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Abstract
This research introduces a cutting-edge approach to glucose monitoring, which is essential in
many applications.The study developed a new non-invasive glucose monitoring system utiliz-
ingmachine learning techniques.This system examines the reflection coefficient data gathered
from glucose solutions using a Vector Network Analyzer. To showcase the system’s accuracy
in predicting glucose levels, two distinct datasets were employed. The first dataset comprised
glucose solutions with concentrations spanning from 0 to 200 g/L, while the second dataset
included solutions ranging from 15 000 to 20 000 mg/L for enhanced precision. The system
measured both datasets, and three machine learning algorithms – Decision Tree, Random
Forest, and Support Vector Regression – were applied to the collected data. Furthermore, a
grid search method was employed to optimize the hyperparameters for each model’s optimal
performance.The findings revealed that the RandomForest yielded the best results across both
datasets. For gram scale, the R2 value was 0.9995, indicating that 99.95% of the glucose level
variance was accounted for, with a low RMSE of 1.1589 mg/dL. Moreover, in milligram scale
dataset, the R2 value was 0.9932, and RMSE was 1.1119 mg/dL, confirming the model’s high
accuracy. These experimental outcomes demonstrate that the proposed system can effectively
predict glucose levels.

Introduction

Glucose is one of the most critical molecules for the growth and reproduction of numerous
organisms. It also plays a key role in many biological reactions such as respiration or photosyn-
thesis. In addition, glucose serves as a metabolic fuel for cells. Apart from its monomer form,
polymer derivatives of glucose join the structure of plants as cellulose or is stored in animal cells
as a glycogen for energy storage [1]. Moreover, glucose is an essential carbon source for the fer-
mentation industry.Thus, monitoring of glucose is especially beneficial for optimizing biomass
production and end-product concentrations such as lactic acid, amino acids, peptides, alcohols,
etc. [2]. Determining glucose levels is also crucial for various applications such as monitoring
plant health, determination of fermentation parameters or blood glucose level detection [3].

Various methods have been devised for glucose monitoring because of their pivotal role
in many areas, and all these techniques have their own advantages and disadvantages [4, 5].
For example, spectroscopic methods are accurate, but they have several drawbacks such as the
high cost of chemicals used during the process and the requirement for multiple steps for sam-
ple preparation [6]. On the other hand, high-performance liquid chromatography (HPLC) is a
robust analytical technique frequently used for detecting glucose and other metabolites in food
products, fermentation environment, antibiotics, pesticides, etc. [7]. With its high sensitivity
and resolution, HPLC is able to analyze a diverse array of compounds. Nevertheless, apart from
its reliance on costly instruments, the HPLC approach entails time-consuming steps includ-
ing sample preparation, filtration, and analysis [8]. Additionally, comprehensive researches are
being conducted on the non-invasive determination of glucose levels in blood or other bio-
logical specimens. These non-invasive methodologies can be classified into two categories:
electrochemical-based and electromagnetic-based. The use of electrochemical-based methods
in glucose measurement are limited by their poor performance, that are greatly influenced by
environmental conditions [9].

Electromagnetic sensing methods on the other hand, use electromagnetic signals of differ-
entwavelengths. In electromagnetic sensing, the relationship between signal (magnitude, phase,
frequency, etc.) with biological samples such as organic materials, tissues or blood is measured.
Thesemethods can be used in a broad range of applications such asmedicine, industrial biotech-
nology or agriculture [10]. Different types of electromagnetic waves can be used in various
applications. For instance, optical methods such as Raman spectroscopy exploit nanometer
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wavelengths. In studies within the millimeter waveband, wave-
lengths are commonly utilized. Additionally, microwaves are
assessed in impedance spectroscopy [11]. Optical techniques aim
to monitor and detect glucose in liquids using the scattering,
absorption, and reflection properties of waves. On the other hand,
millimeter-wave band detection, microwave band detection, and
bioimpedance spectroscopy methods exploit the dielectric prop-
erties of glucose [12]. Since microwave and millimeter radiation
offer lower energy per photon and less scattering amounts, they
can penetrate deeper into the tissue to reach regions with sufficient
blood concentration and provide more accurate glucose moni-
toring. They are also resistant to environmental factors, such as
movement compared to optical band methods. Millimeter band
methods are divided into three categories: reflection, transmission,
and resonance perturbation.The reflection-based technique is also
called a single port method, and when the glucose level increases
or decreases, amplitude and phase of the reflected signal change
due to the permeability in the solution, and this phenomenon,
which is observed in signal level can be monitored by measuring
the reflection coefficient (S11) [13].

Besides its superior properties, electromagnetic glucose sens-
ing is also a promising approach for monitoring blood glucose
concentrations since it enables measuring the blood glucose lev-
els of diabetic patients in a non-invasive manner [13]. Because
of its abundance and importance, studies about the microwave
and millimeter wave bands are mainly focused on the measure-
ment of blood glucose levels of diabetic patients. In addition, these
methods are efficient for non-invasive blood glucose monitoring
for diabetes disease [14]. According to [15], the global prevalence
of diabetes was approximately 536 million individuals in 2021,
with projections indicating a rise to 783 million by 2045. However,
there has been little attention given to electromagnetic determi-
nation of glucose concentration present in the other biological
samples such as the fermentation environment or food products
[16–18]. Therefore, it can be concluded that electromagnetic glu-
cose sensing has a great commercialization potential for various
applications.

Integration of machine learning methods provides significant
improvements of precision in any field as in glucose related appli-
cations. Thus, employing machine learning methods can greatly
increase the accuracy of various estimations such as blood glucose
levels or soil microbiota dynamics [19, 20]. For instance, Goktas
et al. [21] proposed a newmethod to determine the optimumoper-
ating point interval for Vector Network Analyzer (VNA) measure-
ments of different glucose level concentrations. This new method
is a sliding windows-based, which can be used in online applica-
tions due to its low time complexity. Additionally, it can be used
to determine the operating point interval of the different macro-
molecules. Conducted studies in the literature mainly focused on
determination of different types of diabetes using machine learn-
ing methods. Previous reports demonstrated that these methods
can successfully be used in the classification of diabetes mellitus.
For instance, Monte-Moreno [22] designed a non-invasive system
incorporating a photoplethysmograph (PPG) sensor to measure
blood glucose level and blood pressure. Machine learning meth-
ods were applied to the features extracted from the PPG waveform
through the signal processing module. The performance of four
differentmachine learningmethods (linear regression [LR], neural
networks [NN], support vector machines [SVM], and random for-
est [RF]) were analyzed. According to the results, the RF method
achieves the bestR2 scores for predicting blood glucose level (0.90),
systolic blood pressure (0.91), and diastolic blood pressure (0.89).

Furthermore Shokrekhodaei et al. [20], used machine learning
methods to predict glucose level measurements with data from
a custom-built optical sensor. Measurements were obtained from
this optical sensor at 18 different wavelengths between 410 nm
and 940 nm. The relationship between glucose concentrations in
aqueous solutions and wavelengths was analyzed. Wavelengths of
485 nm, 645 nm, 860 nm, and 940 nm showed high correla-
tion between transmission intensity and glucose concentration.
Initially,multiple linear regression (MLR) is used to predict glucose
level using a feed-forward neural network (FFNN). While R2 was
0.92 and RMSE was 16.2 mg/dL in MLR, R2 was 0.96 and RMSE
was 11.1 mg/dL in FFNN regression model. Due to the low perfor-
mance of MLR and FFNN in regression, the data set was divided
into 21 classes with a glucose range of 10mg/dL and analyzed using
the classification methods k-nearest neighbors (KNN), DT, SVM.
The average F1-score performance of the classification methods is
0.98, 0.97, and 0.99 for KNN, DT, and SVMmethods, respectively
[23]. designed a dual-wavelength short near-infrared system that
can measure glucose levels and categorize glucose levels into three
classes: hypoglycemic, normal, and hyperglycemic.Wavelengths of
940 nm and 950 nm were chosen because of 940 nm has a higher
absorption coefficient for glucose and light at 950 nm passes more
easily through tissue. FFNN regressionmodel was used to estimate
the glucose level from the inputs of the designed system. The per-
formance of glucose level estimation is 0.99 in R2, 2.49 mg/dL in
MAE, 3.02 mg/dL in RMSE and 9.16 (mg/dL)2 in MSE metrics.
Furthermore, multilayer perceptron and KNN methods are used
to classify glucose levels. According to the average accuracy scores,
higher performances were obtained with the KNN method (0.983
in 5-fold, 0.980 in 10-fold, 0.978 in 15-fold).

Previous studies have demonstrated that machine learning
techniques, a branch of artificial intelligence, can effectively esti-
mate glucose levels in a non-invasivemanner.However,most of the
existing research has primarily focused on optical methods, each
offering distinct advantages and drawbacks.While opticalmethods
tend to provide higher accuracy, this precision is often highly sensi-
tive to environmental conditions and the quality of the technology
employed. In contrast, micro- and millimeter-wave methods are
less influenced by environmental factors and present a promis-
ing alternative for more in-depth measurements, particularly in
glucose quantification studies.

In light of these challenges, the present study introduces a novel
system designed to accurately determine glucose concentrations
using various machine learning techniques. The system aims to
exploit the relationship between transmitted and reflected signals,
which vary according to the glucose concentration in diluted sam-
ples (1–200 g/L, 200 samples with increasing concentrations of
1 g; 15 000–20 000 mg/L, 200 samples with increasing concen-
trations of 25 mg; a total of 400 samples). To create the datasets
for machine learning analysis, glucose solutions with varying con-
centrations were prepared. The reflection coefficient parameters
were determined using a Vector Network Analyzer (VNA). These
measurements were then compiled into low- and high-precision
datasets for further analysis.

Subsequently, three different machine learning methods –
Decision Tree, Random Forest, and Support Vector Machine –
were applied, along with hyperparameter optimization, to achieve
the best possible performance for each technique. The experimen-
tal results revealed that the Random Forest method consistently
outperformed the others, providing the most accurate predic-
tions for both low- and high-precision glucose level estimation.
To the best of our knowledge, this is the first study to use a large

https://doi.org/10.1017/S1759078725102171 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078725102171


International Journal of Microwave and Wireless Technologies 3

sample size to predict high glucose concentrations across diverse
fields, including food, agriculture, energy, and medicine, utilizing
machine learning techniques.

The structure of the paper is organized as follows. In Section
“Materials andMethods”, preparation of the solutions, experimen-
tal setup, and methods were given. Moreover, a detailed explana-
tion of the used machine learning methods was shown in the same
section. In Section “Results and Discussion”, performance met-
rics that are employed to assess the performance of the machine
learningmethods were shown, experimental results obtained from
gram and milligram scale with machine learning methods were
discussed and they were compared with previous reports in the lit-
erature. In Section “Conclusion”, concluding remarks and future
study aspects were given.

Materials and methods

Chemicals and container

Glucose used in the assays was purchased from Merck/Germany.
Mica glass (100 mL total volume) was used for all assays. Each
experiments were carried out with 50 mL working volume and
they were performed as triplicate to increase the repeatability of
the results.

Calculation of the scattering parameters

When characterizing transmission lines, the scattering parameters
of the transmission line are measured. The scattering parameter
quantizes the parts of an incoming electromagnetic wave that are
transmitted and reflected by a network. Scattering parameters (S)
are a useful technique which shows the circuit in a matrix with-
out knowing which circuit elements a wave circuit consists of,
without needing to know its property or internal property. S11
(reflection coefficient) defines the proportion of the amplitude of
the reflected signal to the amplitude of the transmitted signal.
Hence, in the present study, S11 was calculated using the follow-
ing Equation 1 and 2 [24]. Eventually, measured magnitude values
(y) were transformed to decibel values (dB) by Equation 3.
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(2)

y(dB) = 20 ⋅ log(y)
10 (3)

Sample preparation and vector network analyzer

In the first part of the experiment, stock glucose solution (200 g/L)
was prepared in a 50mL sterile falcon tube.This solutionwas trans-
ferred to a mica glass container after measuring the dB value of the
empty mica glass as a blank sample. After that step, glucose solu-
tion was serially diluted with distilled water up to 1 g/L glucose.
The dilution step size was set to 1 g/L for each dilution. In the last
dilution of this part, only distilled water (50 mL) was measured,
making a total of 200 measurements.

In the second step, 20 000 mg/L (20 g/L) stock glucose solution
was prepared in a 50mL sterile falcon tube.This solutionwas trans-
ferred to a mica glass container after measuring the dB value of

empty mica glass as a blank sample. The glucose solution was seri-
ally diluted with distilled water up to 15 000mg/L (15 g/L) glucose.
The dilution step size was set to 25mg/L for each dilution. Distilled
water (50 mL) was also measured, making a total of 200 mea-
surements. To ensure reproducibility, during the experiments, the
container was not moved, and all dilutions were performed with
using micropipettes.

VNA (Rohde Schwarz/ZNB40-B22/Germany) equipped with
WR-28 adapter and coaxial cable (miniband K-10) was used
for experiments. S11 parameter was monitored between 20 and
40 GHz. All equipment and adapter were calibrated for 50 Ω
impedance. All assays were performed at 25°C and glucose solu-
tionsweremeasured five times using theVNA.Afterwards, average
spectra were analyzed to determine the differentiation of glucose
concentrations.The actual experimental setup was shown in Fig. 1.

Estimation of glucose level with machine learningmethods

Regression is a technique that is used in data science and statis-
tics to model the relationship between a dependent variable and
one or more independent variables.Themain purpose of this anal-
ysis is to predict how the dependent variable changes depending
on the independent variables and to understand this change. In
the present study, the estimation of glucose levels is performed
with three different regression methods, namely DT, RF, and SVR.
The employed methods are explained in the following subsections,
respectively.

Decision tree

The Decision tree (DT) is a supervised learning algorithm with
a tree-like structure. It consists of root node, decision nodes
(branches), and leaf node units. The root node is the initial node
of the tree where the data set is split according to specific crite-
ria, the split continues with the decision nodes and ends at the leaf
nodes. In DT regression, the value at the terminal nodes expresses
the average response of the observations that fall within the specific
region during training. Consequently, when a new, unseen obser-
vation is encountered, the model predicts the response by using
the average value of the corresponding region [25]. As can be seen
in Fig. 2, theDTmakes decisions by dividing nodes into sub-nodes.
This subdivision continues throughout the training process until
only homogeneous nodes remain [26]. The prediction of the ith
sample ̂yi in the test data set is made by averaging the samples in
the leaf node.

Random forest

Random forest (RF) algorithm is an ensemble learningmethod that
constructs a multitude of decision trees for classification or regres-
sion tasks. In this method, the bagging technique is employed
to construct multiple decision trees that operate in parallel and
independently. The bagging technique involves bootstrapping and
aggregation. Bootstrapping is the process of creating various sub-
sets of the training data with replacement. DT regression models
are created with these data subsets. In the aggregation process,
the result of each DT regression model is found and averaged to
determine the final estimation. In the RF method withM decision
trees, the prediction result is calculated as given in Equation 4.

⌢
f Nrf = 1

N

N

∑
n=1

T(x) (4)

https://doi.org/10.1017/S1759078725102171 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078725102171


4 Goktas et al.

Figure 1. (a) Experimental setup for VNA-based
microwave measurement of increased glucose
concentrations between 20 and 40 GHz (b) Schematic
representation of system and experimental approaches
(T: 25°C, number of point: 2000, sweep: 10).

Figure 2. Structure of DT.

The structure of the RF method is shown in Fig. 3.

Support vector regression

Support vector machines (SVM) is a learning method developed
by Vapnik and used for classification and regression problems
[27, 28].

Let {(x1, y1) , (x2, y2) , … , (xn, yn)} ⊂ 𝜒 × R be the training
data, where 𝜒 denotes the space of input patterns. The goal is to
obtain a function f (x) that has the maximum deviation 𝜀 from the
targets yi obtained for all training data and is also as smooth as
possible. In other words, errors smaller than 𝜀 are ignored, while a
deviation larger than 𝜀 is not accepted.

The general mathematical form of the support vector regression
(SVR) defined as in Equation 5.

f (x) = w ⋅ 𝜑 (x) + b (5)

where 𝜑 (x) denotes the kernel function, w corresponds to the
weights, b is the bias. In the case of Equation 5, flatnessmeans look-
ing for a smallw. One way to achieve this is to minimize the norm,
‖w‖2 = ⟨w,w⟩. The present problem can therefore be written as a
convex optimization problem as in Equation 6.

minimize 1
2 ‖w‖2

subject to :
yi − ⟨w, 𝜑 (xi)⟩ − b ≤ 𝜀
⟨w, 𝜑 (xi)⟩ + b − yi ≤ 𝜀

(6)

The assumption in Equation 6 implies that such a function
f exists that approximates all pairs (xi, yi) with 𝜀 precision. This
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Figure 3. Visual illustration of RF.

Figure 4. Illustration of the mapping input space × into high-dimensional feature space and the soft margin loss setting for a SVR.

assumption also says that the convex optimization problem is fea-
sible. But in some cases we may want to allow some errors. For
this, one can add slack variables 𝜉i, 𝜉*

i to deal with the infeasible
constraints of the optimization problem.This leads to the equation
given by [27].

minimize 1
2 ‖w‖2 + C

n

∑
i=1

(𝜉i + 𝜉*
i )

subject to :
[w ⋅ 𝜑 (xi) + b] − yi ≤ 𝜀 + 𝜉*

i

yi − [w ⋅ 𝜑 (xi) + b] ≤ 𝜀 + 𝜉i
𝜉i, 𝜉*

i ≥ 0

(7)

Different kernel functions are proposed to improve the perfor-
mance of SVR.Commonly used kernel functions include the linear,
polynomial, radial basis function (RBF), and sigmoid kernels.

A graphical illustration of the SVR conversion process is pre-
sented in Fig. 4. The samples in the original input space (low
dimensional) are mapped to a feature space (high dimensional)
through the non-linear mapping function 𝜑 (x). Data points
located on or outside the 𝜀−tube of the decision function are

defined as support vectors and are marked with red stars.The right
side of Fig. 4 shows the 𝜀−insensitive loss function, where 𝜉i and 𝜉*

i
are slack variables are employed to handle the permissible positive
or negative errors.

Results and discussions

Performancemetrics

In artificial intelligence problems, performance metrics are used
to measure the success of the models and compare them with
each other. To calculate the performance of the machine learning
method, the data set is divided into two parts: training and test sets.
While themachine learningmodel is createdwith the training data,
the performance of this model is calculated using the samples from
the test data. Different performance measures have been devel-
oped in the literature based on predictive modeling techniques.
Commonly utilized performance metrics for regression problems
are MAE, MSE, RMSE, and R2.

MAE is determined by taking the average of the absolute differ-
ences between the observed values and the predicted values. MAE
is defined as
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Figure 5. K-fold cross-validation for k = 5.

MAE =

N
∑
i=1

|yi − ̂yi|

N (8)

where yi corresponds to the ith observed value, ̂yi is the ith predicted
value, and N equals the number of samples in the data set.

MSE is calculated as the mean square of the difference between
the observed value and the predicted value.MSE emphasizes larger
errors due to the presence of the squared term in the equation.MSE
is calculated as

MSE =

N
∑
i=1

(yi − ̂yi)
2

N (9)

RMSE is simply equal to the square root of MSE. RMSE is com-
puted by taking the square root of average squared differences
between the predicted and actual values. Because RMSE calculates
the square root of the average squared errors, it brings the error
metric back to the original scale of the target variable. RMSE is
computed as

RMSE =

√√√√
⎷

N
∑
i=1

(yi − ̂yi)
2

N (10)

R2, also known as the coefficient of determination, indicates the
proportion of the variance in the target variable explained by the
predictions of the regression model [29]. R2 is defined as

R2 = 1 −

N
∑
i=1

(yi − ̂yi)
2

N
∑
i=1

(yi − y)2
(11)

where ̂yi equals ith observed value, ̂yi is the ith predicted value, and
y corresponds to the mean of observed values. R2 is also named as
coefficient of determination, it can take values between 0 and 1. As
the R2 score approaches 1, it indicates that the model fits better.

K-fold cross-validation

To evaluate the performance of the models, the data set is divided
into training and test sets. The machine learning model is created
with the training set, and the performance of themodel is evaluated
on the test set. When the data set is limited, separating the data set
into training and test sets is insufficient to evaluate the performance
of the model. In this case, a different approach called k-fold cross-
validation is often used. In k-fold cross-validation, the data set is
randomly divided into k equal parts. One part is reserved for test-
ing, while remaining k − 1 parts are used for training. This process
is iterated for k times, and the results of these iterations are then
averaged. In this way, all samples in the data set are used for both
training and testing of the model. A sample illustration of k-fold
cross-validation for a k value of 5 is shown in Fig. 5.

Experimental results

In this study, a new machine learning model-based system was
established to measure glucose concentration in distilled water.
Initially, measurements were taken from the VNA via the WR-
28 adapter and glucose level estimation was performed with three
different machine learning methods: DT, RF, and SVR. In addi-
tion, the performances of these methods were benchmarked. All
of thesemethods takemethod-specific hyperparameters, and these
parameters need to be optimized according to the data set to be
applied. In order to obtain the best performance for each compared
method, a grid search method was applied to the method-specific
hyperparameters. In the grid search technique, the performance
of the method was measured separately using each pair of hyper-
parameters and the hyperparameters that give the best score in
the calculated performance metrics determine the final perfor-
mance of the method.The search space of the hyperparameters for
the compared methods are given in Table 1. In addition, k value
was chosen as 10 in the k-fold cross validation technique and it
is repeated 10 times with random shuffling in each iteration to
increase reliability of the results.
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Table 1. Hyperparameter search space of the methods

Method Hyperparameter Value

Decision Tree Minimum samples split 2, 3, …,23

Maximum depth 1, 2, …,20

Random Forest Number of trees 20, 21, …, 27

Maximum depth 1, 2, …, 32

Support Vector
Regression

Cost 2−5, 2−4, …, 210

Linear kernel Epsilon 2−10, 2−9, …, 20

Support Vector
Regression

Cost 20, 21, …, 213

RBF kernel Gamma 2−10, 2−9, …, 2−3

Table 2. The best scores obtained in benchmarked methods in gram scale

Method R2
MAE

(mg/dL)
MSE

(mg/dL)2
RMSE
(mg/dL)

Decision Tree
Minimum samples split = 5 0.9955 3.0201 13.5141 3.6130
Maximum depth = 7

Random Forest
Number of trees = 210 0.9995 0.8706 1.5060 1.1589
Maximum depth = 29

Support Vector
Regression—Linear
C = 2−3 0.9974 2.2456 8.0457 2.7976
ε = 2−6

Support Vector Regression—RBF
C = 27 0.9821 1.6076 13.5139 3.6761
γ = 2−6

Analysis of the stem on gram scale

The first data set is prepared with the increment of glucose in gram
scale starting from 1 to 200. In this data set, the results in the R2

performance metric of the three compared methods are approxi-
mately close to each other and take values around 0.99 (Table 2).
This high value of R2 (0.99) indicates that the predictions of the
model are very close to the measurements taken. However, an
in-depth analysis of the benchmarked methods on a different per-
formancemetric would bemore accurate for evaluating the success
of the compared methods and determining the best method. For
this reason, a detailed performance analysis was performed using
RMSE, another regression performance metric frequently used in
the literature. Figure 6 visualizes the RMSE scores for the perfor-
mance of the models in the grid search range for the benchmarked
methods.

The RMSE scores of the DTmethod over the specified range are
shown in Fig. 6(a). Changing theminimum_sample_split hyperpa-
rameter slightly changes the RMSE scores, provided that the max-
imum depth hyperparameter remains the same. However, RMSE
scores increase substantially when the maximum depth hyperpa-
rameter falls below 4. Figure 6(b) presents the RMSE scores of the
RF method. In the RF method, the RMSE results are very high for
values of the number_of_tree hyperparameter up to 4. For values
of the number_of_tree hyperparameters greater than 4, the RMSE
results are satisfactory and vary within a limited range. As can be

seen from Fig. 6(b), the effect of the maximum_depth hyperpa-
rameter is quite limited compared to the number_of_trees. The
performance of the SVR with linear kernel (SVR-Linear) is shown
in Fig. 6(c). In SVR-linear, the variation of RMSE scores in the grid
search space is rather restricted.The difference between the highest
(4.3036 mg/dL) and lowest RMSE scores (2.7976 mg/dL) is 1.5060.
Figure 6(d) visualizes the RMSE scores obtained with the RBF ker-
nel of the SVR (SVR-RBF) method. In SVM-RBF, the best scores
are obtained in the range 2−10 − 2−8 for 𝛾 and 23 − 213 for Cost (C).
Outside of this range, the performance gradually decreases. The
best RMSE scores achieved in each benchmarkedmethod are given
in Table 2. Based on the results in Table 2, the best RMSE scores
in all performance metrics were obtained in the RF method with
hyperparameters number_of_trees = 16, maximum_depth = 16.

Analysis of the stem onmilligram scale

In the first part of the study, glucose concentrations between 0 and
200 g/L with 1 g/L intervals were measured via VNA in order to
apply machine learning methods. According to the experiments,
high R2 and low RMSE performance results were obtained in the
benchmarked methods.Thus, during the second step of the exper-
iments, sensitivity of the current measurement method was tested
for glucose concentrations between 15 000 and 20 000 mg/L with
25 mg/L intervals. Hence, it was aimed to evaluate the efficiency
of the system for highly sensitive analyzes such as blood glucose
levels. As previously mentioned for the gram-precision prepared
data set, the R2 performance scores of the benchmarking methods
in the milligram-precision prepared data set are very close to each
other and range between 0.9812 and 0.9923 (Table 3). Therefore,
the RMSE performance scores of the benchmarked methods were
analyzed in detail. Figure 7 shows the results of DT, RF, SVR-linear,
and SVR-RBF methods on the RMSE metric.

The performance of the DT method is shown in Fig. 7(a).
For the same minimum_sample_split hyperparameter, the effect
of changing the maximum_depth hyperparameter on the RMSE
scores of the method is quite limited. For the maximum_depth
hyperparameter in the range 4 to 25 for all values of the mini-
mum_sample_split, the performance is almost unchanged. Atmax-
imum_ depth hyperparameter values lower than 4, performance
decreases gradually. The performance of the RF method is pre-
sented in Fig. 7(b).Theperformance of the RFmethod is almost the
same in the range of number_of_trees 25 − 210 andmaximum_depth
4 − 32 (obtains the best performance), but outside this range the
RMSE values gradually increase and therefore the performance
decreases.

The variation of the RMSE values in the best performance range
is between 1.1119 mg/dL and 1.2449 mg/dL and the variation in
this range is approximately 12%. The observation of such a vari-
ation (12%) over a certain range in the same method shows the
importance of adjusting themethod-specific hyperparameters.The
RMSE scores of the SVR-linear method in the specified range are
shown in Fig. 7(c). As in the DT method Fig. 7(a), the varia-
tion of the C hyperparameter in SVR-linear was rather limited
when the 𝜀 hyperparameter remained constant. When the hyper-
parameter of 𝜀 is greater than 2−3, the performance of SVR-linear
drops significantly. Figure 7(d) shows the RMSE scores of the SVR-
RBF method. Similar to the result of the SVM linear method, the
effect of the hyperparameter C is fairly low. The performance of
the method decreases significantly and gradually as the 𝛾 value
increases from 2−8. Table 3 shows the lowest scores obtained by the
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Figure 6. RMSE score of the benchmarked methods on gram scale analysis (a) DT, (b) RF, (c) SVR-linear, and (d) SVR-RBF.

Table 3. Lowest performances obtained in benchmarked methods in
milligram-scale

Method R2
MAE

(mg/dL)
MSE

(mg/dL)2
RMSE
(mg/dL)

Decision Tree
Minimum samples split = 9 0.9812 1.4697 0.3560 1.8534
Maximum depth = 24

Random Forest
Number of trees = 28 0.9932 0.8734 1.2870 1.1119
Maximum depth = 30

Support Vector
Regression—Linear
C = 22 0.9866 1.2759 2.5780 1.5859
ε = 2−3

Support Vector Regression—RBF
C = 211 0.9905 1.0502 1.8050 1.3267
γ = 2−10

compared methods on all performance metrics in the milligram-
scale data set and the hyperparameters at which these scores were
obtained. As with the gram-scale data set, the lowest scores were
obtained in the RF method with the hyperparameters number
of trees = 28 and maximum depth = 30 in the mg-scale data
set.

To estimate glucose concentration non-invasively, we employed
three machine learning algorithms: DT, RF, an SVR.These models
were chosen due to their proven effectiveness in nonlinear regres-
sion tasks and ability to handle multivariate data [28, 30, 31]. The
input features for the models are derived from the measured S-
parameters obtained via aVNA,which capture the electromagnetic
response of the sensing system influenced by glucose concentra-
tion. DT models learn a hierarchy of rules based on these features,
allowing for interpretable decision-making but may suffer from
overfitting in complex datasets [30]. RF, as an ensemble of DT,
mitigates overfitting by averaging predictions from multiple trees
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Figure 7. RMSE score of the benchmarked methods on milligram-scale analysis (a) DT, (b) RF, (c) SVR-linear, and (d) SVR-RBF.

trained on random subsets of the data, increasing robustness and
generalization [31]. SVR constructs a regression function in a high-
dimensional feature space using kernel functions, making it par-
ticularly suitable for capturing the nonlinear relationship between
VNA-derived features and glucose levels [28]. These models were
trained and evaluated using cross-validation to ensure reliable
performance estimation and avoid bias. Their predictions were
compared to determine the most accurate and robust approach for
non-invasive glucose estimation.

Comparison of the system

Details of the studies in the literature in which glucose concen-
tration was estimated by non-invasive measurements are given in
Table 4. As can be seen from Table 4, the performance of the pro-
posed system is significantly superior when compared to some of

the previous reports about glucose estimation studies in the lit-
erature. Among the previous works, the highest R2 scores were
obtained as 0.96, 0.95, and 0.99 from [23, 32, 33], respectively,
which are quite similar to those obtained from the current study.
This R2 scores observed from methods [23] and the proposed sys-
tem indicates that 99% of the variance in the dependent variable
is explained by the independent variables. Thus, it is more appro-
priate to perform the comparison on the RMSE metric, which is
frequently used in comparing regression methods. On the other
hand, the lowest RMSE scores among the values given in the litera-
ture were calculated as 5.61 mg/dL, 3.02 mg/dL, and 5.53 mg/dL in
[23, 34, 35] (2019), respectively. Among the studies in Table 4, the
lowest RMSE score was calculated as 3.02 mg/dL which was found
as only 1.11 mg/dL in the current study. When the proposed sys-
temwas compared with the closest studies, it was observed that the
RMSE scores were 63.18%, 79.93%, and 80.22% lower.

https://doi.org/10.1017/S1759078725102171 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078725102171


10 Goktas et al.

Table 4. Performance comparison of the current work with existing studies

Paper Technology Artificial intelligence method(s) R2
MAE

(mg/dL)
MSE

(mg/dL)2
RMSE
(mg/dL)

Naresh et al. (2024) NIR Feed Forward Neural Network 0.99 2.49 9.16 3.02

Jain et al. (2019) NIR Statistical Analyzes (Huber’s
Metod)

0.908 3.87 − 5.61

Anupongongarch et al.
(2019)

NIR − 0.96 − − 11

Larin et al. (2002) OCT − 0.95 − − −

Pai et al. 2018 Photoacoustic Gaussian Kernel Based Regression − 5.23 − 7.64

Shokrekhodaei (2021) − Decision Tree − − − 15

K-Nearest Neighbors Support
Vector

− − − 13.5

Machine − − − 12.3

Li et al. (2019) Absorption Spectrum Linear Fitting − − − 19.34

Xiao et al. (2020) S Parameters Improved Neural Network model
and Hybrid Optimization

− − − 5.53

Kazemi et al. (2023) Planar Resonator
Based Sensor

Long-Short-Term Memory 0.913 − − −

Bamatraf et al. (2021) Microwave Sensor Matern 5/2 Gaussian Process
Regression

− − − 6.7

Monte-Moreno (2011) Photoplethysmograph Linear Regression 0.52 − − −

Neural Network 0.54 − − −

Support Vector Machine 0.64 − − −

Random Forest 0.88 − − −

This study Mllimeter Wave Band Decision Tree 0.9812 1.4697 0.3560 1.8534

Random Forest 0.9932 0.8734 1.2870 1.1119

SVR-Linear 0.9866 1.2759 2.5780 1.5859

SVR-RBF 0.9905 1.0502 1.8050 1.3267

The results obtained from current study can be comparable
with other re- ports in the literature. For example, Naresh et al.
[23] proposed a dual wavelength optical system using 950 nm
and 940 nm to detect the glucose non- invasively with 575 sam-
ples (460 of them were allocated for training and 115 for testing).
R2, MSE, MAE, and RMSE values were observed as 0.99, 9.16
(mg/dL)2, 2.49 mg/dL, and 3.02 mg/dL, respectively. Furthermore,
Jain et al. [35] tested a non-invasive glucose detection system
using near infrared spectroscopy (NIR) absorbance and reflectance
spectroscopy technique. As a result of the study with 25 subjects,
R2, MAE, and RMSE values were found as 0.908, 3.87 mg/dL
and 5.61 mg/dL, respectively. In an another report, photoacous-
tic measurements were taken on glucose solutions ranged from 0
to 500 mg/dL. Calibration of photoacoustic measurements from
solutions by applying Gaussian kernel-based regression resulted
in RMSE, mean absolute relative difference (MARD), and mean
absolute difference (MAD) of 7.64 mg/dL, 2.07% and 5.23 mg/dL,
respectively [36]. On the other hand, in the current study, R2, MSE,
MAE, and RMSE values were obtained as 0.9932, 1.28 (mg/dL)2,
0.87 mg/dL, and 1.11 mg/dL, respectively. In comparison with the
existing studies in the literature, the presented studies resulted in
significant improvement (63%) in terms of RMSE performance
metrics. This enhancement can be related to several factors. First,
hyperparameter tuning of the benchmarked models are made to

obtain he highest scores in each method. Second, in the current
study, 400 samples in total were used for machine learning. Usage
of such a high number of samples can lead to improved accuracy
and generalization of the measurements, better representation of
the data distribution, reduced bias. By this way, it was possible to
obtain more reliable metrics. Third, serial dilution of glucose dur-
ing experiments may have provided a stable environment which
support the repeatability.

Conclusion

In this study, a novel system for non-invasive glucose estimation
using a VNA was proposed. Reflection coefficients from serially
diluted glucose solutions were measured and utilized for machine
learning models, namely DT, RF, and SVR. The experiments were
conducted in two phases. In the first phase, coarse glucose esti-
mation was performed with increasing concentrations of 1 g/L
using these machine learning methods. Due to the high perfor-
mance observed in glucose estimation on the gram scale, more
precise experiments were conducted in the second phase, with a
milligram-scale approach (increasing by 25mg/L in each dilution).

The results showed that RF achieved the best performance
across both scales. For the gram scale, the model achieved an R2 of
0.9995, RMSE of 1.1589 mg/dL, MAE of 0.8706 mg/dL, and MSE
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of 1.5060 (mg/dL)2. For the milligram scale, the model delivered
an R2 of 0.9932, RMSE of 1.1119 mg/dL, MAE of 0.8734 mg/dL,
and MSE of 1.2870 (mg/dL)2. When compared to conventional
glucose measurement methods, the findings demonstrate that the
machine learning-based VNA approach offers a rapid and reli-
able alternative for glucose estimation. Furthermore, the proposed
system has significant application potential in industries related
to sugar, such as agriculture, food, medicine, and biotechnology.
The exceptional performance of this system, which surpasses exist-
ing methods in the literature, positions it as a practical solution
for real-world scenarios. Additionally, the promising results from
this study suggest future applications. As a next step, the method
could be extended to detect the concentration of various macro-
molecules. Moreover, performance could be further enhanced by
evaluating additional S-parameters. In this context, the general-
izability of the proposed system to different biological structures
represents a valuable direction for future research. Beyond glucose,
the detection and quantification of macromolecules such as pro-
teins, lipids, or nucleic acids using similar non-invasive techniques
may significantly broaden the scope of this method. Incorporating
such targets into upcoming studies could contribute to the devel-
opment of more comprehensive biosensing platforms suitable for
diverse biomedical and industrial applications.
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