SLICE MAPS AND MULTIPLIERS OF INVARIANT SUBSPACES

TAKAHIKO NAKAZI

ABSTRACT. Let $\overline{D^2}$ be the closed bidisc and T^2 be its distinguished boundary. For $(\alpha,\beta)\in\overline{D^2}$, let $\Phi_{\alpha\beta}$ be a slice map, that is, $(\Phi_{\alpha\beta}f)(\lambda)=f(\alpha\lambda,\beta\lambda)$ for $\lambda\in D$ and $f\in H^2(D^2)$. Then $\ker\Phi_{\alpha\beta}$ is an invariant subspace, and it is not difficult to describe $\ker\Phi_{\alpha\beta}$ and $\mathcal{M}(\ker\Phi_{\alpha\beta})=\{\phi\in L^\infty(T^2): \phi\ker\Phi_{\alpha\beta}\subset H^2(D^2)\}$. In this paper, we study the set $\mathcal{M}(M)$ of all multipliers for an invariant subspace M such that the common zero set of M contains that of $\ker\Phi_{\alpha\beta}$.

1. **Introduction.** Let D^2 be the open unit disc in \mathbb{C}^2 and T^2 be its distinguished boundary. Normalized Lebesgue measure on T^2 is denoted by dm. For $1 \leq p \leq \infty$, $H^p(D^2)$ is the Hardy space and $L^p(T^2)$ is the Lebesgue space on T^2 . Let $N(D^2)$ denote the Nevanlinna class. Each f in $N(D^2)$ has radial limits f^* defined on T^2 a.e. Moreover, there is a singular measure $d\sigma_f$ on T^2 determined by f such that the least harmonic majorant $u(\log |f|)$ of $\log |f|$ is given by $u(\log |f|)(\zeta) = P_{\zeta}(\log |f^*| + d\sigma_f)$ where P_{ζ} denotes Poisson integration and $\zeta = (z, w) \in D^2$. Put $N_*(D^2) = \{f \in N(D^2) : d\sigma_f \leq 0\}$; then $H^p(D^2) \subset N_*(D^2) \subset N(D^2)$ and $H^p(D^2) = N_*(D^2) \cap L^p(T^2) \subset N(D^2) \cap L^p(T^2)$. These facts are shown in [6, Theorem 3.3.5].

A closed subspace M of $H^2(D^2)$ is said to be *invariant* if $zM \subset M$ and $wM \subset M$. For an invariant subspace M of $H^2(D^2)$, set

$$\mathcal{M}(M) = \{ \phi \in L^{\infty}(T^2) ; \phi M \subseteq H^2(D^2) \}.$$

If $M=qH^2(D^2)$ for some inner function q, it is trivial to see $\mathcal{M}(M)=\bar{q}H^\infty(D^2)$. In the case of one variable, an arbitrary invariant subspace M has the form $qH^2(D)$ for some inner function q by the famous Beurling theorem [1]. Hence $\mathcal{M}(M)=\bar{q}H^\infty(D)$. Hence the map : $M\to\mathcal{M}(M)$ is one-to-one. However this result for invariant subspaces of $H^2(D^2)$ is not true. The author [4] studied the relation between M and M(M). To study M(M), R. G. Douglas and K. Yan [2] introduced the common zero set $\mathcal{Z}(M)$ and the singular measure $\mathcal{Z}_{\widehat{G}}(M)$, that is,

$$Z(M) = \{ \zeta \in D^2 : f(\zeta) = 0 \text{ for } f \in M \}$$

and

$$\mathcal{Z}_{\partial}(M) = \inf\{-d\sigma_f ; f \in M, f \neq 0\}.$$

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education. Received by the editors February 27, 1995; revised November 14, 1995.

AMS subject classification: 47A15, 32A35.

Key words and phrases: Hardy space, several variables, invariant subspace, slice map.

© Canadian Mathematical Society 1996.

They showed that if the real 2-dimensional Hausdorff measure of $\mathbb{Z}(M)$ is zero and $\mathbb{Z}_{n}(M) = 0$, then $\mathcal{M}(M) = H^{\infty}(D^{2})$. In this paper, we are interested in invariant subspaces M of $H^2(D^2)$ such that the real 2-dimensional Hausdorff measure of $\mathcal{Z}(M)$ is positive and $\mathcal{Z}_{\partial}(M) = 0$.

Fix $(\alpha, \beta) \in \overline{D^2}$. For f in $H^p(D^2)$,

$$(\Phi^p_{\alpha\beta}f)(\lambda) = f(\alpha\lambda, \beta\lambda) \qquad (\lambda \in D).$$

 $\Phi^p_{\alpha\beta}$ is called a slice map. $\Phi^2_{\alpha\beta}$ maps $H^2(D^2)$ into $L^2_a(D)$, where $L^2_a(D)$ is the Bergman space (cf. [6, p. 53]). In this paper, we study the kernel ker $\Phi^p_{\alpha\beta}$ and the range ran $\Phi^p_{\alpha\beta}$ for $p=2,\infty$. ker $\Phi^2_{\alpha\beta}$ is an invariant subspace of $H^2(D^2)$ and the closure of ran $\Phi^2_{\alpha\beta}$ is an invariant subspace of $L_a^2(D)$. Put

$$D_{\alpha\beta} = \{(\alpha\lambda, \beta\lambda) \in D^2 ; \lambda \in \mathbb{C}\};$$

then $\mathcal{Z}(\ker\Phi^2_{\alpha\beta})=\mathcal{D}_{\alpha\beta}$ if $(\alpha,\beta)\in T^2\cup T\times D\cup D\times T$. The 2-dimensional Hausdorff measure of $\mathcal{Z}(\ker\Phi^2_{\alpha\beta})$ is positive and $\mathcal{Z}_{\partial}(\ker\Phi^2_{\alpha\beta})=0$. In this paper, we show $\mathcal{M}(M) = H^{\infty}(D^2)$ when $\mathcal{Z}(M) = \mathcal{D}_{\alpha\beta}$ for some $(\alpha, \beta) \in T^2$ and $\mathcal{Z}_{\partial}(M) = 0$ and Msatisfies some additional natural condition. The main result in this paper is Theorem 4 in Section 3. Theorem 1 of [2] has a lot of corollaries on the rigidity of invariant subspaces. Similarly Theorem 3 in this paper has such corollaries. Hence our results can be seen as the generalizations of results of R. G. Douglas and K. Yan.

For f in $N(D^2)$, $f(\zeta) = \sum_{j=0}^{\infty} F_j(\zeta)$ is a homogeneous expansion of f and F_j is a polynomial which is homogeneous of degree j. The smallest j = j(f) such that F_i is not the zero-polynomial is called the *order of the zero* which f has at $\zeta = (0,0)$. For $p \in D^2$, the order of the zero of f at p is simply the order of the zero of $f(p+\zeta)$ at $\zeta=(0,0)$. We will write $f_p(\zeta) = f(p + \zeta)$.

2. Slice maps. In this section, we study the slice map $\Phi_{\alpha\beta} = \Phi_{\alpha\beta}^p$ for $(\alpha, \beta) \in \overline{D^2}$.

PROPOSITION 1. Let $(\alpha, \beta) \in \overline{D^2}$.

- (1) Φ²_{αβ} is a contractive map from H²(D²) to L²_a(D).
 (2) If (α, β) ∈ D², then ran Φ²_{αβ} is a subset of analytic functions on D̄.
 (3) If (α, β) ∈ T², then Φ²_{αβ} is an onto map from H²(D²) to L²_a(D) with ||Φ²_{αβ}|| = 1.
- (4) If $(\alpha, \beta) \in T \times D \cup D \times T$, then $\Phi^2_{\alpha\beta}$ is an onto map from $H^2(D^2)$ to $H^2(D)$ with $\|\Phi_{\alpha\beta}^2\| \le (1-|\beta|^2)^{-1}$.

PROOF. (1) For $f \in H^2(D^2)$, let $f(z, w) = \sum_{j=0}^{\infty} F_j(z, w)$ be a homogeneous expansion of f. Then $F_j(z, w) = \sum_{\ell=0}^j a_\ell z^{j-\ell} w^\ell$ and $\int |F_j|^2 dm = \sum_{\ell=0}^j |a_\ell|^2$. Moreover

$$\int |f|^2 dm = \sum_{j=0}^{\infty} \int |F_j|^2 dm = \sum_{j=0}^{\infty} \sum_{\ell=0}^{j} |a_{\ell}|^2 < \infty.$$

 $(\Phi_{\alpha\beta}f)(\lambda) = \sum_{j=0}^{\infty} F_j(\alpha,\beta)\lambda^j$ and

$$|F_j(\alpha,\beta)|^2 \le \left(\sum_{\ell=0}^j |a_\ell|^2\right) \left(\sum_{\ell=0}^j |\beta|^{2\ell}\right) \le (j+1) \left(\sum_{\ell=0}^j |a_\ell|^2\right).$$

Hence

$$\int_{0}^{1} \int_{0}^{2\pi} |\Phi_{\alpha\beta} f|^{2} (re^{i\theta}) r \, d\theta \, dr / \pi = \int_{0}^{1} \sum_{j=0}^{\infty} |F_{j}(\alpha, \beta)|^{2} r^{2j+1} 2 \, dr$$

$$= \sum_{j=0}^{\infty} |F_{j}(\alpha, \beta)|^{2} \frac{1}{j+1} \le \sum_{j=0}^{\infty} \sum_{\ell=0}^{j} |a_{\ell}|^{2}$$

$$= \int |f|^{2} \, dm.$$

Thus $\Phi_{\alpha\beta}f \in L^2_a(D)$ and $\|\Phi_{\alpha\beta}\| \leq 1$.

(2) is clear. (3): For $g \in L^2_a(D)$ with $g(\lambda) = \sum_{j=0}^{\infty} b_j \lambda^j$, put $f(z, w) = \sum_{j=0}^{\infty} \frac{b_j}{j+1} (\bar{\beta}w)^{j-\ell} (\bar{\alpha}z)^{\ell}$. Then $f \in H^2(D^2)$ and $(\Phi_{\alpha\beta}f)(\lambda) = g(\lambda)$. This and (1) imply (3). (4): We may assume $(\alpha, \beta) \in T \times D$. Then

$$|F_j(\alpha, \beta)|^2 \le (1 - |\beta|^2)^{-1} \sum_{\ell=0}^j |a_\ell|^2$$

and hence

$$\int_0^{2\pi} |\Phi_{\alpha\beta} f|^2 (re^{i\theta}) \, d\theta / 2\pi \le \sum_{i=0}^\infty \frac{1}{1-|\beta|^2} \sum_{\ell=0}^j |a_\ell|^2 \le \frac{1}{1-|\beta|^2} \int |f|^2 \, dm.$$

For $g \in H^2(D)$ with $g(\lambda) = \sum_{j=0}^{\infty} b_j \lambda^j$, put $f(z, w) = \sum_{j=0}^{\infty} b_j (\bar{\alpha} z)^j$. Then $f \in H^2(D^2)$ and $(\Phi_{\alpha\beta} f)(\lambda) = g(\lambda)$. This implies (4).

(3) of Proposition 1 is essentially known (see [6, p. 53]). Now we study the slice map $\Phi_{\alpha\beta}^{\infty}$ on $H^{\infty}(D^2)$. Let L be the norm closed linear span of $\overline{H^{\infty}(D^2)}H^{\infty}(D^2)$ in $L^{\infty}(T^2)$. Then $L \neq L^{\infty}(T^2)$ (see [5]).

PROPOSITION 2. Let $(\alpha, \beta) \in \overline{D^2}$.

- (1) $\Phi_{\alpha\beta}^{\infty}$ is a contractive homomorphism from $H^{\infty}(D^2)$ to $H^{\infty}(D)$.
- (2) If $(\alpha, \beta) \in T^2 \cup T \times D \cup D \times T$, then $\Phi_{\alpha\beta}^{\infty}$ is a contractive homomorphism from $H^{\infty}(D^2)$ onto $H^{\infty}(D)$.
- (3) If $(\alpha, \beta) \in T^2$, there exists a contractive *-homomorphism $\tilde{\Phi}_{\alpha\beta}^{\infty}$ from L onto $L^{\infty}(T)$ such that $\tilde{\Phi}_{\alpha\beta}^{\infty} \mid H^{\infty}(T^2) = \Phi_{\alpha\beta}^{\infty} \mid H^{\infty}(T^2)$.

PROOF. (1) is clear. (2): If $g \in H^{\infty}(D)$ with $g(\lambda) = \sum_{j=0}^{\infty} b_j \lambda^j$ and $|\alpha| = 1$, then $f(z, w) = \sum_{j=0}^{\infty} b_j (\bar{\alpha} z)^j \in H^{\infty}(D^2)$ and $(\Phi_{\alpha\beta} f)(\lambda) = g(\lambda)$. This and (1) imply (2).

(3): For $f_j, g_j \in H^{\infty}(D^2)$ and j = 1, ..., n, put

$$\left\{\tilde{\Phi}_{\alpha\beta}\left(\sum_{j=1}^{n}f_{j}\tilde{g}_{j}\right)\right\}(\lambda) = \sum_{j=1}^{n}f_{j}(\alpha\lambda,\,\beta\lambda)\overline{g_{j}(\alpha\lambda,\,\beta\lambda)}$$

for $\lambda \in D$, then $\tilde{\Phi}_{\alpha\beta}(\sum_{j=1}^n f_j \tilde{g}_j)$ can be seen as an element in $L^{\infty}(T)$ by its radial limits.

Hence for a.e. $\lambda \in T$

$$\left| \Phi_{\alpha\beta} \left(\sum_{j=1}^{n} f_{j} \bar{g}_{j} \right) (\lambda) \right| \leq \underset{\lambda \in T}{\operatorname{ess sup}} \left| \sum_{j=1}^{n} f_{j} (\alpha\lambda, \beta\lambda) \overline{g_{j} (\alpha\lambda, \beta\lambda)} \right|$$

$$\leq \underset{(z,w) \in T^{2}}{\operatorname{ess sup}} \left| \sum_{j=1}^{n} f_{j} (\alpha z, \beta w) \overline{g_{j} (\alpha z, \beta w)} \right|$$

$$= \left\| \sum_{j=1}^{n} f_{j} \bar{g}_{j} \right\|_{\infty}$$

because $(\alpha, \beta) \in T^2$. Then $\tilde{\Phi}_{\alpha\beta}$ is the extension of $\Phi_{\alpha\beta}$ from $H^{\infty}(D^2)$ to L, and then $\tilde{\Phi}_{\alpha\beta}$ is a contractive *-homomorphism from L to $L^{\infty}(T)$. If $U(\lambda) = \sum_{j=1}^n F_j(\lambda) \bar{G}_j(\lambda)$ a.e. on T where F_j , $G_j \in H^{\infty}(D)$, then $u(z, w) = \sum_{j=1}^n F_j(\bar{\alpha}z) \bar{G}_j(\beta w)$ belongs to L and $(\tilde{\Phi}_{\alpha\beta}u)(\lambda) = U(\lambda)$ a.e. on T. Since arbitrary function U in $L^{\infty}(T)$ can be approximated by such functions, $\tilde{\Phi}_{\alpha\beta}$ is onto.

The following lemma will be used in the proofs in the following proposition and the main theorem. We can prove it by an approximation method as in [4] but we prove it using Proposition 2.

LEMMA. If $\phi \in L^{\infty}(T^2)$, $(\alpha, \beta) \in T^2$ and $\phi(z, w)(\beta z - \alpha w) \in H^{\infty}(D^2)$, then $\phi \in H^{\infty}(D^2)$.

PROOF. Note that $\beta z - \alpha w \in \ker \Phi_{\alpha\beta}$. If $\phi(\beta z - \alpha w) = g$ for some $g \in H^{\infty}(D^2)$, then g belongs to $\ker \Phi_{\alpha\beta}$. In fact, $\hat{\phi}(\beta z - \alpha w)^{\wedge} = \hat{g}$ on $\operatorname{Spec} L^{\infty}(T^2)$ which is the maximal ideal space of $L^{\infty}(T^2)$ and $(\beta z - \alpha w)^{\wedge} = 0$ on hull($\ker \tilde{\Phi}_{\alpha\beta}$). Hence $\hat{g} = 0$ on hull($\ker \tilde{\Phi}_{\alpha\beta}$) $\cap \operatorname{Spec} L^{\infty}(T^2)$. Since L is a commutative C^* -algebra, every element of $\operatorname{Spec} L$ extends to an element of $\operatorname{Spec} L^{\infty}(T^2)$. Therefore $\hat{g} = 0$ on hull($\ker \tilde{\Phi}_{\alpha\beta}$). Thus $g \in (\ker \tilde{\Phi}_{\alpha\beta}) \cap H^{\infty}(D^2) = \ker \Phi_{\alpha\beta}$. Hence if $g = \sum_{j=0}^{\infty} G_j$ and $G_j(z, w) = \sum_{\ell=0}^{j} b_{\ell} z^{j-\ell} w^{\ell}$, then

$$G_j(z, w) = z^j \sum_{\ell=0}^j b_{\ell}(\bar{z}w)^{\ell} = k \prod_{\ell=1}^j (w - k_{\ell}z)$$

where $k \in \mathbb{C}$ and $k_{\ell} \in \mathbb{C}$ for $1 \leq \ell \leq j$ and $G_{j}(\alpha\lambda, \beta\lambda) \equiv 0$ for $\lambda \in D$ because $g \in \ker \Phi^{2}_{\alpha\beta}$. Thus $G_{j}(z, w) = m(\beta z - \alpha w) \prod_{\ell=2}^{j} (w - m_{\ell}z)$ where $m \in \mathbb{C}$ and $m_{\ell} \in \mathbb{C}$ for $2 \leq \ell \leq j$ and hence $g/(\beta z - \alpha w)$ is analytic on D^{2} . Since $d\sigma_{\beta z - \alpha w} = 0$, $g/(\beta z - \alpha w) \in N_{*}(D^{2}) \cap L^{\infty}(T^{2}) = H^{\infty}(D^{2})$ and hence ϕ belongs to $H^{\infty}(D^{2})$.

PROPOSITION 3. Let $(\alpha, \beta) \in \overline{D^2}$.

- (1) For any $r \in (0, 1]$, $\ker \Phi^2_{\alpha\beta} = \ker \Phi^2_{r\alpha, r\beta}$.
- (2) $\ker \Phi_{\alpha\beta}^2$ is an invariant subspace of $H^2(D^2)$,

$$Z(\ker \Phi_{\alpha\beta}^2) = \mathcal{D}_{\alpha\beta} \text{ and } Z_{\partial}(\ker \Phi_{\alpha\beta}^2) = 0.$$

For any $p \in \mathcal{D}_{\alpha\beta}$, $\beta z - \alpha w \in \ker \Phi^2_{\alpha\beta}$ has a zero of order 1 at p.

(3) If $(\alpha, \beta) \in T^2$, then $(\beta z - \alpha w)H^2(D^2)$ is dense in $\ker \Phi^2_{\alpha\beta}$ but $\ker \Phi^2_{\alpha\beta} \neq (\beta z - \alpha w)H^2(D^2)$. If $(\alpha, \beta) \in T \times D \cup D \times T$, then $\ker \Phi^2_{\alpha\beta} = (\beta z - \alpha w)H^2(D^2)$.

- (4) If $(\alpha, \beta) \in T^2$, then $\mathcal{M}(\ker \Phi^2_{\alpha\beta}) = H^{\infty}(D^2)$ and if $(\alpha, \beta) \in T \times D \cup D \times T$, then $\mathcal{M}(\ker \Phi^2_{\alpha\beta}) = (\beta z \alpha w)^{-1} H^{\infty}(D^2)$.
- (5) If $(\alpha, 0) \in \bar{D} \times D$ and $\alpha \neq 0$, then $\ker \Phi_{\alpha 0}^2 = wH^2(D^2)$ and hence $\mathcal{M}(\ker \Phi_{\alpha 0}^2) = w^{-1}H^{\infty}(D^2)$.
- (6) Let M be an invariant subspace of $H^2(D^2)$ with $\ker \Phi_{\alpha\beta}^2 \subset M$, $\mathcal{M}(M) = H^\infty(D^2)$. If $(\alpha, \beta) \in T^2$, then $Z(M) = \{(\alpha a_j, \beta a_j) \in D^2 : \sum_{j=0}^{\infty} (1 |a_j|) \times [-\log(1 |a_j|)]^{1-\varepsilon} < \infty$ for all $\varepsilon > 0$. If $(\alpha, \beta) \in T \times D \cup D \times T$, then $Z(M) = \{(\alpha a_j, \beta a_j) \in D^2 : \sum_{j=1}^{\infty} (1 |a_j|) < \infty$. If $(\alpha, 0) \in \overline{D} \times D$ and $\alpha \neq 0$, then $M = qH^2(D) \oplus wH^2(D^2)$ where q is a one variable inner function with q = q(z) and hence $Z(M) = \{(s, 0) \in D^2 : q(s) = 0 \text{ and } s \in D\}$.

PROOF. (1) and (2) are clear. (3): Let $(\alpha, \beta) \in T^2$. If $f \in \ker \Phi_{\alpha\beta}$, $f = \sum_{j=0}^{\infty} F_j$ and $F_j(z, w) = \sum_{\ell=0}^{j} a_\ell z^{j-\ell} w^\ell$, then $F_j(z, w) = c(\beta z - \alpha w) \prod_{\ell=2}^{j} (w - c_\ell z)$ and hence f can be approximated by the functions in $(\beta z - \alpha w) H^2(D^2)$. This implies that $(\beta z - \alpha w) H^2(D^2)$ is dense in $\ker \Phi_{\alpha\beta}^2$. Suppose $\ker \Phi_{\alpha\beta} = (\beta z - \alpha w) H^2(D^2)$; then the multiplication operator by $\beta z - \alpha w$ is a left invertible operator from $H^2(D^2)$ to $\ker \Phi_{\alpha\beta}$. Hence there exists a positive constant ε such that

$$\int_{T^2} |g|^2 |\beta z - \alpha w|^2 dm \ge \varepsilon \int_{T^2} |g|^2 dm$$

for all $g \in H^{\infty}(D^2)$ and so

$$\int_{T^2} u|\beta z - \alpha w|^2 dm \ge \varepsilon \int_{T^2} u dm$$

for all nonnegative continuous functions u on T^2 . Thus $|\beta z - \alpha w|^2 \ge \varepsilon > 0$ a.e. on T^2 and this contradiction implies that $\ker \Phi_{\alpha\beta} \ne (\beta z - \alpha w)H^2(D^2)$. Let $(\alpha, \beta) \in T \times D \cup D \times T$. Since $\beta z - \alpha w$ is invertible in L^{∞} , $\ker \Phi_{\alpha\beta} = (\beta z - \alpha w)H^2(D^2)$ because $(\beta z - \alpha w)H^2(D^2)$ is dense in $\ker \Phi_{\alpha\beta}$.

(4): Let $(\alpha, \beta) \in T^2$. If $\phi \in \mathcal{M}(\ker \Phi_{\alpha\beta})$, then $\phi(\beta z - \alpha w) = g$ for some $g \in H^{\infty}(D^2)$. By the Lemma, ϕ belongs to $H^{\infty}(D^2)$ and hence $\mathcal{M}(\ker \Phi_{\alpha\beta}) = H^{\infty}(D^2)$. Let $(\alpha, \beta) \in T \times D \cup D \times T$ and $\phi \in \mathcal{M}(\ker \Phi_{\alpha\beta})$. By (3), $\ker \Phi_{\alpha\beta} = (\beta z - \alpha w)H^2(D^2)$ and hence

$$\phi(\beta z - \alpha w)H^2(D^2) \subset H^2(D^2).$$

This implies that $\phi(\beta z - \alpha w) \in H^{\infty}(D^2)$ and so $\mathcal{M}(\ker \Phi_{\alpha\beta}) = (\beta z - \alpha w)^{-1}H^{\infty}(D^2)$. (5) is easy to see. (6): If $(\alpha, \beta) \in T^2$ and $\ker \Phi_{\alpha\beta} \subset M$, then by (3) of Proposition 1 and [3, Corollary 3.6], $\mathcal{Z}([\Phi_{\alpha\beta}M]_2) = \{a_j \in D : \sum_{j=1}^{\infty} (1-|a_j|)[-\log(1-|a_j|)]^{1-\varepsilon} < \infty$ for all $\varepsilon > 0\}$. This and Theorem 1 in [2] imply the first part. For $(\alpha, \beta) \in T \times D \cup D \times T$, we can show similarly by (4) of Proposition 1.

3. **Multipliers.** By (4) of Proposition 3, we know the set of all multipliers $\mathcal{M}(M)$ of an invariant subspace such that $\ker \Phi_{\alpha\beta}^2 \subseteq M \subseteq H^2(D^2)$ when $(\alpha,\beta) \in T^2 \cup T \times D \cup D \times T$ or $(\alpha,0) \in D \times D \setminus (0,0)$. When $(\alpha,\beta) \in D \times D$ and $|\alpha| = |\beta| > 0$, there exists $(\alpha_0,\beta_0) \in T \times T$ such that $\alpha = r\alpha_0$ and $\beta = r\beta_0$ for some $r \in (0,1)$. When $(\alpha,\beta) \in D \times D$ and $0 \leq |\alpha| < |\beta|$, there exists $(\alpha_0,\beta_0) \in D \times T$ such that $\alpha = r\alpha_0$ and $\beta = r\beta_0$ for some $r \in (0,1)$. (1) of Proposition 3 implies $\ker \Phi_{\alpha\beta}^2 = \ker \Phi_{\alpha_0\beta_0}^2$. Hence for arbitrary $(\alpha,\beta) \in \bar{D} \times \bar{D} \setminus (0,0)$, we can describe $\mathcal{M}(M)$ by Proposition 3. In this section, we study $\mathcal{M}(M)$ without such a condition. In this section, for example, we study $\mathcal{M}(M)$ of an invariant subspace such that $M \subseteq \ker \Phi_{\alpha\beta}^2$. In fact, we study such a problem more generally, that is, when the 2-dimensional Hausdorff measure of $\mathcal{Z}(M) \cap \mathcal{D}_{\alpha\beta}^c$ is zero. For $\Lambda \subset T^2 \cup T \times D \cup D \times T$, put

$$\mathcal{D}_{\Lambda} = \{ \cup \mathcal{D}_{\alpha\beta} ; (\alpha, \beta) \in \Lambda \} \setminus \{ (0, 0) \}.$$

Note that if $Z(M) \supseteq \mathcal{D}_{\Lambda}$ and Λ is an infinite set such that $\mathcal{D}_{\alpha\beta} \cap \mathcal{D}_{\gamma\delta} = \{(0,0)\}$ when $(\alpha,\beta) \neq (\gamma,\delta)$, then $M = \{0\}$.

THEOREM 4. Let Λ be a finite set of T^2 . If M is an invariant subspace of $H^2(D^2)$ which satisfies the following (1)–(3), then $\mathcal{M}(M) = H^{\infty}(D^2)$.

- (1) For any $p \in \mathcal{Z}(M) \cap \mathcal{D}_{\Lambda}$, there exists a function f in M such that f has a zero of order 1 at p.
- (2) The 2-dimensional Hausdorff measure of $Z(M) \cap \mathcal{D}^c_{\Lambda}$ is zero.
- (3) $Z_{\partial}(M) = 0$.

PROOF. Suppose $\phi \in \mathcal{M}(M)$. Fix $p \in \mathcal{Z}(M) \cap \mathcal{D}_{\Lambda}$. By (1), let f be a function in M such that f has a zero of order 1 at p. Let $(\alpha, \beta) \in \Lambda$ with $p \in \mathcal{D}_{\alpha\beta}$. By definition of $\mathcal{M}(M)$, $\phi f = g$ for some $g \in H^2(D^2)$. Put $k(z, w) = \beta z - \alpha w$; then $k_p(\zeta) = k(\zeta + p) = k(\zeta)$ and $k_p(\zeta)\phi_p(\zeta)f_p(\zeta) = k(\zeta)g_p(\zeta)$. Suppose $f_p(\zeta) = \sum_{j=0}^{\infty} F_j(\zeta)$ is a homogeneous expansion of f_p . Since $1 = s(f_p)$, $F_1(0, w) = cw$ for $c \neq 0$. By the Weierstrass preparation theorem (cf. [6, Theorem 1.2.1]), there exists a polydisc Δ in \mathbb{C}^2 , centered at (0, 0), such that

$$f_D(z, w) = W(z, w)h(z, w)$$

for $(z, w) \in \Delta$ where h is analytic in Δ , h has no zero in Δ , $W(z, w) = w + b_0(z)$ and b_0 is analytic in Δ with $b_0(0) = 0$. Since $f_p(\alpha\lambda, \beta\lambda) \equiv 0$ on D, $\beta\lambda + b_0(\alpha\lambda) = 0$ if $(\alpha\lambda, \beta\lambda) \in \Delta$ and hence $b_0(\alpha\lambda) = -\beta\lambda$. Thus $b_0(z) = -\frac{\beta}{\alpha}z$ and $W(z, w) = -\frac{1}{\alpha}(\beta z - \alpha w)$. Therefore $k_p\phi_p = kg_p/f_p$ is analytic in Δ and so $k\phi$ is analytic in $\Delta + p$, in a sense of R. G. Douglas and K. Yan [2]. Therefore

$$\prod_{(\alpha,\beta)\in\Lambda}(\beta z-\alpha w)\phi(z,w)$$

is analytic in a neighborhood of $\mathcal{Z}(M) \cap \mathcal{D}_{\Lambda}$.

If $p \notin \mathcal{Z}(M)$, then there exists a function k in M such that k has no zeros in some polydisc Δ_p , centered at p. As in the proof above, $\phi(z, w)$ is analytic in Δ_p and hence ϕ is analytic in $D^2 \setminus \mathcal{Z}(M) \cap \mathcal{D}_{\Delta}^c$. By

(2), $Z(M) \cap \mathcal{D}_{\Lambda}^{c}$ is a removable singularity for analytic functions, and hence $\psi(z, w) = \prod (\beta z - \alpha w) \phi(z, w)$ is analytic in D^{2} . By the proof of [2, Theorem 1], $\psi \in N(D^{2}) \cap L^{\infty}(T^{2})$ and $d\sigma_{\psi} \leq -Z_{\partial}(M)$ because $d\sigma_{\phi} = d\sigma_{\psi}$. By (3), $d\sigma_{\psi} = 0$ and hence $\psi \in H^{\infty}(D^{2})$. By the Lemma, ϕ belongs to $H^{\infty}(D^{2})$ and hence $\mathcal{M}(M) = H^{\infty}(D^{2})$.

THEOREM 5. Let Λ be a finite set of $T \times D \cup D \times T$. If M is an invariant subspace of $H^2(D^2)$ which $\mathcal{Z}(M) \supseteq \mathcal{D}_{\Lambda}$ and satisfies the following (1)–(3), then

$$\mathcal{M}(M) = \prod_{(\alpha,\beta) \in \Lambda} (\beta z - \alpha w)^{-1} H^{\infty}(D^2).$$

- (1) For any $p \in Z(M)$, there exists a function f in M such that f has a zero of order 1 at p.
- (2) The 2-dimensional Hausdorff measure of $\mathcal{Z}(M) \cap \mathcal{D}^c_{\Lambda}$ is zero.
- (3) $Z_{\partial}(M) = 0$.

PROOF. By the proof of Theorem 4, if $\phi \in \mathcal{M}(M)$, then $\Pi(\beta z - \alpha w)\phi(z, w) \in H^{\infty}(D^2)$ where (α, β) ranges over Λ . Hence $\phi \in \Pi(\beta z - \alpha w)^{-1}H^{\infty}(D^2)$. Conversely if $\phi \in \Pi(\beta z - \alpha w)^{-1}H^{\infty}(D^2)$ and $f \in M$, then f = 0 on \mathcal{D}_{Λ} ; hence by the Weierstrass preparation theorem, $\Pi(\beta z - \alpha w)^{-1}f(z, w)$ is analytic in D^2 and ϕ belongs to $\mathcal{M}(M)$.

4. Two general cases and remarks. Let a and b be two functions in $H^{\infty}(D)$ with $||a||_{\infty} \le 1$ and $||b||_{\infty} \le 1$. For f in $H^{p}(D^{2})$,

$$(\Phi_{ab}^p f)(\lambda) = f(a(\lambda), b(\lambda)) \qquad (\lambda \in D).$$

If $a(\lambda)=\alpha(\lambda)$ and $b(\lambda)=\beta\lambda$, then Φ^p_{ab} was called a slice map $\Phi^p_{\alpha\beta}$ in the previous sections. For an arbitrary pair a and b, we know only very trivial results. It is easy to see that Φ^∞_{ab} maps $H^\infty(D^2)$ into $H^\infty(D)$. If $\|a\|_\infty<1$ and $\|b\|_\infty<1$, then Φ^p_{ab} maps $H^p(D^2)$ into $H^\infty(D)$. In general, $\ker\Phi^p_{ab}$ is still an invariant subspace of $H^2(D^2)$, and

$$\mathcal{Z}(\ker \Phi_{ab}^2) \supseteq \mathcal{D}_{ab} = \{(a(\lambda), b(\lambda)) \in D^2 ; \lambda \in D\}.$$

The function b(z)-a(w) may not belong to $\ker \Phi_{ab}^2$. If $a(\lambda)=\alpha\lambda$ and $b(\lambda)=\beta\lambda$, then $(b\circ a)(\lambda)=(a\circ b)(\lambda)$ for $\lambda\in D$, and hence b(z)-a(w) belongs to $\ker \Phi_{ab}^2$. If $a(\lambda)=\lambda$ and $b(\lambda)$ is an inner function, then $(b\circ a)(\lambda)=(a\circ b)(\lambda)$ for $\lambda\in D$, and hence b(z)-a(w)=b(z)-w belongs to $\ker \Phi_{ab}^2$. In this case, $\mathcal{Z}_{\overline{c}}(\ker \Phi_{ab}^2)=0$. For any $p\in \mathcal{D}_{ab}$, b(z)-w has a zero of order 1 at $p\in \mathcal{D}_{ab}$. If $\phi\in L^\infty(T^2)$ and $(b(z)-w)\phi(z,w)\in H^\infty(D^2)$, then $\phi\in H^\infty(D^2)$. This can be shown as in [4, Proposition 3 and Theorem 7]. This implies (4) of Proposition 3. The proof of the following theorem is almost parallel to that of Theorem 4.

THEOREM 6. Let $a(\lambda) = \lambda$ and $b(\lambda)$ be an inner function. If M is an invariant subspace of $H^2(D^2)$ which satisfies the following (1)–(3), then $\mathcal{M}(M) = H^{\infty}(D^2)$.

(1) For any $p \in \mathcal{Z}(M) \cap \mathcal{D}_{ab}$, there exists a function f in M such that f has a zero of order 1 at $p \in \mathcal{Z}(M) \cap \mathcal{D}_{ab}$.

- (2) The 2-dimensional Hausdorff measure of $Z(M) \cap \mathcal{D}_{ab}^{c}$ is zero.
- (3) $Z_{\partial}(M) = 0$.

If $a(\lambda) = \lambda$ and $b(\lambda) = cq(\lambda)$ where c is a constant with |c| < 1 and q is an inner function, we can show a version of Theorem 5 as Theorem 6 which is that of Theorem 4. Let D^n be the open unit polydisc in \mathbb{C}^n and T^n be its distinguished boundary. Fix $\alpha = (\alpha_1, \ldots, \alpha_n) \in \overline{D^n}$. For f in $H^p(D^n)$

$$(\Phi_{\alpha}^{p}f)(\lambda) = f(\alpha_{1}\lambda, \dots, \alpha_{n}\lambda) \qquad (\lambda \in D).$$

(1), (2) and (3) of Proposition 1 can be proved for arbitrary n. If $\alpha_j \in T$ for some j with $1 \leq j \leq n$ and $\alpha_i \in D$ for all i with $1 \leq i \leq n$ and $i \neq j$, we can show that Φ^2_{α} is an onto map from $H^2(D^n)$ to $H^2(D)$ with $\|\Phi^2_{\alpha}\| \leq \prod_{i \neq j} (1 - |\alpha_j|^2)^{-1}$. This is a generalization of (4) of Proposition 1. Similarly we can generalize Proposition 2. If $\phi \in L^{\infty}(T^n)$ and $(\alpha_i z_j - \alpha_j z_i)\phi(z_1, \ldots, z_n) \in H^{\infty}(D^n)$ where $1 \leq i \neq j \leq n$ and $\alpha = (\alpha_i, \ldots, \alpha_n) \in T^n$, then $\phi \in H^{\infty}(D^n)$. This also can be shown as in [4, Proposition 3 and Theorem 7]. $\ker \Phi^2_{\alpha}$ is an invariant subspace and a generalization of (1) and (2) of Proposition 3 is true. Suppose n > 2. If M is an invariant subspace of $H^2(D^n)$, $\mathcal{Z}(M) = \mathcal{D}_{\alpha} = \{(\alpha_1 \lambda, \ldots, \alpha_n \lambda); \lambda \in D\}$ for $\alpha \in T^n$ and $\mathcal{Z}_{\mathcal{C}}(M) = 0$, then $\mathcal{M}(M) = H^{\infty}(D^n)$. For it is a result of R. G. Douglas and K. Yan [2, Theorem 1] because the real 2n-2 dimensional Hausdorff measure of $\mathcal{Z}(M)$ is zero.

REMARK. (i): As in Theorem 1 of [2], Theorem 4 can be stated as the following: If M is an invariant subspace of $H^2(D^2)$ which satisfies (1) and (2), then $\phi \in \mathcal{M}(M)$ if and only if $\phi \in N(D^2) \cap L^{\infty}(T^2)$ and $d\sigma_{\phi} \leq Z_{\partial}(M)$. (ii): By Lemma 7 in [2] and Theorem 4, if M and N are quasi-similar invariant subspaces of $H^2(D^2)$ and M satisfies (1)—(3) in Theorem 4, then $M \subseteq N$. This is a generalization of Theorem 2 in [2]. Similarly we can generalize Corollaries 9 and 12. (iii): Let M, N be invariant subspaces of $H^2(D^2)$ satisfying (a) the 2-dimensional Hausdorff measures of $Z(M) \cap \mathcal{D}_{\Lambda}^c$ and $Z(N) \cap \mathcal{D}_{\Lambda}^c$ are zero. (b) $Z_{\partial}(M) = Z_{\partial}(N)$. (c) M and N satisfy the condition (1) in Theorem 4 about $Z(M) \cap \mathcal{D}_{\Lambda}$ and $Z(N) \cap \mathcal{D}_{\Lambda}$. If M and N are quasi-similar, then M = N.

REFERENCES

- A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1949), 239–255.
- 2. R. G. Douglas and K. Yan, On the rigidity of Hardy submodules, Integral Eq Op. Th. 13(1990), 350–363.
- 3. C. Horowitz, Zeros of functions in the Bergman spaces, Duke Math. J. 41(1974).
- 4. T. Nakazi, Multipliers of invariant subspaces in the bidisc, Proc. Edinburgh Math. Soc. 37(1994), 193–199.
- **5.** M. Range, A small boundary for H^{∞} on the polydisc, Proc. Amer. Math. Soc. **32**(1972), 253–255.
- 6. W. Rudin, Function Theory in Polydisks, Benjamin, New York (1969).

Department of Mathematics Hokkaido University Sapporo 060 Japan