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COMPUTABILITY OF BRJUNO-LIKE FUNCTIONS

IVAN O. SHEVCHENKO AND MICHAEL YAMPOLSKY

ABSTRACT. In his seminal paper from 1936, Alan Turing introduced the concept of non-
computable real numbers and presented examples based on the algorithmically unsolvable
Halting problem. We describe a different, analytically natural mechanism for the appearance
of non-computability. Namely, we show that additive sampling of orbits of certain skew
products over expanding dynamics produces Turing non-computable reals. We apply this
framework to Brjuno-type functions to demonstrate that they realize bijections between
computable and lower-computable numbers, generalizing previous results of M. Braverman
and the second author for the Yoccoz-Brjuno function to a wide class of examples, including
Wilton’s functions and generalized Brjuno functions.

1. INTRODUCTION

In 1936, Alan Turing published a seminal paper [Tur36] which is rightly considered founda-
tional for modern computer science. The main subject of his paper, as seen from the title,
was a concept of a computable real number. Informally, such numbers can be approximated
to an arbitrary desired precision using some algorithm. Turing formalized the latter as a
Turing Machine (TM) which is now the commonly accepted theoretical model of computa-
tion. Appearing before actual computers, TMs can be somewhat cumbersome to describe,
but their computational power is equivalent to those of programs in a modern programming
language, such as Python, for instance. Let

D = {p2?, p,q € Z}

denote the set of dyadic rationals. A number x € R is computable if there exists a TM M,
which has a single input n € N and which outputs d,, € D such that

|z —d,| <27".

The dyadic notation here is purely to support the intuition that modern computers operate
in binary; replacing 27" with any other constructive bound, such as, for instance, n~! would
result in an equivalent definition.

Since there are only countably many programs in Python, there are only countably many
computable numbers. Yet, it is surprisingly non-trivial to present an example of one. To this
end, Turing introduced an algorithmically unsolvable problem, now known as the Halting
Problem: determine algorithmically whether a given T'M halts or runs forever. Turing showed
that there does not exist a program M whose input is another program M; and whose output
is 1 if M; halts, and 0 if M; does not halt.
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From this, a non-computable real is constructed as follows. Let us enumerate all pro-
grams

My, My, ..., M, ...

in some explicit way. For instance, all possible finite combinations of symbols in the Python
alphabet can be listed in the lexicographic order. Some of these programs will not run at
all (and thus halt by definition) but some will run without ever halting. Let the halting
predicate p(n) be equal to 1 if M, halts and 0 otherwise.

Now, set

a= Zp(n)?»’".

n>1

This number is clearly non-computable — an algorithm computing it could be used to deter-
mine the value of the halting predicate for every given n, and thus cannot exist.

It is worth noting a further property of a. Let us say that x € R is left-computable if there
exists a TM M which outputs an increasing sequence

a, ' x.

There are, again, only countably many left-computable numbers, and it is trivial to see that
computable numbers form their subset (a proper subset, as seen below). Right computability
is defined in the same way with decreasing sequences, and it is a nice exercise to show that
being simultaneously left- and right-computable is equivalent to being computable.

The non-computable number « is left-computable, as it is the limit of

ap, = Z 377,

j<n | M; halts in at most n steps

which can be generated by a program which emulates My, ..., M, for k steps to produce
Q..

Since Turing, examples of non-computable reals were typically constructed along similar
lines. In 2000’s, working on problems of computability in dynamics, M. Braverman and the
second author discovered that non-computability may be produced via an analytic expression
[BY09]. This expression came in the form of the Brjuno function B() which was introduced
by J.-C. Yoccoz [Yoc96] to study linearization problems of irrationally indifferent dynamics.
We will discuss B(€) and its various cousins in detail below, but let us give an explicit formula

here. For 6 € (0,1) \ Q, we have

1
B(0) = 0_1600 - - 6,1 log o

n>0 n

Here, 6_; =1, 6y = 0, and 0, is obtained from 6; by applying the Gauss map = — {1/z}.
Of course, for rational values of # the summand will eventually turn infinite. The sum may
also diverge for an irrational 8, and yet can be shown to converge to a finite value for almost
all values in (0,1).
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It is evident that if € is computable then B(0) is left-computable. Very surprisingly, this can
be reversed in the following way. Setting

y« = inf{B(0), 6 € (0,1)},

for each left-computable y € [y., 00), there exists a computable 6 € (0,1) with B(#) = y. The
Brjuno function can be seen as a “machine” mapping computable values in (0, 1) surjectively
onto left-computable values in [y., co).

Moreover, there exists an explicit algorithm M which, given a sequence a,, /'y, computes 6
such that B(#) = y. Taking Turing’s non-computable «, as we saw above, there is an explicit
program to produce a sequence of rationals «,, /* a. ”Feeding” the sequence «,, to M we
obtain an explicitly computable 6, for which B(6,) = «. This example demonstrates that
B() is a natural analytic mechanism for producing non-computable reals.

The purpose of this paper is as follows. We distill the proof of the above result from [BY09],
where it is somewhat hidden in the considerations of complex dynamics and Julia sets.
Moreover, we generalize the result to cover other Brjuno-type functions which have previously
appeared in the mathematical literature, some of them 60 years before Yoccoz’s work and in
a completely different context. Our generalization describes the phenomenon in the language
of dynamical systems. As we will see, ergodic sampling of a particular type of dynamics with
suitable weights leads to non-computability.

Finally, for an even broader natural class of functions, which have also previously been
studied, and which do not quite fit the above framework, we prove a more general, albeit
weaker, non-computability result.

Acknowledgement. The authors would like to thank Stefano Marmi for sharing his insights
into Brjuno-like functions.

2. PRELIMINARIES

2.1. Computable functions. The “modern” definition of a computable function requires
the concept of an oracle. Loosely speaking, an oracle for a real number z, for example, is a
user who knows x and, when queried by a TM, can input its value with any desired precision.
In the world of Turing Machines (as well as Python programs) an oracle may be conceived
as an infinite tape on which an infinite string of dyadic rationals is written (encoding, for
instance, a Cauchy sequence for z € R) and which the program is able to read at will. Of
course, only a finite amount of information can be read off this tape each time. As well as
a real number, an oracle can be used to encode anything else which could be written on an
infinite tape, for instance, the magically obtained solution to the Halting Problem.

Formally, an oracle is a function ¢ : N — ID. An oracle for x € R satisfies
|p(n) —x| <27 forall neN.

We say a TM M? is an oracle Turing Machine if at any step of the computation, M? can
query the value ¢(n) for any n. We treat an oracle TM as a function of the oracle; that is,
we think of ¢ in M? as a placeholder for any oracle, and the TM performs its computational
steps depending on the particular oracle it is given. We will talk about “querying the oracle”,
“being given the access to an oracle for x”, or just “given x”.
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We need oracle TMs to define computable functions on the reals. For S C R, we say that
a function f : S — R is computable if there exists an oracle TM M? with a single input n
such that for any x € S the following is true. If ¢ is an oracle for x, then upon input n, the
machine M? outputs d,, € D such that

[f(z) —da] <27

In other words, there is an algorithm which can output the value of f(x) with any desired
precision if it is allowed to query the value of x with an arbitrary finite precision.

The domain of the real-valued function plays an important role in the above definition. The
definition states that there is a single algorithm which, given x, works for every x € S. We
will abbreviate this by saying that f is uniformly computable on S.

In the case when S is a singleton, S = {z} we will say that the function f(z) is com-
putable at the point xy. Evidently, the weakest computability result and the strongest non-
computability result one can obtain in regards to real-valued functions is when the domain
is restricted to a single point.

It is worth making note of the following easy fact, whose proof we leave as an exercise:
Proposition 2.1. If f is uniformly computable on S then f is continuous on S.

Uniform left- or right- computability of functions is defined in a completely analogous
way.

2.2. Brjuno function and friends. Every irrational number 6 in the unit interval admits
a unique (simple) continued fraction expansion:

1

[CLl,CLQ,CLg,...] = € (0,1)\@7
ay +

as +

1
CL3+...

where a; € N. An important related concept is that of the Gauss map G : (0,1] — [0, 1]
given by

it has the property
G([al, ag, as, . . ]) = [CLQ, as,aq, . . ]

In what follows, for a function F', we denote F™ its n-th iterate. For ease of notation, for
each j € N let us define the function 7; : (0,1) \ Q — (0,1) \ Q as n;(x) = G' (), so
that

ni(lar, as, as, .. .]) = [aj, aj41, aj42, . . .
We define Yoccoz’s Brjuno function, or for brevity just the Brjuno function [Yoc96] by

(2.1) B(z) = Zﬁo(ﬂf)m(w) - i () - (= log(mi())),
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where we set 79(z) = 1 for all z. Irrationals in (0,1) for which B(z) < 400 are known
as Brjuno numbers; they form a full measure subest of (0,1). The original work of Brjuno
[Brj71] characterized Brjuno numbers using a different infinite series, whose convergence is

equivalent to that of ({2.1)).

The Brjuno condition has been introduced in the study of linearization of neutral fixed points.
The function B has an important geometric meaning in this context as an estimate on the
size of the domain of definition of a linearizing coordinate. It has a number of remarkable
properties, and has been studied extensively, see for instance [MMY97].

Intuitively, the condition B(x) < 400 is a Diophantine-type condition; if x is a Diophantine
number then it can be shown that the series is majorized by a geometric series. As
we have learned from a talk by S. Marmi [Mar22|, similar expressions have appeared much
earlier in the theory of Diophantine approximation. Notably, in 1933 Wilton [Wil33] defined
the sums

(2.2) Wi(z) = Zﬁo(x)m(x) i1 (@) - (—log?(mi(x))),

(2.3) Wa(z) =Y (=1 mo(@)m(x) - - mia(x) - (= log(mi(x)))

=1

which we will call the first and second Wilton functions respectively.

To illustrate, how different the application of Wilton’s functions is from the Brjuno function,
let us quote Wilton’s results. If we denote d(n) to be the number of divisors of a positive
integer n, Wilton showed that

ﬂ cos2mnx < oo if and only if Wj(z) < 0o, and
n

(7

1

3
I

> d
Z n) sin2mnz < oo if and only if Wh(x) < oc.
n

n=1

One important generalization of the simple continued fraction expansion of an irrational
number is the a-continued fraction expansion for a € [1/2,1]. Let A, : [0,a] — [0, ] be the

map
;e
——|-—a+1
x x

By iterating this mapping, we define the infinite a-continued fraction expansion for any
x € (0,a) — Q as follows. For n > 0 we let

,x # 0.

rg=lr— |z —a+1], ap = |z —a+1], go = 1,
1
Tpi1 = Ao(xy,) = AZH(m), (pi1 = {— —a+ lJ > 1,  epy1 = sgn(x,).

n
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Then we can write
&
z=[(a1,e1), (a2,€2), ..., (an,e0),.. ] == . € (0,a) — Q.
Gt — 5
as +
as+ ...

Note that when oo = 1, we recover the standard continued fraction expansion.

Generalizations of the Brjuno function based on the above expansions have been studied, for
example, in [LMNNTIO0]. There the authors considered the properties of the function

(2.4) Bou(z) = Z N0,0(T)Na,1 () Nai—1(2) - u(Nai(T)),

where 7,0(z) = 1, naj(x) = A7 (), € [1/2,1],7 > 1 is a generalization of n; to alpha-
continued fraction maps, and v : (0,1) — RT is a C' function such that

lim u(z) =00, lim z-u(xr) <oo, lim 2*-u'(z) < oco.

z—07t z—07F z—07t
A further generalized class {B,,} of Brjuno functions is discussed in [BCM24] where the
last two conditions above are dropped and the term 7,1 (2)na,2(2) - - - Na,i—1(x) is raised to
some power v € ZT:

(2.5) Bouw(T) = Z(Ua,o@?)??a,ﬂfﬂ) S Ma,i-1(2))” - w(1a,i()).

i=1

As shown in [BCM24]:

Proposition 2.2. For all o € QN [1/2,1], such functions By, are lower semi-continuous
and thus attain their global minima.

Note that if we take a = 1, v = 1, and u = —log, we recover Yoccoz’s Brjuno function
discussed above; similarly, taking @ = 1, v = 1, and u = — log® recovers the first Wilton
function ;. Note, however, that we cannot obtain W, as a special case of B, 4 ..

3. STATEMENTS OF THE RESULTS

3.1. A general framework. We refer the readers to the survey [MMY06] which discusses
a cohomological interpretation of the Brjuno function and lays the groundwork for its gener-
alizations. Our discussion will be much less technical, yet essentially equivalent in the cases
we consider. It will yield a generalization which is (a) broad enough to include the relevant
examples we have quoted and (b) captures the essence of the non-computability phenome-
non discovered in [BY09]. This is achieved via the following framework. Suppose G(x) is a
piecewise-defined expanding mapping whose domain is an infinite collection of subintervals
of (0,1) each of which is mapped surjectively over all of (0,1). Let ¢ : (0,1) — R (in our
case, ¢ (x) = x”), and consider the skew product dynamics given by

- (3)-(5)
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The class of functions F for which non-computability arises is produced by additive (ergodic)
sampling of orbits (z,, y,) of F' using a suitable weight function u(x,y) = u(x) with positive
values:

(3.2) F(z) = Z Yn - uly).

It is worth noting that such a function is a formal solution of the twisted cohomological
equation

F—v-FoG=u.
As noted above, in our case we set
v(z) = 2”.

We will now need to make somewhat technical but straightforward general assumptions on

G and w.

Let G : (0,1) — (0,1) be a function which is C! on a set S C (0,1), with sy := inf S,
s1 := supS. Suppose that for a countable collection of disjoint open intervals J; = (¢;,1;)
with ¢1 > ly > -+, we have S = J;UJy U J5---. Below we will denote G; := G|, so that
G71: (sg,81) — J; is the unique branch of G~! mapping into .J;. We assume G satisfies the
following criteria.

(i) G(J;) = (s0, s1) for each i.
(ii) |G| > 1, and additionally there exist 7 > 1,0 > 1, and k € Z such that if we let
o e— ] / e K\/
Ti,1 - xlgi ‘G (:L‘)’, Tk - mlgi ‘(G ) (:L’)‘ )

then we have both 77! < ¢;- ¢ and 7;;! < ¢;- 77! for all i. In particular, since

¢; < s1 < 1, this means that [(G") ()] > 7 for all z € (S0, 51).
(iii) G is decreasing on J;.

(iv) Let ¢ be the unique fixed point of G1, and let dg(N) = Gy'(¢) — Gyyi(p) > 0.
Then there is some constant D > 0 such that for all N € Z™,

N4 TN~ Ung D
Int1 da(N)

ri—&

(v) We have 7

< D for some constant D > 0 independent of 7.

(vi) G is computable on its domain.

(vii) g(i) = 67“7; —1 — 0 as i — oo. Note that since g is positive and bounded from
i+1
above, there is some constant m, > 0 for which 0 < g(i) < m,.
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It is easy to show that properties and imply that G restricted to the set A =
M=o G77((s0,51)) is topologically conjugate to the full shift over the alphabet of positive

integers Z*. As such we can write any x € A as its symbolic representation x = [ay, as, . . .,
where G7~!(z) € J,,. In this notation, ¢ above can be written as [1,1,1,...]. By we
have ¢ < sp, from which it is straightforward to check that we indeed have dg(N) > 0 in
[iv)] For convenience, for j € Z* we will denote n; : A — A, n; = G'~!, so that

ni([a, as, .. ]) = laj, aj41, . ].

Henceforth we will assume G is restricted to A.
Now, let u : (sp,s1) — R be a C! function satisfying the following:
(i) lim,_, o+ u(z) = oo.

uoGy' oGy (2)

> 0.
wo Gyl o Gyl (w)

(ii) If sy =1, then liminfy_ o0 inf, ye(so,s1)

(iii) There is some C' > 0 such that |v/(z)| < 5 for all z € (so, 51).

(x — s0)

(iv) w is computable on numbers [a, as, . . .| such that a; = 1 for all [ > [, for some integer
lo.

(v) u is left-computable on all of A.

In what follows, for any v > 0 we define the generalized Brjuno function to be

®(z) = Z (mo(x) -+ - nia(2))” - u(ni(z)),

)

where z = [ay,as,...] € A.

We note:

Theorem 3.1. The following functions restricted to their corresponding sets A fall under
the definition of a generalized Brjuno function given above:

e Yoccoz’s Brjuno function B .
o The first Wilton function W, .
o The functions By, under the additional assumptions of on u. For

example, taking G = A, for a € [1/2,1] and u(z) to be any of log"(1/x) for n € Z
or x~ 1 yields a generalized Brjuno function.

Let us postpone the proof to § in the Appendix, and proceed to formulating the re-
sults.
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3.2. Main results.

Theorem 3.2. Let x, be a computable real number in A with the property y, = ®(x,) < +00.
There exists an oracle TM M? with a single input n € N such that the following holds.
Suppose y € [y., +00) and

Then M? outputs d,, such that

|d,, — x| < 27" for x € A such that ®(z) = y.
As a corollary:

Corollary 3.3. Ify € [y.,+00) is left computable then there exists a computable x € A with
O(x) =vy.

In fact, it is clear from the proof of Theorem that countably many such z € A exist.

As was shown in [BM12], the Brjuno function B attains its global maximum at

:\/3_1

Wy
2

=[1,1,1,...].

Therefore:

Corollary 3.4. If y € [B(w.),+00) is left computable then there exists a computable x €
(0,1) with
B(z) =y.

4. PROOF OF THEOREM [3.2]

4.1. Three main lemmas. It will be helpful to first outline the general strategy for the
proof of Theorem . We are given a computable sequence {y,} converging upwards to
some left-computable y, and we must find a computable x € (sg, s1) for which y = ®(x).
This is done by starting with some vy € (so,s1) and iteratively modifying the symbolic
representation of vy, to "squeeze” ®(7;) to be in the interval (®(ysir) — 27 %e, ®(yeir) +27%¢)
for some positive integer s. Passing to the limit, we obtain x = 7., for which ®(z) = y as
needed.

To ensure this strategy works, we need ways of carefully controlling the value of ®() from
the symbolic representation of 4. This role is played by Lemmas [4.1] .2 and below,
which are analogous to Lemmas 5.18, 5.19, and 5.20 respectively in [BY09] and whose proofs
are in the subsection in the Appendix.

Lemma 4.1. For any initial segment I = [ay, as, . .., a,], writew = [a1,a9,...,a,,1,1,1,...].
Then for any € > 0, there is an m > 0 and an integer N such that if we write BN =
lat,a9,...,a,,1,1,...,1,N,1,1,...], where the N is located in the (n+ m)-th position, then

P(w) +e < (BY) < d(w) + 2e.
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In the appendix, this Lemma will be proven under the slightly weaker assumptions used in
section [5] Also, it is clear from the proof that m can be taken arbitrarily large.

Lemma 4.2. With w as above, for any € > 0 there is an mqy > 0, which can be computed

from (ag,ay,...,a,) and €, such that for any m > mg and any tail I = [Gpim, Gpymet, - - -]
we have
o(p') > b(w) — ¢
where
Bl =lar,ag,..., a0, 1,1,.. ., 1, Gpim, Gt - - -]
Lemma 4.3. Letw = [ay, as, . . .| be such that P(w) < co. Writewy, = [ay,as,...,a5,1,1,...].

Then for every e > 0 there is an m such that for all k > m,
O (wi) < P(w) +¢.

We proceed with proving Theorem |3.2]

4.2. The proof. We first require a few preliminary results.

Proposition 4.4. Let mg > 0 be an integer. Then there exists an oracle TM which, given

access to a number x = [ay, aq,...] € A such that ap,, =1 for m > mg, computes ®(z).
Proof. Let ¢ =[1,1,1,...]. For any = we have

mo 00

O(x) =Y (o) mia (@) ulm@) + Y (@) ulp)
i=1 i=mo+1
mo SDll-mo
= (no(z) - mioa(x)” - ulmi(x)) + = -u(yp).
=1

Since u is computable on each number 7;(x) whose symbolic representation ends in all ones
by assumption on u, and each 7; is computable on all of A by assumption on G,
there is an oracle TM which, given access to x, computes the sum on the left to an arbitrary
precision. The construction of this oracle TM is independent of x, and depends only on
mgo. Additionally, since ¢ also ends in all ones there is a TM which computes the value
of the term on the right to an arbitrary precision, also depending only on my. Combining
these Turing Machines in the obvious way we obtain an oracle TM which, given access to z,

computes ®(x) to an arbitrary precision. O
Lemma 4.5. Given an initial segment I = [ag,ay, ..., a,] and my > 0, write

w = [ag,a,...,a,,1,1,...]. Then for all € > 0, we can uniformly compute m > my and
t,N € Z* such that if we write 8 = [ag,a1,...,a,,1,1,...,1, N;1,1,...], where N is in the
(n 4+ m)-th position, we have:

(4.1) O(w)+e < P(P) < P(w) + 2,

and for any v = lag, a1, ..., an, 1,1, .. LN L oo L Cupmats 1, Covmata2s - - -], we have

(4.2) D(y) > P(w) — 27"
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Proof. We will first show that such m, N exist, then give an algorithm to compute them. Let
e > 0 be given. By Lemma there exists m (and we can make m > mg) and IN € Z*
such that

O(w)+e<P(f) < P(w) + 2e.
Taking I’ = [ag, ay,...,a,,1,1,...,1, N] and ' = 3, applying Lemma with ¢/ = 27" we
get ty > 0 which can be computed from (ag,ay,...,a,,1,1,...,1, N) such that for all ¢t > ¢,
and any tail I = [¢pimitt1, Cnrmatio, - -] we have
O(y) > P(W)—2"=d() —27" > P(w) — 27"

as needed.

Since w,  have symbolic representations ending in all ones, for any specific m, N we can
compute ®(w) and ®(8) by Proposition 4.4 So, we can find the required m, N by enumer-
ating all pairs (m, N) and exhaustively checking equations , for each of them. We
know that we will eventually find a pair for which these equations hold. Once we have m
and N, we can use Lemma to compute t. 0

Lemma 4.6. The infimum ®(z,) of ®(x) over all x € A is equal to the infimum over the
numbers whose symbolic representations have only finitely many terms that are not 1:

O(z,) = inf O (z).

r=[a1,a2,...,ak,1,1,...]

Proof. Let € > 0 be given. By definition of infimum, there exists = [ay, ag, . . .| such that
O(x) < O(xy) + %
Write zy, = [a1,as, ..., ax, 1,1,...]. By Lemma[1.3] there exists m such that for k > m,
O () < () + g.
Thus ®(zx) < ®(z.) + €, so we can make ®(xy) as close to $(z,) as we need. O

Now, we are given
Yo /Y Y € [Yu, +00).

The case of y = y, is trivial, so we suppose y > y,. Then there is an s and an € > 0 such
that
ys > P(x,) + 2e.
By Lemma there exists vo = [aq, a9, ..., an, 1,1,...] such that
€
Ys — € < ®() <Ys 5
We will now give an algorithm for computing a number « € A for which ®(z) = lim 'y, =y,
which would complete the proof of Theorem The algorithm works as follows. At state

k it produces a finite initial segment Iy = [aq,...,ax] such that the following properties
hold:

(1) Iy = |ar, a9, ..., a).
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(2) I has at least k terms, i.e. my > k.
(3) For each k, Ij,1 is an extension of Ij.

(4) For each k, define v = [I;,1,1,...]. Then

Ysrk — 277 < O(V) < Yogh — 9~ (k+1) g

(5) For each k, @ (k) > P(Vi+1)-

(6) For each k and any extension 8 = [Ix, by, +1, bmy+2, - - -], we have

(B) > P(yi) — 27"

The first three properties are easy to verify. The last three are checked using Lemma [4.5]
By this Lemma we can increase ®(7y;_1) by any given amount, possibly in more than one
step, by extending I;,_1 to Ip. Thus if we have

(k1)

Ysph—1 — 27 £ < O(1) < Ysiro1 — 2 Fe,

by virtue of {asyx}32; being non-decreasing we have both

(k1)

Ys+h-1 — 27 e <yYsrr—2 " and  yeppo1 —27Fe <y — 27 F e,

So, we can increase ®(;_1) by such a fine amount that
Yorr — 2 Fe < B(1) < yorn — 27 FH Ve,

satisfying the fourth and fifth properties. In performing this fine increase, we have used the
fact that the ys,4’s are computable. The last property is satisfied by Lemma (4.2).

Denote

r = lim .
k—o0

The symbolic representation of x is the limit of the initial segments I;,. This algorithm gives
us at least one term of the symbolic representation of x per iteration, and hence we would
need at most O(n) iterations to compute z with precision 27". The initial segment of v, can
also be computed as in the proof of Lemma[£.5] It remains to show that z is the number we
are after.

Lemma 4.7. We have ®(z) = y.

Proof. Taking limits on all sides of , we get
lim ®(v;) = lim y, = y.
k—oo k—o0

It remains to show limy_, ®(7) = ®(z). As in Proposition 1.4 denote z = [a1,as, .. ]
and let oy = [ag, Ggt1,...J,a0 = 1. Let ¢ = [1,1,1,...], and additionally for any number
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€ = [b1,bo,...] € A denote (&) = [bk, bxt1,-..]. We have

mg
®(x) = ,}1_{{)10 <Z QoQy « - Qpp—1 U(%))
n=1
my 00
< lim (ji:cnwh:--an_1~U(an)+- > w"‘l'U(¢)>
k—o0 ") n=mp+1
= lim ®()

Additionally, taking limits on both sides of @ with § = x yields
lim ©(y,) < ¢(x),
k—o00

therefore limy_,, (%) = ®(z). O

This concludes the proof of Theorem [3.2]

5. GENERALIZED NON-COMPUTABILITY RESULT

5.1. Modified assumptions. We will now prove a non-computability result about a slightly
more broad class of generalized Brjuno functions than the one considered in section 5] For
this result we require all the assumptions on G except and , and on u we require only
assumption |(i)| together with a slightly weaker variation of assumption :

(iii") There is some C' > 0 such that u/(z) < for all z € (s, s1).

(x — 50)?

We can additionally allow for more flexibility in the definition of the generalized Brjuno
function by adding a "sign” term:

o0

O(x) = s(i) - (@) -+ mior(2)” - u(ni(z)),

=1

where v > 0 as before and s(i) € {—1,1}.

Theorem 5.1. The following functions restricted to their corresponding sets A fall under
the definition of a generalized Brjuno function given above:

e Yoccoz’s Brjuno function B .
e The first Wilton function W and the second Wilton function W, .
o The functions Bay,. under the additional assumption of on u. As before,

taking G = A, for a € [1/2,1] and u(zx) to be any of log"(1/x) for n € Z or x™*
yields a generalized Brjuno function.

The proof is completely analogous to the proof of Theorem and will be omitted.
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5.2. Noncomputability result. We proceed with the main result of this section, which
concerns computability of the function ® as opposed to computability of real numbers.

Theorem 5.2. There exists a number x € A for which ®(+) as defined above is not computable
at x.

Without loss of generality, we will assume in what follows that the sign term s(i) = 1
infinitely often (otherwise, just replace ® with —®).

As before, it will be instructive to first go over the strategy of the proof. This outline is
rough and is not fully logically sound, however it captures the main idea of the argument.
To prove a function is non-computable at a single point z, it suffices to enumerate all oracle
TMs Mfs, i € N (recall that there are countably many oracle TMs), and show that if ¢ is
any oracle of x then Mf’ does not approximate ®(x) arbitrarily well.

We start with xy = [1,1,1,...] and the first TM M;fl in our enumeration which computes
xo. If any of the digits a; in the symbolic representation of x, are changed to some N € Z*,
as N — oo the series ®(z) diverges. However, if we change some digit a; far enough in the
representation of xy, for any N the new value of xy changes by at most some fixed small
amount €; which goes to 0 as 7 — oo. So, the idea is define x; from x, by changing a;, for
large enough j; to some large enough Ny, such that if M,‘f’l is given an oracle for x; then it
does not properly compute ®(z;), which in some sense ”fools” the oracle TM Mﬂfl. To fool
the machine Mff2 we then change a digit jo > j; sufficiently far in the symbolic representation
of z1 to a large Ny to get 9, in such a way that neither M;fQ nor any other M,f for k < ns
properly compute ®(z3). Continuing in this manner we will arrive at a limiting number
Tso € A, with ®(z) < 0o and such that none of the oracle TMs M in our list properly
compute xy.

As in the proof of Theorem 4.3, we will need to carefully control the value of ®(x) from the
symbolic expansion of x. For the proof of Theorem we only need Lemma from the
previous section, which is proven in the appendix under the weaker assumptions on ® used
in this section.

For the below proofs, we will say ®(x) is computable at x if there exists a Turing Machine
M? such that if ¢ is an oracle for z, then on input n, M? outputs some 3’ for which
|®(z) —y'| <27". This definition uses " <” instead of the ”<” which is used in the definition
given in section [2 but it is easy to see that the two definitions are equivalent.

Before starting the proof, we need the following elementary fact.
Lemma 5.3. Write any number in A as w = [ay,as,...]. For any e > 0, there is an L > 0

for which n > L implies that for any sequence of natural numbers (No, Ny, ...),

lw — [a1,az, ... ,an-1,No, Nq,...]| <e.
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Proof. Let M > 0 be large enough that il ;/[ 0 <candlet L =k - M, where k, T are from

assumption [(ii)| on G. Noting that
w, |ay,ag, ..., an_1, No, N1] € (G;1 oG,l o 0G" )((s0,51))

a’nd|(Gai+n—loGai+n—2o..'OGai)( )|>T>1 = |( OGai_l ’ Gai,ﬁ 1) (9)|<%<17
as well as |(G},)' ()| < 1 from [(ii)} we have
length((G 0 Go ) ((s0,81)))
Hsup| . 0 G, Hsup| ‘O] - (51— 50) < 25720 <ce.
g 0eA R i) iSrq1 0€A ™

In particular, we have the following:

Corollary 5.4. For w = [ay, as,...| as above, for any ¢ > 0, there is an L > 0 for which
n > L implies that VN € N,

lw —[a1,a9,...,an_1, N,aps1,...]| <e.

Before proceeding to the proof of the main result, we first define some notation. For any
x; = [al, a,...] let nj, = [a},aj,,,...], noting that

O(a;) =Y s(i) - (mimi -+ y)" - u(ny)

1
where v, p > 0 and s(i) € {—1, 1} with s(i) = 1 infinitely often. Let

S
Il

Z s(i) - (ot -+ mhy)” - u(nl),
n=1
noting that limg_,o. f(i, k) = ®(x;).
5.3. Proof of Theorem [5.2 We will first show inductively that there exist:

e nested initial segments Iy C Io C ..., where each [; has length p;;

e for each i = 1,2, ..., positive integers N* and m;;
e positive integers k1 < ko < --- and [} < ly < -+ and a3 < ag < --- and n(0) <
n(l) < n(2) < ---, positive real numbers é; > €5 > - -+, and oracles ¢g, ¢1, . . .;

such that if we let z; = [I;,1,...,1, N 1,...] for i € Z*, where N* is in the (m; + p;)-th
position, then we have the following:

(1) ¢; is an oracle for z; such that |¢;(n) — z;| < 27D for all n.
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(2) ¢; agrees with the oracle ¢;_ on inputs 1,2,...,k; for j =1,2,... 4.
(3) Running M l‘f"(l), Ml‘fi(Q), . ,Ml‘fi(di) queries ¢; with parameters not exceeding k;.

(4) Running M, [fi(dl-) yields a number A;, for which
Ali + 270 < (I)(xi—l) + gt < @(xz) < (I)(in_ﬂ +2- 9@t

(5) Running Ml‘fi(dj) for j =1,2,...,4yields a number By, for which By, +27% < O(zy).

(6) The TMs M for k € {1,...,1;} all do not properly compute ®(z;); in particular,
they all compute ®(x;) with an error of at least &;.

(7) For k > n(i), we have |f(i, k) — ®(x;)| < 27"
(8) For k=1,2,...,n(i — 1), we have |f(i, k) — f(i — 1,k)| < 27"

5.3.1. Base case. There are countably many oracle Turing Machines M?, where ¢ represents
an oracle for x, so we can order them as be,Mg), ... Let zp = [1,1,1,...]. Given an
oracle ¢y for xg such that |¢g(n’) — zo| < 2-*+D for all ', let ]\4[11’O be the first TM to
compute ®(zg) (if no such TM exists, we are done). Since this is the first such TM, all of

M M. ... ,M[f“_l do not properly compute ®(z), so there are integers ay,as, ..., a; 1
and small positive real numbers €1, €9, ..., ;-1 for which M ,‘f °(ax) outputs some number Ay
with |Ag — ®(x)| > 27 + &,. Set é; = min(ey,...,e,-1); choose ny large enough so that
2-Mm+2 51/2, and set a; = max(al, ey Qg 1, ﬁ1>

Run Mﬁf“(dl) with the oracle ¢g. This TM outputs a number A, for which |4, — ®(zy)| <

274 Since the computation is performed in finite time, there is a k; > 0 such that ¢,
is only queried with parameters not exceeding k;. We assume k; is large enough that the
computations Mquo(k:) query ¢q for parameters not exceeding ki for k = 1,2,...,a; — 1.
Setting n(0) = 1, we additionally make k; large enough such that for any x; with |x; — 2| <
2-(F+1) we have

[F(1,1) = £(0, D] = [ulm) = uml)| = Ju(@1) = ulwo)] < 271
by continuity of u(-). Hence |(8)|is satisfied.

Now for any x; such that |z, — zo| < 27*1+D_ ¢ is a valid oracle for z; up to parameter

value k;. In particular, we can create an oracle ¥ for x; which agrees with ¢g on 1,2, ... k.
Then the execution of Mﬁ“ (G1) will be identical to that of M;f(dl), so it will output the same
value A;, which is a 2~%-approximation for ®(x).
Applying Corollary [5.4| with ¢ = 2=*1+1) we get L; > 0 such that

Vmy > Ly, YNy € N, |gN — o] < 2=kt

where 3V1 has all ones except an N; at the (m; + 1)-th position. Applying Lemma with
I, = [1] and € = 274! and making sure the integer m = m; we get from this Lemma
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satisfies m; > L1, we get some V! = B{V ! for which
3N, € N such that [f1" — x| < 9~ (k1) [since my > L]

yet
B(20) + 27T < (B < D) +2- 270,
where ﬁ{vl has all ones except an N; at the (m; + 1)-th position. Let x; = B{Vl, and let
¢1 = 1 be the oracle for x; which agrees with ¢q on 1,2,...,k; and which additionally
satisfies |¢1(n) — z1] < 27D for all n. This oracle ¢; satisfies |[(1)| and As previously
stated, the execution of Ml‘fo (Gq) is identical to that of Ml‘fl (a1), so the output will be the same
number A;, such that |4;, — ®(x)| < 27%. By construction, Ml"fl(l), Ml"fl(2), . ,Mffl(&l)
only query ¢; with parameters not exceeding k;, satisfying . But then by the above
work
A +279 < D) + 279 4279 = P(xg) + 27T < B(ay),

satisfying and also by taking B;, = A;,. Thus M[zl’l(dl), where ¢, is an oracle for xy,
does not approximate ®(x;) with precision 2791, so this TM does not properly compute this
number. Additionally, note that M,fl also does not compute ®(x;) for k =1,2,...,0; — 1.
Running M{" (a;,) is identical to running M{°(a) by our choice of k; in the construction of
1, 50 M (az,) outputs a number By, for which | By, — ®(z)| > 27 + ;. Since

1 (21) — Blap)| < 270+2 < % < “52_’“
we have
13 g
1B, — ®(21)] > | By, — ®(x0)| — |®(x0) — B(a1)] > (27% + &5) — 5’“ — 9 4 Ek > 9o

satisfying [(6)] To show [(7)] note that lim_,« f(1, k) = ®(z1) is finite, so there is some large
enough n(1) for which k& > n(1) implies |f(1, k) — ®(z1)| < 27! as required.

5.3.2. Induction step. Now inductively, suppose there exist the following:
e nested initial segments I; C ... C I;_;, where each I; has length p;;
e for each j =1,2,...,i — 1, positive integers N7 and m;;
e positive integers ky < ko < -+ < ki qand [y <lpo < -+ <ligand a3 < g < -+ <
a;—1 and n(0) < n(l) < --- < n(i — 1), positive real numbers £, > &y > -+ > &y,

and oracles ¢g, @1, ..., 0;_1;

such that if we let z; = [[;,1,...,1, N7 1,...] for j = 1,2,...,i — 1, where N7 is in the

(m; + p;)-th position, then we have the following:
(1) ¢; is an oracle for z; such that |¢;(n) — ;| < 2=+ for all n.
(2) ¢;_1 agrees with the oracle ¢,_; on inputs 1,2,...,k;.

(3) Running lej (1), lej (2),..., lej (a;) queries ¢; with parameters not exceeding k;.
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: Gira N s :
(4) Running M I (@) yields a number A;, for which

Alj + 2_dj S (b(l’j_l) —|— 2_&j+1 < (D(.TJ) < q)(.fﬁj_l) + 2 . 2_&j+1.

(5) Running lei‘l(&j) yields a number B, for which B, + 2% < ®(x;_1).

(6) The TMs M,‘fH for k € {1,...,1;_1} all do not properly compute ®(x;_;); in partic-
ular, they all compute ®(x;_1) with an error of at least &;_;.

(7) For k > n(i — 1), we have |f(i — 1,k) — ®(z;_1)| < 270V,
(8) For k=1,2,...,n(i — 2), we have |f(i — 1,k) — f(i — 2, k)| <2707V,

Let Ml(fi‘l be the first TM, with some [; > [;_; and with ¢;,_; being the oracle for x;_;
from the induction hypothesis, which computes ®(z;_1). We want to find an initial segment
I; O I;_; of some length p;, positive integers N?,m;, k; > k;_1,a; > a;_1,n(i) > n(i — 1), and
an oracle ¢; for x; such that |(1)4(8)| are satisfied for i instead of i — 1. It would follow from
and |(6)| that none of M, MY, ..., M[Z”' properly compute ®(x;).

Since M;fi‘l is the first such TM with /; > [;,_y, combined with |(6)| from the induction
hypothesis we get that all of Mfi’l, Mf“, ce Ml(f"_’f do not properly compute ®(z;_1). So,
there are integers ai,as,...,a;—1 and small positive real numbers e1,€5,...,6,1 < €1
for which M;fi’l(ak) outputs some number A; with |4y — ®(x;_1)| > 27% + ;. Set &; =
min(ey, ..., &,_1), choose 7; large enough so that 27%+2 < &, /2%, and set

a; = max(ay, . ..,a;_1,0;1,7;).

When run, the TM Mﬁi‘l(di) outputs a number A;, for which |4; — ®(z;_,)| < 27%. The
computations Ml(fj (1), lej (2),... ,M;fj(di) are performed in finite time, so there is a k; > 0
such that ¢; 1 is only queried with parameters not exceeding k; for all of these computations;

we can make k; arbitrarily large, so assume k; > k;_;. We additionally make k; large enough
such that for any z; with |, — z; ;| < 27+ and any k = 1,2,...,n(i — 1), we have

k
=D s (mot - mla)” - ulnl) =D s @) - (g e h) i < 27
n=1 n=1

We can do this because the sums are finite and have continuous dependence on z;, since u
and G are C' on the set S (from the definition of G). Hence |(8)|is satisfied.

Now, for any z; such that |z; —z;_| < 2%+ ¢, | is a valid oracle for z; up to parameter
value k;. In particular, we can create an oracle ¢ for x; which agrees with ¢; 1 on 1,2,... k;
and so that [1)(n) — ;] < 27D for all n. Then the execution of Ml‘fi‘l(di) will be identical
to that of M;f(&,;), so it will output the same number A;, which is a 27%-approximation for

@(I’i_l).
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Applying Corollary with e = 2-* i+ we get L; > 0 such that
sz‘ > LZ,V.]VZ S N, |6Nl — l‘i_1| < 2_(ki+1),

where Y = [I,_1,1,...,1,N;_1,1,...] agrees with z;_; at all entries except having an
N;_; instead of a 1 at the (m;_1 + pi—1)-th position. Applying Lemma with I; =
[I;_1,1,...,1,N;_4] (where N;_; is at the (m;_; + p;_1)-th position) and e = 274" and
making sure the integer m = m; we get from this Lemma satisfies m; > L;, we get some
BN = ﬂINl for which

3N; € N such that |3Y — 21| < 27%*+D [since m; > L]

yet
q)(xi,l) + 27&i+1 < (I)(ﬁle) < @(:Uifl) +2- 27&i+1.
Let z; = B,L-Ni, and let ¢; = 1 be the oracle for x; which agrees with ¢;_; on 1,2,... k;. This
¢; satisfies and . As previously stated, the execution of M, l‘fi’l (G;) is identical to that
of Ml‘fi(di), so the output will be the same number A;, such that |A;, — ®(z;_1)| < 27%. By
construction, Ml‘fi(l), Ml‘fi(Z), . Ml‘fi(&i) only query ¢; with parameters not exceeding k;,
satisfying . But then by the above work we have
Ay + 278 < B(ayg) + 278 4278 = (i) + 2% < Blay) < D(wiq) +2- 270

satisfying . Thus Ml‘f"(di), where ¢; is an oracle for z;, does not compute ®(z;) with
precision 27% so it does not properly compute this number. But now since ¢; agrees with
¢i—yon 1,2,... k;, by of the induction hypothesis we have that it agrees with ¢;_; on

1,2,...,k; for j =1,2,...,i. By @ of the induction hypothesis, running lej(dj) queries
¢; with parameters not exceeding k; < k;, hence the execution of lej (a;) is identical to
that of le"(&j) for all j. Therefore by |(4)] running Ml‘fi(dj) gives a number B, = A;; such
that

B, +27% < ®(zj_1) + 29T < O(z;) < Dzjp1) < ... < B(m).

Hence is satisfied.

Now, note that M,f also does not compute ®(x;) properly for k = 1,2,...,l; — 1. Running
M,‘f “(a) is identical to running M;f ““*(ax) by our choice of k; in the construction of ¢;, so
M} (ay,) outputs a number By, for which | By, — Cb(xi_l)| > 27% + gp. Since

b(z;) — P(x;_ 2 i 2 < —k
|D(x;) (xi1)] < -
we have

|Ak — CID(xz)| > |Ak — CI)(ZL'Z_l)| — |q)(l'z_1) — @((L’z)| > (2_“‘“ + €k) — % =27 % + 5 > 2” ak

satisfying [(6)] Finally, it remains to show [(7)] for i. Note that limj_ f(i, k) = (xz) is
finite, so there is some n(i) > n(i — 1) for which k& > n(i) implies |f(i, k) — ®(z;)] < 27
requn"ed. This completes the induction.
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5.3.3. Finalizing the argument. Let [a1,as, ...] = Too = lim; o z;. We claim that ®(zy) <
oo and ®(x4,) is not computable by any Turing Machine.

We first show that lim, . ®(z;) < ®(zg)+4 < co. From[(4)] we have for all i € N that
(I)(ilfl) < (I)(.Ti71> +2- 27i+1,

hence

D (z;) < P(xg —1-222 277 = sup ®(z;) < P(xg) + 4.

=1 €N

[e.9]

We now show ®(z) is finite, and equals lim; o, ®(;). For each i, the sequence (f(j,7(i)))52,

is Cauchy by [(8)] hence it converges to some fu(n(i)). It is clear that
Joo(n(i)) = 3 s(0) - (n3oni -+ mza) - ulny)

n=1

by definition of x., and by the way each successive x; was chosen. Since each f(j,n(i)) <
P(x;), taking limits on both sides gives fo (n(7)) < ®(z)+4. Thus the sequence (foo (n(7)))52,
is bounded from above, so the limit superior is finite. But now

n(7)

lim sup foo (n( —hmsupz (505 - maty)” - u(n?) = @ (o),

1—00 1—00

showing that ®(z.) is finite. Now we claim that ®(z,) = lim; o ®(z;). Let € > 0 be
given.

e Choose iy large enough so that

i > = |foo(n(i)) — P(xs)| < /3.

e Choose iy > iy large enough so that 272 < £/3. By we have

i > iy = |f(i,n(i)) — ®(x)| < £/3.

e Set i3 = iy + 1, so that 27%%1 < £/3. Then for i > i3, repeated application of (8)]
yields

£ (i,n(2)) = foo(n(2))] < Z [f(G+ Ln() = fGn@)] < ZTj =27 <¢f3.

Taking ¢ > max{iy, is, i3}, we finally get
[P (z0c) = P(2)] < [P(s) = foo(B)| + [foo(n(7)) — f(i,m(d))] + | f(i,n(2)) — (zi)| <e.

It remains to show ®(z.,) is not computable by any of the Turing machines Mf’, where ¢ is
an oracle for . Let ¢ be the oracle for x,, which agrees with ¢; on inputs 1,2, ... k1.
This is a valid construction of an oracle by and since lim; o, k;11 = 00. To show ¢, is
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indeed an oracle for .., let n € Z* and set ¢ such that n +1 < k;. Since n + 1 < k; implies
that n+74+1< ki—l—j?

oo () = Too| < |Poo(n) — i| + |2 — Too| < |Pi(n) — 2| + Z [Zj41 — 25
j=i

0o 00
- 27(n+1) n Z 2,(ki+j+1) < 2—(n+1) + Z 2*(n+j+2) — an’
j=0 7=0

SO (o is indeed an oracle for x,. Now for a contradiction, suppose some TM M ]¢ * computes
®(zs). We have two cases:

(1) j =; for some i. Then M[fi(&,-) outputs B; for which B; +27% < ®(x;) by |(5)l This

same number B; is output when running Mi"”(di). But then
B; + 27&1 < (I)(.%z) < (I)<$i+1) < < CI)(xoo),

so we cannot have |B; — ®(14)| < 27%, contradicting the assumption that MZ_’""
computes P(ry).

(2) j # I; for all i. Choose the smallest ¢ > 2 for which j < [;. Then Mfi’l(aj) outputs
A; for which |A; — ®(x;_1)| > 27% +¢;, where a; and ¢, are from the i-th step of the
induction. This same number A; is output when running M j) *(a;). By assumption,
|A; — ®(2o)] < 27%, hence |®(x;_1) — P(2s)| > €. But

—a —n &j
| D () — P(wpyy)| < 270 F2 < 27 H2 < 2—;
for all £ > i — 1, thus
[@(wi1) = Paoe)| < D [@(xh) = Plann)| < Y 5 < €
k=i—1 k=i—1

a contradiction.

We have shown that none of the TMs M?* compute D (), where ¢ is an oracle for z..
This completes the proof of Theorem [5.2] Il
APPENDIX A. PROOFS OF THE MAIN TECHNICAL STATEMENTS

A.1. Proof of Theorem [3.1. The most involved part of the proof will be showing that
conditions (i)-(vii) on G are satisfied by the a-continued fraction expansion maps A, for
a € [1/2,1].

Lemma A.1. Conditions (i)-(vii) are satisfied by both the Gauss map and by A, for a €

[1/2,1).

Proof. Properties (i), (iii), (v), (vi), (vii) are easy enough that we group them together and
prove them at once, and then (ii) and (iv) are verified separately.
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(i), (iii), (v), (vi), (vii). For the Gauss map G, G(J;) = G((75, 1)) = (0,1) = (s0, 51). It

is clear that G is decreasing on J; = (1/2,1). Since J; = (;,r;) = (14%1’ 1), we have
r; — Ez
02

Finally, since GG is a composition of computable functions, it is computable.

Ty  i—oo

— 0.

<2=:D and g(i)zg
i+1

Now let a € [1/2,1), and consider the map A, corresponding to a-continued fraction ex-
pansions. Set n; := [1/(1 — «)]; this is the smallest integer for which 1/n; < 1 — a and
A,(1/ny) = 0. We restrict the domain and codomain of A, (z) to the maximal invariant set
A C (s9,51) :=(0,1/n;) C (0, 1—«), and henceforth consider A, : A — A. It is clear that A is
a countable disjoint union of connected intervals, which we label J; = (¢1,7r1), Jo = (€2, 72), ...
with vy > ¢4 > ro > ly > ---. From maximality of the invariant set and the fact that
|A! ()| > 1 on A, (i) holds. For (vi), computability of A, again follows since it a compo-
sition of computable functions. We will make use of the following facts about A, and the
intervals J;:

e A, is decreasing on J; for odd j and increasing on J; for even j. In particular, since
Au(r) = Aa(1/ny) =0, |AL(z)| > 1, and A,(x) > 0, A, is decreasing on J; and so
(i) is satisfied.

e For @ = 1/2, it can be readily computed by solving the equations A,(z) = 0 and

A,(x) =1 that ny =2 and J; = (¢;,r;) = (ﬁ, ]%)

e For o € (1/2,1), we have
2 2 1 2
m—2+k)+3 j+2n 0 m—1+k j+2m -1
1 2 2 2
:nl—l—k:in—l—j’ A

fj>

for j =2k — 1 odd, and

. = for j = 2k .
y PN 2R 13 jtom o1 or j even

r, — gz
Y2

It is easy to verify (v) and (vii) by showing that is bounded from above independently

of ¢ and that g(7) 2%,

(ii). For G, we note that G'(z) = 1/2? G"(z) = 2/x® where it is defined. Since G is
decreasing on all J;, we have 7;; = |G/(r;)| = i*>. Taking any o > 2, 7, < {;0 as needed.
Now set k = 2. Then where it is defined, it is easy to check that (G?)” > 0 and thus
Tip = |(G?)'(€;)| = (i +1)%. Hence for any 1 < 7 < 2, we have 7,, < ;-7 as needed.

Now again consider A,, for a € [1/2,1). As for the Gauss map, A/ (z) = 1/2% A" (z) =
2/x3 > 0 where it is defined. Set x = 1. Then 7;,, = 7,4 = 1/r2.

2(2ny + i)

e Let 0 > 1 be large enough that for all 7, 0 > (i +2m — 1)

. It is easily verified that

-1
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e Now, note that
2(2ny + 1) 1
(Z + 277,1 - 1)2
Since the left-hand side tends to zero as ny — oo for all i > 1, restricting A to a small

enough invariant set under A,, that is, making r; = nil small enough, gives existence
of some 7 > 1 for which the above holds.

-1

2 -1
Ti1 =T; < UTT —

(iv). For the Gauss map, recalling that ¢ = @ =[1,1,...], we have

1 n—
da(N) = and so . T ARE )

(N+e)(N+1+¢) Iny1 o 0a(N)
for some constant D. We first show (iv) holds for Ay, then for A,, a € (1/2,1). We
denote the symbolic expansion of a point in A generated by A;,, as [a1,az,as, .. .]1/2, and
that of a point in the invariant set generated by G as [a1,as,as,...];. Since the interval
Ji corresponding to A;/, is contained in the interval .J; corresponding to G, we have 1 :=
1,1,1,.. 012 =102,2,2,.. s = V2 —1. For N = 2k — 1 odd, the interval Jy corresponding
to Ay is contained in the interval Jiy3)/2 corresponding to G, so

1 2
N, 1,1,... =k+1,22 . ..11=[(N+3)/2,2,2,...]1 = = .
[ ) Ly Ly ]1/2 [ +1,2,2, ]1 [( + )/ y &y Ly ]1 %"'@Z) N+3+2¢

Now consider N = 2k even. Observe that on Jy, A /2(x) = 1 — G(r). We have

2
(N1 e = (Arela) L L iye) = e (1= 12,2,000) = Nii o
Thus

4 — 8y
N +3+42¢9)(N +5 - 2¢)

5A1/2(N> - [Na ]-a ]-7 .- ']1/2 - [N+ ]-a ]-7 17 .- -]1/2 = ( if N is Odd, and

8¢
(N +4—2¢)(N +4+2¢)

NOtng that N — €N+1 =

da,,,(N) = if N is even.

4 TN+1 N+5
(N+3)(N+5) IN+1 N+47

. Finally, for o € (1/2,1), we have A/, = A, on the invariant set A

and it is clear that some constant D upper-

*N+1 | TN—ON41
Ent1 o 04y, (N)

corresponding to A,. Thus the asymptotic behaviour of £y, ry, and d4,(N) is identical, so
(iv) holds in this case as well. O

bounds

We can now prove Theorem [3.1] without too much difficulty.

Proof of Theorem . By Lemma and since the function u in the definition of B, ...
satisfies lim, o+ u(z) = 0o by assumption, conditions (i)-(vii) on G and (i)-(v) on u hold for
Bawv- To prove this Theorem is remains to show that for G = A,, a € [1/2,1], conditions
(i)-(v) hold for both u(z) = log"(1/x),n € Z* and u(z) = z~'. It is clear that both these
functions are computable on R* and tend to infinity near zero. If a € [1/2,1) then s; < 1,

SO in this case is satisfied. Thus we only need to show in the case that G is the
ordinary Gauss map, and .
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For u(z) = z~1, |(iil)| is obvious. If u(z) = log"(1/z), then |u'(z)| = 2 - log" '(1/z). Since
there is some C,, > 0 for which log"*(y) < C,y for all large enough y, we have log" !(1/z) <
Eu for all small enough . Thus |u/(z)| < 2 for all small enough = and since |u/(z)] is
bounded for & which is bounded away from zero, there is some C' > 0 for which |u/(z)| <
=) for all = € (sg, s1) as needed.

Now suppose G is the Gauss map. Then u o G;' o G3'(z) is decreasing with respect to N
since u(+) is decreasing, so

UOGEEOGi_\i(Z) S quioGi(l) (V).
4o G oGy (w) ~ uoGylo Gy (0)

A tedious computation shows that v'(N) > 0 and v(N) > 0 for all N and both u(x) =
log"(1/z) and u(z) = x~ !, therefore holds. d

A.2. Proofs of the main lemmas. Here we will prove the three main Lemmas used in the
above work. Lemma |4.1jwill be proven under the weaker assumptions on G and v along with
the s(i) term in section [5, and Lemmas [4.2]and 4.3 will be proven under the full assumptions
in section [3l We recall these Lemmas below.

Lemma For any initial segment [ = |ay, as, ..., a,|, writew = [ay,as,...,a,,1,1,1,...].
Then for any € > 0, there is an m > 0 and an integer N such that if we write § =
lai, a9, ... a,,1,1,...,1,N,1,1,...], where the N is located in the (n + m)-th position,
then

O(w)+e < P(P) < P(w) + 2e.

Lemma . Write w = [ay, ag,...,a,,1,1,1,...]. Then for any € > 0 there is an mg > 0,
which can be computed from (a1, as,...,a,) and €, such that for any m > my and for any

tarl 1 = [a/ner, Aptm1s- - .],
OB > d(w) —¢

where

I
B =la,ag,...,an, 1,1, ... 1 Gpim, Gnymits - - )

Lemmafd.3| Letw = [a1,as, . ..] be such that P(w) < co. Writewy, = [a1,as, ..., a, 1,1,...].
Then for every € > 0 there is an m such that, for all k > m,

O (wp) < P(w) + ¢.
Write
BN =lay,aq,...,a,,1,1,...,1,N,1,1,.. ],
where N is in the (m + n)-th position. The following preliminary Lemmas are required for

all of the main proofs below.

Lemma A.2. For any sop < a < s1, the function u is bounded on the interval |a, sy).
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Proof. By assumption on u, there is some C' > 0 for which —u/(x) < (x_%o)z for all z €
la, s1). Integrating both sides gives u(z) < x_éso < aio for another constant C' > 0 and all
x € [a, s1). O

Lemma A.3. Let BV, B be as before, let 51, w be as in Lemma@ and let v1,ys be two num-
bers whose symbolic representations coincide in the first n+m—1 terms [ay, as, ..., Gpym—1]
(in particular, we could have y; = B~ and v, = B*). Then for g and m, as m for k as
z'n and for any N, the following holds:

(1) Fori <n+m,

N .
i N i—(n4+m
log 77(@)1 gIN) |1yt
ni(BNTL) 4
(2) Fori<n+m,
)10g 772(71) <mg.0‘7_1+w
i (72)

(8) For all large enough m, there is some positive function f with lim,, . f(m) =0 such
that fori <n+m—1,

u(n;(8Y))
alm(@) | <)

In particular, we could take 8 = B and w = BN. Clearly, 0 < sup,,cy f(m) =: M <
00.

log

Proof of . We will first show that for all ¢ we have

(1) [m:(BY) = m(BY )] < g(N) - 7

i—(n+m)

If i =n+m,since [N,1,1,...] € Jy, [N+ 1,1,1,...] € Jy41, for all N € N we have

n,Hm(BN) [N,l,l,...] rN
1< = < <1+ ¢9g(N
(B T N T LT, ] ey L FIW)

and so e
[ (B™) = Do (BY ] < g(N) < g(N) - 7

Now let 1 < j < k. We wish to show [« for ¢ = n+m — j. Note that since |G}(z)| > 1 for
all x € S by and G is C!, the Inverse Function Theorem gives |(G;') (z)| < 1 for all
x € Ji. Repeatedly applying the Mean Value Theorem gives

tm—i (BY) = Dgm—i (BY ] < 1 (BY) = s (BN Y| < g(N) < g(N) - 717975,

For i = n +m — k, since |(G})'| > 7 by assumption on G, we similarly use Inverse
Function Theorem and Mean Value Theorem (applied to the function G7* this time) to get

_ i—(n+m)
|77n+m—m(ﬁN) - nn—l—m—n(ﬁN—H” <7 . |77n+m(ﬁN) - 77n+m(5N+1)| < g<N> ' TH_ ®
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To show [x4] for all other ¢ > n +m — j with j7 > k, we apply the inequality

|77n+m—j(/BN) — Mnt+m—j (BN-H)' <7t |77n+m—j+n(ﬁN) - nn+m—j+fe(ﬂN+1>|

repeatedly until one of the cases ¢ > n + m — k above is reached.

We now proceed to prove If i = n + m then as before for all N € Z* we have

(5"
1<é%ﬁgj<1+ﬂN)
and so
(BN N i—(n+m
1og% <log (14 g(N)) < log(e?™) = g(N) < % . T”%’

where we used the inequality 1 + & < ef for any £ > 0.

Let 1 < i < n+ m, and assume 7;(8Y) > n;(8¥*1); the complementary case is almost
identical. We have n;(8Y), n:(8V*!) > £ since they are in J; and so from ]

< - T " andso 1< ———— <1+ - T "
ni (BN b ni (BN i
As above, this gives the desired inequality. 0]

Proof of (2} Note that n;(v1) and 7;(v2) agree on the first digit of the symbolic expansion
for each 1 < i < n + m; we write this digit as /V;.

We will first show that for all ¢ we have

i+1—(n+m)

(%) m(%)<1+mg_a,71+ C

1:(72)

If 7;(71) < mi(72) this is obviously true as the second term on the right hand side is greater
than zero, but to unify the argument we will not split into cases.

For : = n +m — 1, using assumption on G we compute

-1 (1) _ TNoenos 14 g(Nppmo1) S 1+my < 14my - - pit 0
77n+’m—1(72> gN’rH»mfl

For future use, note that the above inequalities yield

77n+mfl(ﬁ)/1) - 77n+m*1<’72) < 77n+m71(72) Mg < My.

Now let 1 < j < k. We want to show pko| for ¢ = n+m —1—j. Similar to the proof of, we
note that |(Gy' ) (z)] < Tjgr];erfl—j,l for all x € Jy, and |(ii)| gives [(Gy!)'(z)] < 1

n+m—1—j +m—1—j

https://doi.org/10.4153/5S0008414X2510179X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X2510179X

COMPUTABILITY OF BRJUNO-LIKE FUNCTIONS 27
for all x € Jy,, t arbitrary, so repeatedly applying the Mean Value Theorem,

Mn4m—1—j (1) — 77n+m—1—j(72)
< |G]_Vi+m,1,j 0---0 G]_Vi+m_2 (nn'i‘m_l(’yl)) - G]T[}l+m,1,j ©-+-0 G]_V}H_m_g (nn“!‘m_l(’YQ))l

< T]Gi+m,1,j,1 ’ ‘G]_Viwrm,j ©r--0 G]_\7711+m_2 (nn+m—1(’71>) - G]_V':rller*j -0 G]_V}H_m_g (nn+m—1('72))|

< T gt nem 1 (00) = Mnem 1 ()| < T
1= (ntm)
<Npyn1y 7 O Mg < Mgpm1-4(72) - 0 -y - B

Rearranging gives [kol To show [xg holds for i — -k withn+m—1—x <i<n+m—1 and
l € Z*, repeatedly apply the inequality
Ni—joe(11) = Ni1n(72)
< ‘G]_\fil,l.n 0---0 GI_\fz‘lfz.ﬁ+K71 (T]i,(lfl).,i(’}/l)) — G]_V,-l,l.,i 0---0 G]_Vz‘lflemfl (772;([71).,@(’}/2)”
1
= || i) = nica-nx(2)] < T Mi—a=1)(71) = Nima-1)x(72)|
’(Gn)/(s)‘ (I-1) (-1 (-1 (I=1)

(where § € Jy,_,, is from the Mean Value Theorem and we made use of |(ii)) until one of
the base cases above is reached.

We now suppose without loss of generality that 7;(v1) > 1;(72). Using the inequality 1+¢ <
¢ for any &€ > 0 with [xo| gives

' 41— (ntm i1 (ntm) P
0 < log mgvli < log (1 +my -0 Tl+%) < 10g<€mg.0.71+ T mg-a-TH%
1i\72
1 i 1
On the other hand, the inequalities >efand 1> 2 (72) > e —
1= ni(71) l+my-o- T =
give
i 1 i+l (n+m) 1 (b
0> log ! thi > log ( 14 = (nEm) ) > log(eﬂng"'m'pr " )= —mg.a-71+%
i\ 1 -+ mg o-T 7T &
Combining these together yields
B
O

Proof of [(3) Let (6(m)):_; be a sequence of positive numbers such that |n;(8") — m;(w)| <
d(m) forall 0 < i <n+m—1and N € N, and lim,, ,o 5(m) = 0. We claim n;(3!) is
uniformly bounded away from 0 and 1 for all 7 and 0 < i < n+m — 1. Note that

7)1‘(51)2[1,1,...] forn<i<n+m-—1,
n:(B") = [an, 1,.. ] for i = n, and
ni(8) = lai, ait1, - . ] for 0 <i < n.
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Call these first two digits p; and ¢;, noting that p; = ¢ = ppe1 = e fn <i<n+m— 1.

Let
Tlmin 0<iil;lLl+nmfl[p“ qi, - - ] 0<I}%171;1+1[p17 qi, - - ] 0<I}%17£1+1<Gpi © qu )((807 51))7
Nmax =  Max  [pi, ¢,...] = max [pi,q,...]= max (G,'o G;)((so, 51))-

0<i<n+m—1 0<i<n+1 0<i<n+t1: P
It is clear that if p; # 1 or ¢; # 1 then s < Nmin < Mmax < s1. If p; = ¢; = 1, by assumption
on GG we have
(Gl o G (50, 51) = GLHG (51),51) = (Gl (1), (G 0 Gl (s1))
with s < G_'(s1) < (G, o Gq_il)(sl) < s1. Hence sg < Nimin < Mmax < s1 in all cases. Thus

7]z(61) € [nminunmax] g (‘90781)'
Clearly 1;(w) € [Nmin, Tmaz) as well. Now letting

u= inf  wu(x),
e [nminvnmax}

we have @ > 0 since u is continuous and positive on the compact subset [Mmin, Tmax)-

Since w is continuous, it is uniformly continuous on [Mmin, Mmax|, hence admits a continuous
and strictly increasing modulus of continuity o : [0,00) — [0,00) such that lim; ,oo(t) =
0(0) = 0 and for all 1,22 € [Nmin, Nmax), |u(T1) — u(z2)| < o(|z1 — 22])-

(6(m))

Now fix m large enough that 1 — 7 >0,andlet 0 <i<n+m—1and N € N. Then

u

[u(m:(8")) = u(m(@))| < o(In(8) = m(r2)]) < o(3(m))

. u(mni(8) 1' _ o(m)) _ o(d(m))
u(n;(w)) u(ni(w)) = @
R e
with

lim f(m)=0 since lim log (1 + @) =0

Mm—00 (m)—0+

(3(m))

and f(m) > 0 since 2 > ( for all m. O
a

Lemma A.4. There is some p < 1 such that for any k > 1 and v € A, nx_1(x) - ni(x) < p.

Proof. 1f s1 < 1 we can take p = s1, so suppose s; = 1. By the decreasing assumptionon
G, it is easily checked that there are some ay, b, € (o, s1) for which G(SN[ax, 1)) C (so, bs).

o If G*(x) < a., then since G¥(x) < 1 we have G*(z) - G*¥(z) < a, < 1.
o Ifa, < G*'(x) < 1, then G*(x) = G(G*1(x)) < b, and so G*(z)-G*1(z) < b, < 1.

Taking p = max{a., b,} completes the proof. O
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A.3. Proof of Lemma [4.2] and Lemma [4.3l

Lemma A.5. There is a constant D such that for any v1,v2 € A with vy = [a,...], 72 =
la,...] for some a € Z*, we have

[u(71) —u(y) <D.

Proof. If 41 = ~9 we are done; suppose 71 < Y2. Define z(a) := v, and h(a) = v — 71 > 0.
By Taylor’s theorem,

h(a)
(z(a) — 50)?

where we used assumption on u and where R; is the first order Taylor remainder. But
now

u(1) = u(y2) = hla) - [u'(x(a)) + Ry (z(a))| < +h(a) - [Ri(z(a))l,

h<a) . Y2 —N Tq — ga

(z(a) — s0)? (71 — s0)? = (ly — 50)?

for some constant C independent of a, where we used assumption on (G. Since

< Cy
h(a) - |R(z(a))] — 0 as a — oo,
h(a) - |R(z(a))| < Cy for some constant Cy. Taking D = C; + Cy completes the proof. [
We are now ready to prove Lemmas [4.2] and
Proof of Lemma[{.9 We will first show that such an my exists, and then give an algorithm

to compute it.

Note that the sum in the expression for ®(w) converges, because its tail converges:

3 ) s @) uln @) < ula@) - )+ 3 Oara@)” < o0

since (Mp41(w))” < s1 < 1 for v > 0. Hence there is an m; > 1 such that the tail of the sum

> mw) - meaw)” - ulmw) < 5.

i>n+mq

If needed, additionally make m; large enough that Lemma applies for all m > m;.

We will show how to choose my > m; to satisfy the conclusion of the lemma.

By Lemma and for any 5! and any i < n + m; we have
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(mo(B) -+ mi—1(B")" - u(mi(8))
(mo(w) - - Mi—1(w))” - u(mi(w))

i—1 .
j —(n4+m —(n4+m 7’—1
= (Zm : ) 1) < vy 5 (T2

no(B') -+ nia
Mo(w) -+ mi—1(w) u(mi(w))

log = ‘V - log

A T
7=1
n+mq 14+my+32=m
pp2=ntm) (T T z
<Vo-mg-T E <m)+f(m)§1/a~mg-w+f(m)
Flmy 2 c
We can choose my sufficiently large so that exp(vo -m,, - 1 + f(m)) >1— 2 )

for m > mgy and also

3

()5 a8 > (1= g ) )@ ul ()

for i <mn +m;. Now, for any 3/ we have

n+mi—1
(B = Y (mB) - maa(8)” - um(8))
i=1
n+mi—1 c
> () ) @) )
€ €
> (1 - @(w)> (@(w) - 5) > d(w) — .
Since the symbolic representation of w ends with all ones, for any specific (ay, as, ..., a,) we

can compute ®(w) by Proposition . This allows us to compute m; by iteratively checking

whether
Y (o) mia (@)’ - ulni(w)) <
i>n+mi
for each m; > 1. Then for each candidate my > m;, since we can compute ®(w) and
(mo(w) -+~ niz1 (w))” - u(n;(w)) and left-compute (1o(87) - mi—1(87))" - u(n; (")) for each indi-
vidual ¢ by assumption on u and computability assumption |(vi)on G, we can iteratively
check whether the following two conditions hold:

€
2

2
7.1+ml+T’" c

(1) exp (Va'mg~w+f(m)> >1_2-<I>(w)

(2) For every i < n+my,

(mo(B") - mia(BH))” - ulmi(8)) > (1 -3 ;(w)> (mo(w) -+ mima(W))” - u(ni(w)).

We only need to be able to left-compute (no(87) -+ - ni_1(8"))” -u(n:(8")) because of the strict
inequality in condition . Since we have shown there must exist m; > mg for which these
hold, this algorithm terminates and we eventually find the m; we are looking for. 0J
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Proof of Lemmal[{.3 Let i <k — 1 for some integer k£ > 1. We will first show that

U(m(wk))
P ) P

for some 0 < p; < py < o0, independent of ¢ and k. Since ¢ < k — 1, the symbolic
representations of 7;(wg ), n;(w) coincide in the first two terms, call them a and b. So, we can
write

T = ni(wk) = [a7bv Tl]a
y =mni(w) = [a,b, T2],

where T7,T, are the infinite tails of the symbolic expansions of n;(wy), n;(w) respectively.
Since u is C! we have

)
u(y) = u(x) ~|—/ u'(t) dt
and so by assumption on u and on G,

u(y) 1‘ _ ! /:u’(t) dt’ < u(lx) /zy i _050)2 dt‘ - u(cx)

C>@Q¥o‘ri%><ugwcf:iv<ugr

u(z)
(
for some constant C' > 0. By assumption . on u, there is some l; € (0,1) such that

1 1

r—3S8 Y—5So

-~ u(x)

1 1
@ < 26 for £ € (0,11). Thus if a is large enough such that z,y € (0,1;), say a > Ny € Z*,
u
then .
M — 1' < g = —.
u(y) 20 2

If 1 <a < Ny, then z,y € [I1, 5] for some 0 < I} < I} < 1, thus u(z), u(y) are bounded away

from 0 and oo, so p} < Zgzi < plhy for some 0 < p)| < py < 00.

Now suppose a = 1. If s; < 1, then z,y € J; with J; bounded away from 0 and 1, thus u is

bounded away from 0 and infinity on J;. Now suppose s; = 1. It follows immediately from
on u that for large enough b, say b > Ns, % is bounded away from 0 and

infinity. Therefore pf < % < ply for some 0 < pf < plf < 0.

assumption |(ii

Putting all this together, letting p; = min{3, pf, p{} > 0 and p, = max{3, ph, Py} < oo we

have for any wy, and w that p; < (( ’“)) < pe and so ‘log “(w’“))

D, > 0.

< Dy < oo for some constant

Returning to the proof of the Lemma, since the sum in the expression for ®(w) converges
we can split this sum as

P(w) = Z (mo(w) - nima(w))” - u(mi(w)) + Z (mo(w) -+ i1 (w))” - u(mi(w))
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€

so that "tail” <
2 (exp <ya "My =7 + D1>>

If needed, additionally make s large

enough so that

pus/2 c

1 v/2 < ’
-P 4 (exp <VO’ “My - 71/77_1) Dy + u(gp))
where ¢ = [1,1,...], pis as in Lemma and Dy is the constant from Lemma .

Since Y7 (no(+) - -+ mi—1(+))” - u(n;(+)) is a finite sum of functions continuous on a neighbour-
hood of w, it is continuous on some interval containing w. Noting that w, — w, there is
some m > s such that for any k£ > m,

S S

Z (Mo(wk) =+ mi—1(wr))” - u(mi(wr)) < Z (o(w) -+ ni1(w))” - u(mi(w)) + /4.

i=1 i=1

We now want to bound the change from

(mo(wr) -~ mi—1(wi)” - w(ni(we)) to (mo(w) -+~ mi—1(w))” - ulmi(w))
for i > s. We consider these terms individually for s <i < k—1,i =k, and ¢ > k + 1.

e For s <i < k—1. Taking n+m := k+ 1 in Lemma since wy, and w coincide
in the first £ =n +m — 1 terms, we have
(mo(wr) -+ mi—1(wr)” - u(mi(wr)) mo(w) -~ Mi—1(ws) u(ni(we))
lo - -lo + log
(o(w) - -+ i1 (w))” - u(mi(w)) mo(w) - -+ ni1(w) u(n;(w))

i—1 ] 1+1—k 1-1
1128 D T D, < Tk
<V- Mg 0T ' * +D <vo-mg- +D <vo-mygy-
g 9 /s _ 1 9
Jj=1

et D

. . . 1
Hence in this case each term can increase by a factor of at most exp (1/0 "My g+ D1> :

e For i = k. We have
u(ni(w)) = w(ni(w)) | = [u(lax, . ..]) = u(lax, .. .])| < Da,
where we had previously gotten Dy from Lemma Now by Lemma ,

o (no(wg) === mi1(w )ZV

i—1
k Mo (W) - -~ Mi—1(ws) sk
=v- |log <V- Mg -0 -T ' =~
(o) 11(@) )i | <\
o -
<l/0'-mg.—7_1/ﬁ_1 :zj(j-mg.—Tl/N_17

50 (1o(wk) ==~ Ni—1(wk))” < exp (VU SMyg - ﬁ) - (mo(w) -+ - ni—1(w))”.  Combining
these estimates and using the value p < 1 from Lemma[A.4] we get

v T v

(Molwr) -~ M1 (wr))” - w(ns(wy)) < exp (W Sy - m) (mo(w) -+ M (w))”  (u(ni(w)) + D2)

T v T vli—
< exp (VU "My - m) “(no(w) - mima1 (W) - u(ni(w)) + exp (VU "My - m) - Dy - p I,
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e For i > k+ 1. Noting that u(n;(wg)) = u(n;(wk)), by Lemma we have
(n0(wr) - -1 (wr))” - u(nilwi)) < p" 7072 u(y).

Therefore for any i > s,

(i)t n))” - un() < exp (v, T D) () s )

T -
+ (eXp (yo “Myg - m) - Dy + u(go)) .pl'(Z /2

Finally, noting that
vs/2

vi-1)y2 _ P
Z P o v/2’
i=s+1 1- p /

for such a k£ we have
O (w) = "head” (wy) + "tail” (wy)

< (”head” (w) + %) + <exp (ya “Myg - # + D1) tail” (w)

T pys/Q
+ <6Xp (ya Mg 1) - Dy —i—u(gp)) T pV/2)

T 9
T1+D1) '
T Q(exp <V0-mg-ﬁ+D1>)

< "head” (w) + Z + exp (ya My -

T €
(oo ) i) —
exp(ya-mg~71f7_1)- 2 u@)

7 b2 E E E
= "head (w)+4+2+4<<b(w)+6.

U

A.4. Proof of Lemma (4.1l Write

(I)i(w) = (I)<w) - 8(” + m) ’ (771 (w)ﬁz(w) T nnerfl(w))V ) u(nn+m(w))
The value of the integer m > 0 is yet to be determined.

Lemma A.6. For any w of the form as in Lemmal{.1] and for any € > 0, there is an mgy > 0
such that, for any N and any m > my,
3

2 (5Y) — @ (8)] < -

Proof. Noting that 7,1, 1(8Y) € ({1,s1) for all N € Z", by Lemma we have some
C > 0 such that 0 < u(fp4m_1(BY)) < C for all N. Now, the sum in the expression for
®(B') converges because its tail converges absolutely:

Z |s(2) . (T]o(ﬂl) " '771—1(51))” ) U(m(ﬁl))l = U(ﬁl) ) Z ((51)V)i < 00
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since (8')” < s; < 1 for v > 0. Hence there is an m; > 1, make it large enough that
Lemma applies for all m > my, such that the tail of the sum satisfies

€

D 5@ () (B) wn(8) < g7y

i>n—+mi

where M > 0 is as in Lemma , and D is defined as

D = exp (y (mg—‘”g + [log (u(il)) D + M) .

Tk — 1
We will now show how to choose my > m; to satisfy the conclusion of the Lemma.

We bound the influence of the change from 3! to SV using Lemma and [(3)] The
influence on each of the "head elements” (i < n + my) is bounded by

s(i) - (mo(BY) -+ mi—1(BY))” - u(ni(8Y)) ) _ ‘y og m(8Y) i (B
s(i) - (mo(BN) - mima (BY))” - u(mi(6Y)) mo(BY) -+ - mi—1 (BY)

1—1 2—m
41— (ntm) Tt
<V'<ng'a-71+]+1N+ >+f(m)§ua'mg'm+f(m)-

j=1

) o L)

u(,(BY))

log

By making m sufficiently large (i.e., by choosing a sufficiently large mg) we can ensure that

3 3 s(2) - (mo(B") -~ mia(BM))" - u(ni(B™)) €
IR D) 008 S0 o) () - an()) A0+ D)@ (@)
Hence
}S(i) ' (WO(BN) : "Ui—l(ﬁN))y : U(Ui(ﬁN)) — (i) - (770(51) : “771'—1(51))” : U(Ui(ﬁl))‘
< gD e ) mal8)” ulm(s).

Adding the inequalities for i = 1,2,...,n + m; — 1, we obtain

n+mi—1 n+mi—1
> s (mo(BY) - min (BY) - ulm(BY) = Y (@) - (no(BY) - mima(BY)” - ulmi(8Y)
i= i=1
| € e 1 1)V 1 €
Thus the influence on the "head” of ®~ is bounded by L. To bound the influence on

4(1+ D)
the ”tail”, we consider three kinds of terms s(i) - (no(8Y) - - - mi—1(BY))" - u(mi(BY)): those for
whichn+m; <i<n+4+m-—2,i=m+n—1,and i > m+n+1 (recall that the i =n+m
term is not in ®7).
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e Forn+m; <i<n+m—2. By Lemma and , and by the work above,

s(0) - (mo(BY) - mia (B)” - u(mi(6Y) | _ - ¥ I m
o s(1) - ('f?o(ﬁN)"'m1(5N))V~u(77¢(ﬁN))‘ - (Z ! ) +f(m)

j=1

2—(n+m) Ti T
<vo-my T x (m)-i—f(m)ﬁua-mg-—ﬂLM

/s — 1
Where M > 0 is as in Lemma (3)l Hence in this case each term can increase or
decrease by a factor of at most exp ( 277~

e For i = n+m — 1. Recall that for all N € ZT, 0 < u(n,3m_1(8Y)) < C. Thus we

have
log s(z) : (TIO(BN) e ‘Ui—l(ﬁN))V : U(m(ﬁN)) < log (TIO(BN> e ‘Ui—l(ﬁN))V -C
s(@) - (mo(BY) -+ mima (B))" - u(mi(8Y) = 7 (mo(BY) -+ miea (BY))" - ullr)
iy L4 2= (rtm) C my o7 C
<y‘<; my-o-T ~ +log<u<€1))><y~(m+log(u<gl)))

Hence this term could increase or decrease by a factor of at most exp (V . ( n}?:Tl + log (

e For i > n+m+1. Note that the n; for j > n+m are not affected by the change, and
the change decreases 7,4, S0 that N,m(BY) < Nupm(8Y) and thus (n,4m(BY))" <
(o m(81))". Hence

s(i) - (mo(BY) - mima (BY)) " u(mi(B™)) (m0(BY) - My (BY))”

8 (AL B a(B) B 0 (BY) e (B))
(770(5 )"‘Un+m—1(/3N))V i 14 L= (ntm) vemg-o-7°
OV e e D DI A DR

. . . 3
So, in this case each term could increase or decrease by a factor of at most exp ( f‘ﬁ%) :

We see that after the change, each term of the tail could increase or decrease by a factor of

3
MmyoT C .
o ( (/ —1 e (u(&)) D ! M) =P

D - D -
at most. So the value of the tail remains in the interval [—4(1 —{—SD)’ n —|—€D)] , hence the
D .
change in the tail is bounded by 4<1—+€D)

Therefore, the total change in ®~ is bounded by
€ D-e ¢

change in the "head” + change in the "tail” < 0+ D) + <D 7
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Lemma A.7. For any ¢ and for the same mg(e) as in Lemmal[A.6, for any m > mg and N,

[@7(8Y) — B(8¥)] < 3.

Proof. We have
(@7 (8") —@(8" )] < |7 (8Y) — @(8")| + |27 (BV) —@(8)] < { + ;=

We will now take a closer look at the term

Ol w) = s(n+m) - (W) Mnrm-1(@))” * UNntm(Ww)) = P(w) — D7 (w).

Lemma A.8. There exists some m, which can be made arbitrarily large, such that for any
N,
€

(V) — B1(5Y) <

\)

Proof. We assume throughout that s(n+m) = 1. By assumption on s(-), there are infinitely
many m such that this holds, so we can take m arbitrarily large within the course of the
proof.

According to Lemma (D)

s(n+m) - (ﬁO(ﬂNH) e Dgme1 (BVT) ) . nfl M Lt

1
o8 s(n+m) - (o(BN) - nam-1(6Y)))” —~ 4
1—(nim n+m __ 1 2

=v-g(N)-7 1+¥~7;_1/K—_1<V'9<N)'7.1/Z 1

Hence
2

s(ntm)-(no(BY " -+ Mg 1 (X)) < s(ntm)- (mo(BY -+ 1 (BY))) " -exp (” 9N >
and

1/ aN+1 LMY . exp [ - ) T _u(nner(ﬁNH))
B < @5 oxp (v g(V) - T ) e )

We require an auxiliary inequality. It is straightforward to show that for any y € (0, 1] and

any d > e“/c we have e¥ < 1+ dcy. Taking y = g(N)/(m, - l/j ) and c = v - my - w T
22 2
for any d > e 9'71/“—1/(1/ -y - ) we have e VI TSRS < 14 dy - g(N)- ﬁ Hence
for any such d,
2 N+1
q)l(ﬁNJrl) _ (I)l(ﬂN) < (Dl(ﬁN) (eV'g(N)'Tum_l . ugg:}—i-m(fﬁlv)))) _ 1)
n+m
s UM (BH))
o6 (1o ) o 1)
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For p € (0,1) as in Lemma[A.4] we have

(I)l(BN) < py.(n+m—2)/2 ‘u (nn—i—m(BN)) )
Thus

PN 5% < g (8V) - (10 g ) e 1)

= ([ (e (5570) = 0 (i (5] -9 T (e (557) )

For the remainder of the proof, we will show that this product can be made less than § by
choosing m large enough. Since the first term — 0 as m — oo, it is enough to show that the
product of the last two terms is bounded from above by a constant.

G
(x — s0)?
for another constant Cy > 0. Letting 2(N) := 0,1, (8Y 1)
r — 8o
and h(N) = nn-‘rm(ﬁN) - 77n+m(/8N+1) > 07 we have

By assumption on u, we have —u/(z) < for some constant C; > 0. Integrating

both sides gives u(x) <

i ([0 Oen 8 70) = 0 (s ()] + g N) - = - i (5°) )

]
z(N) - g(N)- T1/K i dv-u(z(N))
h(N) z(N)

= — [W/(z(N)) + Ri(z(N))] +

where Ry (-) is the Taylor remainder term with limy_, Ry (z(N)) = 0.

We now want to find a lower bound on A(N). Recalling assumption on G, we have

W(N) =[N, 1,1,..] = [N+1,1,1,..] = G§'(¢) = Gyi () = da(N) > 0.
Taking D > 0 as in assumption and recalling the definition of g from |(vii), we have
2(N)-g(N) - o g (BYY) v Ay T -D. 72
h(N) 5@(N) €N+1 7'1/'{—1 7'1/”—1.

Since limy 0 R1(z(N)) = 0, we have |R;(z(N))| < Cs5 for some C5 > 0. So,

—[u’(x(N))+Rl(x(N))]+x(N)'gUV)'# dv - u(z(N))

h(N) ()
<9 e +D'717+_1'dy- L
(x(N))> ~ 7 z(N) (@(N)) ~ (z(N))> ~ h(N)

for some Cy, C' > 0, where the last inequality holds true because
h(N) <1y —yia < Uyin g(N) < Dgm(BYH) - g(N) = 2(N) - g(N) < (x(N))? - my.
Therefore we have shown that for all N,

7_2

[u (77n+m<5N+1)) —u (77n+m(ﬁN))] +dv - g(N) ) Tk _1 U (77n+m(BN+1>) <C

for some constant C' > 0, finishing the proof of the Lemma. O

https://doi.org/10.4153/5S0008414X2510179X Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X2510179X

38 IVAN O. SHEVCHENKO AND MICHAEL YAMPOLSKY
Lemmas [A.7] and yield the following.
Lemma A.9. There exists some m, which can be made arbitrarily large, such that for any
N,
D(E) — o(BV) < e
Proof. Using Lemmas and , for sufficiently large m with s(n +m) = 1 we have
DBV — B(BY) < @BV — 07(BY) + @BV — @1 (BY) < S 4 S ==

2 2
[
To complete the proof of Lemma 4.1, we will need the following statement.
Lemma A.10. For any m satisfying s(n +m) = 1, we have
. Ny
W, 2T) = 0o
Proof. We first prove that limy_,., ®'(8") = co. By Lemma
. N DY N v n+m_1 J 1—(n+m . . . 3
log s(n+m) (770(51) 7]n+m—1(51 ))V <. Z mg'a-T”% - v nl”Lg o-T .
S(n+m) ’ (TIO(/B )"'nn—i-m—l(ﬂ )) jZl T /H_l
Hence
v 1 14
s(n+m) - (n0(BY) - Mnsm-1(8"))" > ———< - s(n+m) - (00(8") - Dorm-1(8))
eXp <Tl/i 1 )
and
1 u(nn-&—m(ﬁN))
31 (V) > ~ @' (5.
exp (”71”/5’:713) (g (BL))
Since lim,_,s, u(x) = oo, the latter expression tends to co as N — co. Now, write
n+m—1
S(EV) = > s(i)- (no(BY) - mia(BY))” - u(m(BY)) + @1(BY)
i=1
+ Z s(i) - (no(BY) - 'ni—l(ﬁN))y u(ni(BY)).
i=n+m+1

Fori € {1,2,...,n+m — 1} and any N > 0 we have n;(3Y) € Ji, thus n;(8Y) > £; > s.
So, using Lemma we can bound the first term above independently of V:

n+m—1 n+m—1

izl s(i) - (770(5]\[) e ni—l(BN))V ~u(n(BM)] < ZZI (1---1)" xes[lgllpl)u(x) < 00.

i — 1 times
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The third term converges, since the sum converges absolutely:

Y @) (08 e (8Y)” - uln (8] = (8- D ((8))' < o0

because (8')” < s; < 1 for v > 0. This bound on the third term does not depend on N.
Thus the first and third term are bounded independently of N while the second term is
PL(BYN) — 0o as N — oo, so ®(BY) — oo as needed. O

We are now ready to prove Lemma 4.1}

Proof of Lemmal[{.1 Choose m as provided by Lemma [A.8] Increase N by one at a time
starting with N = 1. We know that ®(8') = ®(w) < ®(w) + ¢ and, by Lemma [A.10] there
exists an M with ®(8™) > ®(w) + . Let N be the smallest such M. Then ®(5"V!) <
®(w) + ¢, and by Lemma [A.§]

O(BN) < (VY e < D(w) + 2e.

Hence
P(w) +e < d(BY) < d(w) + 2¢.
Choosing 8 = 3 completes the proof. O
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