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SLICE MAPS AND MULTIPLIERS OF 
INVARIANT SUBSPACES 

TAKAHIKO NAKAZI 

ABSTRACT. Let D2 be the closed bidisc and T2 be its distinguished boundary. For 
(a, (3) e Z?, let Oa/3 be a slice map, that is, (Oa/3/)(A) = f(a\,(3\) for A G D and 
/ G //2(Z)2). Then k e r O ^ is an invariant subspace, and it is not difficult to describe 
kerOa/3 and ^(kerO a / 3 ) ={</>€ L°°(T2) : <f>ker<3>a3 C H2{D2)}. In this paper, we 
study the set 9tf{M) of all multipliers for an invariant subspace M such that the common 
zero set of M contains that of kerOa/3. 

1. Introduction. Let D2 be the open unit disc in C2 and T2 be its distinguished 
boundary. Normalized Lebesgue measure on T2 is denoted by dm. For 1 < p < oo, 
}P{D2) is the Hardy space and LP{T2) is the Lebesgue space on T2. Let Af(D2) denote the 
Nevanlinna class. Each/ in N(D2) has radial limits/* defined on T2 a.e. Moreover, there 
is a singular measure Joy on T2 determined b y / such that the least harmonic majorant 
«(log I/]) of log |/1 is given by w(log |/1)(() = Pç(log |/* | + day) where PQ denotes Poisson 
integration and C = (z, w) G D2. Put A *̂(Z)2) - {/ G 7V(D2) ; day- < 0}; then HP(D2) C 
N*(D2) C 7V(D2) and /^(D2) = N*(D2) n Z^(r2) C N(Z)2) n /^(r2) . These facts are 
shown in [6, Theorem 3.3.5]. 

A closed subspace M of H2(D2) is said to be invariant if zM C M and wM C M. For 
an invariant subspace M of H2(D2), set 

fW(M) = {</> G L°°(r2) ; </>M Ç H2(D2)}. 

If M = qH2{D2) for some inner function q, it is trivial to see 9v({M) = qH°°(D2). In the 
case of one variable, an arbitrary invariant subspace M has the form qH2(D) for some 
inner function q by the famous Beurling theorem [1]. Hence ft{(M) — qH°°{D). Hence 
the map : M —> 9iï(M) is one-to-one. However this result for invariant subspaces of 
H2{D2) is not true. The author [4] studied the relation between M and M(M). To study 
M{M), R. G. Douglas and K. Yan [2] introduced the common zero set Z{M) and the 
singular measure Zd(M), that is, 

ZAM) = {CGD2 ;/(() = Ofor /GM} 

and 
ZviM) = inf {-daf ; / G M J ± 0}. 
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They showed that if the real 2-dimensional Hausdorff measure of Z(M) is zero and 
ZQ{M) = 0, then M(M) = H°°(D2). In this paper, we are interested in invariant sub-
spaces M of H2(D2) such that the real 2-dimensional Hausdorff measure of Z(M) is 
positive and ZQ(M) = 0. 

Fix (a, (3) G D2. For / in HP(D2\ 

(*yXA)=/(orA,/?A) (A€D). 

O ^ is called a slice map. O2^ maps ^(D2) into £2(£>), w n e r e ^ ( i ) ) is the Bergman 
space (cf. [6, p. 53]). In this paper, we study the kernel ker O ^ and the range ran O^ for 
p = 2, oo. kerO^g is an invariant subspace of H2(D2) and the closure of ran O ^ is an 
invariant subspace of L2

a(D). Put 

Dap = {(a\, )3A) G Z)2 ; A G C} ; 

then Z(kerO^) = £>a/3 if (a,f3) G 72 U T x D U D x T. The 2-dimensional Haus­
dorff measure of ZCkerO2^) is positive and Z^kerO2^) = 0. In this paper, we show 
M(M) = H°°(D2) when Z(M) = <DaP for some (a,/3) G T2 and Z^(M) = 0 and M 
satisfies some additional natural condition. The main result in this paper is Theorem 4 in 
Section 3. Theorem 1 of [2] has a lot of corollaries on the rigidity of invariant subspaces. 
Similarly Theorem 3 in this paper has such corollaries. Hence our results can be seen as 
the generalizations of results of R. G. Douglas and K. Yan. 

For / in ^(D2 ),/(£) = £?20 Fj(Q is a homogeneous expansion of/ and Fj is a poly­
nomial which is homogeneous of degree j . The smallest j = j(f) such that Fj is not the 
zero-polynomial is called the order of the zero which/ has at £ = (0,0). For p G D2, the 
order of the zero of/ at/? is simply the order of the zero off(p + Q at £ = (0,0). We will 
write fp(Q=f(p+Q. 

2. Slice maps. In this section, we study the slice map Oa/? = 0£„ for (a, (3) £ D2. 

PROPOSITION 1. Let (a, /3) G D2. 

(1) O2^ w a contractive map from H2(D2) to L2
a(D). 

(2) If(a,/3) G D2, then ranO2^ is a subset of analytic functions on D. 
(3) If(a,P) G T2, then O2^ is an onto map from H2(D2) to L2

a(D) with \\<&2
a(5\\ = 1. 

(4) If (a, [3)eTxDUDxT, then O ^ is an onto map from H2(D2) to H2(D) with 

l l^ l l^d- l^l 2 ) - 1 . 
PROOF. ( 1 ) For/ G H2 (D2 ), let/(z, w) = Ej20 ^)(z»w) ^ e a homogeneous expansion 

of/ Thenf}(z, w) = E ^ tf^'-V and J \Fj\2 dm = H{=0 |<^|2. Moreover 

/

oo r oo y 

\f\2 dm = Z \Fj\2 * i = E E k f < oo. 
(VagfKX) = T^oFjiccftX and 

l*/(«>/J)l2 < f E k l 2 ) f E I0I2'1 < </ + i)f E h i 2 ) -
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Hence 

L El^(«^)l2^+ I2^ 
0 7=0 

oo 1 oo 7 

7=0 J "r l j=0 i=0 

[\f\2dm. 

Thus <S>a0feL2
a(D) and \\<&ag\\<\. 

(2) is clear. (3): For g G L2
a{D) with g(A) 

T&gitfwy-'iàz)'. Then/ G ^ ( D 2 ) and ( O ^ A ) 

(4): We may assume (a, /3) G T x D. Then 

| F / a , / ? ) | 2 < ( l - | / 3 | 2 ) - ' E k | 2 

£=0 

and hence 

r2ir oo 1 7 1 r 

/. l^l1*^*/^<g ïqjFg|.«P<rrW;ifl1*-

For g € //2(D) with g(A) = EjSo *y V, put/(z, w) = Ej20 *y(o*y • Then/ G //2(D2) and 
(Oa/a/XA) = g(A). This implies (4). 

(3) of Proposition 1 is essentially known (see [6, p. 53]). Now we study the slice map 
O ^ on H°°(D2). Let L be the norm closed linear span of i / 0 0 ^ 2 ) / / 0 0 ^ 2 ) in L°°(T2). 
ThenL^L°°(r2)(see[5]). 

PROPOSITION 2. Lef ( a , /3) G D 2 . 

(X) O ^ w a contractive homomorphismfrom H°°(D2) to H°°(D). 

(2) If(a,/3)ÇzT2UTxDUDxT, then O ^ is a contractive homomorphismfrom 
H°°(D2) onto H°°(D). 

(3) If (a, (3) G T2, there exists a contractive *-homomorphism ̂ >^from L onto L°°(T) 

such that O ^ | H°°(T2) = 0>^ | H°°(T2). 

PROOF. (1) is clear. (2): If g G H°°(D) with g(A) = Ej20 fyV and |a| = 1, then 
/(z, w) = E ~ 0 ¥ ^ y " É #°°(£2) and (0«^/)(A) = g(A). This and (1) imply (2). 

(3): For/ , gj G H°°(D2) and/ = 1,...,«, put 

^ ( X j S S / ) }(A) = ÊjÇ(aA, (3\)gj(a\, (3\) 

for A G A then Q>a&(Ej=\fjgj) c an be seen as an element in L°°(T) by its radial limits. 

/o" . r \VofA\rtPyd9drl* 

= Z»0bj>J, put/(z,w) = 

= g(A). This and (1) imply (3). 
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Hence for a.e. A G T 

®J£M)W 
v/=i 

< ess sup 
XeT \j=\ 

Ey/M,/3A)^(aA,/3A) 

< ess sup J^Naz> Pw)gj(az> fin) 

n II 

YsfjèA 
l /=l II oo 

because (a,/3) G T2. Then <bap is the extension of Oa/3 from H°°(D2) to L, and then 
<î>ap is a contractive *-homomorphism from L to L°°(T). If £/(A) = £?=1 Fj(X)Gj(X) 
a.e. on T where FJ9 Gj G #°°(Z>), then u(z,w) = EjLi Fy(âz)G,-(/3w) belongs to I and 
(Oa^w)(A) = (7(A) a.e. on T7. Since arbitrary function U in L°°(T) can be approximated 
by such functions, 0>ap is onto. 

The following lemma will be used in the proofs in the following proposition and the 
main theorem. We can prove it by an approximation method as in [4] but we prove it 
using Proposition 2. 

LEMMA. If<\> G L°°(T2), (a,/?) G T2 and <l>(z,w)(J3z - aw) G H°°(D2), then <j> G 
H°°(D2). 

PROOF. Note that f3z - aw G ker <3>af3. If </>(/3z - aw) = g for some g G H°°(D2\ 
then g belongs to ker Oa/3. In fact, $(/?z — aw)A = g on SpecL°°(r2) which is the max­
imal ideal space of L°°(T2) and (J3z — aw)A — 0 on hull(kerÔajg). Hence g = 0 on 
hull(ker <bap) Pi Specl°°(r2). Since L is a commutative C*-algebra, every element of 
Spec! extends to an element of Spec L°°(T2). Therefore g = 0 on hull(ker <bap). Thus 
g G (ker O ^ f W ^ Z ) 2 ) = ker O ^ . Hence if g = £ ~ 0 G, and G,(z,w) = £ ^ 0 M ' ~ V , 
then 

Gj(z, w) = ziJ2 bt(zw)1 =kfl(w- ktz) 

where k G C and kt G C for 1 < I < j and G/(aA,/3A) = 0 for A G £> because 
g G ker O2^. Thus Gj(z, w) = m(f3z — aw) lie=2(w — m^z) where m G C and mi G C for 
2 < I <j and hence g/(/?z — aw) is analytic on Z)2. Since do$z_aw — 0, g/(/?z — aw) G 
N*(Z)2) D Z°°(r2) = H°°(D2) and hence <£ belongs to H°°(D2). 

PROPOSITION 3. Let (a, (3) G D2. 

(1) For any r G (0,1], kerO2^ = ker<D2
ar/3. 

f2) ker<D2^ w an invariant subspace ofH2(D2), 

Z(ker O2^) = <DaP and ^(kerO 2^) = 0. 

For anyp G (Da^, /3z — aw G ker O2^ has a zero of order 1 at p. 
(3) If (a, (3) G T2, then (J3z - aw)H2(D2) is dense in kerO2^ but kerO2^ ^ Q3z -

aw)H2(D2). If(a9/3) eTxDUDxT, then kerO2^ = (/fc - aw)H2(D2). 
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(4) If (a, (3) G T2, then fW(kerO^) = H°°(D2) and if(a, /?) G T x DUD x T, then 

fW(kerO^) = (pz - aw)-lH°°(D2). 

(5) If (a, 0)£DxDanda^0, then ker O2
0 = wH2(D2) and hence fW(ker O2

0) = 
w-lH°°(D2). 

(6) Let M be an invariant subspace ofH2(D2) with ker O2^ C M, M{M) = H°°(D2). 

If (a, (3) G T2, then Z(M) = {(aaj9fiaj) G D2 ; £~0(1 - \aj\) x [-log(l -
\<*j\)]l~£ < °°f°r "ll £ > °}- If(<*>P) ̂  T x DUD x T, then Z(M) = 
{(aaj,f3aj) G D2 ; E£ , ( l - \aj\) < oo}. Tjf (a,0) G D x D and a ^ 0f then 
M = qH2(D) ® wH2{D2) where q is a one variable inner function with q = q(z) 
and hence Z(M) = {(s, 0) G D2 ; q(s) = 0ands G £>}. 

PROOF. (1) and (2) are clear. (3): Let (a, f3) G 72. If/ G ker <baf3,f = EjS0 >̂ a n d 

/}(z, w) = E { = 0 a^~ewe, then /)(z, w) = c(J3z — aw) Y^i=2{w — c^z) and hence/ can be 
approximated by the functions in (j3z—aw)H2(D2). This implies that (J3z—aw)H2{D2) is 
dense in ker O ^ . Suppose ker Q>ap = (J3z~aw)H2(D2); then the multiplication operator 
by (3z — aw is a left invertible operator from ifiiD2) to kerOa^. Hence there exists a 
positive constant e such that 

j^g^z-awUm^eJ^gUm 

for all g G #°°(Z)2) and so 

/ u\(3z — aw\2 dm> e udm 

for all nonnegative continuous functions u on T2. Thus \(3z—aw\2 > e > 0 a.e. on T2 and 
this contradiction implies that kerOa/3 ^(J3z- aw)H2{D2). Let (a, f3) E Tx DUD x T. 
Since /fe—aw is invertible in L°°, ker Oa/5 = (/3z- aw)//2(D2) because (J3z- aw)H2(D2) 
is dense in ker Q>ap. 

(4): Let(a,/3) G T2. If ^ G fW(ker 0>a/3),then<j>(j3z~aw) = gforsomeg G H°°(D2). 
By the Lemma, </> belongs to H°°(D2) and hence fW(kerO^) = H°°(D2). Let (a,/3) G 
r x D U / ) x r a n d ( / > G fW(ker<Da/3). By (3), kerOa/3 = (/fc - aw)H2(D2) and hence 

</>(/fe - aw)H2(D2) C #2(D2). 

This implies that </>(J3z - aw) G //°°(£>2) and so fW(kerOa/5) = (/3z - aw)-lH°°(D2). 
(5) is easy to see. (6): If (a,/?) G T2 and kerOa/5 C M, then by (3) of Proposition 1 and 

y 

[3, Corollary 3.6], Z([O^M]2) = {aj G D ; E~,( l - \aj\)[- log(l - l ^ l ) ] 1 - < oo for 
all e > 0}. This and Theorem 1 in [2] imply the first part. For (a, /J) G 71 x D U D x T, 
we can show similarly by (4) of Proposition 1. 
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3. Multipliers. By (4) of Proposition 3, we know the set of all multipliers <M(M) of 
an invariant subspace such that kerO2^ C MÇ H2(D2) when(a,/3) G T2UTxDUDxT 
or (a,0) G D x D\ (0,0). When (a,/3) E D x D and |a| = |/3| > 0, there exists 
(oro,/3o) G ^ ^suchthata = ra0 and/3 = rf30 for somer G (0,1). When (a,/?) G £>x£> 
and 0 < \a\ < |/3|, there exists (o^,/30) E D x T such that a = r«0 and /3 = r(3o for 
some r G (0,1). (1) of Proposition 3 implies kerO;L = kerO 2^ . Hence for arbitrary 
(<*,/?) £ D x D\ (0,0), we can describe !Af(M) by Proposition 3. In this section, we 
study M(M) without such a condition. In this section, for example, we study M (M) of 
an invariant subspace such that M Ç kerçD2^. In fact, we study such a problem more 
generally, that is, when the 2-dimensional Hausdorff measure of Z{M) D Tf^ is zero. 
For A C T2 U T x D UD x T, put 

2>A = {U<DaP ; (a, /3) e A} \ {(0, 0)}. 

Note that if Z(M) D (DK and A is an infinite set such that (Da0 n ©7(5 = {(0, 0)} when 
(a,/J) ^(7 ,5) , then M = {0}. 

THEOREM 4. Let A be a finite set ofT2. If M is an invariant subspace ofH2(D2) 
which satisfies the following (l}-(3), then M(M) = H°°{D2). 

(1) For anyp G Z(M) D (D\t there exists a function f in M such thatf has a zero of 
order 1 at p. 

(2) The 2-dimensional Hausdorff measure of Z(M) D ©£ is zero. 
(3) Z,{M) = 0. 

PROOF. Suppose </> G M(M). Fix;? G Z(M) n £>A. By (1), l e t / be a function in 
M such that/ has a zero of order 1 at p. Let (a,/3) G A with/? G 2 ^ . By definition of 
M{M), 4f = g for some g G //2(£>2). Put k(z, w) = (3z- aw; then kp(Q = A(C+/>) = KO 
and kp(Q(f)p((yp(Q = k(Qgp(Q. Suppose fp(Q = T,™0Fj(Q is a homogeneous expansion 
of/,. Since 1 = s(fp), F\(Q, w) = cw for c ^ 0. By the Weierstrass preparation theorem 
(cfi [6, Theorem 1.2.1]), there exists a poly disc A in C2, centered at (0,0), such that 

fp(z9w)=W(z,w)h(z9w) 

for (z, w) G A where /z is analytic in A, h has no zero in A, W(z, w) = w + Z?o(z) and &o is 
analytic in A with b0(0) = O.Since/(arA,/3A) = 0 on D,(3\+b0(a\) = 0if(aA,/3A) G A 
and hence fco(afA) — —/3A. Thus &o(̂ ) = —fz and W(z,w) = —^(f3z — aw). Therefore 
^ ^ = kgp/fp is analytic in A and so &(/> is analytic in A +/?, in a sense of R. G. Douglas 
and K. Yan [2]. Therefore 

J ] (Pz-aw)(f)(z,w) 
(«,/3)<EA 

is analytic in a neighborhood of Z(M) D Œ)A. 
lfp$ Z(M), then there exists a function & in M such that A: has no zeros in some 

polydisc Ap, centered at/?. As in the proof above, <j>(z, w) is analytic in Â  and hence <j> 
is analytic in D2 \ Z{M). Thus ft(J3z - aw)4>(z, w) is analytic in D2 \ Z(M) n 2^ . By 
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(2), Z{M) H CD°A is a removable singularity for analytic fonctions, and hence i/;(z, w) = 
ll(0z-<xw)<l>(z, w) is analytic in D2. By the proof of [2, Theorem 1], V G N{D2)nL°°{T2) 
and Jcr^ < ~Z^(A/) because da^ = dcr .̂ By (3), dcr^ = 0 and hence ^ G H°°(D2). By 
the Lemma, 0 belongs to H°°(D2) and hence fW(Af) = H°°(D2). 

THEOREM 5. Let A be a finite setofTxDUDx T. If M is an invariant subspace 
ofH2(D2) which Z(M) D CDA and satisfies the following (l)-(3), then 

M{M)= n (f3z-aw)-lH°°(D2). 
(a,/3)GA 

(1) For anyp G Z(M), there exists a function f in M such thatf has a zero of order 
1 at p. 

(2) The 2-dimensional Hausdorff measure ofZ(M) D (D^ is zero. 
(3) Ze(M) = 0. 

PROOF. By the proof of Theorem 4, if <j> G fW(M), then U(J3z — aw)</>(z, w) G 
H°°(D2) where (a,/J) ranges over A. Hence 0 G n(/fe - aw)-1//°°(D2). Conversely 
if 0 G Ylifiz - aw)-lH°°(D2) and/ G M, then/ = 0 on 2)A; hence by the Weierstrass 
preparation theorem, U(j3z — aw)~lf(z, w) is analytic in D2 and <j> belongs to 9/[{M). 

4. Two general cases and remarks. Let a and b be two functions in H°°(D) with 
Halloo < 1 and Halloo < 1. For/ in/^(D2) , 

(*yXA) =/(*(A), fc(A)) (AG/)). 

If <z(A) = a(A) and 6(A) = /3A, then <Ê  was called a slice map O ^ in the previous 
sections. For an arbitrary pair a and b, we know only very trivial results. It is easy to see 
that ®% maps H°°(D2) into H°°(D). If ||a||oo < 1 and ||*||oo < 1, then <D^ maps HP(D2) 
into H°°(D). In general, ker <I>̂  is still an invariant subspace of H2(D2\ and 

Z(ker02 ,) D ©^ = {(«(A), 6(A)) G D2 ; A G £>}. 

The function b(z) — a(w) may not belong to k e r ^ . If a(X) = aX and b(X) = /3A, 
then (Z? o a)(X) = (a o b)(X) for À G A and hence 6(z) — a(w) belongs to kerO^,. If 
a(X) = A and b(X) is an inner function, then (b o a)(X) = (a o Z?)(A) for A G A and hence 
Z?(z)—<z(w) = 6(z)—w belongs to kerO^. In this case, Z^ker®^,) = O.Forany/? G (Dab, 
b(z)-w has a zero of order 1 at/? G ©flfc. If <j> G I°°(r2) and (b(z)~ w)<Kz9 w) G H°°{D2\ 
then </> G H°°(D2). This can be shown as in [4, Proposition 3 and Theorem 7]. This 
implies (4) of Proposition 3. The proof of the following theorem is almost parallel to that 
of Theorem 4. 

THEOREM 6. Let a(X) = X and b(X) be an inner function. If M is an invariant 
subspace ofH2(D2) which satisfies the following (l)-(3), then M(M) = H°°(D2). 

(1) For anyp G Z(M) D (Dab, there exists a function f in M such thatf has a zero of 
order 1 atp G Z(M) D <Dah. 
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(2) The 2-dimensional Hausdorff measure ofZ(M) D Tfab is zero. 
(3) Zd(M) = 0. 

If a(X) = À and b(X) = cq(X) where c is a constant with \c\ < 1 and q is an inner 
function, we can show a version of Theorem 5 as Theorem 6 which is that of Theorem 4. 

Let Dn be the open unit polydisc in Cn and F1 be its distinguished boundary. Fix 
a = (« i , . . . , a„) e D". For / in HP(Dn) 

(*£/)(A)=/(aiA,. . . ,awA) (A G £>). 

(1), (2) and (3) of Proposition 1 can be proved for arbitrary n. If a, G T for some y with 
1 < 7 < ft and «/ G Z) for all i with 1 < i < n and / ^ j , we can show that <b2

a is an 
onto map ïxomH2(Dn) to H2(D) with ||o£|| < n,yy(l - |a / |2) - 1 • This is a generalization 
of (4) of Proposition 1. Similarly we can generalize Proposition 2. If </> G U^iT") and 
(a/Zy — ajZi)(f)(z\,. ..,z„) G H°°(Dn) where 1 < i ^ j < n and a = (a z , . . . , a„) G 771, 
then <j> G H°°(Dn). This also can be shown as in [4, Proposition 3 and Theorem 7]. ker O2 

is an invariant subspace and a generalization of (1) and (2) of Proposition 3 is true. Sup­
pose n > 2. If M is an invariant subspace of H2(Dn), Z{M) = (Da = {(a\ A,. . . , an A) ; 
A G D} for a G r and 2^(iW) = 0, then fW(M) = H°°(Dn). For it is a result of 
R. G. Douglas and K. Yan [2, Theorem 1 ] because the real In — 2 dimensional Hausdorff 
measure of Z(M) is zero. 

REMARK, (i): As in Theorem 1 of [2], Theorem 4 can be stated as the following: If 
Mis an invariant subspace of H2(D2) which satisfies (1) and (2), then <j> G !M(M) if and 
only if <j> G N(D2)nL°°(T2) and da^ < ZQ(M). (ii): By Lemma 7 in [2] and Theorem 4, 
if M and TV are quasi-similar invariant subspaces of H2(D2) and M satisfies (l)-{3) in 
Theorem 4, then M Ç N. This is a generalization of Theorem 2 in [2]. Similarly we 
can generalize Corollaries 9 and 12. (iii): Let M9 N be invariant subspaces of H2(D2) 
satisfying (a) the 2-dimensional Hausdorff measures of Z(M) D (D^ and Z>(N) D CD^ are 
zero, (b) Zd(M) = Z^(N). (c) M and TV satisfy the condition (1) in Theorem 4 about 
Z{M) fl ©A and Z(N) H £>A. If M and TV are quasi-similar, then M = M 
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