
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1–35, 2025

DOI:10.1017/prm.2025.10074

Optimization of the principal eigenvalue of the
Neumann Laplacian with indefinite weight and
monotonicity of minimizers in cylinders

Claudia Anedda
Department of Mathematics and Computer Science, University of
Cagliari, Via Ospedale 72, Cagliari, Italy (canedda@unica.it)

Fabrizio Cuccu
Department of Mathematics and Computer Science, University of
Cagliari, Via Ospedale 72, Cagliari, Italy (fcuccu@unica.it)
(corresponding author)

(Received 17 March 2025; revised 17 July 2025; accepted 17 July 2025)

Let Ω ⊂ RN , N ≥ 1, be an open bounded connected set. We consider the indefinite
weighted eigenvalue problem −∆u = λmu in Ω with λ ∈ R, m ∈ L∞(Ω) and with
homogeneous Neumann boundary conditions. We study weak* continuity, convexity
and Gâteaux differentiability of the map m 7→ 1/λ1(m), where λ1(m) is the principal
eigenvalue. Then, denoting by G(m0) the class of rearrangements of a fixed weight
m0, under the assumptions that m0 is positive on a set of positive Lebesgue measure
and

∫
Ω m0 dx < 0, we prove the existence and a characterization of minimizers of

λ1(m) and the non-existence of maximizers. Finally, we show that, if Ω is a cylinder,
then every minimizer is monotone with respect to the direction of the generatrix. In
the context of the population dynamics, this kind of problems arise from the question
of determining the optimal spatial location of favourable and unfavourable habitats
for a population to survive.
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1. Introduction and main results

In this paper, we consider the weighted eigenvalue problem with homogenous
Neumann boundary conditions−∆u = λmu in Ω

∂u

∂ν
= 0 on ∂Ω,

(1)

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society
of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-
nd/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided that no alterations are made and the original article is properly cited. The written
permission of Cambridge University Press must be obtained prior to any commercial use and/or
adaptation of the article.

1

https://doi.org/10.1017/prm.2025.10074 Published online by Cambridge University Press

mailto:canedda@unica.it
mailto:fcuccu@unica.it
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1017/prm.2025.10074


2 C. Anedda and F. Cuccu

where Ω ⊂ RN is an open bounded domain with Lipschitz boundary ∂Ω, m ∈
L∞(Ω) changes sign in Ω, λ ∈ R and ν is the outward unit normal vector on ∂Ω.

An eigenvalue λ of (1) is called principal eigenvalue if it admits a positive eigen-
function. Clearly, λ=0 is a principal eigenvalue with positive constants as its
eigenfunctions. Problem (1) has been studied in various papers (see, for example,
[8, 9, 44]). In particular, it is known that there is a positive (respectively negative)
principal eigenvalue if and only if

∫
Ω
mdx < 0 (respectively

∫
Ω
mdx > 0). For the

sake of completeness and in order to maintain this paper self-contained, we prefer
to give here (see §2) an independent proof of the result above. Moreover, we show
that, under the previous hypothesis on m, there exists an increasing (respectively
decreasing) sequence of positive (respectively negative) eigenvalues. The smallest
positive eigenvalue is the principal eigenvalue, which will be denoted by λ1(m).

Problem (1) and its variants play a crucial role in studying nonlinear models from
population dynamics (see [45]) and population genetics (see [26]). We illustrate in
details the following model in population dynamics devised by Skellam [45]

vt = ∆v + γv[m(x)− v] in Ω× (0,∞),

∂v

∂ν
= 0 on ∂Ω× (0,∞),

v(x, 0) = v0(x) ≥ 0, v(x, 0) 6≡ 0 in Ω.

(2)

In (2), v(x, t) represents the density of a population inhabiting the region Ω
at location x and time t (for that reason, only non-negative solutions of (2) are
of interest), v0 is the initial density and γ is a positive parameter. The func-
tion m(x ) represents the intrinsic local grow rate of the population, it is positive
on favourable habitats and negative on unfavourable ones and it mathematically
describes the available resources in the spatially heterogeneous environment Ω. The
integral

∫
Ω
mdx can be interpreted as a measure of the total resources in Ω. The

Neumann conditions in (2) are zero-flux boundary conditions: it means that no
individuals cross the boundary of the habitat, i.e. the boundary acts as a barrier.

The model (2) can be also considered with Neumann boundary conditions
replaced by the homogeneous Dirichlet or Robin conditions. In the first case, the
environment Ω is surrounded by a completely inhospitable region, i.e. any individual
reaching the boundary dies, while in the second some individuals reaching the
boundary die and the others return to the interior of Ω. It is known (see [13, 15] and
references therein) that (2) predicts persistence for the population if λ1(m) < γ.
As a consequence, determining the best spatial arrangement of favourable and
unfavourable habitats for the survival, within a fixed class of environmental con-
figurations, results in minimizing λ1(m) over the corresponding class of weights.
Having information of this type could affect, for example, on the strategies to be
adopted for the conservation of species with limited resources.

This kind of problem has been investigated by many other authors. The question
of determining the optimal spatial arrangements of favourable and unfavourable
habitats in Ω for the survival of the modelled population was first addressed by
Cantrell and Cosner in [13, 14]. The authors considered the diffusive logistic equa-
tion (2) with homogeneous Dirichlet boundary conditions and when the weight m
has fixed maximum, minimum and integral over Ω. The analogous problem with
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Optimization of the principal eigenvalue of the Neumann Laplacian 3

Neumann boundary conditions has been analysed by Lou and Yanagida in [36].
Berestycki et al. [5] investigated a model similar to (2) in the case of periodically
fragmented environment (Ω = RN and m(x ) periodic), Roques and Hamel [42]
proved the existence of a minimizer in the case of “bang-bang” configurations and
also investigated the problem by using numerical computation, Jha and Porru [30],
among other things, exhibited an example of symmetry breaking of the optimal
arrangement of the local growth rate. Lamboley et al. [33] investigated model (2)
with Robin boundary conditions. Mazari et al. [37] studied several shape opti-
mization problems arising in population dynamics, we refer the reader to it for
a review of current knowledge on the subject. We also mention Cadeddu et al.
[12], which considered mixed boundary conditions, Ferreri and Verzini [25] which
studied asymptotic properties for Dirichlet boundary conditions, Mazzoleni et al.
[38] which considered a singular analysis for Neumann problems, Derlet et al. [22]
and Cuccu et al. [19], that extended these type of results to the principal eigen-
value associated to the p-Laplacian operator for Neumann and Dirichlet boundary
conditions respectively. Finally, Pellacci and Verzini [40] considered the fractional
Laplacian operator and Dipierro et al. [23] a mixed local and nonlocal operator.

In order to present our work, we briefly give some notations and definitions
here. We denote by λk(m), k ∈ N, the kth positive eigenvalue of problem (1)
corresponding to the weight m (assuming

∫
Ω
mdx < 0). We say that two

Lebesgue measurable functions f, g : Ω → R are equimeasurable if the super-
level sets {x ∈ Ω : f(x) > t} and {x ∈ Ω : g(x) > t} have the same
measure for all t ∈ R. For a fixed f ∈ L∞(Ω), we call the set G(f) = {g :
Ω → R : g is measurable and g and f are equimeasurable} the class of rear-
rangements of f (see Appendix A). Moreover, we introduce the set L∞

< (Ω) ={
m ∈ L∞(Ω) :

∫
Ω
mdx < 0

}
.

The present paper contains three main results. First, we study the dependence
of λk(m) on m, in particular we investigate continuity and, for k =1, convexity
and differentiability properties (see Lemmas 3, 4 and 5). Second, we examine the
optimization of λ1(m) in the class of rearrangements G(m0) of a fixed function
m0 ∈ L∞

< (Ω). Precisely, we prove the existence of minimizers, a characterization of
them in terms of the eigenfunctions relative to λ1(m) and a non-existence result
for the maximizers.

Theorem 1. Let λ1(m) be the principal eigenvalue of problem (1), m0 ∈ L∞
< (Ω)

such that the set {x ∈ Ω : m0(x) > 0} has positive Lebesgue measure, G(m0) the

class of rearrangements of m0 (see Definition 7) and G(m0) its weak* closure in
L∞(Ω). Then

(i) the problem

min
m∈G(m0)

|{m>0}|>0

λ1(m) (3)

admits solutions and any solution m̌1 belongs to G(m0);
(ii) for every solution m̌1 ∈ G(m0) of (3), there exists an increasing function ψ

such that

m̌1 = ψ(um̌1) a.e. in Ω, (4)
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where um̌1
is the unique positive eigenfunction relative to λ1(m̌1) normalized as

in (28);
(iii)

sup
m∈G(m0)

λ1(m) = +∞.

We note that the class of weights usually considered in literature, i.e. a set of
bounded functions with fixed maximum, minimum and integral over Ω, can be
written in terms of G(m0) for a m0 which takes exactly two values (functions of
this kind are called of “bang-bang” type). This fact is proved in [2].

From the biological point of view, (i) of Theorem 1 says that there exists an
arrangement of the resources that maximizes the chances of survival and, in this
case, the population density is larger where the habitat is more favourable. On
the other hand, (iii) means that there are configurations of resources as bad (i.e.
inhospitable) as one prescribes.

Our third main result is the following

Theorem 2. Let Ω = (0, h)×ω ⊂ RN , h> 0 and ω ⊂ RN−1 be a bounded polyhedral
or smooth domain. Let m0 ∈ L∞

< (Ω) such that the set {x ∈ Ω : m0(x) > 0}
has positive Lebesgue measure and G(m0) the class of rearrangements of m0 (see
Definition 7). Then every minimizer of (3) is monotone with respect to x1, where
x1 is the first coordinate of RN .

Monotonicity results of this kind have been studied both theoretically and numer-
ically by a number of authors. Theorem 2 in the one dimensional case has been
proved in [14, 36] in the case m0 is a “bang-bang” function and in [30] for general
m0. In general dimension, when the domain Ω is an orthotope and m0 is of “bang-
bang” type, Lamboley et al. in [33] show that any minimizer is monotonic with
respect to every coordinate direction. Theorem 2 contains all previous results and
it is coherent with numerical simulations in [31, 42] for rectangles and “bang-bang”
weights.

It is worth mentioning that in the case (1) is considered with Dirichlet boundary
conditions, the monotonicity of minimizers is replaced by the Steiner symmetry of
them (see [2, 7, 14]). Nevertheless, in both situations these qualitative properties of
the minimizers lead to an arrangement of the favourable resources fragmented as
little as possible. Indeed, in the Dirichlet case they are concentrated far from the
boundary, while in the Neumann case they meet the boundary.

As final remark, we observe that problem (1), with Dirichlet boundary conditions
in place of Neumann and in the case of positive weight m(x ), also has a well-known
physical interpretation: it models the vibration of a membrane Ω with clamped
boundary ∂Ω and mass density m(x ); λ1(m) represents the principal natural fre-
quency of the membrane. Therefore, physically, minimizing λ1(m) means to find
the mass distribution of the membrane which gives the lowest principal natural
frequency. Usually, the composite membrane is built using only two homogeneous
materials of different densities and, then, the weights in the optimization problem
take only two positive values. Among many papers that consider the optimization
of the principal natural frequency, we recall [16–18].
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This paper is structured as follows. In §2, we set up the functional framework
and some tools in order to investigate the spectrum of problem (1). In §3, we
study the dependence of λk(m) on m, in particular continuity and, for k =1, con-
vexity and differentiability properties; then, we prove Theorem 1. In §4, we give
the proof of Theorem 2. Finally, in Appendix A we collect some known results
about rearrangements of measurable functions we need to examine the optimization
problem (3).

2. Notations, preliminaries and weak formulation of (1)

Let Ω ⊂ RN , N ≥ 1, be a bounded connected open set with Lipschitz boundary
∂Ω.

In this paper, we denote by |E| the measure of an arbitrary Lebesgue measurable
set E ⊂ RN and by L∞(Ω), L2(Ω) and H1(Ω) the usual Lebesgue and Sobolev
spaces. The usual norms and scalar products of these spaces are denote by

‖u‖L∞(Ω) = ess supΩ|u| ∀u ∈ L∞(Ω),

〈u, v〉L2(Ω) =

∫
Ω

uv dx ∀u, v ∈ L2(Ω)

‖u‖L2(Ω) = 〈u, u〉1/2L2(Ω) ∀u ∈ L2(Ω),

〈u, v〉H1(Ω) =

∫
Ω

uv dx+

∫
Ω

∇u · ∇v dx ∀u, v ∈ H1(Ω),

‖u‖H1(Ω) = 〈u, u〉1/2H1(Ω) ∀u ∈ H1(Ω). (5)

Moreover, we also use the notation 〈∇u,∇v〉L2(Ω) =
∫
Ω
∇u ·∇v dx for all u, v ∈

H1(Ω) and by weak* convergence we always mean the weak* convergence in L∞(Ω).
Given m ∈ L2(Ω) such that m ≠ 0, we define the spaces

L2
m(Ω) =

{
f ∈ L2(Ω) :

∫
Ω

mf dx = 0

}
and Vm(Ω) = H1(Ω) ∩ L2

m(Ω).

L2
m(Ω) and Vm(Ω) are separable Hilbert subspaces of L2(Ω) andH1(Ω) respectively.

2.1. The projection Pm and norm in Vm(Ω)

In this subsection, we introduce a fundamental tool in order to develop our theory:
a projection from L2(Ω) to L2

m(Ω) (which must not be confused with the usual
orthogonal projection in Hilbert spaces).

Definition 1. Let m ∈ L2(Ω) such that
∫
Ω
mdx 6= 0. We call projection Pm the

operator

Pm : L2(Ω) → L2
m(Ω), f 7→ f −

∫
Ω
mf dx∫

Ω
mdx

.
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Note that Pm(H1(Ω)) ⊂ Vm(Ω). Indeed, depending on the case (which will be
clear from the context), it might be more convenient to consider the projection
Pm : H1(Ω) → Vm(Ω). Since in our work m(x ) represents the local growth rate,
which is a bounded function, hereafter we consider m ∈ L∞(Ω). Nevertheless,
Proposition 1, Proposition 2 and Proposition 3 can also be stated for m ∈ L2(Ω).

Proposition 1. Let m, q ∈ L∞(Ω) such that
∫
Ω
mdx,

∫
Ω
q dx 6= 0 and Pm the

projection of Definition 1. Then

i) 〈mPm(f), ϕ〉L2(Ω) = 〈mf,Pm(ϕ)〉L2(Ω) for all f, ϕ ∈ L2(Ω);
ii) Pm(f) = 0 if and only if f is constant;
iii) Pm(f) = f for all f ∈ L2

m(Ω);
iv) ∇Pm(f) = ∇f for all f ∈ H1(Ω);
v) Pm is a linear bounded operator with

‖Pm‖L(L2(Ω),L2(Ω)) ≤ 1 +
‖m‖L∞(Ω)∣∣∫

Ω
mdx

∣∣ |Ω| (6)

and

‖Pm‖L(H1(Ω),H1(Ω)) ≤ 1 +
‖m‖L∞(Ω)∣∣∫

Ω
mdx

∣∣ |Ω|; (7)

vi) the compositions Pq ◦ Pm : L2
q(Ω) → L2

q(Ω), Pq ◦ Pm : Vq(Ω) → Vq(Ω) are
identities;

vii) Pm : L2
q(Ω) → L2

m(Ω), Pm : Vq(Ω) → Vm(Ω) are isomorphisms.

Proof. (i), (ii), (iii) and (iv) are immediate consequences of the definition of the
projection Pm.

(v) By the definition of Pm and straightforward calculations we find

‖Pm(f)‖2L2(Ω) =

∫
Ω

[
f2 − 2

∫
Ω
mf dx∫

Ω
m dx

f +

(∫
Ω
mf dx∫

Ω
m dx

)2
]
dx

= ‖f‖2L2(Ω) − 2

∫
Ω
mf dx∫

Ω
m dx

∫
Ω

f dx+

(∫
Ω
mf dx∫

Ω
m dx

)2

|Ω|

≤ ‖f‖2L2(Ω) + 2
‖m‖L2(Ω)‖f‖2L2(Ω)∣∣∫

Ω
m dx

∣∣ |Ω|1/2 +
‖m‖2L2(Ω)‖f‖

2
L2(Ω)∣∣∫

Ω
m dx

∣∣2 |Ω|

=

(
‖f‖L2(Ω) +

‖m‖L2(Ω)‖f‖L2(Ω)∣∣∫
Ω
m dx

∣∣ |Ω|1/2
)2

≤

(
‖f‖L2(Ω) +

‖m‖L∞(Ω)‖f‖L2(Ω)∣∣∫
Ω
m dx

∣∣ |Ω|

)2

=

(
1 +

‖m‖L∞(Ω)∣∣∫
Ω
m dx

∣∣ |Ω|
)2

‖f‖2L2(Ω);

then (6) holds. The estimate (7) follows from (6) and (iv).
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(vi) Let f ∈ L2
q(Ω); recalling that

∫
Ω
qf dx = 0, we have

Pq(Pm(f)) = Pq

(
f −

∫
Ω
mf dx∫

Ω
mdx

)

= f −
∫
Ω
mf dx∫

Ω
mdx

−

∫
Ω
qf dx−

∫
Ω
mf dx∫

Ω
mdx

∫
Ω
q dx∫

Ω
q dx

= f ;

the second statement immediately follows from the first one.
(vii) It immediately follows from vi). �

For the sake of convenience, we put

C1(m) = 1 +
‖m‖L∞(Ω)∣∣∫

Ω
mdx

∣∣ |Ω|. (8)

The previous proposition leads us to an alternative norm in the space Vm(Ω).

Proposition 2. Let m ∈ L∞(Ω) such that
∫
Ω
mdx 6= 0. Then, for all u ∈ Vm(Ω)

we have

‖u‖L2(Ω) ≤ C

(
1 +

‖m‖L∞(Ω)∣∣∫
Ω
mdx

∣∣ |Ω|
)
‖∇u‖L2(Ω), (9)

with C2 equal to the constant of the Poincaré-Wirtinger’s inequality (see [35,
Theorem 12.23]).

Proof. Let u ∈ Vm(Ω). By (vi) of Proposition 1 we have u = Pm(P1(u)). By (6)
and the Poincaré-Wirtinger’s inequality we find

‖u‖L2(Ω) = ‖Pm(P1(u))‖L2(Ω) ≤ C1(m)‖P1(u)‖L2(Ω)

≤ C1(m)

∥∥∥∥u− 1

|Ω|

∫
Ω

u dx

∥∥∥∥
L2(Ω)

≤ C1(m) · C‖∇u‖L2(Ω),

which proves the statement. �

Proposition 3. Let m ∈ L∞(Ω) such that
∫
Ω
mdx 6= 0. Then, the bilinear form

in Vm(Ω)

〈u, v〉Vm(Ω) =

∫
Ω

∇u · ∇v dx ∀u, v ∈ Vm(Ω) (10)

is a scalar product which induces a norm equivalent to the usual norm (5). We
denote by ‖u‖Vm(Ω) the associated norm to (10).
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Proof. Comparing ‖u‖Vm(Ω) with (5), we have

‖u‖Vm(Ω) ≤ ‖u‖H1(Ω). (11)

By (9) and (8), we find

‖u‖H1(Ω) ≤ (C2 · C2
1 (m) + 1)1/2‖u‖Vm(Ω). (12)

By (11) and (12), the thesis immediately follows. �

If not stated otherwise, we will consider Vm endowed with the norm just
introduced.

2.2. The operators Em and Gm

We study the eigenvalues of problem (1) by means of the spectrum of an operator
that we will introduce in this subsection.

Let m ∈ L∞(Ω) such that
∫
Ω
mdx 6= 0. For every f ∈ L2(Ω) let us consider the

following continuous linear functional on Vm(Ω)

ϕ 7→ 〈mf,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω).

By the Riesz Theorem, there exists a unique u ∈ Vm(Ω) such that

〈u, ϕ〉Vm(Ω) = 〈mf,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω) (13)

holds.
Let us introduce the operator

Em : L2(Ω) → Vm(Ω), (14)

where u = Em(f) is the unique function in Vm(Ω) that satisfies (13), i.e. for all
f ∈ L2(Ω), Em(f) is defined by

〈Em(f), ϕ〉Vm(Ω) = 〈mf,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω). (15)

Em is clearly linear. Putting ϕ = u in (13) and exploiting (9) and (8), we find

‖u‖Vm(Ω) ≤ C · C1(m)‖m‖L∞(Ω)‖f‖L2(Ω). (16)

Therefore Em is a linear bounded operator such that

‖Em‖L(L2(Ω),Vm(Ω)) ≤ C · C1(m)‖m‖L∞(Ω). (17)

Let im be the inclusion of Vm(Ω) into L2(Ω). Note that, by compactness of the
inclusion H1(Ω) ↪→ L2(Ω) (see [35]), it follows that im is a compact operator as
well. Moreover, we define a second the linear operator

Gm : Vm(Ω) → Vm(Ω) (18)
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by Gm = Em ◦ im, i.e. for all f ∈ Vm(Ω), Gm(f) is defined by

〈Gm(f), ϕ〉Vm(Ω) = 〈mf,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω). (19)

The main properties of the operators Em and Gm are summarized in the following
Proposition.

Proposition 4. Let m ∈ L∞(Ω) such that
∫
Ω
mdx 6= 0 and Pm, Em and Gm

defined by Definition 1, (15) and (19) respectively. Then

i) Em(f) = Gm(Pm(f)) for all f ∈ H1(Ω);
ii) Gm is self-adjoint and compact;
iii) Em restricted to H1(Ω) is compact.

Proof. (i) Let f ∈ H1(Ω), then Pm(f) ∈ Vm(Ω). By (19), (i) and (iii) of Proposition
1 we have

〈Gm(Pm(f)), ϕ〉Vm(Ω) = 〈mPm(f), ϕ〉L2(Ω) = 〈mf,Pm(ϕ)〉L2(Ω)

= 〈mf,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω).

Thus, by (15), Em(f) = Gm(Pm(f)).
(ii) For all f, g ∈ Vm(Ω), by (19), we have

〈Gm(f), g〉Vm(Ω) = 〈mf, g〉L2(Ω) = 〈mg, f〉L2(Ω) = 〈Gm(g), f〉Vm(Ω),

then Gm is self-adjoint. The compactness of the operator Gm is an immediate
consequence of its definition Gm = Em ◦ im, the inclusion im being compact and
the operator Em continuous.

(iii) It follows from (i) and (ii). �

By the general theory of self-adjoint compact operators (see [21, 34]), it follows
that all nonzero eigenvalues of Gm have a finite dimensional eigenspace and they
can be obtained by the Fischer’s Principle

µk(m) = sup
Fk⊂Vm(Ω)

inf
f∈Fk
f 6=0

〈Gm(f), f〉Vm(Ω)

‖f‖2Vm(Ω)

(20)

= sup
Fk⊂Vm(Ω)

inf
f∈Fk
f 6=0

∫
Ω
mf2 dx∫

Ω
|∇f |2 dx

, k = 1, 2, 3, . . . (20)

and

µ−k(m) = inf
Fk⊂Vm(Ω)

sup
f∈Fk
f 6=0

〈Gm(f), f〉Vm(Ω)

‖f‖2Vm(Ω)

= inf
Fk⊂Vm(Ω)

sup
f∈Fk
f 6=0

∫
Ω
mf2 dx

‖f‖2Vm(Ω)

, k = 1, 2, 3, . . . ,
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10 C. Anedda and F. Cuccu

where the first extrema are taken over all the subspaces Fk of Vm(Ω) of dimension
k. As observed in [21], all the inf’s and sup’s in the above characterizations of the
eigenvalues are actually assumed. Hence, they could be replaced by min’s and max’s
and the eigenvalues are obtained exactly in correspondence of the associated eigen-
functions. The sequence {µk(m)} contains all the real positive eigenvalues (repeated
with their multiplicity), is decreasing and converging to zero, whereas {µ−k(m)}
is formed by all the real negative eigenvalues (repeated with their multiplicity), is
increasing and converging to zero.

We will write {m > 0} as a short form of {x ∈ Ω : m(x) > 0} and similarly
{m < 0} for {x ∈ Ω : m(x) < 0}. The following proposition is analogous to [21,
Proposition 1.11].

Proposition 5. Let m ∈ L∞(Ω) and Gm be the operator (19). Then, the following
statements hold

i) if |{m > 0}| = 0, then there are no positive eigenvalues;
ii) if |{m > 0}| > 0 and

∫
Ω
mdx < 0, then there is a sequence of positive

eigenvalues µk(m);
iii) if |{m < 0}| = 0, then there are no negative eigenvalues;
iv) if |{m < 0}| > 0 and

∫
Ω
mdx > 0, then there is a sequence of negative

eigenvalues µ−k(m).

Proof. (i) Let µ be an eigenvalue and u a corresponding eigenfunction. By (19)
with f = ϕ = u we have

µ =

∫
Ω
mu2 dx

‖u‖2Vm(Ω)

≤ 0.

(ii) By measure theory covering theorems, for each positive integer k there exist k
disjoint closed balls B1, . . . , Bk in Ω such that |Bi ∩ {m > 0}| > 0 for i = 1, . . . , k.
Let fi ∈ C∞

0 (Bi) such that
∫
Ω
mf2i dx = 1 for every i = 1, . . . , k. Note that the

functions fi are linearly independent. We put gi = Pm(fi), where Pm is defined in
Definition 1; gi ∈ Vm(Ω) for all i = 1, . . . , k. We show that the functions gi are

linearly independent as well. Let α1, . . . , αk be constants such that
∑k

i=1 αigi = 0;

this implies Pm

(∑k
i=1 αifi

)
= 0, i.e., by (ii) of Proposition 1,

∑k
i=1 αifi = c ∈ R.

Evaluating
∑k

i=1 αifi in Ω r ∪k
i=1Bi 6= ∅ we find c=0 and, therefore, αi = 0 for

all i = 1, . . . , k.
Let Fk = span{g1, . . . , gk}. Fk is a subspace of Vm(Ω) of dimension k. For every

g ∈ Fk r {0}, g =
∑k

i=1 aigi, with suitable constants ai ∈ R. Let us put f =∑k
i=1 aifi, clearly g = Pm(f). Then, by (i) and (iii) of Proposition 1 and recalling

that
∫
Ω
mdx < 0, we have
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〈Gm(g), g〉Vm(Ω)

‖g‖2Vm(Ω)

=
〈mg, g〉L2(Ω)

‖g‖2Vm(Ω)

=
〈mPm(f), Pm(f)〉L2(Ω)

‖g‖2Vm(Ω)

=
〈mf,Pm(f)〉L2(Ω)

‖g‖2Vm(Ω)

=
〈mf, f〉L2(Ω) −

〈
mf,

∫
Ω
mf dx/

∫
Ω
mdx

〉
L2(Ω)

‖g‖2Vm(Ω)

=
〈mf, f〉L2(Ω) −

(∫
Ω
mf dx

)2
/
∫
Ω
mdx

‖g‖2Vm(Ω)

≥
∑k

i,j=1 aiaj
∫
Ω
mfifj dx∑k

i,j=1〈gi, gj〉Vm(Ω)aiaj
=

∑k
i=1 a

2
i∑k

i,j=1〈gi, gj〉Vm(Ω)aiaj

=
‖a‖2Rk

〈Aka, a〉Rk

≥
1

‖Ak‖
> 0,

where ‖a‖Rk , ‖Ak‖ and 〈Aka, a〉Rk denote, respectively, the euclidean norm of the

vector a = (a1, . . . , ak), the norm of the non null matrix Ak =
(
〈gi, gj〉Vm(Ω)

)k
i,j=1

and the inner product in Rk. From the Fischer’s Principle (20) we conclude that

µk(m) ≥
1

‖Ak‖
> 0 for every k.

The cases (iii) and (iv) are similarly proved. �

2.3. Weak formulation of problem (1)

The operators Em and Gm are related to the following problem with Neumann
boundary conditions −∆u = mf in Ω

∂u

∂ν
= 0 on ∂Ω.

(21)

For m ∈ L∞(Ω) and f ∈ L2(Ω), a weak solution of problem (21) is a function
u ∈ H1(Ω) such that∫

Ω

∇u · ∇ϕdx =

∫
Ω

mfϕdx ∀ϕ ∈ H1(Ω)

or, equivalently,

〈∇u,∇ϕ〉L2(Ω) = 〈mf,ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω). (22)

The assumptions under which problem (21) admits solutions are well known (see
for example [39]). By using the tools introduced in §2.2, we find those conditions
independently.

Lemma 1. Let m ∈ L∞(Ω) such that
∫
Ω
mdx 6= 0 and f ∈ L2(Ω). Then u ∈ H1(Ω)

satisfies

〈∇u,∇ϕ〉L2(Ω) = 〈mPm(f), ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω) (23)
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12 C. Anedda and F. Cuccu

if and only if Pm(u) satisfies

〈Pm(u), ϕ〉Vm(Ω) = 〈mf,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω). (24)

Proof. If u ∈ H1(Ω) satisfies (23), for all ϕ ∈ Vm(Ω), by (iv), (i) and (iii) of
Proposition 1, we have

〈Pm(u), ϕ〉Vm(Ω) = 〈∇Pm(u),∇ϕ〉L2(Ω) = 〈∇u,∇ϕ〉L2(Ω)

= 〈mPm(f), ϕ〉L2(Ω) = 〈mf,ϕ〉L2(Ω).

Vice versa, let u verify (24). For all ϕ ∈ H1(Ω), recalling (iv) and (i) of Proposition 1
we have

〈∇u,∇ϕ〉L2(Ω) = 〈∇Pm(u),∇Pm(ϕ)〉L2(Ω) = 〈Pm(u), Pm(ϕ)〉Vm(Ω)

= 〈mf,Pm(ϕ)〉L2(Ω) = 〈mPm(f), ϕ〉L2(Ω).

�

As the following proposition says, the operator Em provides the solutions of
problem (21).

Proposition 6. Let m ∈ L∞(Ω) such that
∫
Ω
mdx 6= 0 and Em be the operator

(14). Then

i) (22) has a solution if and only if f ∈ L2
m(Ω);

ii) if f ∈ L2
m(Ω), (22) has a unique solution u ∈ Vm(Ω) and any other solution

is of form u+ c, c ∈ R;
iii) u = Em(f), i.e. u is the unique solution of

〈u, ϕ〉Vm(Ω) = 〈mf,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω);

(iv) the estimate

‖u‖H1(Ω) ≤ C · C1(m)
(
C2 · C2

1 (m) + 1
)1/2 ‖m‖L∞(Ω)‖f‖L2(Ω)

holds.

Proof. If (22) admits a solution u, choosing ϕ ≡ 1 we obtain f ∈ L2
m(Ω).

Vice versa, let f ∈ L2
m(Ω). By Lemma 1, u ∈ H1(Ω) is a solution of (22) if and

only if Pm(u) is a solution of (24). By (13) and (15), we know that (24) admits
the unique solution u = Em(f) ∈ Vm(Ω). Then the set of solutions of (22) is
{u ∈ H1(Ω) : Pm(u) = u} = {u ∈ H1(Ω) : u = u+ c, c ∈ R} and only u belongs to
Vm(Ω). This proves (i), (ii) and (iii).

(iv) It follows immediately from (12) and (16). �
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Optimization of the principal eigenvalue of the Neumann Laplacian 13

Finally, we introduce the weak formulation of problem (1). A function u ∈ H1(Ω)
is said an eigenfunction of (1) associated to the eigenvalue λ if∫

Ω

∇u · ∇ϕdx = λ

∫
Ω

muϕdx ∀ϕ ∈ H1(Ω)

or, equivalently,

〈∇u,∇ϕ〉L2(Ω) = λ〈mu,ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω). (25)

It is easy to check that zero is an eigenvalue and the associated eigenfunctions are
all of the constant functions.

Proposition 7. Let m ∈ L∞(Ω) such that
∫
Ω
mdx 6= 0 and Gm be the operator

(18). Then the nonzero eigenvalues of problem (1) are exactly the reciprocals of the
nonzero eigenvalues of the operator Gm and the correspondent eigenspaces coincide.

Proof. If λ≠ 0 is an eigenvalue and u is an associated eigenfunction of problem (1),
choosing ϕ ≡ 1 in (25), we obtain u ∈ Vm(Ω). By (25) and (10) we have〈u

λ
, ϕ
〉
Vm(Ω)

= 〈mu,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω)

and then, by definition (19) of Gm, Gm(u) =
u

λ
.

Vice versa, let Gm(u) = µu, with µ≠ 0. Then we have

〈µu, ϕ〉Vm(Ω) = 〈mu,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω).

By (iii) of Proposition 1 we obtain

〈Pm(µu), ϕ〉Vm(Ω) = 〈mu,ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω),

using Lemma 1 we find

µ 〈∇u,∇ϕ〉L2(Ω) = 〈mPm(u), ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω)

and finally, applying (iii) of Proposition 1 again, we conclude

〈∇u,∇ϕ〉L2(Ω) =
1

µ
〈mu,ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω),

i.e. 1/µ is an eigenvalue of (1). �

Consequently, in general, the eigenvalues of problem (1) form two monotone
sequences

0 < λ1(m) ≤ λ2(m) ≤ . . . ≤ λk(m) ≤ . . .

and

. . . ≤ λ−k(m) ≤ . . . ≤ λ−2(m) ≤ λ−1(m) < 0,

where every eigenvalue appears as many times as its multiplicity, the latter being
finite owing to the compactness of Gm.
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14 C. Anedda and F. Cuccu

The variational characterization (20) for k =1, assuming that |{m > 0}| > 0 and∫
Ω
mdx < 0, becomes

µ1(m) = max
f∈Vm(Ω)

f 6=0

〈Gm(f), f〉Vm(Ω)

‖f‖2Vm(Ω)

= max
f∈Vm(Ω)

f 6=0

∫
Ω
mf2 dx∫

Ω
|∇f |2 dx

. (26)

The maximum in (26) is obtained if and only if f is an eigenfunction relative to µ1.
Similarly, for λ1(m) we have

λ1(m) = min
u∈Vm(Ω)∫
Ω mu2dx>0

∫
Ω
|∇u|2 dx∫

Ω
mu2 dx

(27)

and the minimum in (27) is obtained if and only if u is an eigenfunction relative to
λ1.

We note that the characterization

λ1(m) = min
u∈H1(Ω)∫

Ω mu2dx>0

∫
Ω
|∇u|2 dx∫

Ω
mu2 dx

also holds and it is more often used in the literature.

Proposition 8. Let m ∈ L∞(Ω) such that |{m > 0}| > 0 and
∫
Ω
mdx < 0. Then

µ1(m) is simple and any associated eigenfunction is one signed in Ω.

Proof. Let u ∈ Vm(Ω) be an eigenfunction related to µ1(m). Let us show that |u|
is an eigenfunction as well. Consider the projection Pm(|u|) of |u| on Vm(Ω), where
Pm is defined in Definition 1. By (26) and (iv) of Proposition 1 we have

µ1(m) ≥
∫
Ω
m(Pm(|u|))2 dx∫

Ω
|∇Pm(|u|)|2 dx

=

∫
Ω
mu2 dx−

(∫
Ω
m|u| dx

)2∫
Ω
mdx∫

Ω
|∇u|2 dx

≥
∫
Ω
mu2 dx∫

Ω
|∇u|2 dx

= µ1(m).

Therefore, we have the equality sign in the previous chain. In particular, we find∫
Ω
m|u| dx = 0, then |u| belongs to Vm(Ω) and finally, by (iii) of Proposition 1, |u| =

Pm(|u|) is an eigenfunction. By Proposition 7, |u| satisfies the equation −∆|u| =
µ1(m)−1m|u| and, by Harnack inequality (see [27]), we conclude that |u| > 0 in Ω;

therefore u is one signed in Ω. Let u, v be two eigenfunctions; set α =
∫
Ω
v dx∫

Ω
u dx

, note

that
∫
Ω
(αu−v) dx = 0. Note that also αu−v is an eigenfunction of µ1(m). If αu−v

was not identically zero, then, it would be one signed and hence
∫
Ω
(αu−v) dx 6= 0,

reaching a contradiction. Therefore v = αu and µ1(m) is simple. �

As a consequence of Proposition 7, we have the following

Corollary 1. Let m ∈ L∞(Ω) such that |{m > 0}| > 0 and
∫
Ω
mdx < 0. Then

λ1(m) is simple and any associated eigenfunction is one signed in Ω.

We call λ1(m) the principal eigenvalue of problem (1). Throughout the paper we
will denote by um the unique positive eigenfunction of both Gm (relative to µ1(m))
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and problem (1) (relative to λ1(m)), normalized by

‖um‖Vm(Ω) = 1, (28)

which is equivalent to ∫
Ω

mu2m dx = µ1(m) =
1

λ1(m)
. (29)

By standard regularity theory (see [27]), um ∈W 2,2
loc (Ω)∩C1,β(Ω) for all 0 < β < 1.

As last comment, we observe that µ1(m) is homogeneous of degree 1, i.e.

µ1(αm) = αµ1(m) ∀α > 0. (30)

This follows immediately from (26).

3. Optimization of λ1(m)

This section is devoted to the study of the optimization of λ1(m). For this purpose,
we need some qualitative properties of µ1(m) = 1/λ1(m) with respect to m. We
begin by proving the continuity of µ1(m) (actually, of all of the eigenvalues of
the operator Gm defined in (19)) and then showing its convexity and Gâteaux
differentiability. The structure of the proofs follows the ideas contained in [3] in the
case of the fractional Laplacian and Dirichlet boundary conditions. Here, we deal
with Neumann boundary conditions which require, especially in proving continuity,
a more sophisticated argument involving the projection Pm.

Finally, we examine the minimization and maximization of λ1(m).
We introduce the following convex subset of L∞(Ω)

L∞
< (Ω) =

{
m ∈ L∞(Ω) :

∫
Ω

mdx < 0

}
.

Observe that, by Proposition 5, µk(m) and um (the unique positive eigenfunction
of µ1(m) of problem (1) normalized as in (28)) are well defined only when |{m >
0}| > 0. We extend them to the whole set L∞

< (Ω) by putting

µ̃k(m) =

µk(m) if |{m > 0}| > 0

0 if |{m > 0}| = 0
(31)

and

ũm =

um if |{m > 0}| > 0

0 if |{m > 0}| = 0.
(32)

Remark 1. Note that µ̃k(m) = 0 if and only if |{m > 0}| = 0 and, in this
circumstance, the inequality

sup
Fk⊂Vm(Ω)

min
f∈Fk
f 6=0

〈Gm(f), f〉Vm(Ω)

‖f‖2Vm(Ω)

≤ 0 (33)
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holds, where Fk varies among all the k -dimensional subspaces of Vm(Ω). Moreover,
from (30), we have µ̃1(αm) = αµ̃1(m) for every α ≥ 0.

Lemma 2. Letm ∈ L∞
< (Ω) and Em be the linear operator (14). Then, the mapm 7→

Em is sequentially weakly* continuous from L∞
< (Ω) to L(H1(Ω),H1(Ω)) endowed

with the norm topology.

Proof. Let {mi} be a sequence which weakly* converges to m in L∞
< (Ω). Being

{mi} bounded in L∞(Ω), there exists a constant M > 0 such that

‖m‖L∞(Ω) ≤M and ‖mi‖L∞(Ω) ≤M ∀ i. (34)

We begin by proving that Emi
(f) tends to Em(f) in H1(Ω) for any fixed f ∈

H1(Ω). Recalling (i) of Proposition 4, we put ui = Emi
(f) = Gmi

(Pmi
(f)) and

u = Em(f) = Gm(Pm(f)).
First, we show that Pm(ui) weakly converges to u in Vm(Ω); indeed, by (15) we

have

〈ui, ϕ〉Vmi
(Ω) = 〈mif, ϕ〉L2(Ω) ∀ϕ ∈ Vmi

(Ω).

By Lemma 1 and (iii) of Proposition 1, we find

〈∇ui,∇ϕ〉L2(Ω) = 〈miPmi
(f), ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω). (35)

Similarly, for u we have

〈∇u,∇ϕ〉L2(Ω) = 〈mPm(f), ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω). (36)

Taking ϕ ∈ Vm(Ω) in (35) and (36) and by using (iii) of Proposition 1, we find

〈Pm(ui), ϕ〉Vm(Ω) = 〈miPmi
(f), ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω) (37)

and

〈u, ϕ〉Vm(Ω) = 〈mPm(f), ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω). (38)

Subtracting (38) from (37), we get

〈Pm(ui)− u, ϕ〉Vm(Ω) = 〈miPmi(f)−mPm(f), ϕ〉L2(Ω) ∀ϕ ∈ Vm(Ω). (39)

As a consequence of the weak* convergence of mi to m in L∞(Ω), letting i→ ∞ we
obtain

∫
Ω
mifϕ dx →

∫
Ω
mfϕdx,

∫
Ω
mif dx →

∫
Ω
mf dx,

∫
Ω
miϕdx →

∫
Ω
mϕdx

and
∫
Ω
mi dx →

∫
Ω
mdx, which imply that the right hand term goes to zero, thus

Pm(ui) weakly converges to u in Vm(Ω). By exploiting the continuity of the inclusion
Vm(Ω) ↪→ H1(Ω) and the compactness of H1(Ω) ↪→ L2(Ω), we deduce that Pm(ui)
weakly converges to u in H1(Ω) and strongly in L2(Ω). Putting ϕ = Pm(ui)− u in
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(39) we get

‖Pm(ui)− u‖2Vm(Ω) = 〈miPmi
(f)−mPm(f), Pm(ui)− u〉L2(Ω)

≤
(
‖miPmi

(f)‖L2(Ω)) + ‖mPm(f)‖L2(Ω)

)
‖Pm(ui)− u‖L2(Ω).

(40)
By using (34), (6) and (8), we find

‖mPm(f)‖L2(Ω) ≤ M‖Pm(f)‖L2(Ω) ≤ MC1(m)‖f‖L2(Ω). (41)

Similarly, we have

‖miPmi
(f)‖L2(Ω) ≤MC1(mi)‖f‖L2(Ω). (42)

By the weak* convergence of mi to m we can assume∣∣∣∣∫
Ω

mi dx

∣∣∣∣ >
∣∣∫

Ω
mdx

∣∣
2

for i large enough. Therefore

C1(mi) ≤ 1 +
M∣∣∫

Ω
mi dx

∣∣ |Ω| ≤ 1 +
2M∣∣∫

Ω
mdx

∣∣ |Ω| (43)

and, trivially

C1(m) ≤ 1 +
2M∣∣∫

Ω
mdx

∣∣ |Ω|. (44)

For the sake of simplicity we put

D(m,M) = 1 +
2M∣∣∫

Ω
mdx

∣∣ |Ω|. (45)

Then, by (40), (41), (42), (43), (44) and (45) we find

‖Pm(ui)− u‖2Vm(Ω) ≤ 2MD(m,M)‖f‖L2(Ω)‖Pm(ui)− u‖L2(Ω),

from which the convergence of Pm(ui) to u in Vm(Ω) follows. The next step shows
that, actually, ui strongly converges to u in L2(Ω). Indeed, by using Definition 1,
(vi) of Proposition 1, (6), (43) and (45), we have

‖ui − u‖L2(Ω) =

∥∥∥∥−
∫
Ω
miu dx∫

Ω
mi dx

+ Pmi (Pm(ui)− u)

∥∥∥∥
L2(Ω)

≤
∥∥∥∥
∫
Ω
miu dx∫

Ω
mi dx

∥∥∥∥
L2(Ω)

+ ‖Pmi (Pm(ui)− u)‖L2(Ω)

≤
∣∣∣∣
∫
Ω
miu dx∫

Ω
mi dx

∣∣∣∣ |Ω|1/2 +D(m,M) ‖Pm(ui)− u‖L2(Ω) ,
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which goes to zero because
∫
Ω
miu dx/

∫
Ω
mi dx →

∫
Ω
mudx/

∫
Ω
mdx = 0 (being

u ∈ Vm(Ω)) and Pm(ui) → u in L2(Ω). Moreover, by (iv) of Proposition 1, we have

‖ui − u‖H1(Ω) =
(
‖ui − u‖2L2(Ω) + ‖Pm(ui)− u‖2Vm(Ω)

)1/2
and then ui converges to u in H1(Ω). Summarizing, for every f ∈ H1(Ω) we have

‖Emi
(f)− Em(f)‖H1(Ω) → 0 for i→ ∞.

Now, for fixed i, let {fi,j}, j = 1, 2, 3, . . ., be a maximizing sequence of

sup
g∈H1(Ω)

‖g‖
H1(Ω)

≤1

‖Emi
(g)− Em(g)‖H1(Ω) = ‖Emi

− Em‖L(H1(Ω),H1(Ω)).

Then, being ‖fi,j‖H1(Ω) ≤ 1, we can extract a subsequence (still denoted by {fi,j})
weakly convergent to some fi ∈ H1(Ω). Since the operators Emi

and Em restricted
to H1(Ω) are compact (see iii) of Proposition 4), it follows that Emi

(fi,j) converges
to Emi

(fi) and Em(fi,j) converges to Em(fi) strongly in Vm(Ω) and then in H1(Ω)
as j goes to ∞. Thus we find

‖Emi
− Em‖L(H1(Ω),H1(Ω)) = ‖Emi

(fi)− Em(fi)‖H1(Ω).

This procedure yields a sequence {fi} in H1(Ω) such that ‖fi‖H1(Ω) ≤ 1 for all i.
Then, up to a subsequence, we can assume that {fi} weakly converges to a function
f ∈ H1(Ω) and (by the compactness of the inclusion H1(Ω) ↪→ L2(Ω)) strongly in
L2(Ω). By using (12), (43), (44), (45), (17) and (34) we find

‖Emi
− Em‖L(H1(Ω),H1(Ω)) = ‖Emi

(fi)− Em(fi)‖H1(Ω)

≤ ‖Emi
(f)− Em(f)‖H1(Ω) + ‖Emi

(fi − f)‖H1(Ω) + ‖Em(fi − f)‖H1(Ω)

≤ ‖Emi
(f)− Em(f)‖H1(Ω) +

(
C2 · C2

1 (mi) + 1
)1/2 ‖Emi

(fi − f)‖Vmi
(Ω)

+
(
C2 · C2

1 (m) + 1
)1/2 ‖Em(fi − f)‖Vm(Ω)

≤ ‖Emi
(f)− Em(f)‖H1(Ω)

+
(
C2 ·D2(m,M) + 1

)1/2 (‖Emi
‖L(L2(Ω),Vmi

(Ω)) + ‖Em‖L(L2(Ω),Vm(Ω))

)
‖fi − f‖L2(Ω) ≤ ‖Emi

(f)− Em(f)‖H1(Ω)

+
(
C2 ·D2(m,M) + 1

)1/2 (
C · C1(mi)‖mi‖L∞(Ω) + C · C1(m)‖m‖L∞(Ω)

)
‖fi − f‖L2(Ω) ≤ ‖Emi(f)− Em(f)‖H1(Ω) + 2CMD(m,M)(
C2 ·D2(m,M) + 1

)1/2 ‖fi − f‖L2(Ω).

Therefore Emi converges to Em in the operator norm. �

Remark 2. We note that the previous lemma still holds replacing L∞
< (Ω) by the

set of L∞(Ω) such that
∫
Ω
m dx 6= 0.

Lemma 3. Let m ∈ L∞
< (Ω), µ̃k(m) as defined in (31) for k = 1, 2, 3, . . . and ũm as

in (32). Then
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i) the map m 7→ µ̃k(m) is sequentially weakly* continuous in L∞
< (Ω);

(ii) the map m 7→ µ̃1(m)ũm is sequentially weakly* continuous from L∞
< (Ω) to

H1(Ω) (endowed with the norm topology). In particular, for any sequence {mi}
weakly* convergent to m ∈ L∞

< (Ω) with µ̃1(m) > 0, then {ũmi
} converges to ũm in

H1(Ω).

Proof. i) Let {mi} be a sequence which weakly* converges to m in L∞
< (Ω). Being

{mi} bounded in L∞(Ω), there exists a constant M > 0 such that (34) holds. We
will show that

|µ̃k(mi)− µ̃k(m)| ≤ D(m,M)(C2 ·D2(m,M) + 1)1/2‖Emi
− Em‖L(H1(Ω),H1(Ω)),

(46)
where D(m,M) is the constant in (45). By Lemma 2 the claim follows. We split
the argument in three cases.

Case 1. Let i be fixed and assume µ̃k(mi), µ̃k(m) > 0.
Following the idea in [29, Theorem 2.3.1] and by means of the Fischer’s Principle

(20) we have

µ̃k(mi)− µ̃k(m) = max
Fk⊂Vmi

(Ω)
min
f∈Fk
f 6=0

〈Gmi
(f), f〉Vmi

(Ω)

‖f‖2Vmi
(Ω)

− max
Fk⊂Vm(Ω)

min
f∈Fk
f 6=0

〈Gm(f), f〉Vm(Ω)

‖f‖2Vm(Ω)

≤ min
f∈Fk
f 6=0

〈Gmi
(f), f〉Vmi

(Ω)

‖f‖2Vmi
(Ω)

− min
f∈Pm(Fk)

f 6=0

〈Gm(f), f〉Vm(Ω)

‖f‖2Vm(Ω)

≤
〈Gmi

(f), f〉Vmi
(Ω)

‖f‖2Vmi
(Ω)

−
〈Gm(Pm(f)), Pm(f)〉Vm(Ω)

‖Pm(f)‖2Vm(Ω)

,

where Fk is a k -dimensional subspace of Vmi
(Ω) such that

max
Fk⊂Vmi

(Ω)
min
f∈Fk
f 6=0

〈Gmi(f), f〉Vmi
(Ω)

‖f‖2Vmi
(Ω)

= min
f∈Fk
f 6=0

〈Gmi(f), f〉Vmi
(Ω)

‖f‖2Vmi
(Ω)

(note that, by vii) of Proposition 1, Pm(Fk) is a k -dimensional subspace of Vm(Ω))
and f is a function in Fk such that

min
f∈Pm(Fk)

f 6=0

〈Gm(f), f〉Vm(Ω)

‖f‖2Vm(Ω)

=
〈Gm(Pm(f)), Pm(f)〉Vm(Ω)

‖Pm(f)‖2Vm(Ω)

.
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By (iv) of Proposition 1 ∇Pm(f) = ∇f and ∇Gm(Pm(f)) = ∇Pmi
(Gm(Pm(f)))

hold, thus we have

µ̃k(mi)− µ̃k(m) ≤
〈Gmi

(f), f〉Vmi
(Ω)

‖f‖2Vmi
(Ω)

−
〈Pmi

(Gm(Pm(f))), f〉Vmi
(Ω)

‖f‖2Vmi
(Ω)

=
〈(Gmi

− Pmi
◦Gm ◦ Pm)(f), f〉Vmi

(Ω)

‖f‖2Vmi
(Ω)

≤
‖(Gmi

− Pmi
◦Gm ◦ Pm)(f)‖Vmi

(Ω)

‖f‖Vmi
(Ω)

.

Then, taking into account the identities (recall iii) of Proposition 1)

Gmi−Pmi◦Gm◦Pm = Pmi◦Gmi◦Pmi−Pmi◦Gm◦Pm = Pmi◦(Gmi◦Pmi−Gm◦Pm),

(12), (7), (8), (43), (45) and (i) of Proposition 4 we find

µ̃k(mi)− µ̃k(m) ≤
‖Pmi

◦ (Gmi
◦ Pmi

−Gm ◦ Pm)(f)‖Vmi
(Ω)

‖f‖Vmi
(Ω)

≤
‖Pmi

◦ (Gmi
◦ Pmi

−Gm ◦ Pm)(f)‖H1(Ω)

‖f‖Vmi
(Ω)

≤ (C2 · C2
1 (mi) + 1)1/2‖Pmi

‖L(H1(Ω),H1(Ω))

×
‖(Gmi

◦ Pmi
−Gm ◦ Pm)(f)‖H1(Ω)

‖f‖H1(Ω)

≤ C1(mi)(C
2 · C2

1 (mi) + 1)1/2‖Gmi
◦ Pmi

−Gm ◦ Pm‖L(H1(Ω),H1(Ω))

≤ D(m,M)(C2 ·D2(m,M) + 1)1/2‖Emi
− Em‖L(H1(Ω),H1(Ω)).

Interchanging the role of mi and m and replacing (43) by (44), we also have

µ̃k(m)− µ̃k(mi) ≤ D(m,M)(C2 ·D2(m,M) + 1)1/2‖Emi
− Em‖L(H1(Ω),H1(Ω))

and finally (46).
Case 2. Let i be fixed and assume µ̃k(mi) > 0, µ̃k(m) = 0 (and similarly in the

case µ̃k(m) > 0, µ̃k(mi) = 0).
Note that in this case (33) holds for the weight function m. Then the previous

argument still applies provided that we replace the first step of the inequality chain
by

|µ̃k(mi)− µ̃k(m)| = µ̃k(mi) ≤ max
Fk⊂Vmi

(Ω)
min
f∈Fk
f 6=0

〈Gmi(f), f〉Vmi
(Ω)

‖f‖2Vmi
(Ω)

− sup
Fk⊂Vm(Ω)

min
f∈Fk
f 6=0

〈Gm(f), f〉Vm(Ω)

‖f‖2Vm(Ω)

.
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Case 3. µ̃k(mi) = µ̃k(m) = 0.
In this case, (46) is obvious.
Therefore statement (i) is proved.
(ii) Let {mi} be such that mi is weakly∗ convergent to m ∈ L∞

< (Ω). By using
(12), (43) and (45), for i sufficiently large, we have

‖ũmi
‖H1(Ω) ≤

(
C2 ·D2(m,M) + 1

)1/2
,

up to a subsequence we can assume that ũmi
is weakly convergent to z ∈ H1(Ω),

strongly in L2(Ω) and pointwisely a.e. in Ω.
First suppose µ̃1(m) = 0. Then, by (i), µ̃1(mi)ũmi

weakly converges in H1(Ω) to
µ̃1(m)z = 0 = µ̃1(m)ũm. Moreover, ‖µ̃1(mi)ũmi

‖H1(Ω) = µ̃1(mi)‖ũmi
‖H1(Ω) tends

to 0 = ‖µ̃1(m)ũm‖H1(Ω). Therefore µ̃1(mi)ũmi
strongly converges to µ̃1(m)ũm in

H1(Ω).
Next, consider the case µ̃1(m) > 0. By (i) we have µ̃1(mi) > 0 for all i large

enough. This implies µ̃1(mi) =
1

λ1(mi)
and ũmi

= umi
. Positiveness and pointwise

convergence of umi
to z imply z ≥ 0 a.e. in Ω. Moreover, by (29) we have

∫
Ω

miu
2
mi
dx =

1

λ1(mi)

and by (i), passing to the limit, we find

∫
Ω

mz2 dx =
1

λ1(m)
,

which implies z ≠ 0. By using (25) for umi
we have

〈∇umi
,∇ϕ〉L2(Ω) = λ1(mi)〈miumi

, ϕ〉L2(Ω) = λ1(mi)

∫
Ω

miumi
ϕdx ∀ϕ ∈ H1(Ω),

and, letting i to∞, we deduce z = um. By (i) µ1(mi)umi
weakly converges inH1(Ω)

to µ1(m)um and ‖µ1(mi)umi
‖H1(Ω) = µ1(mi) tends to µ1(m) = ‖µ1(m)um‖H1(Ω).

Hence µ1(mi)umi strongly converges to µ1(m)um in H1(Ω). The last claim is imme-
diate provided one observes that µ̃1(m) > 0 implies µ̃1(mi) > 0 for all i large
enough. �

Lemma 4. Let m, q ∈ L∞
< (Ω), µ̃1(m) be defined as in (31) for k=1. Then

(i) the map m 7→ µ̃1(m) is convex on L∞
< (Ω);

(ii) if m and q are linearly independent and µ̃1(m), µ̃1(q) > 0, then

µ̃1(tm+ (1− t)q) < tµ̃1(m) + (1− t)µ̃1(q)

for all 0 < t < 1.
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Proof. (i) The Fischer’s Principle (20) and (33) both for k =1 yield

sup
f∈Vm(Ω)

f 6=0

∫
Ω
mf2 dx∫

Ω
|∇f |2 dx

≤ µ̃1(m) (47)

for every m ∈ L∞
< (Ω). Moreover, if µ̃1(m) > 0, then the equality sign holds and the

supremum is attained when f is an eigenfunction of µ̃1(m) = µ1(m). Let m, q ∈
L∞
< (Ω), 0 ≤ t ≤ 1. We show that

µ̃1(tm+ (1− t)q) ≤ tµ̃1(m) + (1− t)µ̃1(q). (48)

If µ̃1(tm+ (1− t)q) = 0, (48) is obvious. Suppose µ̃1(tm+ (1− t)q) > 0. Then, for
all f ∈ Vtm+(1−t)q(Ω), f ≠ 0, we have∫

Ω
(tm+ (1− t)q)f2 dx∫

Ω
|∇f |2 dx

= t

∫
Ω
mf2 dx∫

Ω
|∇f |2 dx

+ (1− t)

∫
Ω
qf2 dx∫

Ω
|∇f |2 dx

≤ t

∫
Ω
mf2 dx−

(∫
Ω
mf dx

)2∫
Ω
mdx∫

Ω
|∇f |2 dx

+ (1− t)

∫
Ω
qf2 dx−

(∫
Ω
qf dx

)2∫
Ω
q dx∫

Ω
|∇f |2 dx

= t

∫
Ω
m(Pm(f))2 dx∫

Ω
|∇Pm(f)|2 dx

+ (1− t)

∫
Ω
q(Pq(f))

2 dx∫
Ω
|∇Pq(f)|2 dx

≤ tµ̃1(m) + (1− t)µ̃1(q),

(49)

where we used (iv) of Proposition 1 and (47) for m and q. Taking the supremum
in the left-hand term of (49) and using (47) again with equality sign, we find (48).

(ii) Arguing by contradiction, we suppose that equality holds in (48). We will
conclude that m and q are linearly dependent. Equality sign in (48) implies µ̃1(tm+
(1− t)q) > 0, then (by (47)) equalities also occur in (49) with f = u = utm+(1−t)q.
We get

∫
Ω
mudx =

∫
Ω
qu dx = 0, thus u ∈ Vm(Ω) ∩ Vq(Ω), and then, by (iii) of

Proposition 1, ∫
Ω
mu2 dx∫

Ω
|∇u|2 dx

= µ̃1(m) and

∫
Ω
qu2 dx∫

Ω
|∇u|2 dx

= µ̃1(q).

The simplicity of the principal eigenvalue, the positiveness of u and the normaliza-
tion (28) imply that u = um = uq. By using (25) with λ = 1

µ̃1(m) and λ = 1
µ̃1(q)

we

have

〈∇u,∇ϕ〉L2(Ω) =
1

µ̃1(m)
〈mu,ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω),

and

〈∇u,∇ϕ〉L2(Ω) =
1

µ̃1(q)
〈qu, ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω)
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respectively. Taking the difference of these identities we find〈(
m

µ̃1(m)
−

q

µ̃1(q)

)
u, ϕ

〉
L2(Ω)

= 0 ∀ϕ ∈ H1(Ω),

which gives mµ̃1(q)− qµ̃1(m) = 0 a.e. in Ω, i.e. m and q are linearly dependent. �

Corollary 2. Let m0 ∈ L∞
< (Ω), µ̃1(m) be defined as in (31) for k=1 and G(m0)

the weak* closure in L∞(Ω) of the class of rearrangements G(m0) introduced in

Definition 7. Then the map m 7→ µ̃1(m) is convex but not strictly convex on G(m0).

Proof. By (ii) of Proposition 15 and (i) of Corollary 3, we have that G(m0) is convex

and G(m0) ⊂ L∞
< (Ω). Then, by Lemma 4, the map m 7→ µ̃1(m) is convex on G(m0).

Applying Proposition 13, we find that the constant function c = 1
|Ω|
∫
Ω
m0 dx is

in G(m0). By convexity of G(m0), tm0 + (1− t)c ∈ G(m0) for every t ∈ [0, 1]. From
the inequality

tm0 + (1− t)c ≤ t‖m0‖L∞(Ω) + (1− t)c a.e. in Ω,

we obtain

tm0 + (1− t)c ≤ 0 a.e. in Ω ∀ t ≤ c

c− ‖m0‖L∞(Ω)
.

Note that c/
(
c− ‖m0‖L∞(Ω)

)
∈ (0, 1). Therefore, by (31), we conclude that

µ̃1(m) = 0 for any m in the line segment, contained in G(m0), that joins c and

c

c− ‖m0‖L∞(Ω)
m0 +

(
1− c

c− ‖m0‖L∞(Ω)

)
c =

‖m0‖L∞(Ω) −m0

‖m0‖L∞(Ω) − c
c.

This shows that the map m 7→ µ̃1(m) is not strictly convex. �

For the definitions and some basic results on the Gâteaux differentiability we
refer the reader to [24].

Lemma 5. Letm ∈ L∞
< (Ω), µ̃1(m) be defined as in (31) for k=1 and um denote the

relative unique positive eigenfunction of problem (1) normalized as in (28). Then,
the map m 7→ µ̃1(m) is Gâteaux differentiable at any m such that µ̃1(m) > 0, with
Gâteaux differential equal to u2m. In other words, for every direction v ∈ L∞(Ω) we
have

µ̃′
1(m; v) =

∫
Ω

u2mv dx. (50)

Proof. Let us compute

lim
t→0

µ̃1(m+ tv)− µ̃1(m)

t
.

Note thatm+tv ∈ L∞
< (Ω) for |t| sufficiently small and by (i) of Lemma 3, µ̃1(m+tv)

converges to µ̃1(m) as t goes to zero for anym ∈ L∞
< (Ω) and v ∈ L∞(Ω). Therefore,
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µ̃1(m+ tv) > 0 for |t| small enough. The eigenfunctions um and um+tv satisfy (see
(25))

µ̃1(m)〈∇um,∇ϕ〉L2(Ω) = 〈mum, ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω)

and

µ̃1(m+ tv)〈∇um+tv,∇ϕ〉L2(Ω) = 〈(m+ tv)um+tv, ϕ〉L2(Ω) ∀ϕ ∈ H1(Ω).

By choosing ϕ = um+tv in the former equation, ϕ = um in the latter and comparing
we get

µ̃1(m+ tv)〈mum, um+tv〉L2(Ω) = µ̃1(m)〈(m+ tv)um+tv, um〉L2(Ω).

Rearranging we find

µ̃1(m+ tv)− µ̃1(m)

t

∫
Ω

mumum+tv dx = µ̃1(m)

∫
Ω

umum+tvv dx. (51)

If t goes to zero, then by (ii) of Lemma 3 it follows that um+tv converges to um
in H1(Ω) and therefore in L2(Ω). Passing to the limit in (51) and using (29) we
conclude

lim
t→0

µ̃1(m+ tv)− µ̃1(m)

t
=

∫
Ω

u2mv dx,

i.e. (50) holds. �

Theorem 3. Let m0 ∈ L∞
< (Ω), G(m0) be the weak* closure in L∞(Ω) of the class

of rearrangements G(m0) introduced in Definition 7 and µ̃1(m) defined as in (31)
for k=1. Then

i) there exists a solution of the problem

max
m∈G(m0)

µ̃1(m); (52)

(ii) if |{m0 > 0}| > 0, any solution m̌1 of (52) belongs to G(m0), more explicitly,

we have µ̃1(m) < µ̃1(m̌1) for all m ∈ G(m0) r G(m0) (note that, in this case, by
Proposition 5 µ̃1(m̌1) = µ1(m̌1) > 0);

(iii) if |{m0 > 0}| > 0, for every solution m̌1 ∈ G(m0) of (52) there exists an
increasing function ψ such that

m̌1 = ψ(um̌1) a.e. in Ω,

where um̌1 is the positive eigenfunction relative to µ1(m̌1) normalized as in (28).

Proof. i) By (i) of Corollary 3 we have G(m0) ⊂ L∞
< (Ω). By (iii) of Proposition

14 and (i) of Lemma 3, G(m0) is sequentially weakly* compact and the map m 7→
µ̃1(m) is sequentially weakly* continuous respectively. Therefore, there exists m̌1 ∈
G(m0) such that

µ̃1(m̌1) = max
m∈G(m0)

µ̃1(m).

(ii) Note that, by Proposition 5, the condition |{m0 > 0}| > 0 guarantees µ̃1(m) > 0
on G(m0) and then µ̃1(m̌1) > 0. Let m̌1 be an arbitrary solution of (52), let us
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show that m̌1 actually belongs to G(m0). Proceeding by contradiction, suppose
that m̌1 6∈ G(m0). Then, by (iii) of Proposition 15 and by Definition 8, m̌1 is not

an extreme point of G(m0) and thus there exist m, q ∈ G(m0) such that m ≠ q and
m̌1 = m+q

2 . By (i) of Lemma 4 and, being m̌1 a maximizer, we have

µ̃1(m̌1) ≤
µ̃1(m) + µ̃1(q)

2
≤ µ̃1(m̌1)

and then, equality sign holds. This implies µ̃1(m) = µ̃1(q) = µ̃1(m̌1) > 0, that
is m and q are maximizers as well. Now, applying (ii) of Lemma 4 to m and q
with t = 1

2 , we conclude that m and q are linearly dependent and then, by (ii) of
Corollary 3, we reach the contradiction m = q. Thus, we conclude that m̌1 ∈ G(m0)
and (ii) is proved. https://epubs.siam.org/doi/book/10.1137/1.9781611971088

(iii) Let m̌1 ∈ G(m0) be a solution of (52). We prove the claim by using
Proposition 17; more precisely, we show that∫

Ω

m̌1u
2
m̌1

dx >

∫
Ω

mu2m̌1
dx (53)

for every m ∈ G(m0) r {m̌1}. By exploiting the convexity of µ̃1(m) (see Lemma
4) and its Gâteaux differentiability in m̌1 (see Lemma 5) we have (for details see
[24])

µ̃1(m) ≥ µ̃1

(
m̌1) +

∫
Ω

(m− m̌1)u
2
m̌1

dx (54)

for all m ∈ G(m0).
First, let us suppose µ̃1(m) < µ̃1(m̌1). Comparing with (54) we find∫

Ω

(m− m̌1)u
2
m̌1

dx < 0,

that is (53).

Next, let us consider the case µ̃1(m) = µ̃1(m̌1), m ∈ G(m0)r{m̌1}. By (ii) there

are not maximizers of µ̃1 in G(m0)r G(m0), therefore m ∈ G(m0). Being m̌1 6= m,
by (ii) of Corollary 3, they are linearly independent. Then, (ii) of Lemma 4 implies

µ̃1

(
m̌1 +m

2

)
<
µ̃1(m̌1) + µ̃1(m)

2
= µ̃1(m̌1).

Then, arguing as in the previous case with m̌1+m
2 in place of m we find (53). This

completes the proof. �

We are now able to prove Theorem 1.

Proof of Theorem 1. Being |{m0 > 0}| > 0, we have

λ1(m) =
1

µ1(m)
=

1

µ̃1(m)

for all m ∈ G(m0). Therefore, (i) and (ii) immediately follow by Theorem 3.
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(iii) Given that
∫
Ω
m0 dx < 0, then, by Proposition 13 and Proposition 15, the

negative constant function c = 1
|Ω|
∫
Ω
m0 dx belongs to G(m0). Therefore, by def-

inition of µ̃1(m), minm∈G(m0)
µ̃1(m) = 0 which, in turns, being G(m0) dense in

G(m0) and µ̃1(m) sequentially weak* continuous, implies infm∈G(m0) µ1(m) = 0
and, finally, supm∈G(m0) λ1(m) = +∞. �

4. Monotonicity of the minimizers in cylinders

In this section, we consider the optimization problem (3) in cylindrical domains.
Here, by (generalized) cylinder we mean a domain of the type Ω = (0, h)×ω ⊂ RN ,
where h > 0 and ω ⊂ RN−1 is a bounded polyhedral or smooth domain. In the
sequel, for x ∈ RN we will write x = (x1, x

′), with x1 ∈ R and x′ = (x2, . . . , xN ) ∈
RN−1. Exploiting the notion of monotone (decreasing and increasing) rearrange-
ment, we will able to prove that in a cylinder any minimizer of problem (3) is
monotone with respect to x 1. For a comprehensive survey of the monotone rear-
rangement we use here, we refer the reader to the work of Kawhol (see [32]) and
Berestycki and Lachand-Robert (see [6]). In our paper, for the sake of simplicity,
we choose to define this rearrangement only when the domain is a cylinder and,
in order to deduce easily some of its properties, as a particular case of the Steiner
symmetrization. For a brief summary of the Steiner symmetrization see [2].

Definition 2. Let Ω = (0, h)×ω where h> 0 and ω ⊂ RN−1 is a bounded polyhe-
dral or smooth domain, and u : Ω → R a measurable function bounded from below.
Let U be the “x1-even” extension of u onto (−h, h) × ω obtained by reflection
with respect to the hyperplane {x ∈ RN : x1 = 0} (i.e. U(x1, x

′) := U(−x1, x′),
x1 ∈ (−h, 0), x′ ∈ ω) and U ] its Steiner symmetrization relative to the same hyper-
plane. We define the monotone decreasing rearrangement u? : Ω → R of u to be
the restriction of U ] on Ω.

In a similar way it can be defined the monotone increasing rearrangement u?.
Note that if m ∈ G(m0), then m

?,m? ∈ G(m0).
From the theory of the Steiner symmetrization (see, for example [2]) and by
Definition 2, we obtain the following first two properties of the monotone decreasing
rearrangement.

a) Let Ω = (0, h)×ω, ω as above, u : Ω → R be a measurable function bounded
from below and Φ : R → R an increasing function. Then

(Φ(u))? = Φ(u?) a.e. in Ω. (55)

b) Let Ω = (0, h) × ω, ω as above, u, v : Ω → R two measurable func-
tions bounded from below such that uv ∈ L1(Ω), then the Hardy-Littlewood
inequality holds ∫

Ω

uv dx ≤
∫
Ω

u?v? dx. (56)

Moreover, from [6, Theorem 2.8 and Lemma 2.10] and [32, Corollary 2.14] we
have
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c) Let Ω = (0, h)× ω, ω as above and u ∈ H1(Ω) a nonnegative function. Then
u? ∈ H1(Ω) and the Pòlya-Szegö inequality holds∫

Ω

|∇u?|2 dx ≤
∫
Ω

|∇u|2 dx. (57)

More generally, we have∫
Ω

|∇x′u?|2 dx ≤
∫
Ω

|∇x′u|2 dx and

∫
Ω

|(u?)x1
|2 dx ≤

∫
Ω

|ux1
|2 dx. (58)

An important ingredient of the next proof is the characterization of the equality
case of (57), which is addressed in Theorem 3.1 of [6].

We prove Theorem 2.

Proof of Theorem 2. In what follows we use the ideas of the proof of Theorem 2
in [2]. Let m̌ be a minimizer of problem (3). By (ii) of Theorem 1, there exists an
increasing function ψ such that m̌ = ψ(um̌) a.e. in Ω, where um̌ ∈ Vm̌(Ω) denotes
the unique positive eigenfunction normalized by ‖um̌‖Vm̌(Ω) = 1. Therefore, the
monotonicity of m̌ is an immediate consequence of the monotonicity of um̌. In
other words, it suffices to show that either um̌ = u?m̌ or um̌ = (um̌)?. By using (26)
we find

µ̌1 = µ1(m̌) =

∫
Ω
m̌u2m̌ dx∫

Ω
|∇um̌|2 dx

.

The inequality (56), property (55) and Definition 1 yield

∫
Ω

m̌u2m̌ dx ≤
∫
Ω

m̌?(u?m̌)2 dx =

∫
Ω

m̌?
(
Pm̌?(u?m̌)

)2
dx+

1∫
Ω
m̌? dx

(∫
Ω

m̌?u?m̌ dx

)2

and (57) and (iv) of Proposition 1 give∫
Ω

|∇um̌|2 dx ≥
∫
Ω

|∇u?m̌|2 dx =

∫
Ω

|∇Pm̌?(u?m̌)|2 dx.

Note that, m̌? ∈ G(m0) (in particular
∫
Ω
m̌? dx < 0) and Pm̌?(u?m̌) ∈ Vm̌? .

Exploiting (26) and the maximality of µ̌1, we can write

µ̌1 =

∫
Ω
m̌u2m̌ dx∫

Ω
|∇um̌|2 dx

≤
∫
Ω
m̌?(u?m̌)2 dx∫

Ω
|∇u?m̌|2 dx

≤

∫
Ω
m̌?
(
Pm̌?(u?m̌)

)2
dx+ 1∫

Ω
m̌? dx

(∫
Ω
m̌?u?m̌ dx

)2∫
Ω
|∇Pm̌?(u?m̌)|2 dx

≤
∫
Ω
m̌?
(
Pm̌?(u?m̌)

)2
dx∫

Ω
|∇Pm̌?(u?m̌)|2 dx

≤
∫
Ω
m̌?(um̌?)2 dx∫

Ω
|∇um̌? |2 dx

= µ1(m̌
?) ≤ µ̌1.

(59)
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Therefore, all the previous inequalities become equalities and yield
∫
Ω
m̌?u?m̌ dx = 0,

which implies u?m̌ ∈ Vm̌? , and

∫
Ω

m̌u2m̌ dx =

∫
Ω

m̌?(u?m̌)2 dx,

∫
Ω

|∇um̌|2 dx =

∫
Ω

|∇u?m̌|2 dx. (60)

Furthermore, by (26), u?m̌ is an eigenfunction associated to µ1(m̌
?). By the sim-

plicity of µ1(m̌
?), u?m̌ being positive in Ω and, by (60), ‖u?m̌‖Vm̌? (Ω) = ‖um̌‖Vm̌(Ω) =

1, we conclude that u?m̌ = um̌? . For simplicity of notation, we put v = u?m̌ = um̌? .
By (59), m̌? is a minimizer of (3) and v is the normalized positive eigenfunc-
tion of problem (1) associated to 1/µ1(m̌

?) = λ1(m̌
?) = λ̌1. Moreover, by (ii) of

Theorem 1, there exists an increasing function Ψ such that m̌? = Ψ(v) a.e. in Ω.
Thus v satisfies the problem−∆v = λ̌1Ψ(v)v in Ω,

∂v
∂ν = 0 on ∂Ω.

(61)

Let C∞
0,+(Ω) = {ϕ ∈ C∞

0 (Ω) : ϕ is nonnegative}.
From (61) in weak form we have

∫
Ω

∇v · ∇ϕx1
dx = λ̌1

∫
Ω

Ψ(v)v ϕx1
dx ∀ϕ ∈ C∞

0,+(Ω).

Being v ∈W 2,2
loc (Ω) (see [27]), we can rewrite the previous equation as

−
∫
Ω

∇vx1
· ∇ϕdx = λ̌1

∫
Ω

Ψ(v)v ϕx1
dx.

Adding λ̌1
∫
Ω
Ψ(v)vx1

ϕdx to both sides and since v ∈ C1,β(Ω) for all β ∈ (0, 1)
(see [27]), it becomes

−
∫
Ω

∇vx1
· ∇ϕdx+ λ̌1

∫
Ω

Ψ(v)vx1
ϕdx = λ̌1

∫
Ω

Ψ(v)(v ϕ)x1
dx. (62)

Let us show that
∫
Ω
Ψ(v)(v ϕ)x1 dx ≥ 0. By Fubini’s Theorem we get

∫
Ω

Ψ(v)(v ϕ)x1 dx =

∫
ω

dx′
∫ h

0

Ψ(v)(v ϕ)x1 dx1. (63)

For any fixed x′ ∈ ω, let α = α(x1) = v(x1, x
′)ϕ(x1, x

′). Since ϕ has compact
support, we can consider α trivially defined on the whole [0, h]. Since α(x1) is
continuous and Ψ(v) is decreasing with respect to x 1, the Riemann-Stieltjes integral∫ h

0
Ψ(v) dα(x1) is well defined (see Theorem 7.27 and the subsequent note in [4]).
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Moreover, by using [4, Theorem 7.8] we have∫ h

0

Ψ(v)(v ϕ)x1
dx1 =

∫ h

0

Ψ(v) dα(x1). (64)

By [4, Theorems 7.31 and 7.8] there exists a point x 0 in [0, h] such that

−
∫ h

0

Ψ(v) dα(x1) = −Ψ(v(0, x′))

∫ x0

0

dα(x1)−Ψ(v(h, x′))

∫ h

x0

dα(x1)

= −Ψ(v(0, x′))

∫ x0

0

(v ϕ)x1
dx1 −Ψ(v(h, x′))

∫ h

x0

(v ϕ)x1
dx1.

Computing the integrals and recalling that ϕ ∈ C∞
0,+(Ω), v is positive and Ψ(v) is

decreasing with respect to x 1, we conclude that

−
∫ h

0

Ψ(v) dα(x1) = v(x0, x
′)ϕ(x0, x

′) [Ψ(v(h, x′))−Ψ(v(0, x′))] ≤ 0.

Therefore, by the previous inequality and (64) it follows
∫ h

0
Ψ(v)(v ϕ)x1

dx1 ≥ 0
for any x′ ∈ ω and, in turn, from (63) we obtain

∫
Ω
Ψ(v)(v ϕ)x1

dx ≥ 0. Hence, by
(62), vx1

satisfies the differential inequality

∆vx1
+ λ̌1Ψ(v)vx1

≥ 0 in Ω

in weak form. Then, applying [57, Theorem 2.5.3] and since vx1
≤ 0 in Ω, we

conclude that either vx1
≡ 0 or vx1

< 0.
In the first case, v, and then um̌, is constant with respect to x 1.
Let vx1

< 0. By the second equality of (60) and (58) we obtain∫
Ω

|(um̌)x1
|2 dx =

∫
Ω

|(u?m̌)x1
|2 dx.

By Fubini’s Theorem it becomes∫
ω

dx′
∫ h

0

|(um̌)x1 |2 dx1 =

∫
ω

dx′
∫ h

0

|(u?m̌)x1
|2 dx1. (65)

Being um̌ and u?m̌ = um̌? of class C1,β(Ω), the functions x′ 7→
∫ h

0
|(um̌)x1 |2 dx1

and x′ 7→
∫ h

0
|(u?m̌)x1

|2 dx1 are continuous on ω. Therefore, using identity (65) and
(57) in the one dimensional case we find∫ h

0

|(um̌)x1 |2 dx1 =

∫ h

0

|(u?m̌)x1
|2 dx1 ∀x′ ∈ ω.

From Theorem 3.1 in [6], again in the one dimensional case, we conclude that for
all x′ ∈ ω either um̌ = u?m̌ or um̌ = (um̌)?. This implies that for all x′ ∈ ω either
(um̌)x1 = (u?m̌)x1 = vx1 < 0 or (um̌)x1 = ((um̌)?)x1 = −(u?m̌)x1 = −vx1 > 0. Being
(um̌)x1 continuous in Ω and Ω an open connected set, it follows that (um̌)x1 does
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not change sign in Ω. Equivalently either um̌ = u?m̌ or um̌ = (um̌)? in the whole Ω.
Finally, by m̌ = ψ(um̌), we conclude that either m̌ = m̌? or m̌ = m̌?. This proves
the theorem. �

Remark 3. Similar results on the monotonicity of the minimizers can be found
in [30, Theorem 2.4] in the one dimensional case and for an arbitrary m0 and in
[33, Proposition 5] in general dimension, for an orthotope and m0 of “bang-bang”
type. Both the previous results can be obtained from Theorem 2. We also mention
that other qualitative features of the minimizers are known. We refer the reader
again to [30], where a symmetry breaking result in dimension two when Ω is an
annulus is given, and to [33] for further qualitative properties of the minimizers in
the case of the orthotope and the ball. In particular, in this last case it is proved
that a minimizer cannot be a ball concentric to Ω. Finally, it is worth noting that
the monotonicity property stated in Theorem 2 has also been numerically observed
by some authors (see [31, 33, 42]).
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doi.org/10.1016/S0294-1449(16)30320-1

12 L. Cadeddu, M. A. Farina and G. Porru. Optimization of the principal eigenvalue under
mixed boundary conditions. Electron. J. Diff. Equ. 154 (2014), 1–17.

13 R. S. Cantrell and C. Cosner. Diffusive logistic equations with indefinite weights: popula-
tion models in disrupted environments. Proc. R. Soc. Edinb. Sect A. 112 (1989), 293–318.
https://doi.org/10.1017/s030821050001876x

14 R. S. Cantrell and C. Cosner. The effects of spatial heterogeneity in population dynamics.
J. Math. Biol . 29 (1991), 315–338. https://doi.org/10.1007/BF00167155

15 R. S. Cantrell and C. Cosner. Spatial ecology via reaction-diffusion equations. Wiley Series
in Mathematical and Computational Biology (Wiley, Chichester, 2003).

16 S. Chanillo, D. Grieser, M. Imai, K. Kurata and I Ohnishi. Symmetry breaking and other
phenomena in the optimization of eigenvalues for composite membranes. Commun. Math.
Phys. 214 (2000), 315–337. https://doi.org/10.1007/PL00005534

17 S. J. Cox and J. R. McLaughlin. Extremal eigenvalue problems for composite membranes.
I, Appl. Math. Optim. 22 (1990), 153–167. https://doi.org/10.1007/bf01447325

18 S. J. Cox and J. R. McLaughlin. Extremal eigenvalue problems for composite membranes,
II. Appl. Math. Optim. 22 (1990), 169–187. https://doi.org/10.1007/bf01447326

19 F. Cuccu, B. Emamizadeh and G. Porru Optimization of the first eigenvalue in problems
involving the p-Laplacian. Proc. Amer. Math. Soc. 137 (2009), 1677–1687.

20 P. W. Day. Rearrangements of measurable functions Dissertation (Ph.D.) (California
Institute of Technology, 1970).

21 D. G. de Figueiredo. Positive solutions of semilinear elliptic problems. Differential equations,
Lecture Notes in Mathematics, A. Dold and B. Eckmann (eds.), vol. 957 (Springer, 1982),
pp. 34–87. https://doi.org/10.1007/BFb0066233
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Appendix A. Rearrangements of measurable functions

In this appendix we introduce the concept of rearrangement of a measurable func-
tion and summarize some related results we use in the previous sections. The idea
of rearranging a function dates back to the book [28] of Hardy, Littlewood and
Pólya, since than many authors have investigated both extensions and applications
of this notion. Here we relies on the results in [1, 10, 11, 20, 32, 43].
Let Ω be an open bounded set of RN .

Definition 3. For every measurable function f : Ω → R the function df : R →
[0, |Ω|] defined by

df (t) = |{x ∈ Ω : f(x) > t}|

is called distribution function of f.

The symbol µf is also used. It is easy to prove the following properties of df.
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Proposition 9. For each f the distribution function df is decreasing, right
continuous and the following identities hold true

lim
t→−∞

df (t) = |Ω|, lim
t→∞

df (t) = 0.

Definition 4. Two measurable functions f, g : Ω → R are called equimeasur-
able functions or rearrengements of one another if one of the following equivalent
conditions is satisfied
(i) |{x ∈ Ω : f(x) > t}| = |{x ∈ Ω : g(x) > t}| ∀ t ∈ R;
(ii) df = dg.

Equimeasurability of f and g is denoted by f ∼ g. Equimeasurable func-
tions share global extrema and integrals as it is stated precisely by the following
proposition.

Proposition 10. Suppose f ∼ g and let F : R → R be a Borel measurable
function, then

i) |f | ∼ |g|;
ii) ess sup f = ess sup g and ess inf f = ess inf g;
iii) F ◦ f ∼ F ◦ g;
iv) F ◦ f ∈ L1(Ω) implies F ◦ g ∈ L1(Ω) and

∫
Ω
F ◦ f dx =

∫
Ω
F ◦ g dx.

For a proof see, for example, [20, Proposition 3.3] or [11, Lemma 2.1].
In particular, for each 1 ≤ p ≤ ∞, if f ∈ Lp(Ω) and f ∼ g then g ∈ Lp(Ω) and

‖f‖Lp(Ω) = ‖g‖Lp(Ω).

Definition 5. For every measurable function f : Ω → R the function f∗ :
(0, |Ω|) → R defined by

f∗(s) = sup{t ∈ R : df (t) > s}

is called decreasing rearrangement of f.

An equivalent definition (used by some authors) is f∗(s) = inf{t ∈ R : df (t) ≤ s}.

Proposition 11. For each f its decreasing rearrangement f∗ is decreasing, right
continuous and we have

lim
s→0

f∗(s) = ess sup f and lim
s→|Ω|

f∗(s) = ess inf f.

Moreover, if F : R → R is a Borel measurable function then F ◦ f ∈ L1(Ω) implies
F ◦ f∗ ∈ L1(0, |Ω|) and ∫

Ω

F ◦ f dx =

∫ |Ω|

0

F ◦ f∗ ds.

Finally, df∗ = df and, for each measurable function g we have f ∼ g if and only if
f∗ = g∗.
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Some of the previous claims are simple consequences of the definition of f∗, for
more details see [20, Chapter 2].
As before, it follows that, for each 1 ≤ p ≤ ∞, if f ∈ Lp(Ω) then f∗ ∈ Lp(0, |Ω|)

and ‖f‖Lp(Ω) = ‖f∗‖Lp(0,|Ω|).

Definition 6. Given two functions f, g ∈ L1(Ω), we write g ≺ f if∫ t

0

g∗ ds ≤
∫ t

0

f∗ ds ∀ 0 ≤ t ≤ |Ω| and

∫ |Ω|

0

g∗ ds =

∫ |Ω|

0

f∗ ds.

Note that g ∼ f if and only if g ≺ f and f ≺ g. Among many properties of the
relation ≺ we mention the following (a proof is in [20, Lemma 8.2]).

Proposition 12. For any pair of functions f, g ∈ L1(Ω) and real numbers α and
β, if α ≤ f ≤ β a.e. in Ω and g ≺ f then α ≤ g ≤ β a.e. in Ω.

Proposition 13. For f ∈ L1(Ω) let g = 1
|Ω|
∫
Ω
f dx. Then we have g ≺ f .

Definition 7. Let f : Ω → R a measurable function. We call the set

G(f) = {g : Ω → R : g is measurable and g ∼ f}

the class of rearrangements of f or the set of rearrangements of f.

Note that, for 1 ≤ p ≤ ∞, if f is in Lp(Ω) then G(f) is contained in Lp(Ω).
In this paper we are interested in studying the optimization of a functional which

is defined on a class of rearrangements G(m0), where m0 belongs to L∞(Ω). For
this reason, although almost all of what follows holds in a much more general
context, hereafter we restrict our attention to classes of rearrangements of functions
in L∞(Ω). We need compactness properties of the set G(m0), with a little effort it
can be shown that this set is closed but in general it is not compact in the norm
topology of L∞(Ω). Therefore we focus our attention on the weak* compactness.

By G(m0) we denote the closure of G(m0) in the weak* topology of L∞(Ω).

Proposition 14. Let m0 be a function of L∞(Ω). Then G(m0) is

i) weakly* compact;
ii) metrizable in the weak* topology;
iii) sequentially weakly* compact.

For the proof see [3, Proposition 3.6].

Moreover, the sets G(m0) and G(m0) have further properties.

Definition 8. Let C be a convex set of a real vector space. An element v in C is
said to be an extreme point of C if for every u and w in C the identity v = u+w

2
implies u=w.

A vertex of a convex polygon is an example of extreme point.

Proposition 15. Let m0 be a function of L∞(Ω), then
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i) G(m0) = {f ∈ L∞(Ω) : f ≺ m0},
ii) G(m0) is convex,

iii) G(m0) is the set of the extreme points of G(m0).

Proof. The claims follow from [20, Theorems 22.13, 22.2, 17.4, 20.3]. �

An evident consequence of the previous theorem is that G(m0) is the weakly*
closed convex hull of G(m0).

Corollary 3. Let m0 ∈ L∞(Ω) and m, q ∈ G(m0). Then

i)
∫
Ω
mdx =

∫
Ω
m0 dx;

ii) assuming
∫
Ω
m0 dx 6= 0, m=q if and only if m and q are linearly dependent.

Proof. (i) It follows immediately by (i) of Proposition 15, Definition 6 and
Proposition 11 with F equal to the identity function.
(ii) If m and q are linearly dependent, then, without loss of generality we can

assume that m = αq, for some α ∈ R. Integrating over Ω and using (i) we find
m = q. �

The following is [20, Theorem 11.1] rephrased for our case.

Proposition 16. Let u ∈ L1(Ω) and m0 ∈ L∞(Ω). Then∫ |Ω|

0

m∗
0(|Ω| − s)u∗(s) ds ≤

∫
Ω

mudx ≤
∫ |Ω|

0

m∗
0(s)u

∗(s) ds ∀m ∈ G(m0),

(66)
and moreover both sides of (66) are achieved.

The previous proposition implies that the linear optimization problems

sup
m∈G(m0)

∫
Ω

mudx (67)

and

inf
m∈G(m0)

∫
Ω

mudx

admit solution.
Finally, we recall the following result proved in [10, Theorem 5].

Proposition 17. Let u ∈ L1(Ω) and m0 ∈ L∞(Ω). If problem (67) has a unique
solution mM, then there exists an increasing function ψ such that mM = ψ ◦u a.e.
in Ω.
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