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SLICE MAPS AND MULTIPLIERS OF
INVARIANT SUBSPACES

TAKAHIKO NAKAZI

ABSTRACT.  Let D? be the closed bidisc and T2 be its distinguished boundary. For
(o, 3) € D2, let @y be a slice map, that is, (Pegf/)(A) = f(a), BA) for A € D and
f € H*(D?). Then ker @, is an invariant subspace, and it is not difficult to describe
ker @y and M (ker @) = {$ € L(T?) : pker®,5 C HA(D?)}. In this paper, we
study the set M (M) of all multipliers for an invariant subspace M such that the common
zero set of M contains that of ker @ 3.

1. Introduction. Let D? be the open unit disc in C? and 72 be its distinguished
boundary. Normalized Lebesgue measure on 72 is denoted by dm. For 1 < p < oo,
HP(D?) is the Hardy space and LP(T?) is the Lebesgue space on 72. Let N(D?) denote the
Nevanlinna class. Each f in N(D?) has radial limits f* defined on 72 a.e. Moreover, there
is a singular measure doy; on T2 determined by f such that the least harmonic majorant
u(log |f]) of log [f] is given by u(log [f])(¢) = Pc(log |f*|+doy) where P denotes Poisson
integration and ¢ = (z,w) € D*. Put Ny(D?) = {f € N(D?) ; do; < 0}; then HP(D?) C
N.(D*) C N(D?) and H?(D?) = N,(D*) N IP(T?) C N(D*) N LP(T?). These facts are
shown in [6, Theorem 3.3.5].

A closed subspace M of H?(D?) is said to be invariant if zM C M and wM C M. For
an invariant subspace M of H?(D?), set

MM) = {¢p € L°(T?) ; M C H*(D?)}.

If M = qH*(D*) for some inner function g, it is trivial to see M (M) = GH>®(D?). In the
case of one variable, an arbitrary invariant subspace M has the form gH?*(D) for some
inner function g by the famous Beurling theorem [1]. Hence M (M) = §H>°(D). Hence
the map : M — M (M) is one-to-one. However this result for invariant subspaces of
H?(D?) is not true. The author [4] studied the relation between M and M (M). To study
M (M), R. G. Douglas and K. Yan [2] introduced the common zero set Z(M) and the
singular measure Z(M), that is,

Z(M) = {C€ D? ;£(Q) = 0 for f € M}

and

Zo(M) = inf{—doy ; f € M,/ # 0}.
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They showed that if the real 2-dimensional Hausdorff measure of Z(M) is zero and
Zy(M) = 0, then M (M) = H*(D?). In this paper, we are interested in invariant sub-
spaces M of H?(D?) such that the real 2-dimensional Hausdorff measure of Z(M) is

positive and Zp(M) = 0.
Fix (a, B) € D2. For f in HP(D?),

(PN =flar, BA) (A € D).

@7, is called a slice map. <I>(2,,ﬂ maps H*(D?) into L2(D), where L2(D) is the Bergman
space (cf. [6, p. 53]). In this paper, we study the kernel ker @? 5 and the range ran 0g 5 for
p = 2,00. ker(bﬁﬂ is an invariant subspace of H?(D?) and the closure of ran (wa is an
invariant subspace of L2(D). Put

Das = {(a), BN) €D? ;A € C};

then Z(ker ®2%5) = Dyg if (o, 8) € T2 UT x DU D x T. The 2-dimensional Haus-
dorff measure of Z(ker @) is positive and Zy(ker ®%5) = 0. In this paper, we show
M(M) = H®(D*) when Z(M) = D, for some (o, ) € T? and Zy(M) = 0 and M
satisfies some additional natural condition. The main result in this paper is Theorem 4 in
Section 3. Theorem 1 of [2] has a lot of corollaries on the rigidity of invariant subspaces.
Similarly Theorem 3 in this paper has such corollaries. Hence our results can be seen as
the generalizations of results of R. G. Douglas and K. Yan.

For f in N(D?), f({) = Y720 Fj(C) is a homogeneous expansion of f and F; is a poly-
nomial which is homogeneous of degree j. The smallest j = j(f) such that F; is not the
zero-polynomial is called the order of the zero which f has at ¢ = (0,0). For p € D?, the
order of the zero of f at p is simply the order of the zero of f(p + {) at { = (0, 0). We will
write /() = f(p +0).

2. Slice maps. In this section, we study the slice map @5 = df;ﬁ for (a, B) € D2.

PROPOSITION 1. Let (a, B) € D2.

(1) @2, is a contractive map from H*(D*) to L3(D).

(2) If (o, B) € D?, then ran @}, is a subset of analytic functions on D.

(3) If (a,B) € T?, then @ is an onto map from H*(D?) to L3(D) with |®2,|| = 1.

4) If (o, ) e Tx DUD X T, then d)fw is an onto map from H>(D*) to H*(D) with

%0l < (1 =18

PROOF. (1) Forf EE.H2 (D), letf(z,w) = ©2 Fi(z, w) bea homogeneous expansion

of /. Then Fj(z, w) = ,_y a,2~‘w’ and [ |F;|> dm = ¥,_ |a,|*. Moreover

2m=OO '2m=ooja2 Q.
YNGR ]go/md 22 et <

(PagN(N) = T2 Fi(a, B)X and

0P < (3 Ja?) (5188 ) < 0+ 0 £ k).
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Hence
/0] ./027' |¢aﬁfiz(rei9)rd0dr/7r = /0' ZO:IF}(&’ ’8)|2r2j+]2dr

= SO 7 < 5 5l
j=0£=0
=./|f|2dm.

Thus ®,4f € LX(D) and | @q)| < 1.
(2) is clear. (3): For g € LID) with g(\) = T2,b¥, put fz,w) =
20 L (Bwy~Y(az)!. Thenf € HA(D?) and (Pagf)(A) = (). This and (1) imply (3).
(4) We may assume (o, ) € T x D. Then

J
|Fiee, B)F < (1 — B! Eo la,?

and hence
f |(Daﬁf| (re’e)d0/27r < Z I:Blz Z la £|2 w|2 /Iflz dm.
For g € H*(D) with g(\) = =2, b ¥, put f(z, w) = £, bj(az). Then f € H*(D?) and

(@oaf)(A) = g(X). This 1mp11es (4)

(3) of Proposition 1 is essentially known (see [6, p. 53]). Now we study the slice map
@3 on H(D?). Let L be the norm closed linear span of H(D?)H™(D?) in L>(T?).
Then L # L®(T?) (see [5]).

PROPOSITION 2. Let (a, 3) € D2.

(1) @} is a contractive homomorphism from H®(D?) to H®(D).

2) If(,) € P’UT x DUD X T, then @7 is a contractive homomorphism from
H>®(D?) onto H®(D).

(3) If (a, B) € T?, there exists a contractive x-homomorphism (I) pfrom L onto L(T)
such that (D°° | H(T?) = @3, | H(T?).

PROOF. (l) is clear. 2): If g € H™(D) with g(\) = =X, b;¥ and |a| = 1, then
Sz, w) = 2, b i(azy € H>*(D?) and (@ )(N) = g(N). Thls and (1) imply (2).
(3): Forf, g € H°(D*)andj = 1,...,n, put

L. (j_gﬁg,) Jo =§ﬁ(ax, BNgax, BY)

for A € D, then ®,3(X ", ;g) can be seen as an element in L>(7) by its radial limits.
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Hence forae A €T

Dy (Zn:ﬁg',) ()\)i < ess sup iﬁ(a/\, BAg(a, ﬂA)l
J=1 AT |j=1

<esssup|d_fi(az, Bw)gi(az, Bw)
(zw)eT? =1

o0

because (a, 3) € T2 Then @,y is the extension of @5 from H*(D?) to L, and then
(Daﬂ is a contractive *-homomorphism from L to L°°(T) If U\ = T F (MG;(N)
a.e. on T where F;, G; € H®(D), then u(z,w) = Y7, Fy(az)G;(3w) belongs to L and
(<I3agu)(>\) = U()) a.e. on T. Since arbitrary function U in L>(T) can be approximated
by such functions, (f)aﬂ is onto.

The following lemma will be used in the proofs in the following proposition and the
main theorem. We can prove it by an approximation method as in [4] but we prove it
using Proposition 2.

LEMMA. If ¢ € L®(T?), (o, B) € T? and ¢(z,w)(Bz — aw) € H®(D?), then ¢ €
H>®(D?).

PROOF. Note that 3z — aw € ker @qp. If $(Bz — aw) = g for some g € H(D?),
then g belongs to ker ®@,3. In fact, (f)(ﬁz — aw)" = g on Spec L>°(T?) which is the max-
imal ideal space of L>°(T?) and (3z — aw)" = 0 on hull(ker(ﬁag). Hence ¢ = 0 on
hull(ker (i)ag) M Spec L>°(T?). Since L is a commutative C*-algebra, every element of
Spec L extends to an element of Spec L>°(7?). Therefore ¢ = 0 on hull(ker (130,[,). Thus
g € (ker @og)H™(D?) = ker Do5. Henceif g = Y2 G;and Gj(z, w) = o beZ W,
then

Giz,w) =72 i beGGw) =k ﬁ(w — kyz)
=0 =1

where k € Candk, € Cfor1 < £ < jand Gi(a,B)) = 0 for A\ € D because
g € ker®2 ;. Thus Gj(z, w) = m(Bz — aw)¥,_,(w — mz) where m € C and m; € C for
2 < ¢ <j and hence g/(Bz — aw) is analytic on D?. Since dog,_an = 0,g/(8z — aw) €
N.(D?)N L®(T?) = H*®(D?) and hence ¢ belongs to H®(D?).

PROPOSITION 3. Let (a, B) € D2.
(1) Foranyr € (0,1], ker ®? s = kerCI)m,B
(2) ker ®%; is an invariant subspace of H*(D?),

Z(ker (Daﬁ) D,p and Zp(ker D2 as) =

Foranyp € D,g, Bz — aw € ker (I%ﬁ has a zero of order 1 at p.
(3) If (a,B) € T?, then (Bz — aw)H?(D?) is dense in ker <I>2 but ker (I)f,ﬁ # Bz —

aw)H*(D?). If (a,8) € T X DUD X T, then ker @25 = (ﬂz — aw)H*(D?).
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(4) If (a, B) € T then M (ker ®}5) = H*(D?) and if (o, ) € T X DUD x T, then
M (ker @2 ;) = (Bz — aw)™ H™(D?).

(5) If (c,0) € D x D and ot # 0, then ker @2, = wH*(D?) and hence M (ker ®2) =
w H®(D?)

(6) Let M be an invariant subspace of H*(D) with ker @7, 5 g M, M(M) = H®(D?).

If (a,B) € T, then Z(M) = {(aa;, fay) € D* 5 =2(1 — |aj]) x [—log(l —
laD]'¢ < oo foralle > 0}. If (,B) € Tx DUD X T, then Z(M) =
{(aa;,Ba) € D* 5 ©2/(1 — |aj]) < 00}. If (@,0) € D x D and a # 0, then
M = qH*(D) © wH?*(D?) where q is a one variable inner function with q = q(z)
and hence Z(M) = {(s,0) € D?; q(s) = 0 and s € D}.

PROOF. (1) and (2) are clear. (3): Let(a, ) € T2. Iff € ker @5, f = ¥ Fj and
Fi(z,w) = ©,_, a;Z~'w!, then Fj(z, w) = c(8z — aw)I¥,_,(w — c¢z) and hence f can be
approximated by the functions in (3z — aw)H?(D?). This implies that (8z — aw)H?(D?) is
dense in ker @2 5. Suppose ker @, = (8z — aw)H*(D?); then the multiplication operator
by Bz — aw is a left invertible operator from H?(D?) to ker ®,5. Hence there exists a
positive constant € such that

218, 2 2
|, 11z — awltdm > e [ |gf? dm
for all g € H*®(D?) and so
2
/7'2 u|Bz — aw| dm > 5[72 udm

for all nonnegative continuous functions % on T2, Thus |3z—aw|* > & > 0a.e.on T? and
this contradiction implies that ker @, # (8z — aw)H*(D?). Let (a, ) € TX DUD X T.
Since 3z — aw is invertible in L, ker @o5 = (Bz— aw)H?(D?) because (8z — aow)H?* (D?)
is dense in ker @ .

(4): Let(a, B) € T2. If ¢ € M (ker @), then ¢(3z— aw) = g for some g € H(D?).
By the Lemma, ¢ belongs to H°(D?) and hence M (ker @o3) = H®(D?). Let (o, §) €
TxDUD x Tand ¢ € M (ker @op). By (3), ker @y5 = (Bz — aw)H*(D?) and hence

#(Bz — aw)HA(D?) C H*(D?).

This implies that ¢(3z — aw) € H®(D?) and so M (ker @op) = (Bz — aw)™' H®(D?).

(5) is easy to see. (6): If (o, 3) € T? and ker @, C M, then by (3) of Proposition 1 and
./

[3, Corollary 3.6}, Z([®asM)2) = {a; € D ; 522,(1 — |a))[ log(1 — |a;})]'~* < oo for

all € > 0}. This and Theorem 1 in [2] imply the first part. For (o, 3) € Tx DUD x T,

we can show similarly by (4) of Proposition 1.
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3. Multipliers. By (4) of Proposition 3, we know the set of all multipliers M (M) of
an invariant subspace such that ker @fm C M C H*(D*)when (a, 8) € TPUTXxDUD X T
or (¢,0) € D x D\ (0,0). When («,3) € D x D and |a| = |3] > 0, there exists
(ap, Bo) € Tx Tsuchthat o = rop and 3 = 3 for some » € (0, 1). When (o, ) € DXD
and 0 < |a| < |B|, there exists (), 80) € D x T such that @ = rag and 8 = rf3, for
some r € (0, 1). (1) of Proposition 3 implies ker (wa = ker (1)‘2,0‘30. Hence for arbitrary
(a,8) € D x D\ (0,0), we can describe M (M) by Proposition 3. In this section, we
study M (M) without such a condition. In this section, for example, we study M (M) of
an invariant subspace such that M C ker Qfx/.,. In fact, we study such a problem more
generally, that is, when the 2-dimensional Hausdorff measure of Z(M) N Dy is zero.

ForAC T2UT xDUD x T, put

Dy ={UDygs ;5 (e, B) € A\ {(0,0)}.

Note that if Z(M) O D, and A is an infinite set such that D53 N Dys = {(0, 0)} when
(a, /B) 7& (796)’ then M = {O}

THEOREM 4. Let A be a finite set of T>. If M is an invariant subspace of H*(D?*)
which satisfies the following (1)—(3), then M (M) = H>®(D?).
(1) Foranyp € Z(M) N Dy, there exists a function f in M such that f has a zero of
order 1 at p.
(2) The 2-dimensional Hausdor{f measure of Z(M) N D, is zero.
(3) Zp(M) = 0.

PROOF. Suppose ¢ € M(M). Fix p € Z(M) N Dy. By (1), let f be a function in
M such that f has a zero of order 1 at p. Let (o, 5) € A with p € D,3. By definition of
M (M), ¢f = g for some g € H*(D?). Putk(z, w) = Bz —aw; then k,(() = k((+p) = k({)
and k,(Q) ¢,V (Q) = k()gp(C)- Suppose f,(C) = 72, Fj(C) is a homogeneous expansion
of f,. Since 1 = s(fp), F1(0,w) = cw for ¢ # 0. By the Weierstrass preparation theorem
(cf- [6, Theorem 1.2.1]), there exists a polydisc A in C2, centered at (0, 0), such that

Jo(z, w) = W(z, w)h(z, w)

for (z, w) € A where A is analytic in A, 4 has no zero in A, W(z, w) = w+ by(z) and by is
analytic in A with bo(0) = 0. Since f,(axA, BA) = 0on D, fA+by(ar) = 0if (aX, BA) € A
and hence bo(a)) = —BA. Thus by(z) = —gz and W(z,w) = —é(ﬁz — aw). Therefore
ky¢p = kg, is analytic in A and so k¢ is analytic in A+ p, in a sense of R. G. Douglas
and K. Yan [2]. Therefore

[T Bz — aw)é(z, w)
(aB)EA
is analytic in a neighborhood of Z(M) N D,.
If p ¢ Z(M), then there exists a function k in M such that k has no zeros in some
polydisc A,, centered at p. As in the proof above, ¢(z, w) is analytic in A, and hence ¢
is analytic in D? \ Z(M). Thus [1(8z — aw)$(z, w) is analytic in D? \ Z(M) N D5. By
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(2), Z(M) N Dy is a removable singularity for analytic functions, and hence ¢(z, w) =
[1(8z — aw)é(z, w) is analytic in D?. By the proof of [2, Theorem 1], ¢ € N(D*)NL*>(T?)
and doy, < —Zy(M) because do, = doy,. By (3), doy, = 0 and hence 1y € H*(D?). By
the Lemma, ¢ belongs to H°(D?) and hence M (M) = H>®(D?).

THEOREM 5. Let A be a finite set of T x DUD X T. If M is an invariant subspace
of H*(D*) which Z(M) O Dy and satisfies the following (1)—(3), then

MMy = [] (Bz— aw) ' H®(D?).
(a,B)eA
(1) Foranyp € Z(M), there exists a function f in M such that f has a zero of order
latp.
(2) The 2-dimensional Hausdorff measure of Z(M) N ‘DY, is zero.
(3) Zo(M) = 0.

PROOF. By the proof of Theorem 4, if ¢ € M (M), then [1(Bz — aw)d(z,w) €
H>®(D?) where (a, 3) ranges over A. Hence ¢ € T1(8z — aw)~'H>®(D?). Conversely
if ¢ € TI(Bz — aw) ' H®(D?) and f € M, then f = 0 on Dy; hence by the Weierstrass
preparation theorem, [1(3z — aw)~'f(z, w) is analytic in D? and ¢ belongs to M (M).

4. Two general cases and remarks. Let a and b be two functions in H*°(D) with
llalloo < 1 and ||b||oo < 1. For f in HP(D?),

@,N0) =1(a0), b)) (A €D).

If a(\) = a()\) and b(\) = B, then @, was called a slice map d)f’!ﬂ in the previous
sections. For an arbitrary pair a and b, we know only very trivial results. It is easy to see
that ®% maps H°(D?) into H®(D). If ||a]|c < 1 and ||b|| < 1, then @, maps HP(D?)
into H°°(D). In general, ker @2, is still an invariant subspace of H2(D?), and

Z(ker®%) 2 Dup = {(a(N), b(N)) € D* ; X € D}.

The function b(z) — a(w) may not belong to ker ®%,. If a(\) = a) and b(\) = B,
then (b o a)(\) = (a o b)(\) for X € D, and hence b(z) — a(w) belongs to ker ®2,. If
a()) = X and b()\) is an inner function, then (boa)(\) = (ao b)(A) for A € D, and hence
b(z)—a(w) = b(z)—wbelongs to ker @2, . In this case, Zy(ker @2,) = 0. Forany p € Dy,
b(z)—whasazerooforder 1 atp € D,p. If ¢ € L%(T?) and (b(z)—w) P(z, w) € HX(D?),
then ¢ € H*(D?). This can be shown as in [4, Proposition 3 and Theorem 7]. This
implies (4) of Proposition 3. The proof of the following theorem is almost parallel to that
of Theorem 4.

THEOREM 6. Let a(\) = X and b()\) be an inner function. If M is an invariant
subspace of H*(D*) which satisfies the following (1)~(3), then M (M) = H®(D?).
(1) Foranyp € Z(M)N Dy, there exists a function f in M such that f has a zero of
order 1 atp € Z(M)N Dyp.
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(2) The 2-dimensional Hausdor{f measure of Z(M) N D%, is zero.
(3) Zo(M) = 0.

If a(\) = A and b(\) = cq()\) where ¢ is a constant with |¢| < 1| and ¢ is an inner
function, we can show a version of Theorem 5 as Theorem 6 which is that of Theorem 4.

Let D" be the open unit polydisc in C" and T" be its distinguished boundary. Fix
a=(ay,...,a,) € D" For f in HP(D")

@) = fla\,...,a,)) (N € D).

(1), (2) and (3) of Proposition 1 can be proved for arbitrary n. If o; € T for some j with
1 <j<nando; € Dforalliwith1 <i < nandi # j, we can show that ®? is an
onto map from H*(D") to H*(D) with || ®2]| < TT;4(1 — |o;|*)~". This is a generalization
of (4) of Proposition 1. Similarly we can generalize Proposition 2. If ¢ € L*°(T") and
(aizj — azi)d(z1,. .. ,z) € HO(D") where 1 <i#j<nand a = (®,....a,) € T",
then ¢ € H*°(D"). This also can be shown as in [4, Proposition 3 and Theorem 7]. ker ®2
is an invariant subspace and a generalization of (1) and (2) of Proposition 3 is true. Sup-
pose n > 2. If M is an invariant subspace of H2(D"), Z(M) = Dy = {(a1 )\, ..., 0.\ ;
X\ € D} for o € T" and Zy(M) = 0, then M(M) = H>*(D"). For it is a result of
R. G. Douglas and K. Yan [2, Theorem 1] because the real 2n — 2 dimensional Hausdorff
measure of Z(M) is zero.

REMARK. (i): Asin Theorem 1 of [2], Theorem 4 can be stated as the following: If
M is an invariant subspace of H*(D?) which satisfies (1) and (2), then ¢ € M (M) if and
only if $ € N(D?)NL>®(T?) and doy < Zs(M). (ii): By Lemma 7 in [2] and Theorem 4,
if M and N are quasi-similar invariant subspaces of H*(D?) and M satisfies (1)~(3) in
Theorem 4, then M C N. This is a generalization of Theorem 2 in [2]. Similarly we
can generalize Corollaries 9 and 12. (iii): Let M, N be invariant subspaces of H*(D?)
satisfying (a) the 2-dimensional Hausdorff measures of Z(M) N Dy and Z(N)N Dy are
zero. (b) Zz(M) = Zy(N). (c¢) M and N satisfy the condition (1) in Theorem 4 about
Z(M) N Dy, and Z(N) N Dy. If M and N are quasi-similar, then M = N.
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