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The game of Cops and Robber on geodesic
spaces
Bojan Mohar
Abstract. The game of Cops and Robber is traditionally played on a finite graph. The purpose of
this article is to introduce and analyze the game that is played on an arbitrary geodesic space (a
compact, path-connected space endowed with intrinsic metric). It is shown that the game played
on metric graphs is essentially the same as the discrete game played on abstract graphs and that
for every compact geodesic surface there is an integer c such that c cops can win the game against
one robber, and c only depends on the genus g of the surface. It is shown that c = 3 for orientable
surfaces of genus 0 or 1 and nonorientable surfaces of crosscap number 1 or 2 (with any number
of boundary components) and that c = O(g) and that c = Ω(√g) when the genus g is larger. The
main motivation for discussing this game is to view the cop number (the minimum number of cops
needed to catch the robber) as a new geometric invariant describing how complex is the geodesic
space.

1 Introduction

In this article, we discuss the game of cops and robbers on geodesic spaces, with
particular attention to metric graphs and metric two-dimensional cell complexes
endowed with intrinsic metric. Our version of the game has been introduced in [35],
where it was shown that there is a min–max theorem for the game in which the cops
try to minimize (and the robber wants to maximize) the infimum of the distances
between the robber and the cops during the gameplay. This version of the game is
somewhat different from the game version discussed by Bollobás, Leader, and Walters
[12], but it preserves all the beauty and power of discrete Cops and Robber game played
on graphs, it generalizes the classic game of Man and Lion (and other games of that
type), and is still completely intuitive and natural to deal with.

The game of Cops and Robber on graphs shows remarkable connections with
structural graph theory. Our main motivation to analyze the game on geodesic spaces
is to introduce the cop number of geodesic spaces. This is a new geometric invariant
and our preliminary results show that it may be of certain interest when discussing
geometry of groups and manifolds.

Received by the editors May 23, 2022; revised May 30, 2024; accepted July 15, 2024.
Supported in part by the NSERC Discovery Grant R832714 (Canada) and by the Research Project

N1-0218 of ARIS (Slovenia). On leave from IMFM, Department of Mathematics, University of Ljubljana.
AMS subject classification: 05C57, 91A24, 49N75, 91A44.
Keywords: Pursuit-evasion game, games on graphs, Cops and Robber game, geodesic space, metric

surface.

https://doi.org/10.4153/S0008414X24000543 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008414X24000543
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7408-6148
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X24000543&domain=pdf
https://doi.org/10.4153/S0008414X24000543


1828 B. Mohar

1.1 Pursuit-evasion games

Pursuit-evasion games have a long history, especially in the setup of differential games
[28, 32, 37, 38, 42]. Differential games with more pursuers were introduced in the
1970s, see, e.g., [19, 24, 31, 39] or a more recent article [22] and the references therein.
A more recent important application is design of robot movement in complicated
environment, see, e.g., [1].

A general class of pursuit-evasion games has been devised in discrete setting, where
the game is played on a finite graph. Nowakowski and Winkler [36] and Quilliot [40]
independently introduced the game of Cop and Robber with a robber being chased by
a single cop. Aigner and Fromme [3] extended the game to include more than one cop.
For each graph G and a positive integer k, the Cops and Robber game on G, involves
two players. The first player controls k cops placed at the vertices of the graph, and
the second player controls the robber, who is also positioned at some vertex. While
the players alternately move to adjacent vertices (or stay at their current position), the
cops want to catch the robber and the robber wants to prevent this ever to happen.
The main question is how many cops are needed on the given graph G in order that
they can guarantee the capture. The minimum such number of cops is termed as the
cop number c(G) of the graph.

The game of cops and robbers gained interest because of its ties with structural
graph theory. Classes of graphs that can be embedded in a surface of bounded genus
[3] and those that exclude some fixed graph as a minor [6, 7] have bounded cop
number. In particular, Aigner and Fromme [3] proved that all graphs that can be
embedded in the plane have cop number at most 3. We refer to the monograph by
Bonato and Nowakowski [14] for further details about the history of the game and for
overview of the main results. Additionally, we refer to the survey articles [11, 13] that
give more details about relations of the game to topological graph theory and cover
details about Meyniel’s conjecture, which is considered the most outstanding open
problem in this area.

The famous Lion and Man problem that was proposed by Richard Rado in the
late 1930s and discussed in Littlewood’s Miscellany [33, 34] is a version of the game
with one pursuer (the Lion) and one evader (the Man). The man and the lion are
within a circular arena (unit disk in the plane), they run with equal maximum speed.
It seems that in order to avoid the lion, the man would choose to run on the boundary
of the disk. A simple argument then shows that the lion could always catch the man
by staying on the segment joining the center of the disk with the point of the man
and slowly approaching him. However, Besicovitch proved in 1952 (see [34, pp. 114–
117]) that the man has a simple strategy, in which he will approach but never reach the
boundary. That strategy enables him to avoid capture forever, no matter what the lion
does. We refer to [12] for more details.

One can prove that two lions are enough to catch the man in a disk. A recent work
by Abrahamsen et al. [1, 2] discusses the game with many lions versus one man in
an arbitrary compact subset of the plane whose boundary consists of finitely many
rectifiable simple closed curves and prove that three lions can always get their prey.
There are many extensions of the Man and Lion game [12]; the extension to “birds
catching a fly” in the unit ball in R

n [21] is just one such example.
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There is also a more recent study of differential games with many pursuers in
convex compact sets in Euclidean spaces by Ferrara et al. [22] and a study of the game
on 1-skeletons of regular polytopes [8–10] by Azamov, Kuchkarov, and Kholboev.

Klein and Suri [29] discussed pursuit-evasion on polyhedral surfaces. In their
setting, players make alternate discrete steps, all of same length t, and with t → 0.
This way, they approximate the continuous setting of the game. They proved that
4g + 4 pursuers can always catch evader on a polyhedral surface of genus g, thus
approximately matching a result of Schröder [41] that 3

2 g + 3 cops suffice in the cops
and robber game on graphs of genus g.

The game of cops and robbers can be defined on any metric space. It is far from
obvious how such a game can be defined in order to be natural, resembling interesting
examples and allowing for powerful mathematical tools. Subtleties of the various
versions of the game are nicely outlined in an influential article by Bollobás, Leader,
and Walters [12], who were the first to provide a general framework for such games.
In this article we take a slightly different approach – following [35] – which yields a
common generalization of discrete type for all of the above-mentioned versions.

1.2 Overview

The purpose of this article is to analyze the game of cops and robber that is played on
an arbitrary geodesic space (a compact, path-connected space endowed with intrinsic
metric). It is shown (see Theorem 4.1) that the game played on metric graphs is
essentially the same as the discrete game played on abstract graphs and that for every
surface there is an integer c such that c cops can win the game against one robber, and
c only depends on the genus g of the surface. It is shown that three cops (i.e., c = 3) are
sufficient to win the game on any compact geodesic surface S if its genus is 0 or 1 (if S
is orientable) or its crosscap number is 1 or 2 (when S is nonorientable) and with any
number of boundary components. Genus 0 case is covered by our Theorem 7.1 and
genus 1 case is Theorem 7.3. The nonorientable surfaces are dealt easily through their
orientable double cover. In general, when the Euler genus g is larger, we may need up
to Ω(√g) cops. On the other hand, we prove that O(g) cops suffice.

2 Intrinsic metric and geodesic spaces

We consider a metric space (X , d) and the corresponding metric space topology on
X. For x , y ∈ X, an (x , y)-path is a continuous map γ ∶ I → X, where I = [0, 1] is the
unit interval on R and γ(0) = x and γ(1) = y. We allow the paths to be parameterized
differently and in particular we can replace I with any finite interval on R. The space
is path-connected if for any x , y ∈ X, there exists an (x , y)-path connecting them.

One can define the length �(γ) of the path γ by taking the supremum over all finite
sequences 0 = t0 < t1 < t2 < ⋅ ⋅ ⋅ < tn = 1 of the values∑n

i=1 d(γ(t i−1), γ(t i)). Note that
�(γ) may be infinite; if it is finite, we say that γ is rectifiable. Clearly, the length of
any (x , y)-path is at least d(x , y). The metric space X is a geodesic space if for every
x , y ∈ X, there is an (x , y)-path whose length is equal to d(x , y).

An (x , y)-path γ is isometric if �(γ) = d(x , y). Observe that for 0 ≤ t < t′ ≤ 1 the
subpath γ∣[t ,t′] is also isometric. Therefore, the set γ(I) = {γ(t) ∣ t ∈ I} is an isometric
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subset of X. With a slight abuse of terminology, we say that the image γ(I) ⊂ X is an
isometric path in X.

A path γ is a geodesic if it is locally isometric, i.e., for every t ∈ [0, 1], there is an
ε > 0 such that the subpath γ∣J on the interval J = [t − ε, t + ε] ∩ [0, 1] is isometric.
A path with γ(0) = γ(1) is called a loop (or a closed path). When we say that a loop is a
geodesic, we mean it is geodesic as a path and it is also locally isometric around its base
point, i.e., γ∣[1−ε ,1]∪[0,ε] is isometric for some ε > 0. We will mainly deal with (x , y)-
geodesics, which we define as shortest geodesics from x to y, and thus we implicitly
assume that any (x , y)-geodesic is always isometric.

One can consider any path-connected compact metric space X and then define the
shortest-path distance. For x , y ∈ X, the shortest-path distance from x to y is defined as
the infimum of the lengths of all (x , y)-paths in X. If any two points in X are joined by
a path of finite length, then the shortest path distance gives the same topology on X.
Compactness implies that any sequence of (x , y)-paths of bounded length contains
a point-wise convergent subsequence, and that the limit points determine an (x , y)-
path. This implies that there is a path whose length is equal to the infimum of all
path lengths. Hence, for this metric, which is also known as the intrinsic metric, X is a
geodesic space.

If X is a geodesic space, each of its points appears on a geodesic. But some points
only appear as the endpoints of isometric paths in X and cannot appear as interior
points of those. Such points will be referred to as corners. All other points appear as
internal points on geodesics in X and are said to be regular. It is obvious that regular
points are dense in X. On the other hand, the set of corners can also be very rich.
It may contain the whole boundary component, but in the interior of X, it is totally
path-disconnected in the sense that every path containing only corners is either trivial
(a single point), or is contained in ∂X. Still, the set of corners in the interior of X can
be uncountable (for example, it can contain the Cantor set).

We refer to [17] and [18] for further details on metric geometry, and on geodesic
spaces in particular. From now on, we will assume that X is a compact path-connected
space, endowed with intrinsic metric; in other words, X is a compact geodesic space.

2.1 Metric cell complexes

If a metric space X is homeomorphic to a one-dimensional cell complex (graph),
then we say that X is a metric graph. If G is an abstract graph and w ∶ E(G) → R+

is a function specifying the length of each edge, we define the metric graph X(G , w)
corresponding to G and w as the metric graph G in which each edge e is represented
by a real interval of length w(e). We write X(G) if all edge-weights are equal to 1.

Metric graphs are just finite one-dimensional complexes, endowed with intrinsic
metric. We can consider intrinsic metric in any finite cell complex. Here, we usually
assume that each cell C is endowed with intrinsic metric inherited from some
Euclidean space in which C is embedded. Such a geodesic space is said to be a
piecewise-linear geodesic space. More generally, each cell may be a more complicated
geodesic space, and then we consider the induced intrinsic metric of the cell complex.

In the special case of simplicial complexes, we assume that the simplices are linearly
embedded (as the convex hull of their vertices) in some Rn , unless stated otherwise.
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2.2 Polyhedral surfaces

A polyhedral surface is a surface obtained from a set of disjoint polygons in the
Euclidean plane R

2 by pairwise identifying their sides (which have to be of the
same length for each identified pair). More precisely, let D1 , . . . , Dm be a family
of pairwise disjoint polygons, where D i has k i sides A i j (1 ≤ j ≤ k i ). Let us take
the set S of the k1 + ⋅ ⋅ ⋅ + km sides of these polygons, S = {A i j ∣ i ∈ [m], j ∈ [k i]},
and consider an involution μ ∶ S → S, called a matching of these sides, such that
any matched pair of sides have the same length: �(μ(A i j)) = �(A i j). For each A i j ,
whose matching side μ(A i j) is not equal to A i j , select an orientation and then
identify the two sides by pasting them together according to the chosen orienta-
tions. It is easy to see that this way we always obtain a metric surface when we
consider its intrinsic metric. It is clear that every geodesic path in a polyhedral
surface consists of straight-line segments inside the polygons D1 , . . . , Dm . The edges
of the polygons that are matched with themselves form the boundary of the resulting
surface. We assume, though, that the polyhedral surface is connected. If all polygons
forming a polyhedral surface are triangles, then we say that the surface is triangu-
lated.

The polygons D1 , . . . , Dm are said to be the faces (or sometimes 2-faces) of the
polyhedral surface, each side A i j identified with μ(A i j) is an edge (or a 1-face), the
endpoints of the edges are the vertices (or 0-faces). Each vertex has several polygons
identified cyclically around it and may be part of the boundary or an interior vertex.
The corners of the polyhedral surface are precisely those vertices, whose incident
polygons make the total angle around the vertex smaller than 2π. We refer to [5] for
further treatment of polyhedral surfaces.

2.3 Geodesic triangulations of metric surfaces

If a geodesic space X is homeomorphic to a surface, we say that X is a metric surface.
Alexandrov and Zalgaller [4, 43] have shown (with full proofs in their monograph

[5]) that every metric surface with bounded curvature can be partitioned into convex
triangles with disjoint interiors that form a triangulation of the surface. With that
result in hand, they also proved that every such surface can be approximated by
a polyhedral surface and can also be approximated by a surface with Riemannian
local geometry. Quite recently, these results have been extended to arbitrary geodesic
surfaces with one caveat that the dissection of the surface into triangles need not form
a triangulation in the sense that adjacent triangles need not intersect along entire edges
(see Creutz and Romney [20]).

A closed subset T of X is a triangle if it is homeomorphic to a disk and its boundary
can be written as the union of three isometric paths. It is possible that the boundary
of a triangle can also be written as the union of two isometric paths, in which case, it
is also called a digon. A triangle T is convex if for any x , y ∈ T , some (x , y)-geodesic is
contained in T. It is nondegenerate if the lengths of its sides satisfy the strict triangular
inequalities. We say that a family of subsets of X is nonoverlapping if any two subsets
in the family have disjoint interiors, and that it is locally finite if every point of X is
contained only in finitely many of these subsets.
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Theorem 2.1 [20] Let X be a (compact) geodesic surface endowed with intrinsic metric
such that every boundary component is a piecewise geodesic curve, and let ε > 0. Then
X is the union of a locally finite collection of nonoverlapping triangles (Ti)i∈J , and each
triangle Ti (i ∈ J) has the following properties:

(i) Ti is convex,
(ii) diam(Ti) ≤ ε,
(iii) Ti is nondegenerate, and
(iv) if a point p ∈ ∂Ti is a corner, then p ∈ ∂X.

We will need an extension of this result to deal with boundary components that are
not piecewise geodesic. See Theorem A.1 in the Appendix.

2.4 Topological and metric properties of geodesic surfaces

Topologically, every compact surface is determined by three parameters: orientability
(either being orientable or nonorientable), its genus, and the number of boundary
components. The orientable surface S = Sg ,k of genus g with k boundary components
(g ≥ 0, k ≥ 0) has Euler characteristic χ(S) = 2 − 2g − k and the nonorientable surface
N = Ng ,k of genus g with k boundary components (g ≥ 1, k ≥ 0) has Euler characteristic
χ(N) = 2 − g − k. In order to treat surfaces with the same Euler characteristic alike,
we say that Sg ,k and Ng ,k have Euler genus equal to 2g and g, respectively.

However, when it comes to the intrinsic metric on geodesic surfaces, there are other
parameters that distinguish them. We list some that we will use in the article. Let X be
a geodesic surface. Then we define the following:

• The diameter of X is the maximum distance between points in X,

diam(X) = max{d(x , y) ∣ x , y ∈ X}.

• Boundary separation is the minimum distance between two distinct boundary
components. We define the boundary separation be infinite if there is at most one
boundary component.

• Systolic girth, denoted as sys(X), is the length of a shortest noncontractible curve
on the surface, and such a curve is said to be a systole in X. If the surface is simply
connected (X = S0,0 or S0,1), then the systolic girth is infinite.

• Essential systolic girth, denoted as sys0(X), is the length of a shortest curve in X
that is noncontractible on the surface X̂ that is obtained from X by capping off each
boundary component of X.

• For a boundary component B ⊆ ∂X, the systolic girth for B, sys(X , B), is the
minimum length of a noncontractible curve with its endpoints on B fixed. Here
we say the curve with its endpoints x , y ∈ B is contractible if it can be deformed to
one of the two (x , y)-segments on B, where the contraction homotopy keeps the
two endpoints x and y fixed all the time.

It is easy to see that systole curves are geodesic in X and that each systole and
essential systole is a simple closed curve.
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3 Game of Cops and Robber on geodesic spaces

3.1 Rules of the game

A more general setup for the game has been introduced in [35]. Here, we only treat
the standard game. Let X be a compact, path-connected metric space endowed with
intrinsic metric d, and let k ≥ 1 be an integer. The Game of Cops and Robber on X with
k cops is defined as follows. The first player, who controls the robber, selects the initial
positions for the robber and for each of the k cops. Formally, this is a pair (r0 , c0) ∈
Xk+1, where r0 ∈ X is robber’s position and c0 = (c0

1 , . . . , c0
k) ∈ Xk are positions of

the cops. The same player selects his agility function, which is a map τ ∶ N → R+ and
defines the lengths of the steps of the game. The agility function must allow for the
total duration of the game to be infinite, which means that ∑n≥1 τ(n) = ∞.

After the initial position and the agility function are chosen, the game proceeds
as a discrete game in consecutive steps. Having made n − 1 steps (n ≥ 1), the players
have their positions (rn−1 , cn−1

1 , . . . , cn−1
k ) ∈ Xk+1. The nth step will have its duration

determined by the agility: the move will last for time τ(n), and each player can move
with unit speed up to a distance at most τ(n) from his current position. So, the
robber moves to a point rn ∈ X at distance at most τ(n) from his current position,
i.e., d(rn−1 , rn) ≤ τ(n). The destination rn is revealed to the cops. Then each cop C i
(i ∈ [k]) selects his new position cn

i at distance at most τ(n) from his current position,
i.e., d(cn−1

i , cn
i ) ≤ τ(n). The game stops if cn

i = rn for some i ∈ [k]. In that case, the
value of the game is 0 and we say that the cops have caught the robber. Otherwise the
game proceeds. If it never stops, the value of the game is

v = inf
n≥0

min
i∈[k]

d(rn , cn
i ).(3.1)

If the value is 0, we say that the cops won the game; otherwise the robber wins. Note
that the cops can win even if they never catch the robber.

3.2 The cop number of a game space

The compact geodesic space X on which we play the game of Cops and Robber will
be referred to as the game space. Given a game space X, let k be the minimum integer
such that k cops win the game on X. This minimum value will be denoted by c(X) and
called the cop number of X. If such a k does not exist, then we set c(X) = ∞. Similarly
we define the strong cop number c0(X) as the minimum k such that k cops can always
catch the robber.

Since X is compact, for every ε > 0 there exists an integer k such that k cops can
always achieve the value of the game be less than ε. (Place the cops at the centers of
open balls of radius ε that cover X. Then, no matter where the robber is, he will be at
distance less than ε from one of the cops.) Hence, with the growing number of cops, the
value of the game tends to 0. This simple observation does not guarantee that c(X) is
finite. However, no examples are known where infinitely many cops would be needed.

Problem 1 Does every game space have finite cop number?
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However, there are geodesic spaces, whose strong cop number c0(X) is infinite.
One example that came out in [27] is a particular compact subspace of the unit ball
in �2(N), which is defined as the set of all infinite sequences (xn)n≥1 with �2-norm
∑n≥1 x2

n ≤ 1. In this ball, one cop can use the radial strategy of Besicovitch (see [27])
to approach the robber arbitrarily close. However, no finite number of cops can catch
the robber. The message of this example may be that c(X) says something about the
global structure, but c0(X) bears some information about the local properties, which
is about the dimension in this case.1

3.2.1 Strategies and value of the game

The value of the game when played in X is defined by (3.1). Note that the strategy
of a player depends not only on the current position but also on the agility chosen
by the robber at the very beginning. To formalize this dependence, we define the full
strategy of the robber in such a way that it includes the choice of initial position and
agility. This choice is a formal part of his strategy, which is assumed implicitly, and
having made this choices, we then treat the game as starting at some initial position
and having a fixed agility τ. The rest of the robber’s strategy and a strategy of the cops
can be defined as follows. A strategy of the robber is a function s ∶ X × Xk ×R+ → X,
(r, c, t) ↦ r′, such that d(r, r′) ≤ t. This can be interpreted as having the robber and
the cops in position (r, c), and having step of duration t. The strategy tells us to move
the robber from r to r′ along some geodesic of length d(r, r′). Then, each cop C i
moves from his current position c i to a point c′i at distance at most t from c i . The
choice of such destinations c′ = (c′1 , . . . , c′k) constitutes a strategy of cops. Formally, it
is a function q ∶ (r′ , c, t) ↦ c′. Performing the game by using both strategies gives the
new position (r′ , c′).

Using agility τ, initial position (r0 , c0) and strategies s, q of the robber and the cops,
we denote by vτ(s, q) the value of the game when it is played using these strategies.
Here, we implicitly assume the initial position (r0 , c0) and agility τ selected by the
robber are part of the strategy s. Now we define the guaranteed outcome for each of
the players. First for the robber:

ValR(τ) = inf
q

sup
s

vτ(s, q) and ValR = sup
τ

ValR(τ).

The inf-sup is considered for an arbitrary fixed agility τ and q and s run over all
strategies of the cops and the robber (respectively). Similarly, the guaranteed outcome
for the cops is

Val C(τ) = sup
s

inf
q

vτ(s, q) and Val C = sup
τ

Val C(τ).

For each ε > 0, there is q such that for every s, vτ(s, q) < ValR(τ) + ε. This implies that

Val C(τ) ≤ ValR(τ) and Val C ≤ ValR .

If Val C = 0, then we say that cops win the game. If ValR > 0, then the robber wins.

1Recently, Georgakopoulos [23] resolved Problem 1 by proving that there are compact geodesic
spaces whose cop number c(X) is infinite.
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It is an interesting question whether it can happen that Val C < ValR for some game
space X and some k. In particular, is it possible that both players, the cops and the
robber win the game? This question was offered as the main open problem in the
aforementioned work by Bollobás et al. [12]. For our version of the game, this cannot
happen. Namely, the following “min–max theorem” was proved in [35]. In that article,
it is first shown that it is always in favor of the robber to use decreasing agility functions
(meaning τ(n + 1) ≤ τ(n) for all n ≥ 1), in which case one can prove that the values of
Val C and ValR are the same.
Theorem 3.1 For every decreasing agility τ, we have Val C(τ) = ValR(τ). Conse-
quently, Val C = ValR .

This “min–max theorem” implies that for every ε > 0, there are near-optimal
strategies for both players, and if either one of them uses his strategy, the other player
cannot do more than ε better than just using his own near-optimal strategy. The precise
statement is given next.
Corollary 3.2 Suppose that τ is a decreasing agility function and that ε > 0. There are
strategies sε and qε for the robber and the cops (respectively) such that for any strategy s
of the robber and any strategy q of the cops,

vτ(s, qε) − ε < vτ(sε , qε) < vτ(sε , q) + ε.

Consequently,

ValR(τ) − ε ≤ vτ(sε , qε) ≤ Val C(τ) + ε.

This corollary gives an important outcome that any cops and robber game can be
described as a finite game within an arbitrary precision. This approximation result is
described next.

Suppose that we fix agility τ and a positive integer N. Then we can consider N steps
of the game, and let T = TN(τ) = ∑N

i=1 τ(i) be the duration of the game during these
N steps. We say that these N steps present an ε-approaching game for agility τ if the
cops have a strategy qε such that within these N steps, their distance from the robber
is at most Val C(τ) + ε.
Proposition 3.3 For every agility τ and every ε > 0, there is an ε-approaching game
with finitely many steps.

After making N steps of the ε-approaching game for agility τ, using strategy qε
of the cops, the players come to certain position and then they continue playing.
Now, the cops can use ε/2-approaching game for the remaining agility in steps N + 1,
N + 2, . . . using strategy qε/2. By definition of ε/2-approaching game, they come
within distance ε/2 from the value of the game. Next, they can use ε/3-approaching
game for the remaining agility, and so on. If the agility τ is decreasing, the strategies
qε , qε/2 , qε/3 , . . . can be combined into a single strategy that is optimal for the game
on X since the cops come arbitrarily close to the value of the game.

Given an ε > 0, we define cε(X) as the minimum number of cops that guarantee
to win the ε-approaching game on X. With this notation, we have the following
consequence which we state for further reference.
Corollary 3.4 c(X) = sup{cε(X) ∣ ε > 0}.
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3.3 Game with a tail

When having one more cop does not matter, we may assume that one of the cops,
called the tail, will just follow the trajectory of the robber, possibly making some
shortcuts. More precisely, the strategy of the tail will be at each step to find a shortest
path from his position T0 to the current position of the robber and start moving full
speed along that geodesic. This will assure that the distance from the tail to the robber
will never increase. It is clear that with this strategy of the tail, the robber cannot rest,
he must almost all the time use almost full speed. We will make this fact more precise
below.

Suppose that the robber has optimal strategy s0 for the ε-approaching game and
that s0 includes the decision s0(r, c, t) = r′, where d(r, r′) < t. Then we say that the
robber rested for t − d(r, r′) time units. Suppose that k cops play optimal strategy for
the game with k cops and that they add a tail to this strategy. Then they can come
within distance Val C + ε to the robber. Once this is achieved, the cop that is closest
to the robber becomes the tail and the other k players start the ε-approaching game
from the start (of course, the agility is now different since the game continues with
the next step). If the strategy of the robber would allow for the total rest of more than
time 2ε during the remaining gameplay, the tail would catch him or would come closer
to the robber than the value of the game and the strategy s0 allows. This would be a
contradiction. As the conclusion, we have the following statement.

Theorem 3.5 Suppose that the robber wins the game against k cops plus a tail on the
game space X. Then the robber has ε-approaching strategy against k cops in which he
never rests.

Proof The robber can use the strategy where the total resting time is less than ε/2.
This way his game value remains more than ValR − ε/2. Now, he can also keep going
full speed without resting and will not make more than ε/2 away from where he would
end up playing the (ε/2)-approaching strategy with total resting less than ε/2. So, he
would be at most ε away from ValR . ∎

4 Game on metric graphs

In this section, we show that the game of cops and robber on metric graphs is
essentially equivalent to the combinatorial game played on abstract graphs.

Let G be a graph, and let X = X(G) be the metric graph obtained from G by
considering each edge to be homeomorphic to the interval of length 1 with the metric
induced from the real interval [0, 1]. Define c(G) and c(X) as the cop number of the
graph G (as in [14]) and the cop number for the metric graph X as defined in this
article, respectively.

Theorem 4.1 c(G) ≤ c(X) ≤ c0(X) ≤ c(G) + 1.

Proof Note that the game played on the (discrete) graph G involves players moving
from a vertex to an adjacent vertex. Each such move can be viewed as a continuous,
constant speed move from one vertex to its neighbor along the edge of the metric
graph; thus any gameplay on G can be viewed as a gameplay on X.
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Let us now consider a winning strategy of the robber played on the graph G
against k = c(G) − 1 cops. For the metric graph X, the robber chooses the same initial
positions for himself and the cops at the vertices of X and chooses his agility so that
he can make move of length 1 at each step. He will follow his discrete strategy in G and
will be at a vertex at the completion of each move.

For each cop C i , consider his position c i at the end of the current move. Let v be
the vertex of G that is closest to c i in X. In the unlikely (but possible) event that C i is at
distance 1

2 from two vertices, we let v be the last vertex visited by C i during the game.
Since the cops start in vertices of X, this is well-defined. We call the vertex v ∈ V(G)
determined by this rule the shadow of C i in G. Now, the robber considers his position
and the positions of the shadows of the cops in G and makes the move according to
his strategy in G. After the cops move, their shadows move according to the rules of
the game (either stay at the same position or move to an adjacent vertex). Since the
strategy of the robber on G is a winning strategy, the shadows never catch the robber
on G. It is easy to see that this means that the cops do not catch the robber on X and
that the minimum distance from the robber to any of the cops is at least 1

2 at all times.
This proves that c(X) ≥ c(G).

To prove the upper bound, k = c(G) cops (they will be called regular cops) will
mimic their optimal strategy from G, and one additional cop will serve as a tail. The
complicated ingredient in this part of the proof is that the robber chooses an agility
that is hard to mimic in the discrete game on the graph. The game play is divided into
two stages. In the first stage, the regular cops move into the vertices of X and stay there
until the robber also enters a vertex. Note that this may happen in the middle of step
n whose total duration is τ(n), but the robber arrives to a vertex v at time t′ < τ(n),
and proceeds by moving further to a point x that is not a vertex. We may assume that
the distance of x from v is t, where 0 < t < 1. Now we consider stopping phase 1 when
the robber is at v and consider the rest of this move as a new step of duration t. But
that step will follow the strategy from stage two, which we describe next.

In the second stage, the regular cops consider their positions in G after moving for
a total length 1 into an adjacent vertex (or staying at the same vertex) following their
strategy in G. If we know where the robber is going to move to, the strategy tells the
cop C i (1 ≤ i ≤ k) to move from his current vertex v i to an adjacent vertex u i (possibly
u i = v i ). Their movement is devised in such a way that after they achieve this, the
robber will also be at a vertex. This is achieved as follows. The robber announces that
he will start moving from v using the edge vu toward u. (If the robber announces that
he will stay at v, the cops also stay put, except the tail approaches v, and thus we may
assume the move toward u is real.) We may also assume that the robber does not go
past the vertex during his move by splitting his move in the same way as we did in
order to complete stage one. Thus the robber ends up at a point x on the edge vu at
distance t form v, where 0 ≤ t ≤ 1. According to their strategy (using u as the intended
move of the robber), each cop C i will mimic the movement of the robber along vu on
the edge v i u i , so that he ends up at the same distance t from v i . Sooner or later the
robber reaches a vertex (or is caught by the tail). If the vertex is v, the cops are also
back at their former positions, so all that has changed is that the tail is closer. We now
repeat the strategy and we may assume that the robber reached u. At the same time
the cops reach their destinations u i . This may be in the middle of the nth move, but
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the cops have known the rest of the move of the robber before the move, so they were
able to plan their continuation according to their strategy in G.

Since the cops win in G, there is a time when they catch a robber in G, and then
they also catch him in X (unless the tail catches the robber before). This shows that
c(X) ≤ c(G) + 1. ∎

A discrete version of this theorem for the game on graphs, where each edge of a
graph is replaced by a path of length r (r is the same for every edge), was proved by
Hosseini in his Ph.D. thesis [25, Lemmas 5.7 and 5.8].

Let us observe that both bounds of Theorem 4.1 are tight. Examples where the upper
bound is attained are provided by any cop-win graph which is not a tree.

When we allow for general edge-weights, metric graphs generalize the game of cops
and robbers. However, it seems that the generalization does not go far from the graph
case. For example, if all weights are rational numbers, then we may as well assume
the weights are integral, and in that case, X(G , w) = X(Sw(G)), where Sw(G) is a
subdivision of G in which each edge e of G is replaced by a path of length w(e), and
then the edges in Sw(G) are considered of unit length. Nevertheless, metric graphs
bring new problems that may be of interest. Let us describe some possible directions.

4.1 How many more cops may be needed for capture

Problem 2 Is there a metric graph X = X(G , w) such that c(X) < c0(X)? If strict
inequality is possible, how large can c0(X) − c(X) be?

It is possible that the answer to the second question in Problem 2 is that the
difference c0(X) − c(X) is bounded above by a constant. However, having no answers
to the first question, we are not able to make a good conjecture.

We have a partial result.

Proposition 4.2 For every metric graph X = X(G , w) with rational edge-lengths, we
have c0(X) ≤ c(X) + 1.

Proof Let S = Sw(G). Then Theorem 4.1 shows that k ≤ c(X) ≤ c0(X) ≤ k + 1,
where k = c(S). This implies that c0(X) ≤ c(X) + 1. ∎

4.2 Meyniel conjecture for metric graphs

One of the outstanding open problems about the cop number of graphs is the Meyniel
conjecture (see [11]), which asserts that there is a constant c such that the cop number
of any n-vertex graph is at most c

√
n. Here, we propose a generalization.

Conjecture 4.3 The cop number of any metric graph X(G , w)with n = ∣V(G)∣ vertices
is O(

√
n ). In other words, there is a constant α such that

c0(X(G , w)) ≤ α
√

n.

4.3 Graph minors

Let us consider a metric graph X = X(G) or X = X(G , w). If we let one edge-weight
to be increased to a very large value, this has the same effect on the cop number as
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deleting this edge (if the edge is not a cutedge and there are at least two cops). On the
other hand, lowering the weight of the edge to 0 is the same as contracting the edge.
Thus, all possible weightings describe somewhat more general set than all minors of
the graph G.

We believe that considering the following question would be worthwhile.

Problem 3 Let G be a graph. What is the maximum of c(X(G , w)) taken over all
metric graphs based on the graph G?

The set of all metric graphs X(G , w) with all weights in [0, 1] is a polytope. Can we
describe where the maximal values of c(X(G , w)) occur? In particular, the following
is a problem that asks about the same as Conjecture 4.3.

Problem 4 What is the maximum of c(X(Kn , w)) taken over all metric graphs based
on the complete graph Kn?

5 Tools

The basic strategy of cops, the isometric path lemma of Aigner and Fromme [3], works
in our setting as well.

Lemma 5.1 Let I be an isometric path in X. Then one cop can guard I. More precisely,
after the cop reaches I and spends time equal to the length of I on the path to adjust
himself, whenever the robber will steps on I or cross it, he will be caught by the cop in the
same step.

Proof The proof is essentially the same as in the case of geodesic paths in graphs.
Let a, b be the ends of I, and let L be the length of I. Then we define, for each point
r ∈ X, its shadow σ(r) ∈ I as follows. If d(r, a) ≥ L, then we set σ(r) = b. Otherwise,
we let σ(r) be the point on I whose distance from a is equal to d(r, a). Initially, the cop
moves to a and then progresses toward b until he reaches the shadow of the robber.
From that point on, he stays at the shadow all the time. This can be maintained since
for any r, r′ ∈ X, d(σ(r), σ(r′)) ≤ d(r, r′). This strategy works well in the continuous
and in the discrete version. In our setting, if the robber moves from r0 to r, and his
path contains a point r1 ∈ I, then d(r0 , r1) ≥ d(σ(r), r1). Thus, after the move of the
robber is complete, the cop can move from σ(r0) to r1 on I and then follow the path
of the robber from r1 to r, capturing him. ∎

This result has been generalized to graph retracts in the graph case. In the case
of geodesic spaces, we can generalize it to the following notion adapted to metric
geometry.

A map σ ∶ X → X is a 1-Lipschitz function if for every x , y ∈ X,

d(σ(x), σ(y)) ≤ d(x , y).

Having such a function, the image σ(x) of x will be referred to as the σ-shadow of x (or
simply a shadow of x if σ is clear from the context). Note that every 1-Lipschitz function
is continuous, thus Y = σ(X) is a connected geodesic space. Suppose now that k cops
can catch the robber in Y. A strategy to catch the robber in Y can be used to catch the
shadow of the robber when playing the game on X. This means the following gameplay.
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Let r ∈ X be the position of the robber. If there is a cop whose position is σ(r), then
there is nothing to do, as we already have a cop at the shadow of r. Having achieved
this, the shadow has been caught. If not, then we first bring k cops into Y and then we
consider the position σ(r) as being a robber in Y and use the cops to catch that robber.
While r is moving in X, σ(r) is moving in Y. Since σ is 1-Lipschitz, any move of the
shadow is consistent with the rules of the game in Y, and by our assumption, the cops
can catch the shadow. Let us state this conclusion as a lemma for further reference.

Lemma 5.2 Suppose that σ ∶ X → X is 1-Lipschitz and that Y = σ(X). If c0(Y) ≤ k,
then k cops can catch the shadow σ(r) of the robber’s position r when the game is played
on X.

Once the cops catch the shadow of r in Y, the cop at the shadow can follow every
move of the robber and stay in the shadow of r indefinitely. Let us now consider the
set of fixed points of σ :

Φ(σ) ∶= {x ∈ X ∣ σ(x) = x}.

If a cop follows the shadow, then whenever the robber passes through a point in Φ(σ),
the cop in the shadow will catch the robber. (This is true also if the robber just passes
through such point in the interior point of a geodesic defining his current move.) Thus
we say that the cop following the shadow can guard the set Φ(σ).

For the above setup of catching the shadow, more than one cop may be used, but
once the shadow has been caught (or approached within distance ε), just one cop can
remain in the shadow (or stay within distance ε), the rest of them can be released.

Note that guarding an isometric path (Lemma 5.1) is a special case of guarding the
fixed-point set of a 1-Lipschitz function.

Let us look at some additional examples of 1-Lipschitz functions that can be used
to guard a subset Y of a game space.

(a) Suppose that X ⊂ R
n and that H is a hyperplane (of any codimension) inR

n . Let
σ(x) = projH(x) be the orthogonal projection onto H. If for each x ∈ X, the projection
σ(x) is also in X, then σ is 1-Lipschitz and Φ(σ) = X ∩ H. This shows that we can
guard the intersection of the hyperplane with X with one cop as long as we can catch
the shadow in X ∩ H.

(b) More generally, suppose that X ⊆ Y × Z with Y0 ∶= Y × {z0} ⊆ X for some z0
and that the metric in the product satisfies: dX((y, z), (y′ , z′)) ≥ dY(y, y′) and that
Y0 is isometric with Y. Then the projection to Y0 is 1-Lipschitz and one cop can
guard Y0.

(c) Any isometry σ ∶ X → X is 1-Lipschitz. So we can guard the fixed-point set of
the isometry as long as we can catch the shadow. The task of catching the shadow on X
in this case is equivalent to catching the robber. But there are some game spaces with
a rich group of isometries, and catching the shadow of some of these isometries may
be easier than catching the robber.

Let us observe that the same shadow strategy applies in the ε-approaching games,
where the goal is to approach the robber to within distance ε from the optimal value
Val C . In this article, we will only use it for the case when Val C = 0, thus we will talk
about being at distance ε from the robber but the setup applies also for the case when
Val C > 0. For the 2ε-approaching game on X, we can use ε-approaching strategy on
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Y and with this we can 2ε-guard the set

Φε(σ) ∶= {x ∈ X ∣ d(x , σ(x)) ≤ ε}.

Again, 2ε-guarding the set means that whenever the robber steps on this set, there will
be a cop at distance at most 2ε from him, thus achieving the goal in the 2ε-approaching
game.

Suppose that σ is a 1-Lipschitz mapping that is of bounded order on a subset Z ⊆ Y ,
where Y = σ(X). More precisely, let us assume that for each z ∈ Z there is an integer
m, 1 ≤ m ≤ p, such that σ m(z) = z. Suppose that we have p + q − 1 cops C1 , . . . , Cp+q−1
and that we are able to catch the robber in Y with q cops. Then we can do the following:

1) Catch the shadow of the robber and use one cop (say C1) to stay in the shadow.
2) Next, we catch the shadow of C1 using q cops different from C1, while C1 follows

the robber. Then we keep another cop, say C2, in the shadow of C1.
3) Continue this process with the remaining cops so that at the end, the cop C i+1 is

in the shadow of C i for i = 1, . . . , p − 1.
After we reach this situation, whenever the robber steps in Z, he will be caught

because if his position is z, then we have cops at positions σ m(z) for m = 1, 2 . . . , p,
and one of these points is equal to z. Thus, we can guard Z.

6 Geodesic surfaces and their boundary

In the rest of the article, we will develop bounds on cop numbers for compact geodesic
surfaces. Topological classification of surfaces tells us that every compact surface is
homeomorphic to a closed surface Sg ,k or Ng ,k of finite genus g ≥ 0 (either orientable
or nonorientable, respectively) from which a finite collection of k ≥ 0 open disks
(whose closures are pairwise disjoint disks) is removed.

When dealing with the game on geodesic surfaces, we will use Theorem 2.1
to triangulate the surface and will therefore need to assume that the boundary is
piecewise geodesic. In order to do that, we will first replace the surface X with a
different surface X′, whose boundary will be piecewise geodesic. Formally, this will
be achieved by the following results.

Theorem 6.1 Let X be a compact geodesic surface and ε > 0. Then X contains a geodesic
surface X′ ⊆ X that is homeomorphic to X and has the following properties:

(i) X′ is isometric in X.
(ii) X′ has piecewise geodesic boundary.

(iii) There is a 1-Lipschitz mapping σ ∶ X → X′ that is identity on X′, and for each x ∈
X/X′, we have σ(x) ∈ ∂X′ and d(x , σ(x)) < ε.

Proof The topological part of the proof can be found in the Appendix, see Theorem
A.1. There it is shown that we may restrict our attention separately to each boundary
component B and it is shown that there is a finite set of points w1 < w2 < ⋅ ⋅ ⋅ < ws < w1
and z1 < z2 < ⋅ ⋅ ⋅ < zs < z1 on B (where < denotes the cyclic order around B) and there
are (w j , z j)-geodesics γ j (1 ≤ j ≤ s) with the following properties (for every 1 ≤ j ≤ s),
where all indices are considered modulo s:
(1) The pairs (w j , z j) and (w j+1 , z j+1) interlace on B, i.e., w j < w j+1 ≤ z j < z j+1, and

the union of all segments B[w j , z j] covers B. (Here, we consider B with a fixed
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Figure 1: Some degenerate situations when defining B′.

“clockwise” orientation and we denote by B[w j , z j] the closed segment of B from
w j to z j .)

(2) The (w j , z j)-geodesic γ j bounds a (possibly degenerate) disk D j together with
B[w j , z j], γ j is the unique geodesic from w j to z j contained in D j, and γ j[w j , z j] ∩
B ⊆ B[w j , z j].

(3) The length of γ j is less than r, �(γ j) < r, and the diameter of D j is smaller than ε.
(Here, the constant r satisfies 0 < r < ε/4 is such that the diameter of each D j is
less than ε.)

(4) γ j intersects γ j−1 and γ j+1, but is disjoint from all other γm , m ∉ { j − 1, j, j + 1}.
(5) Let x′j be the first point on γ j−1 that belongs to γ j−1 ∩ γ j , when γ j−1 is traversed

from w j−1 toward z j−1. Then the union ∪s
j=1γ j[x′j , x′j+1] forms a simple closed

curve B′ in X that is homotopic to B.

The surface X′ is obtained from X by removing (for each boundary component B)
the (degenerate) cylinder between B and B′ (while keeping points in B′). The above
construction defines X′ and the proof of Theorem A.1 verifies properties (i) and (ii).
It remains to prove (iii).

Some degenerate situations of the above are shown in Figure 1: The disk D j can
be “degenerate” as is the case with D2 in the figure; the consecutive geodesics γ j and
γ j+1 can intersect more than once; however, the latter case is restricted to look like the
case of γ3 and γ4 in Figure 1 because of property (2) which implies that D j cannot
be made smaller. If that happens, we replace γ j with γ j[w j , x′j+1] ∪ γ j+1[x′j+1 , w j+1],
where γ j+1 denotes the path that is reverse to γ j+1. In that case, we also change D j
correspondingly.

Since each γ j is a geodesic, the following defines a 1-Lipschitz mapping σ j ∶ D j →
X′:

σ j(x) = { z j , if d(w j , x) ≥ d(w j , z j);
γ j(t), where d(w j , x) = d(w j , γ j(t)), otherwise.

Note that for each x ∈ X/X′, there is j ∈ [s] such that x belongs to D j and possibly also
to D j+1, but not to any other D i , i ∈ [s]/{ j, j + 1}. In that case, we define

σ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ j(x), if σ j(x) ∈ γ j[x′j , x′j+1];
x′j , if σ j(x) ∈ γ j[w j , x′j];
x′j+1 , if σ j(x) ∈ γ j[x′j+1 , z j].

This defines σ(x) for every x ∈ X/X′, and for x ∈ X′, we define σ(x) = x. To see that
the mapping σ defined above is 1-Lipschitz, note first that σ restricted to D j/D j−1 is
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1-Lipschitz. Also, σ ∣X′ = idX′ is 1-Lipschitz since X′ is isometric in X. The only thing to
confirm is that it is continuous in the intersection of D j/D j−1 and D j+1/(intD j). To see
this, consider a point y ∈ γ j[x′j+1 , z j]. Then σ(y) = x j+1. If we are approaching y from
D j+1/D j , the values of σ j+1 approach y and σ-values all become equal to x′j+1 = σ(y)
once the points are close enough to y. This completes the proof. ∎

The corollary for the game of cops and robber on surfaces is that for the ε-
approaching game on X, we can always reduce our attention to the game played on
the isometric homeomorphic subsurface X′ that has piecewise geodesic boundary.

Corollary 6.2 Let X, ε > 0, and X′ be as in Theorem 6.1. Then

c2ε(X) ≤ cε(X′) ≤ cε(X).

Proof Let σ ∶ X → X′ be the 1-Lipschitz mapping from Theorem 6.1. If x ∈ X is a
position of a player on X, then we may consider player’s shadow σ(x) ∈ X′. Since σ is
1-Lipschitz, the movements of the shadows can be viewed as the game played in X′.

Suppose that k = cε(X′) cops are playing against the robber on X. The cops can use
their winning strategy for ε-approaching game on X′ against the shadow σ(r) of the
robber. When they are at distance at most ε from σ(r) in X′, their distance from r in
X is at most 2ε because d(r, σ(r)) ≤ ε. This shows that c2ε(X) ≤ cε(X′).

To prove the other inequality, consider the robber using his strategy in X′ for
staying more than ε away from the shadows of k − 1 = cε(X′) − 1 cops. Since σ is 1-
Lipschitz, any cop C at any time of the gameplay must be more than ε away from
the robber since d(C , r) ≥ d(σ(C), σ(r)) = d(σ(C), r) > ε. This implies that cε(X) ≥
cε(X′). ∎

7 Surfaces of genus 0 and 1

Aigner and Fromme [3] proved that the cop number of any planar graph is at most 3.
Abrahamsen et al. [1] extended their result to arbitrary compact subsets of the plane
with rectifiable boundary components. Their version of the game uses the intrinsic
metric induced by distances in R

2 and constant agility functions (with the step
length tending to 0). Here, we extend their result to arbitrary geodesic spaces that
are homeomorphic to a compact subset of the sphere and endowed with arbitrary
geodesic intrinsic metric. They are topologically determined by the number k ≥ 0 of
boundary components, but the intrinsic metrics making them into geodesic spaces
can be very different and complicated. Locally, we may have lots of “hills and valleys,”
the curvature can be positive or negative and need not be bounded, the surface itself
may not be intrinsically isometrically embeddable in R

3.

Theorem 7.1 If X is a compact geodesic surface that is topologically homeomorphic to
a subset of the two-dimensional sphere, then c(X) ≤ 3.

By Corollary 3.4, it suffices to prove the following.

Lemma 7.2 If X is a compact geodesic surface that is topologically homeomorphic to a
subset of the two-dimensional sphere, then for every ε > 0, we have cε(X) ≤ 3.
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Proof By Corollary 6.2, we may assume that X has piecewise geodesic boundary. Let
us now consider the ε-approaching game with three cops. By Corollary 6.2, we may
assume that each boundary component of X is piecewise geodesic. Since X is compact,
it has only finitely many boundary components. If the boundary is nonempty, let δ be
the maximum distance from a point in X from the boundary of X , and let p0 ∈ X be a
point whose distance from the boundary is at least 2δ/3. We may assume that ε < δ/3.
By Theorem 2.1, X is the union of a finite collection T of nonoverlapping triangles, and
each triangle in T is convex and nondegenerate, its diameter is less than ε/2, and if a
vertex p of one of these triangles is a corner, then p ∈ ∂X. Let us denote by T0 and T1
the set of vertices and edges (respectively) of triangles in T. (We will consider T0 and
T1 as the set of vertices and edges but also as subsets of X. Thus, if we say that a point
p ∈ X is in T1, we mean it is a point on one of the edges (geodesic curves) in T1.) We
may assume that p0 ∉ T0 ∪ T1 is an interior point of one of the triangles, say T0 ∈ T. Let
x0 , y0 , w0 be the vertices of T0. The above assumptions guarantee that T0 is disjoint
from ∂X. Now we view X − p0 as a subset of the plane and view T as a planar graph,
whose outer face corresponds to T0. This gives a homeomorphism of X − p0 with the
plane with k open disks removed. Note that this is a topological representation of X
and that we still consider the geodesics in X defining the distances between the points
in X.

Given a closed curve γ in X − p0 which is piecewise geodesic and is not crossing
itself (but may touch itself), we define the interior int(γ) and the exterior ext(γ) of γ in
the same way as we define it for curves in the plane, except that we take the intersection
with X − p0. Thus the holes in the surface are not included in int(γ) (ext(γ)), but
their boundary or parts of their boundary may be included in int(γ) (ext(γ)). And,
to clarify, note that γ ∩ int(γ) = ∅ and γ ∩ ext(γ) = ∅.

The strategy of three cops chasing the robber in X will involve the following
configuration using two geodesic paths in X. (In fact, a weaker condition – see the
last item in the definition of a cage below – will be imposed on these two paths.) One
cop will guard a path P joining a point x ∈ T0 ∪ T1 with a point y ∈ T0 ∪ T1. The second
cop will guard a path Q from a point w ∈ T0 ∪ T1 to a point z ∈ T0 ∪ T1. A closed curve
F in X containing P and Q will be called a cage for the robber if the following conditions
hold:

• F consists of P ∪ Q and of up to six additional paths as shown in Figure 2.
• Among the six additional paths contained in F are two boundary segments β(x) =

β(w) and β(y) = β(z), whose endpoints are joined to points x , w and y, z (respec-
tively), as shown in Figure 2, by four short geodesics γ(u), u ∈ {x , y, w , z}, each of
which is contained in a single triangle inT (and hence the length of each of them is at
most ε/2). If γ(u) contains more than just one point, then the points in int(F) close
to γ(u) are in X, i.e., γ(u) is not part of a boundary of a hole inside int(F). Each
boundary segment (β(x) and β(y)) may be a single point on one of the boundary
components and may also be absent (empty), in which case the corresponding two
short geodesics coincide (i.e., γ(x) = γ(w) or γ(y) = γ(z)).

• The points x , y are endpoints of P and w , z are the endpoints of Q.
• The closed curve F = P ∪ γ(y) ∪ β(y) ∪ γ(z) ∪ Q ∪ γ(w) ∪ β(w) ∪ γ(x) does not

cross itself (but may touch itself either inside or outside of the idealized drawing in
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Figure 2: A cage for the robber encloses robber’s territory R. Each cage is bounded by two
“internally geodesic” paths P and Q (geodesic inside R), four short geodesics γ(u), with
�(γ(u)) ≤ ε/2, u ∈ {x , y, w , z}, and two boundary segments β(x) = β(w) and β(y) = β(z)
(shown as bold lines). Each of the constituents can be a single point. Moreover, β(x) (and
β(y)) can be empty, in which case γ(x) = γ(w) (γ(y) = γ(z), respectively). Each of the points
depicted as a small circle is either a vertex in T0 or a point on an edge in T1 . The paths P, Q, and
γ(u) need not be contained in the 1-skeleton of T.

Figure 2), and encloses a region R = int(F) containing the position of the robber.
The region R will be called the territory of the robber. Let R = R ∪ F be the closure
of R.

• The paths P and Q are geodesic in R, by which we mean that no path in R joining
two points of P (or two points in Q) can be shorter than the subpath on P (subpath
on Q, respectively) joining the same two points.
Just for clarity, let us repeat that R is an open set, x , y, w , z are points in T0 ∪ T1,

while P and Q need not be contained in the 1-skeleton of T. See also the remarks at the
caption of Figure 2.

Let us first show that if one cop guards P and another path guards Q (and guarding
is defined with respect to the intrinsic distance in R), then the robber cannot escape
from the cage. More precisely, if the robber ever steps on F, one of the cops will be at
distance at most ε and so the cops will win the ε-approaching game, or he will be on
β(x) ∪ β(y) and unable to exit R. If the robber steps on P ∪ Q, he will be caught since
these two geodesics are guarded; if he steps on β(x) ∪ β(y) then he either has to step
on some γ(u) before, or he will not be able to leave R since β(x) and β(y) are both
segments on the boundary of S. Thus it suffices to see that he cannot step on γ(x) (the
proof for γ(u), u ∈ {y, w , z}, is the same). Since γ(x) has length at most ε/2, any point
on γ(x) is at distance t ≤ ε/2 from x. The distance from x of the cop who is guarding
P must be less or equal to t in order to prevent the robber to reach x without being
caught. This means that the distance from that cop to the robber is at most ε.

To start, we need to find the initial cage for the robber. To get it, we take the triangle
T0 = x0 y0w0 in T and let P be the edge x0 y0 and Q be the edge w0 y0 (so that x = x0,
y = z = y0, and w = w0) of this triangle. The edge x0 y0 serves as γ(x) = γ(y) and the
boundary segments β(x) and β(y) are empty. This configuration clearly forms a cage
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for the robber, where P, Q and γ(x) are the only nontrivial ingredients of the cage.
When we bring two cops on P and Q (respectively), the robber must be in the region
bounded by the boundary of the triangle T0 since all points outside are in T0 and hence
at distance at most ε from any point on P ∪ Q. Next, we make sure that the two cops
on the paths guard P and Q according to the shadow strategy. This is how we start.

The outline of the proof is now as follows. Having and guarding a cage for the
robber, we will show that we can change the cage and shrink robber’s territory if R has
nonempty intersection with at least one edge in T1. By shrinking we mean that the new
territory of the robber intersects fewer edges in T1. Once R intersects no edges, R will
be contained in the interior of a single triangle of T. Since that triangle has diameter
less than ε, the robber is at distance at most ε from the boundary of R, and since there
is a cop on P, the cops win the ε-approaching game.

In the first step, we change the cage so that it is tame, which means having the
following properties:

• If β(x) ≠ ∅, then the hole containing β(x) lies in ext(F); the same holds for β(y).
• If an edge e in T1 intersects F and also contains a point in R, then one of the vertices

of this edge is in R.
• We neglect the possibility that F may touch itself in ext(F). If it does, we cut the

surface along the touching points or touching segments and consider the touching
parts to be disjoint after cutting. With this convention, F is a simple closed curve.

Having a cage for the robber, we first tame it. The taming process is as follows.
Suppose that β(x) ≠ ∅ and let H be the hole in the interior of F whose boundary
B contains β(x). Let β′(x) = B/int(β(x)). By replacing β(x) with β′(x), F changes
into another cage F′, and the hole H moves to the exterior of F′. Note that β′(x) may
contain the whole boundary component (if β(y) was a single point), but this is not
forbidden. The new cage shrinks robber’s territory. Note that the condition on γ(x)
and γ(w) from the second property of cages guarantee that β′(x) does not intersect
internal points of γ(x) or γ(y). This establishes the first property of tame cages.

To establish the second tame condition, consider any edge having a segment S
joining two points a, b in F and otherwise being contained in R. Then S splits R into
two regions and is called a chord in F. If we were able to replace our cage with another
cage containing the region with the robber and that region would not contain the edge
e anymore, we would shrink robber’s territory. The technical problem here is that the
same edge can have many (possibly infinitely many) chords in F. Let us consider the
components of the intersection of e with P. If we traverse e, these components proceed
on P monotonically in the direction from x toward y (or vice versa), since both P and e
are geodesics. By replacing the segment of P between any two consecutive components
of P ∩ e by the corresponding segment of e, we obtain another (x , y)-geodesic P′
containing all chords that connect two points on P. We can bring the third cop and
guard this geodesic. If the robber is in one of the components bounded by P and P′,
then we can replace the cage with the cage consisting of parts of P and P′ and then
release the cop who was previously guarding Q. This clearly shrinks robber’s territory.
On the other hand, if the robber is not in any such component, we may replace P
with P′. Now, we may assume that e no longer has a chord joining two points on P.
Similarly, no chord joins two points on Q. Note that e cannot intersect the internal
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Figure 3: Chords from P to Q ∪ β(x) ∪ β(y) split the cage into subcages.

points on any γ(u), u ∈ {x , y, w , z} by the definition of the cage. But it can have a
point on β(x). Consider now all chords of e in R that contain a point in P. The other
endpoints of such chords are in Q ∪ β(x) ∪ β(y). Any such chord from a point a ∈ P
to a point b ∈ Q ∪ β(x) ∪ β(y) splits the cage into two subcages (the left and the right
side as shown in Figure 3, where we have three chords and the first, the last and any two
consecutive chords give rise to subcages). We may have infinitely many chords but any
two consecutive chords form a smaller cage and we only need the one that contains
the robber. Since two cops guard P and Q, they also guard all these smaller subcages
in which one or two chords of e play the role of short segments γ(u). Note that each
chord has length less than ε/2, thus the argument given above that the robber cannot
escape from a cage shows that the robber will have to stay in the cage he is currently in.

Lastly, we argue how to make F be simple. By our convention, F does not touch
itself in the exterior, but it may touch itself one or multiple times (even infinitely many
times) in R. This case works in the same way as the case with the chords treated above
since the self-touchings split R into subcages.

After the cage is tame, the proof of the general step is simple. The step to shrink
robber’s territory is as follows. Starting at x, we find the first point p ∈ P such that
p ∈ T0 ∪ T1 and from this point we have an edge leading into R. If there are multiple
such edges, we take the one that is closest in the clockwise order around p to the
face containing γ(x) (with the obvious meaning when γ(x) is just a point). Then we
traverse this edge from p into R until we reach a vertex x′. This vertex is in R since
the cage is tame. The traversed edge is in the same triangle T ∈ T as γ(x), hence the

https://doi.org/10.4153/S0008414X24000543 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000543


1848 B. Mohar

Figure 4: To win the ε-approaching game on a surface of genus 0, we guard the territory of the
robber with two cops forming a cage and make the territory smaller by using the third cop.

distance of x′ from the point t = γ(x) ∩ β(x) (or t = w when β(x) = ∅) is at most
ε/2. We let γ(x′) be a geodesic from x′ to t. Since the triangle T is convex, γ(x′) is
contained in T. We repeat the similar process at y, obtaining vertex y′ and a short
geodesic from y′ to γ(y) ∩ β(y). See Figure 4, where the geodesics are shown with
dotted lines. We also consider geodesics from x′ to x and from y′ to y as shown in
the figure. The cage is now split into two subcages. There is part of the triangle T on
the left and part of the triangle on the right between the two dotted short geodesics
that is not covered by these subcages. But each of these parts is contained in a single
triangle and is thus at distance at most ε/2 from x (or from y); thus, if the robber is
there, the cop guarding P is at distance at most ε from the robber. Now we bring the
third cop to guard the (x′ , y′)-geodesic P′ in R. Once this is established, the robber
is confined in one of the two subcages and we can now release one of the cops and
continue shrinking robber’s territory.

One detail has to be added. Namely, the point p may not exist. In that case, either
P ∪ γ(x) ∪ γ(y) is contained in single triangle T1 ∈ T, or there is a “hole” inside the
disk bounded by F, and P is on the boundary of that hole. In the latter case, β(x) = ∅
since otherwise β(x)would be part of the boundary of the same hole inside F (because
of the assumption that ε < δ/3) and this would contradict tameness of the cage. Thus,
we may assume that T1 exists. When this happens, we try to use the geodesic Q instead
of P. Again, if we are unsuccessful in shrinking the territory of the robber, then Q ∪
γ(w) ∪ γ(z) is contained in single triangle T2 ∈ T. So, we have both triangles T1 and T2.
If R ⊆ T1 ∪ T2, the ε-approaching game stops with cops winning. Thus, we may assume
that there are edges and vertices of T inside R. Since the graph T0 ∪ T1 is connected,

https://doi.org/10.4153/S0008414X24000543 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000543


The game of Cops and Robber on geodesic spaces 1849

there is a point p ∈ β(x) (say) that is incident with an edge e ∈ T1 leading into R. Let x′
be the endvertex of e in R. As before, we choose p and e as close as possible to x so that
x and x′ are in the same triangle in T. We do the same from the other side (starting
at y and clockwise around F until we get a point s with an edge leading into R. We
now proceed in the same way as in the generic version (Figure 4) to shrink robber’s
territory.

We have shown that we either end the game or succeed in shrinking robber’s
territory. This completes the proof. ∎

It is interesting that the strategy of cages used in the above proof can also be used
for surfaces of genus 1. For the proof, we need to recall some definitions.

Given a geodesic surface X, its systole, denoted by sys(X), is defined as the least
length of a noncontractible loop in X. Similarly, the essential systole, sys0(X), is defined
as least length of a loop in X that is noncontractible in the capped surface X̂ (when we
cap off all boundary components of X).

Theorem 7.3 If X is a compact geodesic surface that is topologically homeomorphic to
a subset of the two-dimensional torus, then c(X) ≤ 3.

Proof Again, we may assume that each boundary component of X is piecewise
geodesic. Let X̂ be the torus obtained by “capping off ” all boundary components and
using a metric on these caps so that the intrinsic metric in X̂ induces the original
intrinsic metric in X. To start with, we first cut X̂ along a shortest noncontractible
closed curve γ1, which is easily seen to be a closed geodesic. After cutting, we obtain
a cylinder (with additional holes of X inside), whose boundary consists of the two
copies of γ1. Next, we take a shortest geodesic γ2 joining the two copies of γ1 in the
cylinder. By cutting along γ2, we obtain a fundamental polygon of X̂. By tessellating
the plane with copies of this fundamental polygon, we obtain the universal cover of
X̂. Our assumption on the metric in the capped discs implies that γ1 and γ2 are both
contained in X. Now, we consider the cover X̃ of X obtained from the tessellation by
removing all capped discs. Let π ∶ X̃ → X denote the covering projection.

We will play the game in X but will make the strategy based on what happens in X̃.
For the initial positions of players in X we lift them to the same fundamental polygon
in X̃. Now the cops look at what is going on in X. When any player in X moves, his
move is lifted to X̃. In addition to this, the cops can at any time move their position x
in X̃ into any other point x′ ∈ π−1(π(x)), but they will consider the robber’s lifted
position in X̃ following the normal rules of the game. If the cops with this added
“teleporting” ability can approach the robber in X̃ to a distance ε, they will win the
ε-approaching game in X. We fix a small ε > 0 and consider X dissected into a set of
trianglesT satisfying conditions of Theorem 2.1. We consider X̃ to be triangulated with
the set of triangles T̃ = π−1(T).

Let D = diam(X) and D0 = sys0(X), and let n be an integer such that

n ≥ 1 + D
D0

log2(20nDε−1).

In the strategy of three cops in X̃, we will use the trick of Lehner [30] to obtain
a bounded cage in X̃ containing the position of the robber. The copies Q i j of
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Figure 5: Lehner’s trick to get the robber into a cage.

the fundamental polygon can be enumerated by using integer pairs (i , j) ∈ Z2 by
considering the way they tessellate the plane. Let n be sufficiently large and consider
a shortest closed curve Γ through all polygons Q i j with max{∣i∣, ∣ j∣} = n that contains
Q00 in its interior. Let N = ⌈2�(Γ)/ε⌉ and let x1 , x2 , . . . , xN be points that appear on
Γ in this cyclic order such that d(x i , x i+1) ≤ ε/2 for i ∈ [N] (where xN+1 = x1). Since
�(Γ) ≤ 4(2n + 1)max{�(γ1), �(γ2)} and �(γ j) ≤ 2D for j = 1, 2, we have

N = ⌈2�(Γ)/ε⌉ ≤ 20nDε−1 .

Let x0 ∈ Q00, and let Pi be a shortest path from x i to x0 in X̃, i ∈ [N]. We may assume
that these paths do not cross each other (but they may touch). The situation is sketched
in Figure 5.

Suppose that the robber is at distance t from x0. Let Pi be any of the paths in our
collection. Then we can teleport any cop to a point that is at distance at most D from
the point p on Pi whose distance from x0 is equal to t + D. This cop can reach p in
time D and at that time his distance from x0 will be at least the distance of the robber
from x0. Thus the cop can start approaching x0 along Pi until he reaches the shadow
of the robber on this path (see the proof of Lemma 5.1). Once he achieves this, he and
the robber will be at distance at most t + D from x0. If the point x0 is chosen to be
the initial point of the robber in Q00, then after catching the shadow of the robber m
times (for various paths Pi ), the distance of the robber from x0 will be at most mD.
Now, three cops perform the bisection process. Two of them first catch the shadow on
P1 and Pn/2. Then, depending in which part of the disk int(Γ) is the robber, the third
cop sets to guard the path in the middle. Once he guards that path, one of the cops
can be released and the bisection process may continue. In log2 N steps, there will be
two cops guarding two consecutive paths Pi and Pi+1. Since d(x i , x i+1) ≤ ε/2, these
two paths together with the short segment on Γ form a cage for the robber, and now
the planar strategy can be used to win the ε-approaching game in that cage.

All that needs to be added is to verify that the robber cannot escape int(Γ) before
two of the cops control consecutive paths. After m = ⌈log2 N⌉ steps of the bisection,
the robber is at distance at most mD from x0. In order to come from Qab into adjacent
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polygon further away from Q00, the robber needs at least D0 time units. So, after m
steps, he will be in some Qab with max{∣a∣, ∣b∣} ≤ mD/D0 + 1 < n and this polygon is
still inside Γ. ∎

To summarize, we have the following result.

Corollary 7.4 Let X be a compact geodesic surface homeomorphic to a subset of the
sphere, the torus, the projective plane, or the Klein bottle. Then c(X) ≤ 3.

Proof Theorems 7.1 and 7.3 give the corollary for the two orientable surfaces. For
the projective plane and the Klein bottle, we consider their double cover which is the
sphere or the torus and let the three cops use the strategy on the covering space (lifting
the initial position and the moves of the robber in X). ∎

8 Cops and robbers on surfaces of higher genus

Now we shall deal with arbitrary geodesic surfaces. First, we will provide lower bounds
on the cop number. The main outcome in Section 8.1 is that there are surfaces of genus
g whose cop number is at least Θ(g1/2−o(1)), where the asymptotics for o(1) is with
respect to g. We will end up with an O(g) upper bound.

8.1 Lower bounds

In providing examples of surfaces whose cop number is large, we will use examples
of metric graphs with large cop number combined with some special polyhedral discs
that we will introduce next.

Let d1 , . . . , dk and h be positive real numbers. For i ∈ [k], let Q i be the rectangle
with side lengths d i and h. Then we define the polygonal cylinder C = C(h; d1 , . . . , dk)
by consecutively identifying the sides of length h of Q1 , . . . , Qk , so that the “left” side
of Q i is identified with the “right” side of Q i+1 for i = 1, . . . , k, where Qk+1 = Q1. The
union B of all “bottom” sides of the rectangles used to obtain C is called the base of C.
A similar construction, using a product B × [0, h], gives us a cylinder of height h over
B for any rectifiable simple closed curve B. Equivalently, we can split B into k geodesic
segments of lengths d1 , . . . , dk and use the same construction as described above
(Figure 6). Then the cylinder C = B × [0, h] is also a geodesic space that is isometric
to the �(B) × h rectangle having its sides of length h identified. Herewith, we will use
the intrinsic �2-metric on C, when viewed as the product of B and the interval [0, h]
of length h:

dC((b, t), (b′ , t′)) = (dB(b, b′)2 + (t − t′)2)1/2 .

For every point x ∈ C, we define the point π(x) ∈ B as the closest point to x in B (the
projection to B), i.e., π(b, t) = (b, 0).

If we contract the set B × {h} into a point, we obtain the cone of height h over B.
The cone D = B × [0, h]/(B × {h}) is a topological disk and we consider the local
Euclidean distance in D, in which the length of B × {t} is equal to (1 − t

h )�(B). If
h = �(B)/(2π), the cone is isometric to the disk of radius h in the Euclidean plane
and we call it the flat cone over B.
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Figure 6: A polyhedral cylinder C with base B and height h, the capped cylinder Ĉ, and a
cylinder over a closed curve. The apex point of the capped cylinder has the same distance
h′ = �(B)/(2π) to each point at the top of the cylinder. The projection π(x) of a point x into B
is depicted.

Figure 7: The intrinsic metric in a capped cylinder over B uses the Euclidean metric of the
(�(B) × h)-rectangle in C and the Euclidean distance within the disk D of radius �(B)/(2π).
The left and right sides of C are identified, and the top side of C is identified with the perimeter
of D.

If X is a geodesic space and B is a piecewise geodesic closed curve in X, we add the
cylinder over B by taking the union X ∪ C, identifying B ⊂ X with B × {0} ⊂ C, and
then combining the metrics into the intrinsic metric in the resulting geodesic space
X̂. If we now cap off the cylinder C by adding a flat cone D over B′ = B × {h}, and
identify B × {h} with the base of the cone, we say that we have added a capped cylinder
over B, or simply that we have capped off B. Usually, we will use this term when B is a
boundary component of a geodesic surface X (see Figure 7).

Lemma 8.1 Let Y = C ∪ D be a capped cylinder over a piecewise geodesic boundary
B ⊆ X, where C is a cylinder of height h and D is the flat cone used to define the capped
cylinder. Suppose that the height h of the cylinder is at least �(B) and that we have three
cops positioned in B. Suppose that the robber is in Y and if he is at a point y ∈ C, then
one of the cops is at π(y). Then the cops can catch the robber, and during the gameplay,
the robber will not be able to come to B without being caught.
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Proof Note that the metric in Y is locally Euclidean (see Figure 7), so the cages in
the pursue of the robber will consist of two geodesic segments P ∪ Q, without the
need for added short geodesics. We may assume that �(B) = 2π, so that D is isometric
to the unit disk and C is isometric to the flat cylinder obtained from the rectangle
[0, 2π] × [0, h] by identifying the left and the right side.

Having initial conditions stated in the lemma, two of the cops can position
themselves on B and guard B. In this way they make a cage, preventing the robber
from entering B. Now we start with the strategy of shrinking the territory of the robber.
First, we keep two cops in B. If the robber is in C or if he ever enters C from the interior
of D, these two cops can catch his shadow in B before he could enter B. The third cop
now positions himself so that he guards a geodesic from the center z of the cap D to
a point b0 ∈ B. He will be at the same distance from z as the robber all the time from
now on. Reaching this situation, a single cop on B will be able to guard B from now
on. Now the released cop can position himself so that he guards a geodesic from z to
the point b1 ∈ B that is opposite to b0 on B. Now the robber’s territory is half smaller
than before. From this point on, the three cops start using a strategy that has been
discovered in [27], and we refer to that article for the proof on how they eventually
catch the robber. ∎
Lemma 8.2 Let X be a compact geodesic space with diameter d , and let B ⊂ X be
a piecewise geodesic simple closed curve of length b in X. Let X̂ be the geodesic space
obtained by adding a capped cylinder C ∪ D over B, whose height is greater or equal to
b + d. If c(X) ≥ 3, then c(X̂) ≤ c(X) and c0(X̂) ≤ c0(X).
Proof The cops will play the game on X trying to approach (or catch) the robber. If
the robber moves into the cylinder to a point y ∈ C, they consider π(y) as the position
of the robber when applying their strategy. If the robber never enters the disk D used
to cap off the cylinder, the strategy will enable the cops to approach the shadow of the
robber to within distance ε (or catch the shadow when we consider c0(X̂)). When this
happens, if the robber is at the same point as his shadow, the game is over and the cops
win (either the ε-approaching game or catching the robber).

So, we may assume that either the robber is at a point y ∈ C and there is a cop in
B at distance ε from π(y) (with ε = 0 when catching), or that the robber is in D. In
the latter case, the robber is so far from B that we can bring another cop onto B and
achieve that two cops guard B (since B is composed of two isometric paths in C) before
the robber is able to come close to B.

We may thus assume that y ∈ C and there is a cop in B at distance ε from π(y). From
now on, the cop can keep this distance (unless the robber enters D in which case π(y)
becomes undefined). In the continuation of the game, we can bring another cop to
B and together with the first one they can catch π(y). Moreover, they can position
themselves on B so that they guard B from the robber entering it.

In any case, now the robber is in the topological disk C ∪ D and two cops guard its
boundary B. Next, we bring the third cop into the cylinder and catch the robber by
using the strategy of Lemma 8.1. This shows that c(X̂) ≤ c(X) and c0(X̂) ≤ c0(X). ∎

In the proof of Lemma 8.2, we could argue that c(X) and c(X̂) are equal if h is large
enough, but this will be easier to do with a different capping arrangement, which will
be described next.
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Figure 8: The intrinsic metric in the expanding cylinder of height h over B uses the Euclidean
cylinder metric of the cylinder C between the circles of radii r0 = �(B)/(2π) and r1 = r0 + h,
and uses the Euclidean distance within a disjoint disk D of radius (�(B) + h)/(2π) in the cap D.

Let us define the expanding cylinder of height h over B as the cylinder C shown in
Figure 8, whose boundary consists of two concentric circles of radii r0 = �(B)/(2π)
and r1 = r0 + h. By capping this cylinder we mean adding the Euclidean disk D of radius
r1 and identifying the perimeters of C and D.

Lemma 8.3 Let X be a compact geodesic space with diameter d , and let B ⊂ X be a
piecewise geodesic simple closed curve of length b in X. Let X̂ be the geodesic space
obtained by adding a capped expanding cylinder C over B, whose height is greater or
equal to b + d. If c(X) ≥ 3, then c(X̂) = c(X) and c0(X̂) = c0(X).

Proof We prove that c(X̂) ≤ c(X) and c0(X̂) ≤ c0(X) in the same way as in
Lemma 8.2.

The converse inequality will be established by considering the robber, playing the
game in X̂, mimicking his strategy in X. By this strategy, the robber will never enter
the capped disk. There is an obvious 1-Lipschitz mapping C → B which will define the
shadow of any cop in C. The robber will in his strategy stay away from the cops in X and
away from their shadows. The only nontrivial detail is what to do if a cop enters D. In
that case, the goal of the cop must be to eventually come back into X (or at least ε-close
to X) in order to help catching the robber. When the cop enters D, his shadow x ∈ B
will be “frozen” until he returns to C again; let y ∈ C ∩ D be the point of his entry into
C. In order to use the shadow-escape strategy of the robber, it now suffices to see that
for every point y ∈ C ∩ D and every point x ∈ B, there is a 1-Lipschitz map ψ ∶ C → B,
which is identity on B and satisfies ψ(y) = x. To see this, we may assume that the
center of C in the plane is the point (0, 0) and that x = (r0 , 0) and y = (a, b), where
b ≥ 0. The mapping ψ rotates the circle C ∩ D clockwise by angle α (see Figure 9),
so that y moves to the point (r1 , 0), and then radially projects the circle onto B.
For points on any intermediate circle of radius r (r0 ≤ r ≤ r1), we do the rotation by
the angle r−r0

r1−r0
α and then project the circle onto B. Now it is easy to see if h = r1 − r0

is sufficiently large (h ≥ b suffices), the mapping ψ defined this way is 1-Lipschitz. The
details are left to the reader. ∎
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Figure 9: The schematics showing the 1-Lipschitz mapping ψ ∶ C → B such that ψ(y) = x. The
points that lie on the depicted dashed curve leading from y to x are all mapped to x. The shown
dotted circles are first rotated by angle 3

4 α and 1
2 α, respectively, and then radially projected

onto B.

Theorem 8.4 Suppose that X = X(G , w) is a metric graph that can be topologically
2-cell embedded into a surface S and that c(G) ≥ 3. Then there is a polyhedral metric
surface Ŝ homeomorphic to S, such that c(Ŝ) = c(X) and c0(Ŝ) = c0(X).

Proof The proof uses the following construction. Let D be the diameter of the
metric graph X(G , w), and let p be the maximum length of a facial walk in the 2-
cell embedding of G in S. By the length, we mean the sum of the lengths of the edges
participating in the facial walk. Set h = D + p.

Now take the metric graph X(G) and cap each facial walk B with an expanding
capped cylinder over B of height h. This yields a metric surface Ŝ homeomorphic to S
in which X is an isometric subset. Note that B is not necessarily a simple closed curve,
but Lemma 8.3 still applies because in that lemma we have considered distances in the
capped cylinder only and have assumed that the distances in B are along the curve.
This was in fact used by both, the cops and the robber, when they have mimicked the
strategy from X. ∎
Corollary 8.5 For every g ≥ 0 (and every k ≥ 0), there is an orientable (nonorientable)
geodesic surface X of genus g (and with k boundary components) such that c(X) ≥
g1/2−o(1), where the asymptotics of o(1) is considered for g → ∞.

Proof The proof will only give a surface of genus at most g, but it is not hard to
change it to genus exactly g (which is left to the reader).

Hosseini et al. [26] proved that for every sufficiently large n, there is a subcubic2

graph Gn of order n, whose cop number is c(Gn) = Θ(n1/2−o(1)). Since a subcubic

2A graph is subcubic if all vertices have degree at most 3.
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graph of order n has at most 3n/2 edges, it can be 2-cell embedded in a surface
(orientable or nonorientable) of genus g′ ≤ n/2. Lemma 8.3 shows that there is a
capped surface of genus g′ whose cop number is Θ(n1/2−o(1)). This completes the
proof. ∎

8.2 Upper bounds

Concerning graphs that are embeddable in a surface of genus g, it was proved by
Schroeder [41] that their cop number is at most 3

2 g + 3. He conjectured that the
constant 3

2 can be replaced by 1. The currently best bound toward the Schroeder
conjecture was obtained recently by Bowler, Erde, Lehner, and Pitz [16], who proved
that Schroeder’s bound can be improved to 4

3 g + 3. Another, asymptotic improvement
has been announced in an extended abstract at EuroComb 2019 [15].

We will not try to optimize the genus bounds as precisely as in the abovementioned
works since the author believes that the linear bound given in our next theorem is far
from best possible (asymptotically). But we give a simple linear upper bound.

Theorem 8.6 Let X be a compact geodesic surface of genus g ≥ 1 (homeomorphic to
Sg ,k or Ng ,k for some k ≥ 0). Then c(X) ≤ 2g + 1.

Proof If g = 1, we either have the torus S1,k or the projective plane N1,k . The bound
for this case has been proved earlier (see Corollary 7.4).

If g > 1, we take an essential systole of the capped surface, which is a geodesic non-
contractible simple closed curve in X and can be written as the union of two isometric
paths in X. By using two cops to guard the systole, we essentially cut the surface into
a geodesic surface of smaller genus, and the result follows by induction. ∎

The natural question is whether the linear upper bound of Theorem 8.6 or the √g
lower bound of Corollary 8.5 gives the right asymptotics. In parallel to a conjecture of
the author about graphs of genus g, we propose the following generalized conjecture.

Conjecture 8.7 Let X be a geodesic surface of genus g. Then c(X) = O(√g).

9 Where to go next?

The main question that arises from our work is which geometric properties force the
cop number to be large. Here, we propose a very basic conjecture.

Conjecture 9.1 Suppose that X is an n-dimensional simplicial pseudomanifold,3 whose
homology group Hi(X) has rank r i for i = 1, . . . , n. Then c(X) = O(n√r1 + ⋅ ⋅ ⋅ + rn ).

It may be that c0(X) would fall within the same bound as conjectured above. In
fact, in the examples that we understand, the factor n of the conjecture seems to be
necessary only for c0(X).

3By a simplicial pseudomanifold, we mean a simplicial complex in which each simplex is contained
in an n-simplex, and each (n − 1)-simplex is contained in at most two n-simplices.
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A Making the boundary piecewise geodesic

In order to use Theorem 2.1, we need piecewise geodesic boundary. In this appendix,
we prove that any more complicated boundary component can be well approximated
by cutting an ε-neighborhood around it.

Theorem A.1 Let X be a compact geodesic surface and ε > 0. Then X contains a geodesic
surface X′ ⊆ X that is homeomorphic to X and has the following properties:

(i) X′ is isometric in X.
(ii) X′ has piecewise geodesic boundary.

(iii) Every point in X/X′ is at distance less than ε from X′.

Proof We may assume that the length of every noncontractible closed curve in X
and the minimum distance between two boundary components is at least 3ε. This will
enable us to treat each boundary component separately as all points in X/X′ will be
at distance at most ε from the boundary.

Let B be a boundary component of X. We may assume that any closed curve γ
homotopic to B with each of its points at distance less than ε from B has length
�(γ) > 4ε. We claim that there is a positive constant r, 0 < r < ε/4 such that for any
x , y ∈ B with d(x , y) < r the subset of X bounded by the (x , y)-segment of B and
any (x , y)-geodesic α has diameter at most ε. If not, we consider a sequence of pairs
(xn , yn) with d(xn , yn) < 1/n contradicting the stated property. By compactness, we
may assume that x1 , x2 , . . . converge to a point x ∈ B. Then also y1 , y2 , . . . converge to
x, and there is a sequence of corresponding geodesics α1 , α2 , . . . , each of which cuts
a subset with a point z i at distance more than ε/2 from x. Let z be a limit point of
the sequence z1 , z2 , . . . . Then a subsequence of (α i)i≥1 cuts out the limit point z. That
subsequence of geodesics converges to the point x, which means that x is a “pinch
point,” contradicting the fact that X is a surface. This proves the claim.

In what follows, we use the following notation. If x , y ∈ B, then we denote by B[x , y]
the (x , y)-segment on B, taken in the preferred direction on B. In our figures, the
surface will be on the left side of B when we traverse B in the preferred direction. If
α ∶ [0, 1] → X is a simple curve and points x = α(t) and y = α(t′) are on α with t ≤ t′,
then we denote by α[x , y] the segment of α from x to y.

Since B is homeomorphic to a circle, for each point x ∈ B, there is a positive constant
0 < rx < r/2 such that each point on an open interval Ix around x on B is at distance in
X at most rx from x. Let x1 , x2 , . . . , xs be a finite set of points in B of minimum possible
cardinality such that {Ix i ∣ i ∈ [s]} is a cover of B. (The fact that the set is finite follows
from compactness.) We may assume that the points are listed in the cyclic order as
they appear on B. We will use the notation x1 < x2 < ⋅ ⋅ ⋅ < xs < x1 to denote this cyclic
order and, in particular, imply that no other point x j is in the segment of B from x i to
x i+1 (i ∈ [s], j ≠ i , i + 1).

Let us now consider two consecutive points x i and x i+1 and their intervals Ix i

and Ix i+1 . By the minimality of s, the union of these two (closed) intervals contains
the whole (x i , x i+1)-segment on B, so there is a point in the intersection, and hence
d(x i , x i+1) ≤ rx i + rx i+1 < r. Thus every (x i , x i+1)-geodesic cuts off a subset A i of
diameter at most ε. By compactness, there is an (x i , x i+1)-geodesic α i , for which A i
is (inclusion-wise) minimal (Figure A1). Let w i (z i ) be the “leftmost” (“rightmost”)
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Figure A1: The figure shows the (x i , x i+1)-geodesic α i which may intersect B outside of the
(x i , x i+1)-segment on B. Then we define the leftmost and the rightmost points w i , z i , the
geodesic γ i = α i[w i , z i] joining them, and the (degenerate) disk D i bounded by γ i and B. The
(w i , z i)-geodesic γ i is shown bold; D i consists of the two shaded disks together with the joining
segment on B.

point of α i[x i , x i+1] ∩ B, so that the order on B is w i ≤ x i < x i+1 ≤ z i and α i has no
points in B/B[w i , z i]. We also take the (w i , z i)-geodesic γ i = α i[w i , z i]. The geodesic
γ i together with the (w i , z i)-segment on B bounds a degenerate disk, which we denote
by D i .

The constituents w j , z j , γ j , D j for j ∈ [s] have the following properties for every j ∈
[s] (with all indices considered modulo s):
(1) The pairs (w j , z j) and (w j+1 , z j+1) interlace on B, i.e., w j < w j+1 ≤ z j < z j+1, and

the union of all segments B[w j , z j] covers B.
(2) The (w j , z j)-geodesic γ j bounds a (possibly degenerate) disk D j together with

B[w j , z j], γ j is the unique geodesic from w j to z j contained in D j, and γ j[w j , z j] ∩
B ⊆ B[w j , z j].

(3) The length of γ j is less than r, �(γ j) < r, and the diameter of D j is smaller than ε.
We will change the constituents (and possibly decrease their number s) so that they
will still satisfy (1)–(3), and will also satisfy the following:
(4) γ j intersects γ j−1 and γ j+1, but is disjoint from all other γm , m ∉ { j − 1, j, j + 1}.
(5) Let x′j be the first point on γ j−1 that belongs to γ j−1 ∩ γ j , when γ j−1 is traversed

from w j−1 toward z j−1. Then the union ∪s
j=1γ j[x′j , x′j+1] forms a simple closed

curve B′ in X that is homotopic to B.
Let us observe that (5) is a consequence of (1)–(4), so it remains to see how to
achieve (4).

We take a set of constituents such that s is smallest possible and properties (1)–(3)
hold. Then it is clear that for any distinct i , j ∈ [s], we cannot have w i ≤ w j < z j ≤ z i . In
such a case, we could remove the jth constituent. This implies that any two constituents
either (weakly) interlace, i.e., w i < w j ≤ z i < z j (in which case B[w i , z i] ∩ B[w j , z j] /=
∅), or they cover disjoint segments on B, B[w i , z i] ∩ B[w j , z j] = ∅. Clearly, each
constituent weakly interlaces with the previous one and the next one. But if it interlaces
with another one, then three of them would cover the same point on B, and it is easy
to see that we could remove one of them and still have properties (1)–(3). Thus, to
show (4), it suffices to consider the possibility that w i < z i < w j < z j , and γ i and γ j
intersect. Let x be the first intersection point when we traverse γ i from w i toward z i .
Note that one of the segments γ i[w i , x] and γ i[x , z i] combined with one of γ j[w j , x]
and γ j[x , z j] has length less than r (since both γ i and γ j have length less than r). That
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combined curve thus bounds the disk together with the corresponding segment on B,
an we may assume that the segment on B contains B[z i , w j].

If �(γ i[w i , x] ∪ γ j[x , z j]) < r, then we can replace the ith and jth constituents
with one constituent using the points w i and z j , thus decreasing s. Otherwise, if
�(γ i[w i , x]) + �(γ j[w j , x]) < r. In this case, we replace (w i , z i) with the pair (w i , w j)
(and make the corresponding constituent). Now we can eliminate the constituents
covering B[z i , w j]. The remaining case when �(γ i[x , z i]) + �(γ j[x , z j]) < r is similar.
This shows that (4) will hold.

Finally, the proof of (5) is easy (using the fact that any curve surrounding B in its
ε-neighborhood has length more than 4r.

Now, we remove all points that are contained in the “degenerate cylinder” between
B and B′ and thus replace the boundary component B with the piecewise geodesic
boundary B′. Since all removed points are contained in disks using geodesic curves of
length less than r, these disks have diameter at most ε. Also, each such disk has a point
in B′. Therefore, each point in X/X′ is at distance at most ε from X′. This completes
the proof. ∎
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