ups is a smooth, effective Cartier divisor.

o The divisors D(I) form a strict normal crossings divisor, i.e. any set of the
divisors meets transversely.

e The intersection D(Iy,...,I;) := D(Iy) N--- N D(I}) is non-empty if and
only if the sets I3, ..., I; are nested i.e. for each 4, j we have I; C I;, I; C I;
or 11 M Ij = (Z]

o We have FM;%(X) \ Conf,(X) = Ujep, () D()-

e We have that p~'(A(I)) = U;c; D(I’), ie. the pullback of the ideal
inclusion Z; < Ox~ factors via a quotient

p"Ir — 11 Zoay = Q) Opypzie(x) (D).
cr cr
e The composition FMleg(X ) — xn — XT  factors as
FMfllg(X) EEN Bla, X7 L1, X1 where p; is the blow-down map.

REMARK. Recall that for a blow-up Bly X — X the dominant transform of a
closed subscheme Z C X is defined as the strict transform of Z if Z € Y and the
pullback of Z to Bly X if Z CY.

Note that by the last two points we have that if Ean, € Bla, X I denotes the
exceptional divisor then there is an isomorphism

f?O(EAz) = ® OFMSLIE(X)(D(I/))

Icr

which sends corresponding sections to each other.
In addition to this geometric description of FM*2(X) there is also a functorial
description which we will make great use of in this article.

DEFINITION 4.1. A screen on a scheme H is a map f: H — X"™ together with the
following data

e an invertible quotient f*Z; — L for each I € Py(n)
e amap L — Ly for each I CJ

such that the following diagram commutes for every I C J
where [*I; — f*I; is the pullback of the corresponding inclusion.
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I —— Ly

|

f*IJ E— ﬁJ

We say a screen satisfies the I-vanishing property for some I € Pa(n) if pr; o
fiH—=X= prjof: H— X foreachi,j €I and, for every J € Py(n), if J £ I
and |[INJ| > 2 then Ling — Ly is the zero morphism.

We can define a screen on FM#(X) by taking f = p, L7 =
& 1cr Opppasxy (—D(I')) and letting the invertible quotients be the maps

p*II - g OFleg(X)(_D(I/))

The maps £; — L here are induced by the ideal inclusions OFM%Ig(X)(*D(I)) —

Oppais (- We call this screen the universal screen on FM?8(X).

DEFINITION 4.2. Let X,,: Sch®® — Set be the functor which sends a scheme H
to the set of screens on H up to isomorphism of the screen data.

Similarly let X(I,...,I}) denote the subfunctor sending H to the set of screens
on H up to isomorphism which satisfy the 1.-vanishing property for each 1 < r < k.

PROPOSITION 4.3. The Fulton-MacPherson compactification FM™(X) represents
the functor X,. Furthermore, the natural isomorphism hom(—, FM™(X)) — X,
is given by sending the element f: H — FM“I(X) to the pullback to H of the
universal screen on FM™9(X) described above.

Similarly D(Iy,...,Iy) C FM“(X) represents X(I,,...,I). The natural
isomorphism is given in the same way here as above.

Proof. This is theorem 4 in [9)]. O

4.2. Pointed rooted trees of projective spaces

Chen, Gibney, and Krashen [5] introduced stable pointed rooted trees of projec-
tive spaces as a higher-dimensional analogue of stable pointed rational curves, and
showed that T4, (defined in section 4.3) is the moduli space of stable rooted
n-pointed trees of d-dimensional projective spaces. Here we recall the definition
and describe the morphisms in the operad CGK, (defined in section 4.3), with
CGK (n) = Ty, in terms of natural operations on such trees. The discussion is
intended to convey geometric intuition for section 4.3, and we therefore suppress
most proofs and technical details.

DEFINITION 4.4. A rooted tree of d-dimensional projective spaces is a connected,

reduced, projective scheme T with a closed embedding ro: P4~ < T, called the
root hyperplane, obtained by the following finite inductive process:
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1. Start with T = P? and choose a hyperplane embedding
ro: P4t T

This embedding is the root hyperplane.

2. Given a tree of d-dimensional projective spaces T produced in a previous
step, choose a smooth point x € T disjoint from the singular locus and the
root hyperplane ro: P?~1 < T. The neat iteration T is defined by forming
the blow-up Bl, T and gluing along its exceptional divisor P*~1 a new copy
of P% along some hyperplane P4~1 C P9, Since x was chosen to be disjoint
from the root hyperplane ty induces an embedding rl: P4~1 — T’ which we
take to be the new root hyperplane. Repeat finitely many times.

An n-pointed rooted tree is such a rooted tree of projective spaces T together with
n distinct points

Ply---sDn: Speck =T

lying outside the singular locus Sing(T) and outside the oot hyperplane.

REMARK. When d =1, blowing up in a smooth point does nothing and hyperplanes
are points so an n-pointed rooted tree of 1-dimensional projective spaces is just an
n + 1-pointed genus 0 curve with at worst nodal singularities.

Decompose T' = |J, T; into irreducible components and let T denote the root
component, i.e. the component containing the root hyperplane. Each T; is isomor-
phic to P? blown up at a closed subscheme Q; consisting of finitely many disjoint
k-points, hence admits a canonical blow-down map

b+ T, —s P2

Furthermore, there is an embedding 7r;: Pd—1 s T, for each T; such that b; o
ri: P41 — P? is the inclusion of a hyperplane. For the root component 7 is the
root hyperplane and for other components r; is the embedding of the hyperplane
along which the component was attached. Note that the disjoint union of r; and
the exceptional divisor E; of the blow-up 7; — P? is precisely the intersection
T; N Sing(T).

DEFINITION 4.5. With notation as above, the n-pointed rooted tree T is stable if,
for every component T;, there are at least two corresponding special points, meaning
the marked points {p1,...,pn} NT; and the blown-up points Q;.

REMARK. This condition is equivalent to 1" having no non-trivial automorphisms
restricting to the identity on the marked points and the root hyperplane.

REMARK. When d =1, the above condition is equivalent to there being three spe-
cial points on each component if we think of the corresponding hyperplanes as
special points as well. This is the usual stability condition for pointed genus 0
curves with at worst nodal singularities.
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By theorem 3.4.4. in [5] the smooth varieties Ty ,, are moduli spaces of stable
n-pointed rooted trees of d-dimensional projective spaces. There are no stable 1-
pointed trees but in this case we define Ty; = Spec K. As mentioned before, a
hyperplane in P! is just a point and thus we have T}, = M()’n_l,_l, the moduli
space of stable n + 1-pointed rational curves where the additional point is the root
hyperplane.

Each variety Tg, comes with a canonical action by the symmetric group X,
corresponding to permutation of the marked points. Furthermore, for each 1 < i <
n there is a morphism

O
Td,n X Td,m — Td,n+m71

which takes an n-pointed tree T and an m-pointed tree T" and maps them to the n+
m — 1 pointed tree formed by blowing-up 7 in the ith marked point and gluing the
resulting exceptional divisor to the root hyperplane in T". It is clear from definitions
that these maps give rise to an operad of varieties, which we denote CGK,4, with
spaces CGKy4(n) = Ty In the case d=1 this construction is classical, see for
example [11].

4.3. Definition and properties of T},

In this section we recall the definition and some important properties of the Ty,
spaces from [5]. We also introduce a functor of points for these spaces and use this
to define the operad CGK, with spaces CGKy(n) = Tq,, which was informally
described in section 4.2. We will not explicitly prove that CGKy is isomorphic to
the operad described in section 4.2 but it is not hard to show using theorem 3.4.4.
in [5].

If pr;: X™ — X denotes the projection to the ith component it is clear from
definitions that the composition

D([n]) — FM38(X) 24 xn 2y x

is independent of the integer i. We denote this morphism by 7: D([n]) — X. In
[5], Chen, Gibney, and Krashen show that for any k-valued point € X the fibre
7~ 1(z), depends only on n and dim X up to (non-canonical) isomorphism provided
that X is smooth. We define T, as 7=1(0) for the map m: D([n]) — A% but by
the above we could equally well have taken any other smooth variety instead of
X = A4

REMARK. Just like the topological case notice that while we have up until this
point indexed coordinates with [n] we are free to use any finite index set I and
FM?lg(X ) and Ty ; together with all related maps and divisors are defined in the
analogous way.

The variety Ty ,, is smooth and comes equipped with a smooth closed subscheme
Tun(I) for every non empty I C [n]. For I € Py(n), i.e. I # [n] and |I| > 2, we
define T}, (I) as the pullback of D(I) € FM8(X) to Ty,,. For other I (i.e. I is [n]
or a one point set) we take Ty, (I) := Ty, Similarly, for a collection of (distinct)
subsets I1,...,I; C [n] we define Ty, (I1,...,1x) := (; Tan(;). For I # [n] and
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|I] > 2 the subscheme Ty ,,(I) is a smooth divisor of T}, and the union of all these
divisors is a normal crossings divisor. Additionally, the intersection Ty ., (1, ..., Ix)
is non empty if and only if (Iy,...,Ix) is nested. All this essentially follows from
the analogous results for FM®8(X) recalled in section 4.1. Details can be found
in [5].

REMARK. In terms of pointed trees Ty, (I), where I € P>([n]), parameterizes trees
which have two (not necessarily irreducible) components such that the component
which does not contain the root hyperplane contains exactly those marked points
indexed by I.

The first goal of this section will be to give a functor of points description of the
schemes T} ,(I1, ..., I)). For this we introduce the following.

DEFINITION 4.6. For a scheme H, an integer d, and a finite, non-empty, set I
with at least two element we let ]—';{’d denote the quasi-coherent sheaf of modules

defined by
Fi = ()15 /-~

Here <{tf]}zl§g?d> denotes the free module with generators tfj and ~ s generated

by sections of the form tfj + t?z —t%. We will also denote this by F¢ or Fr if H or
H,d are clear from context.
For every function of sets p: I — J we let F,: }'IH’d — }"f’d denote the sheaf

morphism defined by sending tfj — tZ(i)¢(j).
REMARK. Note that f{{’d is free of rank d(]I| — 1). Furthermore, note that the
sheaves .7-'IH’d and the maps F, are pullbacks of corresponding vector bundles with
morphisms on Spec K. For all I € Py(n) these are in turn isomorphic to the pull-
backs of the ideal sheaves Za, on (A%)" 2 Spec k[xf]}éffj via the inclusion of the
origin Spec k — (A4)". Here we identify the section Efj_ of F¢ with the pullback
of the global section x} — 2% € I, C K[z}]. Additionally, if I C J C [n] the map
Frc, j of sheaves on Spec K is the pullback of the ideal inclusion map Za, < Za .

DEFINITION 4.7. Let Tgp: Sch®? — Set be the functor which sends H to the set
of collections of invertible quotients,

{61: F{"" > Li}iepyn)»

such that for every I C J there is a morphism L; — Lj making the following
diagram commute.

H,d
Fit s oy

b |

Fit—— Ly

Such a collection will sometimes be referred to as a simple screen. Similarly let
Tan(lr,...,I;) denote the subfunctor of Tq, with the added condition that for
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every I,., the simple screens satisfy the I.-vanishing property, i.e. if J ¢ I. and
|JNI.| > 2 then Ljn5, — Ly is the zero morphism.

REMARK. Note that 7g,([n]) = Tan({7}) = Tan.

There is a natural simple screen on Ty ,, which can be constructed as follows. Let
i: Ty — FM28(AY) denote the inclusion of the fibre over the origin in (A?)". The
ideal sheaves Z; pull back to i*Z; = .7-'}1 and for I C J the inclusion Z; < Z; pulls
back to the map Fycy: F¢ — F4. Thus, the universal screen on FMleg(Ad) pulls
back to a simple screen on Ty, via 7. We will refer to this as the universal simple
screen on Ty . Let F; — M?’" denote the invertible quotient corresponding to
I € Py(n) of the universal simple screen on Ty ,,. We will also denote this by M if
d,n are clear from context.

LEMMA 4.8. Let i: Ty, — FM™(A%) denote the inclusion of the fibre over the
origin. There are unique isomorphisms

&) i O(=D(I')) = M;

such that for I C R the following diagram commutes

Qpcr " O(=D(R)) —= Mg

l@sgm g J

Qe *O(=D(I)) = M

where tg: O(—D(R')) < O denotes the ideal inclusion.

Proof. This follows from the analogous result for the universal screen on
FM™8(X). O

ProrosiTiON 4.9. The functor Tq, is represented by Ty, and similarly
Tan(I1,...,Ix) is represented by Tyn(I1,...,Ix). Furthermore, the natural iso-
morphism hom(—,Ty,) — Tan is given by sending a map f: H — Ty, to the
pullback of the universal simple screen on Ty, to H. The analogous result holds for
hOHl(—,Td,n(Il7 . ,Ik)) — 7717n(11, ey Ik).

Proof. First note that if ig: Spec k — (A9)" denotes the inclusion of the origin
then we have seen that iZ; = Fy for every I € Py(n), where Z; is the ideal sheaf
corresponding to the I-diagonal in (A%)". Since

Ty =7 "(0) = D([n]) xpa Spec k= D([n]) x (aay» Spec K

the result follows immediately from proposition 4.3. The same argument also gives
the Ty (L1, ..., Ix) case. O

This functorial description simplifies the proof of many of the following results
greatly. Let n be a positive integer, and let ¢: [n] = M be a surjection of sets. We
also let ¢ to denote the restriction of this map J — ¢(J) for any J C M.
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PROPOSITION 4.10. The composition map described in section 4.2 is well defined
and gives an isomorphism

Td,n X H Td,qfl(r) = Td,ﬂf(q71(1)7 s ,qil(ﬂ)).

r=1

Proof. We will construct an explicit natural isomorphism between the functors
represented by the left and the right side. Identifying the induced isomorphism of
schemes with the map described in section 4.2 is left as an unimportant exercise
for the reader.

We define this natural transformation

7;1,n X H 7:1,q—1(r) - E,M(q_l(l)a s 7q_1(n))

r=1

by sending simple screens (on some k-scheme H)

{61: F1— LY 1epay < [ [{00: Fr—= L5} sepiq—y) = Lo : Fi = Lt kers s

r=1

where {pr: Fx — Lk }kep,m) is defined as follows. We define the line bundles

Ly as

L K C ¢ *(r) some r

Ly = .
Eq(K) else

and the corresponding quotients as

P K C q~Y(r), some r
PK = :
dqry 0 Fy  else

For the definition of F,: Fx — Fyk), see definition 4.6. We define the maps
EKI — ['Kw for K, C KQ, to be

Lh — Ly, Ky C ¢~ *(r) some r
L’g(Kl) — ES(KQ) K\ € ¢ \(r) any r
0 Ki Cql(r)and Ky Z ¢ (1)

It is easy to check that {px } xcp,(ar) With the maps Lx, — Lk, above is a simple
screen with the ¢! (r)-vanishing property for every r and so this transformation is
well defined on the level of sets. Furthermore, the map is clearly natural and so we
have defined a natural transformation as desired.

To show that this gives a natural isomorphism first note that that this map is
clearly injective. Surjectivity follows from the fact that if {px: Fx = Lk }rxep,n)
is a simple screen satisfying the ¢~ ! (r)-vanishing property for every r then, for every
K not contained in any ¢~!(r) the map px: Fx — L factorizes uniquely as
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F,
Fr —= Fy(r)

N
EK

by the universal property of the quotient. (Il

REMARK. Since we defined Ty, ({i}) = Ty,n([n]) = Ty, this statement is true even
in the case n=1or |[¢~'(r)| = 1.

COROLLARY 4.11. For any I € Py(n), the isomorphism of the proposition restricts
to an isomorphism of closed subvarieties

Tun(I xHqul(r) Tan (gt (1),...,q (), ¢~ H(D)).

Similarly, for any I, € Py(¢~(r)), the isomorphism of the proposition restricts
to an isomorphism of closed subschemes

Tyn X Td7q71(1) X X Td)q—l(r) (I,) X oo X Td,qfl(n) = Td,M(qil(l)a R ,qil(n), I,,«).
Proof. The proof is analogous. O

COROLLARY 4.12. Let v: Ty, x [, Ta,q-1(iy = Ta,m be the composition of the
isomorphism above with the inclusion into Ty pr and let mo: Ty, X H?Zl Taq-13i) =
Tyn and mp: Ty, X H?:l Ta.q-1(:) = Ta,q-1(r) denote the corresponding projections.
There are unique isomorphisms relating the elements of the corresponding universal

screens
—1
e A M *./\/ld’q ™ rc q Y(r) somer
YMPT = in .
oMy i1 else

making (one of) the following diagrams commute:

Fr 4)% Fr ]:I » ]:(I)

} ! l !

M d,q (r s A qd, M = xr qdn
VM —— M @y MPY —— 7 a(I)

Proof. This follows immediately from the construction and the definition of the
universal screen on Ty ,. O

The next relevant property of the Ty, spaces is that the 3, action informally

described in section 4.2 is well defined. Indeed, this action is precisely the restriction
to Ty, of the 3, action on the Fulton-MacPherson compactification FM*8(A4).
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For each o € ¥, it is easy to verify that this action corresponds to the action on
Ta,n given by

{61: F1—Li}trepyn) € Tan(H) = {¢o-1(r) 0 07 F1 = Lo-1(1) Y 1ePa(n) € Tan (H),

where
or: Fr— ]:g([)

is defined by sending tfj > t’;(i)o(j).

With the maps we have constructed so far we can define the operad of schemes
CGK, which was informally described in section 4.2. Its objects are CGKy(n) =
T4 n, its composition maps are the morphisms of proposition 4.10 (composed with
the inclusion Ty pr (¢~ (1), ..., ¢ (n)) = Ty ), and its symmetry action is the one
described above. There is only one candidate for the unit morphism of the operad
since Tyg1 = Spec K. It is easy to, at least intuitively, see why these maps satisfy
the operad axioms using their n-pointed rooted tree descriptions from section 4.2.
Verifying that the axioms hold using the functorial descriptions of all relevant maps
here is a more tedious, but easy, exercise.

DEFINITION 4.13. The Chen, Gibney, Crashen operad, CGKj is the operad with
objects CGKy(n) = Ty, and with morphisms as described above.

REMARK. This is an operad of smooth k-varieties where all composition morphisms
are closed embeddings and the unit map is the identity.

The case d =1 here is of special interest. The operad CGK} is isomorphic to the
“Deligne-Mumford”-operad whose objects are the moduli spaces of stable n + 1-
pointed curves of genus 0, ﬂomﬂ. Indeed, as mentioned earlier, Chen, Gibney,
and Krashen show that there are isomorphisms 74 ,, = mom“ and one can verify
that these isomorphisms can be chosen such that they commute with the respective
operad morphisms.

5. Log geometric constructions

In this section we define log structures on the smooth varieties encountered in sec-
tion 4 and extend the various morphisms to morphisms of log schemes. To this end
the following lemma will be used repeatedly.

LEMMA 5.1. Let f: X — Y be a map of schemes and let D C X, E CY be
effective Cartier divisors such that f~1(E) = D (scheme theoretically). Then there
is a unique isomorphism

[rOy(E) = Ox(D)
taking f*sg — sp.
Proof. First note that since f~!(E) = D there is an epimorphism f*Zrp — Zp
commuting with the corresponding maps to Ox. Since Zg and Zp are ideal sheaves

of divisors they are line bundles and since any quotient map of line bundles is an
isomorphism this is an isomorphism. Taking duals now yields the result. Uniqueness
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is clear since an isomorphism of line bundles is uniquely determined by its value
for a single generically non-zero section. O

5.1. The log schemes FMLOg(X), Kin and Tg,,

First, let us define the log geometric Fulton-MacPherson compactification which
has the nice property that its analytification is the topological Fulton—-MacPherson
compactification of Conf, (C%), FM!P(C?).

DEFINITION 5.2. For a smooth variety X, the log geometric Fulton—-MacPherson
compactification (of Conf, (X)), denoted FM,)?(X), is the log variety with under-
lying scheme Fleg(X) together with the line bundles with sections corresponding
to the divisors D(I) for every I € Py(n).

Note that all of the line bundles with sections OFleg(X)(D(I)) pull back to the
trivial line bundle with a nowhere-vanishing section on Conf, (X). This induces
a morphism of log schemes Conf, (X) — FM!8(X). Furthermore, the following
diagram commutes:

Conf, (X) ——— FM%5(X)

S|

FM28(X)

|

XxXn

Similarly, we can define a log geometric analog of Ty ,, denoted Kg,,, by taking
the underlying scheme to be T} ,, and the log structure given by the pullback of this
log structure on FM*#(A%) via the inclusion Ty, — FM*#(A%). Note that for each
I € Py(n) with I # [n] the line bundle with section corresponding to the divisor
D(I) pulls back to the line bundle with section corresponding to Ty, (I) and for
I = [n] the pullback of the corresponding line bundle has the zero section. We will
let s;: Or,, — O, (I) denote the pullback of s;: Opate (pay = OFleg(Ad)(D(I))
for each I € Py(n).

The operad composition morphisms of the CGK, operad do not extend to maps
of log-schemes for the objects K ,,. Instead, in order to extend CGKj to a (pseudo)-
operad of log-schemes we must let its objects be the log-schemes T, whose log
structures are given by one line bundle with section s;: Or, , — Or, , (I) for each
non-empty I C [n] defined as above for |I| > 2 and defined by

OTd.n ({Z}) = ® OTd,n (I)vv

1>

with sr;3 = 0 for one element sets. For n=1 we define Oz, , ({1}) := Or,, with
the zero section.
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5.2. The log geometric CGK operad

As mentioned, the symmetry and composition morphisms of the CGKy operad
can be extended to morphisms of log schemes T,,. To see this for the sym-
metry morphisms note that, for ¢ € ¥, we have that the corresponding
automorphism on FM®8(X), sends each divisor D(I) isomorphically to D(o(I)).
This induces isomorphisms of line bundles (with sections) o*Opyais ( X)(D(I ) —
OFM?llg(X)(D(O'_l(I))). These maps extend the symmetry action on FM*8(X) to
a symmetry action on FM!°8(X). This in turn gives symmetry actions on K, and
T4, in the same way.

Extending the composition morphisms is slightly trickier. Again, let n be a
positive integer and let g: M — [n] be a surjection of sets. As before, let
R Td,n X HZT-L:I Td,q—l(i) — Td,n and 7, : Td,n X H?:l Td,q—l(i) — Td)q—l(,r) denote
the corresponding projections, and let

v+ Ta % [ Tagr6) = Tana
i=1
be the composition morphism of CGK,. We can immediately show the following.

LEMMA 5.3. Let I C M with |I| > 2. Then there is a unique isomorphism of line
bundles with sections

(a) 7O, (1) S w07, (1) i 1S q (7).
(b) 7O, 0, (1) 2 730, (1)) i T = sy 4~ (r) and g(I) > 2.
(¢c) v*Or, ,, (I) = Or, . xI17T, 1y where the right hand side is taken with the

LR e

unit section, if (I,q=1(1),...,q7*(n)) are not nested, i.e. I is not contained
in any ¢~ 1(r) and also not equal to a union of any collection of ¢~*(r).

Proof. Cases (a) and (b) follow directly from corollary 4.11 and lemma 5.1. Case (c)
follows from the fact that the image of v is Ty a (¢~ (1),...,¢ *(n)) (proposition
4.10) which is disjoint with Ty as(I) since Ty (I,q71(1),...,q 1 (n)) is empty by
the nestedness criterion. O

This alone is almost enough to extend the operad composition morphisms to
maps of corresponding log-schemes but we must also express v*Or, ,, (1) as a tensor
product of the line bundles on Ty, X [ [y Ty g—1(s) for I = M, I = ¢~ '(r), and |I| =
1. Note that in all of these cases the pullback of the sections of these corresponding
line bundles are all 0. To this end, recall that that lemma 4.8 gives isomorphisms
of line bundles on Ty,

MI i ® (I)Td,,n(‘[/)v7

cr

where M are the line bundles of the universal simple screen on Ty, (section 4.3),
such that the following diagram commutes for every I C J,
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M — M,

| |

®I§I/ Or,,(I')Y —— ®ngf O, ,(J")Y

where the bottom arrow is the map

S}//-
ICr, Jgr

In particular, this means that we have isomorphisms

OTd,n (I) = M\I/ ® OTd,n (I)v

cr

LEMMA 5.4. There are canonical isomorphisms of line bundles

(8) 7°Or,,, (M) = 750, ([n])-
(b) ’y*OTd,]\i(q ( )) _> 7TOCQTaln({T}) ®7T*OT a1 (r) (q_l(’l“)).
() ¥*Or,, ({i}) = 7 Or, (i), if i € ¢7H(r).

Proof. First note that by the above we have Or, ,, (M) = (M]‘\i/}M)v. By Corollary

4.12 we have ’y*./\/ld M o *M?? From this part (a) follows. For part (b) note that
lemma 5.3 gives an 1somorphlsm

1%

® ’V*OTd,M(I)g’V*OTd,M(M) ® ﬂ-SOTdn(‘]) ® WSOTd,n(J)

g~ '(r)CS reJCn] reJCln]

where the last isomorphism follows from part (a). By definition, this is just
71507, ({r})Y and so we get an isomorphism

e

’y*OTd,IW (q_1<7“)> ’y*(MZL]\;I(T))\/ ® ’V*OTd,M (I/)v

g~ Y(r)CI’

W:OTd,qfn,.) (q ( )) ® 7TO a—1(r )({T‘})

L®

This gives part (b). Part (c) follows from a similar argument. O

REMARK. If n=1 the left hand sides of (a) and (b) are equal. In this case, both
statements are true but we must choose (b) to be the isomorphism defining our
map of log schemes for the operad axioms to be satisfied. Similarly, if |¢~1(r)| = 1
we must also choose the map in (b).

https://doi.org/10.1017/prm.2025.10080 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2025.10080

Log geometric models for little disks operads in even dimensions 25

With this we have defined isomorphisms of line bundles extending the operad
composition maps of CGK, to morphisms of log-schemes

n

’legZ Td,n X HTd,qfl(i) — Td,M-
=1

Unfortunately, there are no maps of log schemes

Spec k — (Spec k, Ok 9 Ok)

and therefore we cannot extend our unit map to a map of log schemes. However, it
is easy to verify that despite this the o;-operations, Ty, X Ty m 2 T4, m+n—1, do
extend to maps of log schemes Ty, X Tg, SN Td,m+n—1. One can verify that these
maps, together with the symmetry morphisms satisfy the pseudo-operad axioms.

DEFINITION 5.5. The log-geometric Chen, Gibney, Krashen pseudo-operad,
CGK;Og is the pseudo-operad with objects Tq, and with morphisms as described
above.

REMARK. In the case d =1 this is isomorphic to the framed little curves pseudo-
operad constructed by Vaintrob in [27].

5.3. Kato—Nakayama analytifications

In this section we show that the Kato—Nakayama Analytification of CGKLOg is
homeomorphic to the S'-framed Fulton-MacPherson operad in dimension 2d,
FM,; x S', which in turn is a model for the S'-framed little 2d-disks operad
LDyy x S! as mentioned in section 3.

We begin by showing that there is a homeomorphism of spaces over X"(C),

FMp#(X)" N = FMP(X(C)),

which commutes with the corresponding inclusions of Conf,, (X (C)). The rough idea
behind our proof of this statement is that the left hand side is the Kato—Nakayama
space of a sequence of logarithmic blow-ups of X™ and the right hand side is a
sequence of real blow-ups of X (C)"™ and under sufficiently nice circumstances these
two agree.

DEFINITION 5.6. Let X = (X, £) be a log scheme and let' Y be a closed subscheme
of X. Then we let Bll{ng denote the log scheme with underlying scheme Bly X and
log structure given by the log structure £ pulled back to Bly X and the line bundle
with section corresponding to the exceptional divisor of the blow-up. We also define
the blow-down map, Bllf/’gX — X to be given by the normal blow-down map on
underlying schemes and by “forgetting” the added line bundle with section.

PROPOSITION 5.7. Let X be a smooth C-variety and let Y be a smooth subvariety
of codimension k. If Y is the zero locus of a section of a rank k vector bundle on
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X then there is an isomorphism of spaces over X (C)
(BIy*X)*N = BIY ¢ X(C).

Proof. This isomorphism is easy to construct when Y is a complete intersection,
i.e. the zero locus of a section of (’)E'?k. The general case follows by gluing. g

COROLLARY 5.8. Let X = (X, £) be a log-scheme whose log structure is given by
line bundles with sections cutting out smooth divisors D, ..., D, such that D;U---U
D, is a strict normal crossings divisor and let Y be as in the proposition with the
additional constraint that Y intersects all intersections D;, N...D;, transversally.
Then there is an isomorphism of spaces over XEN

(B X ) o B X

where Y denotes the strict transform of Y (C) under the sequence of blow-down
maps
XEN 5 X (C).

Proof. Let t: Ox — V denote the vector bundle section cutting out Y. It is clear
from the proposition that there is an isomorphism

(BIpEX)KN o BIF xKN

where ¢ denotes the pullback (i.e. total transform) to XXN of the vector bundle
section ¢ seen as a section of a topological vector bundle ¢ € T'(X(C),V). The
transversallity conditions for intersections with Y imply that Y is the zero locus of
the section £. This completes the proof. 0

PROPOSITION 5.9. There is a unique homeomorphism of spaces over X™(C),
FM,(X)*N = FM?(X(C)),
which commutes with the corresponding inclusions of Conf,(X(C)).

Proof. First, recall from [18] that the Fulton-MacPherson space FM8(X) is
isomorphic to the sequence of blow-ups

Bly, ... Bly, X"

where Ip,..., Iy are the sets in Py([n]) in any order satisfying the conditions of
theorem 1.3 in [18] and A;, denotes the dominant transform of the diagonal Aj, C
X™ under all previous blow-ups. Furthermore, recall that the divisors D(I;) are the
dominant transforms of the exceptional divisor D(I;) from the blow-up

BlAIi BIAI. R B1A11 X" — BlAli—l BIAI1 xn

taken under all subsequent blow-ups Bl Ary o .Bl Ary, Additionally, the topolog-

ical Fulton-MacPherson space FM'P(X(C)) can also be written as a sequence of
real oriented blow-ups of X™(C) in its diagonals in a similar manner.
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The proposition would now follow from corollary 5.8 by induction if there was an
ordering Iy, ..., Iy of the sets in P([n]) satisfying the aforementioned conditions
such that for every 1 <i <mn

An,, C Blg, Bly, ... Blg, X"
meets any intersection of the divisors D(I1) ... D(I;) transversally. It is not hard
to show that any ordering where the sets I € Py([n]) appear in decreasing order of
size, i.e. |I;]| > |I; 41|, satisfies all criteria and thus we are done. O

REMARK. Note that the transversality conditions here are not implied by the
arrangement conditions in theorem 1.3 of [18]. Hence, there is no obvious analogue
of the above proposition for general wonderful compactifications.

COROLLARY 5.10. There are isomorphisms

o FM99(X)KN = pAor(X(C))
. Kgg% K2d7n
L4 Td,n = (Sl)n X KQd,n

which commute with all relevant maps, i.e. inclusions of Conf,(X(C)), maps to
X"™(C), inclusions of fibres, etc.

Proof. We have already constructed the isomorphism
FMPe(X)KN =~ FM'P(X(C)). Since the morphism Kg, < FMPE(AT) is
strict, the top square in the following diagram is Cartesian.

Kifn ——— (EME(A%)KN

l |

Tyn(C) —— FM5(A)(C)

| |

origin

% < ((Cd)n

We already know that the bottom square is Cartesian and thus the entire dia-
gram is Cartesian, i.e. Kfj‘g — (FM8(A%)KN is the inclusion of the fibre over
the origin in (C%)" and thus (FM!8(A4))KN = FMP(CY) restricts to an isomor-
phism Kfﬁ\i & Kag,. Notice that we get 2d on the right hand side since C = R2.
Furthermore, we know that

R R

By corollary 2.6 this is homeomorphic to (S')" x Kaqg, i.e. the nth space in the
FM,, x S* operad. It is easy to show that these choices of isomorphisms make all
relevant maps commute as claimed. O

Next, we will show that the maps f;: FM'P(X(C)) — BIDEI XTI 7 Kogpn —
§2d(1=1)=1 (which were defined in section 3) and the projections to the S' com-
ponents m;: (S1)" x Kogn = S I are all identified with analytifications of explicit
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maps of corresponding log schemes under the isomorphisms described in the proof
of corollary 5.10.

Let S;,, denote the log scheme (P™,0: O — O(-1)). Its Kato—Nakayama space
SKN homeomorphic to $?™*+1 and the map S?m+! = SKN _ Pm(C) is the Hopf
fibration (proving this using proposition 5.7 may provide some insight into the idea
behind the arguments to come). Recall from section 4.1 that the composition

FM28(X) — X" — X!

factors via a map fr: FM™8(X) — Bla, X! for any I € Py(n), and furthermore
that there is an isomorphism of line bundles with sections

fiO(Ea,) = Q) O(D(I)).

cr
This isomorphism defines a map of log schemes
7% FMI%(X) — BLEX!.

Also recall that the fibre over the origin for the blow-down map Bla, X! —
X1 is PUII=D=1 and that, if ¢ denotes the inclusion of this fibre, we have that
i*O(Ea,) = O(—1). This means that Sy(—1)—1 = (PYI=D=10: 0 - O(-1)) is
the fibre over the origin of the log blow-down map Bllng I X7 and f,°8 restricts
to a map ﬂllog: Kan = Saqr—1)—1-

The maps we have described fit together in the following diagram:

Conf, (AY) — 5 FMY8(Ad) Ky,

log 1
f %;ﬁ

Bllﬁf(Ad)I —— S4(s)-1)-1

—

(AT
The analytification of this diagram is:

Conf, (R?!) ————— FMIP(R?}) ¢+ Koy,
(f5)KN [m‘;’g)‘(”

BlﬂiI (RM)I §2d(|S|-1)-1

_

(R2d>1
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Since Conf,(R??) is dense in FM!P(R??) and since the blow-down map
pr: Blﬂil (R2)T — (R24)! has an inverse on Conf7(R29) there is only one pos-
sible set of maps (f;°)*N and (7)%)KN which can make this diagram commute.
By definition, this diagram also commutes if we insert the maps f;,7; defined in
section 3 and thus we must have (f;°%)KN = f; and (7°%)KN = ;.

Finally, let W;Og be the map

™8 Tan — So = (Spec C,0: Oc — Oc)

given by the only possible map on the level of schemes and the isomorphism of log
structures
()" 0c = Q) O, (1)
€S
It is clear that the analytification of this map is the projection map
mi: (SH" x Ko, — St as desired.

We are now ready to show that the analytifications of the composition
and symmetry maps in CGrKldOg are the composition and symmetry maps of
FM,,; x S'. For the symmetry action this is trivial as we can again use that
Conf,(C?) C FM(CY) is dense to conclude this using an argument similar
to the one above.

A somewhat more complicated argument is needed to prove that the ana-
lytifications of the CGKfg composition morphisms and o;-operations are the
corresponding maps of the FMy; x S* operad. We merely give an outline of this
argument. First note that for any surjection of finite sets ¢: I — J the induced
map (A%)7 — (A?)! extends uniquely to a map BIIZ% (A7 — BIIAO% (ADT which
restricts to a map g};’g: Sa(71-1)—1 = Sd(j1|-1)—1- By the same argument as above
the analytification of this map must be the map g, : S§2d(171=1)-1 _, g2d([[[-1)-1
defined in section 3. Using this one can verify that the analytification of ¥'°% is
the composition morphism of FMy; x S' componentwise. That is, if v denotes the
composition map in FMyy x S we can verify that

log ) KN — (771083

180 ,ylog)KN

mroy=mroly
for every I C M and from this v = (7'°8)KN immediately follows. The o; case
is analogous. We include the proof for one important step which hopefully also
provides some insight into the methods used to fill in the remaining steps of the
argument.

Let f: SoxS,, = S, be the map given by the canonical isomorphism f: Spec Cx
P™ — P™ on underlying schemes and by the obvious isomorphism f*QOpn(—1) —
73 Ogpec ¢ @3 Opn (—1) for the log structures. Here 71, w3 denote the corresponding
projection maps from the product Spec C x P™.

PROPOSITION 5.11. The analytification fEN: St x §2n=1 5 §2n=1 s the
St = SO(2) action on S*~1 induced by the diagonal inclusion SO(2) < SO(2n).

Proof. First, let F: A' x A® — A" be the map (z,(21,...,7,))
(z21,...,2x,). By the universal property of the blow-up this induces a map
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F: A x Bl, A® — Bl, A", where p denotes the origin in A™. Furthermore,
F~Y(E,), where E, is the exceptional divisor in Bl, A", is the scheme theoretic
union o x Bl, A"UA! x E,. By lemma 5.1 this gives a commutative diagram of log
varieties:

So X Sn,1 4f ” SO

| b

7l

BIEA! x BIEA" — % pllsgn

l b

AlxAr —— 5 A

where F'°% denotes the map F extended to a map log varieties in the obvious way
and where 4, j are the strict morphisms induced by the inclusions of fibres over
the origin for the underlying schemes. The analytification of this diagram is of the
following form:

Sl x S2n—1 f S2n—1

| |

BIE C x BEE c» — . BIF "

| |

cxecr —— 7 L cn

where F/ = FXN and f/ = fXN_ Since p is a homeomorphism on a dense subset
there is only one pair f’, F’ which can make the diagram commute by the same
argument as above. It is easy to construct a function F’ such that the diagram
commutes with f’ equal to the group action morphism and from this the lemma
follows. 0

The results of this section taken together give our main theorem.

THEOREM 5.12. The Kato—Nakayama analytification of CGKl;g is homeomorphic
to FMyg x S*.

5.4. Virtual log geometric generalizations

We end this article by discussing some apparent generalizations of these results in
the category of virtual log schemes. The most immediate improvement we get with
virtual morphisms is that, by example 2.8, we there are virtual morphisms

Spec C — Sg.

It is not hard to show that we can choose such a morphism such that it satisfies
the unit axiom for our operad. Hence, in the category of log schemes with virtual
morphisms we can define CGK};g to be an operad, not just a pseudo-operad. It is
clear that theorem 5.12 still holds for this operad.

Virtual morphisms also allow us to construct the (unframed) Fulton—-MacPherson
operad FM,,; as the analytification of an operad of log schemes with virtual
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morphisms. Indeed, the operad composition map

v Td,n X HTd,q’I(’L’) — Td,M
=1

extends to a virtual morphism of log schemes

Kd,n X H Kd,qfl(i) — Kd,M-

i=1

This map is defined using lemmas 5.3 and 5.4 but this time we replace the
isomorphism in lemma 5.4, (b) with the isomorphism

¥ 01,0 (@7 (1) = | @ 7501, (DY | @7 O g-1( (a7 (1))
rel

This gives a well defined virtual morphism of log structures by our definitions.
These maps define an operad CGK;"log in log schemes with virtual morphisms.
Using the same methods as before one can show that the analytification of the
resulting operad is FMy,.

THEOREM 5.13. The Kato—Nakayama analytification of CGK;/_ZOQ is homeomor-
phic to FMog.
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