https://doi.org/10.1017/jfm.2025.10369 Published online by Cambridge University Press

J. Fluid Mech. (2025), vol. 1016, A69, doi:10.1017/jfm.2025.10369

Three-layer stratified exchange flows:
hydraulically controlled transition to turbulence

Amir Atoufi' , Lu Zhu' , Adrien Lefauve ">’ , John R. Taylor] s

Rich R. Kerswell , Stuart B. Dalziel , Gregory A. Lawrence © and

Paul F. Linden'

'Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for
Mathematical Sciences, Wilberforce Road, Cambridge CB3 OWA, UK

2Grantham Institute - Climate Change and the Environment, Imperial College London, SW7 2AZ, UK
3Department of Civil and Environmental Engineering, Imperial College London, SW7 2BU, UK
4Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 174, Canada
Corresponding author: Lu Zhu, 12447 @cam.ac.uk

(Received 11 November 2024; revised 30 April 2025; accepted 10 June 2025)

Buoyancy-driven exchange flows in geophysical contexts often exhibit significant
interfacial turbulence leading to a partially mixed intermediate layer between two
counterflowing layers. In this paper we perform a three-layer hydraulic analysis of such
flows, highlighting the dynamical importance of the middle mixed layer. Our analysis
is based on the viscous, shallow water, Boussinesq equations and includes the effects
of mixing as a non-hydrostatic pressure forcing. We demonstrate the superior predictive
accuracy of three-layer hydraulics over the more classical two-layer approach by applying
it to direct numerical simulation data in stratified inclined duct exchange flows where
turbulence is controlled by a modest slope of the duct. The three-layer model predicts
a region bounded by two control points in the middle of the duct, linked to the onset
of instability and turbulence, whereas a two-layer model only predicts one control point.
We show that the nonlinear characteristics of the three-layer model correspond to linear
long waves perturbing a three-layer mean flow. We also provide the first evidence of long-
wave resonance, as well as resonance between long and short waves, and their connection
to turbulence. These results challenge current parameterisations for turbulent transport,
which typically overlook long waves and internal hydraulics induced by streamwise
variations of the flow.
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1. Introduction

Stratified exchange flows occur whenever two regions containing fluids with different
densities are connected by a narrow duct. These flows have many applications in
engineering (e.g. building ventilation, ducts and tunnels), as well as geophysics (e.g.
between ocean basins through deep-sea conduits, estuaries and straits). For instance, in
estuarine environments the intrusion of salty seawater directly affects coastal habitats. The
measurement of turbulence and vertical mixing is challenging due to the high turbulent
fluxes (Geyer, Scully & Ralston 2008) and spatiotemporal variability of the inflows
and outflows (Burchard et al. 2019). Such variability in the exchange flow is partially
controlled by the channel morphology, which ties turbulent mixing to internal hydraulics.
For instance, Chant & Wilson (2000) showed that velocity and density have significant
along-channel variability in the Hudson River estuary. Similarly, mixing in straits, for
example, in the Straits of Gibraltar and Bab el Mandab, is often controlled by internal
hydraulic processes (Farmer & Armi 1988; Pratt ef al. 1999).

The internal hydraulics of exchange flows have mostly been studied using two-layer
models (Armi 1986; Lawrence 1990; Dalziel 1991). However, when there is significant
mixing between the layers, a third, middle layer of intermediate density is formed. Such a
three-layer flow was studied in the Strait of Gibraltar by Bray, Ochoa & Kinder (1995), who
showed with hydrographic observations that the interface was not a sharp boundary but a
thick, stratified interfacial layer carrying a substantial portion of the total momentum. The
study highlighted the significance of this middle layer due to its shear and demonstrated
that two-layer hydraulic models are inadequate for predicting momentum fluxes. Similar
three-layer configurations have also been observed in the Strait of Bab al Mandab (Smeed
2000) and the Dardanelles Strait connecting the Aegean Sea to the Sea of Marmara
(Jarosz et al. 2012). In these situations, two-layer hydraulic models do not accurately
predict hydraulic controls (i.e. state of maximal exchange flow rate), and more complex
multi-layer models are needed (Sannino, Carillo & Artale 2007). The hydraulic control
of multi-layer flows was first discussed by Benton (1954) from an energy perspective.
Baines (1988) discussed the effects of upstream changes in the hydraulic properties of
stratified multi-layer flow over an obstacle and showed that depending on the obstacle
height, a hydraulic jump or time-dependent rarefaction might occur. Lane-Serff, Smeed
& Postlethwaite (2000) used the ‘hydraulic functional’ (Gill 1977; Dalziel 1991) to study
multi-layer exchange flows and showed good agreement between a three-layer model and
a lock-exchange experiment.

Despite these studies, significant questions remain unresolved in three-layer flows. For
example, Pratt et al. (1999) assessed three-layer properties of flow in Bab el Mandab based
on acoustic Doppler current profiler velocity measurements. They identified subcritical
or supercritical hydraulic flow regimes based on interfacial wave pairs propagating in the
same or opposite directions with respect to a given mode. However, the mechanism behind
the propagation of these interfacial waves and the local mixing rate is not yet adequately
understood.

The fundamental difference between two- and three-layer internal hydraulics of stratified
exchange flows is the possibility of strong interactions between interfacial waves in the
presence of the two interfaces separating the three layers. In idealised stratified shear
flow and infinitely long domains, the resonant interactions of short-wave instabilities
have been studied extensively and understood (Smyth & Carpenter 2019). However, none
of the previous studies have explored the possibility of long-wave resonant interactions
between interfaces and their potential impact on the evolution of the flow and the triggering
of instabilities. Moreover, in realistic conditions, the domain length prescribes finite
wavelengths for the longest waves. The resonant interaction between long and short waves

1016 A69-2


https://doi.org/10.1017/jfm.2025.10369

https://doi.org/10.1017/jfm.2025.10369 Published online by Cambridge University Press

Journal of Fluid Mechanics

@ . ®)
B[
< PRO = “lg's 3
E — Layer1 Uy, Pe— h, P@\A
— w \ > Layer 0 , o ho
h
p=+1 24 T—)x 2 Layer 2

Figure 1. (a) Schematics of the SID flow configuration. The duct connecting two reservoirs (with
different densities) has aspect ratios length-to-height A = L4 /L4 =30 and width-to-height B = L4 /L4 =1.
(b) Schematics of the three-layer model. (c—e) Instantaneous snapshots of density fluctuation p around the
reference value: (¢) stationary wave (SW), (d) travelling wave (TW) and (e) intermittent turbulence (I).

has been much less discussed in the literature. Eckart (1961) and Ma (1981) discussed
these long—short-wave interactions theoretically for idealised two-dimensional stratified
flows and postulated them to occur when the group velocity of the short waves matches
the phase speed of the long waves. However, evidence of such an interaction among long
(and short) waves in a realistic situation requires prior knowledge of the variation of the
flow on the scales comparable to the wavelength of the long waves, which is typically
unavailable in these idealised cases.

The stratified inclined duct (SID) experiment (Meyer & Linden 2014) has been designed
and employed to study stratified exchange flows in laboratory settings that resemble those
in nature. In the SID experiment a long duct, which can be tilted at a small angle to
the horizontal, connects two reservoirs filled with liquids with different densities (see
figure 1). Flows in SID have been studied primarily in laboratory experiments (Lefauve
& Linden 2020) and more recently by direct numerical simulations (DNS) (Zhu et al.
2023), where excellent agreement has been found.

The DNS of Zhu et al. (2023) were also analysed using two-layer hydraulics in Atoufi
et al. (2023). The two-layer model is applicable when there is little mixing between the
layers, and explains the onset of instability and turbulence. At high turbulence levels,
however, the two-layer theory is unable to explain the features observed. Our first main
objective in this paper is to analyse the three-layer internal hydraulics of exchange flows
including both mixing and viscous effects. Our second main objective is to establish a link
between the internal hydraulics and interfacial wave instabilities in three-layer flows by
elucidating long—long and long—short-wave resonant interactions.
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To achieve these aims, we start by describing our methodology in § 2, extending the SID
flow DNS-data-driven approach of Atoufi et al. (2023) by diagnosing internal hydraulics
in three-layer flows with improvements that include both mixing and viscous effects. The
three-layer equations and hydraulic regimes are then discussed in § 3, including hydraulic
controls as well as control mechanisms. Using this approach, we provide theoretical
grounds to link three-layer hydraulics and instabilities in § 4. This allows us to quantify
resonant interactions among long waves and between long and short waves, establishing a
link with turbulence generation. Finally, we conclude in § 5.

2. Methodology: three-layer reduction of DNS data
2.1. DNS equations and data sets

The schematic of the SID flow is shown in figure 1(a). The configuration consists of a
duct with internal height L? , width L¢ and length L? connecting two reservoirs filled
with fluids at densities pg £ Ap/2. Tfle entire configuration is inclined at an angle 6
to the horizontal. The duct has a square cross-section and is 30 times longer than its
height, with aspect ratios A =L§/Lf =30 and B =L§1,/L§1 =1 for all cases in this
study. Following Lefauve & Linden (2020), Zhu et al. (2023), we use duct half-height
Lf /2, half-density difference Ap/2 for the non-dimensionalisation of lengths and density

variations. The velocity is non-dimensionalised based on the averaged velocity difference
of two oppositely propagating gravity currents AU/2=/g'L?, where g’ =gAp/po is
the reduced gravity. We note that this velocity difference across the density interface
corresponds to the critical two-layer exchange flow with stability Froude number of
unity F3 = (AU/2)?/(g'L%) =1 (Armi 1986; Dalziel 1991; Lawrence 1993; Atoufi et al.
2023). The non-dimensional parameters then become the tilt angle 6, Reynolds number
(Re = L‘ZZAU /4v) and Prandtl number (Pr =v/k), where v and x are momentum and
mass diffusivity, respectively. The bulk Richardson number is, by definition,

Ap L
Aple
Ri = ng;z =5 2.1)
po (%)

a constant in all cases in this study. The governing equations for the velocity field u and
density fluctuations p around the reference value are the forced Navier—Stokes equations
under the Boussinesq approximation that takes the dimensionless form

V.u=0, 2.2)
ou 1 2 N
— 4+ @-VYu=—-Vp+—V-u+Ripg—F,, 2.3)
ot Re
ap 1 5
— VYyp=——Vp—F,, 2.4
at+(" )P Repr’ P (2.4)

where g = (sin@, 0, — cos 0) is the direction of gravity in the duct coordinate system
(figure 1). The flow is driven in the streamwise X direction and confined by solid walls
in the spanwise direction y. The F, and F, are forcing terms used to maintain the quasi-
steady exchange flow, as described in Zhu et al. (2023). They are ONLY applied in a
narrow region inside the reservoirs to sustain the flow without using excessively large
reservoirs.

The governing equations are solved numerically using a compact sixth-order finite
difference scheme for spatial derivatives and a third-order Adam-Bashforth scheme for
time integration using the open-source solver Xcompact3D (Bartholomew et al. 2020)
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Figure 2. Layer splitting based on nearest turning points, illustrated by (¢) mean density profiles, (b) gradient
Richardson number Ri  as defined in (2.8) and (c) the second derivative of the mean density profile, 92 (p)/ az2.
Markers indicate the nearest turning points to the mid-isopycnals where (o) = 0 in each case.

modified to include F, and F,. For the full details of the numerical approach and
comparison with experiments, the reader is referred to Zhu et al. (2023).

In this study we consider the laminar (L), stationary wave (SW), travelling wave (TW)
and intermittent (I) datasets that correspond to 8 =2°, 5°, 6° and 7°, respectively. All
these cases are at the moderate Reynolds number Re = 650 and Prandtl number Pr =7,
representing thermal stratification in water. For detailed flow visualisations of the velocity
and density fields corresponding to these regimes, readers are referred to Zhu et al. (2023),
specifically their figure 5 and the supplementary materials, which include simulation
movies.

2.2. Three-layer averaging

We reduce the dimensionality of the DNS data and cluster it into three distinct layers as
sketched in figure 1(b). These distinct layers consist of a middle mixed layer between two
other layers one above and another below as can be seen from the density snapshots in
figure 1(c,d) for the TW and I cases. The three-layer structure of the density field for non-
laminar cases is clear from the mean density profiles shown in figure 2(a). The slopes of
the density profiles change in —0.3 < z < 0.3 for the SW, TW and I cases and, as a result
of mixing, become closer to vertical than the L case in which the density profile can be
reasonably considered as a two-layer profile.

We first average the velocity and density from simulation data over the y direction

(denoted by (e), = (1/2) f_ll e dy). We then locate the lower and upper interfaces from
(p)y that are denoted by n2(x, 7) and n; (x, t), respectively (figure 1b).

To identify the bottom and top interfaces, we first locate the mid-isopycnal where
(p)y =0, as the dimensionless spanwise average density is —1 < (o), < 1. The elevation
of the mid-isopycnal is denoted by no(x,t). The location of the bottom and top
interfaces are marked using the inner turning points of (p)y, i.e. the points nearest
to the mid-isopycnal where 92(p) v/ 3z2=0 (figure 2). Those turning points with
height z = n,(x, t) < g mark the location of the lower interface and those with height
z=mn1(x, t) > no mark the location of the upper interface.
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We compute the layer-averaged velocities u;, heights h; and densities p; (where
i=0,1,2 correspond to the middle, upper and lower layer, respectively) as height
averages

hi(x, ) =1—=mn1(x, 1), wuilx,0)={u)y)z, px,0D=(p)y)z, (2.5

ho(x, 1) =n1(x, 1) —m(x, 1), wuo(x, 1) ={(u)y)z, polx, 1) ={(p)y)z,  (2.6)

ha(x, ) =14+m2(x, 1),  ua(x, 1) =((u)y)zs P2, ) ={P)y)z,  (27)

where the top layer average is (e);, = (1/h1) fnll e dz, the middle layer average is given

by (e)z, = (1/ho) 77'72' e dz and the bottom layer average is (o)., = (1/h2) [} e dz. We

note that z =1 and z = —1 are the non-dimensional height of the top and bottom walls,
respectively.

As shown in figure 2(b), the gradient Richardson number defined based on velocity and
density fields averaged over the duct length, cross-sections and time, i.e.

dz(p)
Riy=—Ri ——lrt
(8z<u>x,y,t)

is reasonably constant in the middle layer n; <z <, and approximately equal to 0.5
for the laminar case and 0.15 for other cases. These values are consistent with the
critical values for the local Richardson number observed in previous experimental studies
(Lefauve & Linden 2020; Jiang et al. 2022, 2023).

(2.8)

2.3. Evolution of layer-averaged quantities

The velocity and heights of the three layers for the TW case are shown in figure 3
in x—t (space-time) plots. We observe sudden changes in the layer thicknesses in the
central region of the duct, indicated by the sharp transitions in contour colours, which we
consider to be the locations of internal hydraulic jumps. The trajectories of these jumps
are marked with two curves (dashed and dashed-dotted, corresponding to the upper and
lower interfaces, respectively). We observe the region between these lines progressively
extends towards both ends of the duct at later times. Consistent with the variations in
layer heights, the layer velocities (ug, 11, u) also change abruptly at the same locations
(see figure 3e—f). Note that the middle layer /¢, which is initially located near the duct
centre (x ~ 0) at r = 80 due to internal hydraulic jumps on the upper and lower interfaces,
grows as the jumps propagate and eventually spread to occupy almost the entire duct by
t ~200.

Figure 4 shows a schematic of the three-layer hydraulic jumps observed in the TW
case. Near the left of the dashed line in figure 3(a,b), h¢ increases with a corresponding
decrease in the upper layer thickness /1. The middle layer velocity u is generally positive
on the left side of the dashed line (associated with the location of the upper interface)
but reduces to almost zero on the right side of the dashed line. Near the hydraulic jump,
the velocities of the upper and middle layers have opposite signs (figure 3d,e) associated
with a large difference in their respective heights (figure 3a,b). Such strong shear and
asymmetry trigger instabilities and the upper interface becomes unstable. The bottom and
middle layers have the same flow direction on the left side of the dashed line (figure 34, f)
and, therefore, have smaller shear; thus the lower interface is more stable here. A similar
explanation can be provided for the instability of the lower interface by comparing the
velocity and height differences between the middle and lower layers at the neighbourhood
of the right hydraulic jump (dashed-dotted lines) as illustrated in figure 4. These jumps in
the layer heights and velocities and the associated turbulence generation are further linked
to three-layer internal hydraulics in the next section.
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Figure 3. Space—time (x—t) plots of layer heights and velocities obtained from DNS for the TW case, assuming
a three-layer model: (a,b,c) represent the heights and (d,e, f) the velocities of the upper, middle and lower layers,
respectively. Dashed and dash-dotted lines indicate abrupt changes in the heights of the upper and lower edges
of the middle layer, respectively, corresponding to identical changes in velocities across all panels.
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Figure 4. A schematic of the internal hydraulic jumps in SID flows.

3. Three-layer hydraulics: characteristics, regimes and control mechanisms

In the previous section we discussed temporal and along-duct variations of layer heights
and velocities (mainly for the SW and TW cases) and postulated a possible link between
such variation in layer properties and instability and the transition to turbulence. In
this section we introduce viscous, non-hydrostatic three-layer equations that describe the
internal hydraulics of stratified turbulent exchange flows in § 3.1. These equations also
govern the dynamics of DNS data using the three-layer averaging procedure described
in §2.2. Building upon the characteristics of the three-layer equations, we demonstrate
information propagation in § 3.2 and identify three-layer hydraulic control and hydraulic
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transitions in § 3.3. We then show their strong correlation to turbulence generation in
§3.3.3. In § 3.4 we discuss the regularisation of the three-layer exchange flow near the
hydraulic control points (i.e. hydraulic control mechanisms).

3.1. Three-layer evolution equations

To identify mechanisms governing the evolution of three-layer exchange flow, we perform
a layer-wise integration of (2.2)—(2.4) as described in § 2.2, noting that F, =0, F, =0
inside the duct where DNS data were collected. This procedure leads to the viscous three-
layer equations and can be written in the general vector form as

aq aq as

— +A—=B—+1 F, 31

ar *ax  Cax AT Gh
where the state vector is defined as q = [u1, ug, uz, hi, ho, ho]7, recalling that the
subscripts identify the velocities and heights of the upper (1), middle (0) and lower (2)
layer, respectively, as sketched in figure 1(b). The coefficient matrices on the left-hand
side of (3.1) are

—u; ug O 0 g1 &1 -1 1 0 O 0 O
0 —ug upy O 0 g 0O -1 1 O 0 O
A— —hy hg O —u; wuy O C— 0 0O 0 -1 1 O
- 0O —hg hp O —ug uy |7 0 o 0 o0 -1 1}
0 0 0 1 1 1 0 0O 0 O 0 O
hi ho hy up ) 0 0O 0 O 0 O
(3.2)

where g1 = Ri cos 8(pg — p1) and go» = Ri cos 0(py — po) are the dimensionless reduced
gravity at the upper and lower interfaces, respectively. The forcing terms, B ds/dx and ¢,
are due to buoyancy and viscous stresses and are discussed in detail in § 3.4. The gravity
tensor reads as

gitand —g; 054
B=| gtant —g 014 |, (3.3)
041 0471 044

where 0,, , denotes the block null matrix of the size m x n and s =[x, b, 0, 0, 0, 01"
is the vector associated with geometry change. Here b(x) denotes the elevation of the
bottom wall where b(x) = —1 throughout the duct but abruptly changes to b(x) = —2 at
the inlet/outlet. The model for the viscous stress tensor for three-layer hydraulics is a sparse
6 x 6 matrix,

1 fa hi — ho 1 1 0
—_— == — 3
hohy  hy  hohy(hy +ho)  hoCho + h2) ho(ho + h2) !
t:Ri 1 hi+ho+ha hy — ho Ib 0.5
el 5, . 4 ~ T 7 7 ~1 T 1 1~ 7 s
ho(h1 + ho) ho(h1 + ho)h2 hoha(hg +hy)  ha
04,1 041 04,1 043
3.4

where f, and f}, are the slip-with-friction coefficients at the upper and lower boundaries.
These coefficients are computed based on f(u), =3 (u),/0z at the bottom and top
boundaries from DNS data. For a free-slip condition f =0 and for the no-slip condition,
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f is proportional to Re. The forcing term F = [F1, Fo, F2, 0, 0, 017 is due to the non-
hydrostatic pressure gradient and is determined from DNS data (note that this contribution
is weaker than the hydrostatic pressure gradient in all cases considered here; see Atoufi
et al. 2023). If F =0, (3.1) reduce to the viscous shallow water equations.

3.2. Information propagation

We now investigate, using (3.1), the directions in which information is carried by long
interfacial waves in a three-layer configuration, dictating the hydraulic regime. Consider a
left eigenvector v and eigenvalue A associated with the coefficient matrix pair (A,C) such
that

v A= C, (3.5)

where the superscript H denotes the Hermitian transpose. Multiplying (3.1) by v and
rewriting T = CD yields

ad a a
e (H a0l _pg) =" (B +F), (3.6)
at ax ax
Information propagation with loss/gain Modulations
where
-2 -1
_( d 032 03> _ 1 _
D= ( 0, d 05 7, suchthatd= 3 i 21 , (3.7

is the diffusion matrix obtained by a singular value decomposition of C= UQV*, where
UUY = V# V=1and Qis a diagonal matrix leading to D= VQ~'U" t.

Recall that D g is solely due to viscous effects and when absorbed in the left-hand side of
(3.6) it can be viewed as a mechanism affecting the propagation of information contained
ing.

Equation (3.6) is particularly useful in explaining various mechanisms affecting the
propagation of information in stratified turbulent exchange flows. In the limit where
viscous stresses are neglected (D= 0), non-hydrostatic pressure gradients are ignored
(F =0), in the interior region when the configuration is horizontal (Bds/dx = 0) then
(3.6) will be homogeneous.

In the homogeneous limit, the coordinate transformation 2§ =t + x /A (1 # 0) yields

~0
3 9 d RS
H q q H A% ¢ %
(Y 1, )= oo - 2T IR0y, 3.8
Y (az+ (x )8x> T 2 (38)

and a combination of flow variables v/’ Cdq/d& =0 that is conserved to leading order.
Note that here the space—time variation of A is assumed to be small compared with that
of q. Therefore, interfacial waves travel ‘freely’ along the characteristic curves defined by
& with characteristic velocities A (simply referred to as ‘characteristics’).

In the inhomogeneous case, (3.6) suggests that information is also carried by similar
characteristics A but with two modifications. Once the viscous stresses are considered
the information propagation along the characteristic curves is accompanied by the loss
due to a viscous damping effect (momentum loss) or gain due to mixing (thickening
of the middle layer) both originating from the Dgq term. The gravitational forcing due
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to tilting and geometrical variation in Bds/dx as well as the non-hydrostatic pressure
forcing in F do not affect the direction of propagation (i.e. modulations) as they do not
involve the information content ¢. Note that in the inhomogeneous viscous case, there
is no conservation of any combination of flow variables along the characteristic curves
&. Nevertheless, we employ the term ‘characteristic’, drawing its interpretation from the
homogeneous inviscid case.

The preceding analysis assumed a real characteristic velocity 4. More generally, 4 may
be complex, in which case the interpretation of characteristics must be revisited. As shown
in Appendix D, the real part A% continues to determine the direction of information
propagation to leading order, extending the interpretation of real-valued characteristics.

3.2.1. Analytical solution for the characteristics

The characteristics A of the three-layer model are obtained by solving for the eigenvalues in
(3.5) that requires det(A — AC) = 0 for a non-trivial solution leading to the characteristic
polynomial

4
Zan/l” =0, (3.9)
n=0

with the coefficients
ag = (ho +h),
az=—2 [ﬁuo + (u1 +u2)ho +ﬁﬁ] ,
ap =71\u% + 4’};72140 + g1hi1(ho + hz)(FIZ — 1) + goho(ho + hl)(F22 — 1)

+4 houiu, (3.10)
= 2k @Wud —2g1hiha(FE — 1) uo — 2g2h1ha(F3 — 1) uo — 2 ho uy ua(uy + u2)
+2hoh W3,

ap = det A.

In these coefficients we introduced the height h= hy + ha, velocity = (hjuy +
hzul)/h and reduced gravity g = (g1hjuz —I—gzhzul)/(h’\) We also used the Froude
numbers of the bottom, middle and top layers, respectively,

1 Fo=—2 _  p=_4 (.11)

, 0 , .
v/ &2h2 /818 po v g1h
81+82
The characteristics have the form
1122—31/1—52/1, /12:/1—81/14-52/1,

=

" _ 3.12)
AB3=A+85A1—5834, Ag=A4 51+ 34,
where 1 = —a3 /4aa is the convective velocity and
= f=dmi ok (ma 22),
(3.13)

520 = %\/—4(514)2 —2my+ %, S1= %\/—4 B1)% —2my — 12
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are the phase speeds, where
1

3
8asay — 3a§ a% —4agazay + 8a3a1 A% + \/m

m=-——-—- my = ) m3 = ’
8a£ 8a3 2

(3.14)
Ay = a% —3azay + 12a4ag, A= 2a§5 — 9azara + 27a32,ao + 27Cl4a]2 — TNagaray.

Since (81/1R, 8rAR, 83/1R) > 0, we realise that /lf < /lg, /l§ < /lf and /lf < /lf, where the

superscript R denotes the real component. Consequently, in a reference frame moving at A,
an observer would see two oppositely propagating interfacial waves, which are associated
with the eigenvalues 4 2 and 43 4.

To justify this association, we note that the terms §4 = —§14 F §24 and 64 = 614 F 534
represent the effective phase speeds of interfacial waves in a three-layer flow. The structure
of these expressions suggests that A7 and A3 4 correspond to long waves propagating
along the upper and lower interfaces, respectively. Moreover, since the coefficients in
(3.10) are real, if any characteristics become imaginary, they must appear in complex
conjugate pairs. Complex conjugate eigenvalues correspond to physically linked interfacial
waves, reinforcing the idea that each pair (11, 42) and (43, 44) can be naturally associated
with a single interface. Thus, a key observation from (3.12) is that the eigenvalues 4 >
and A3 4 can be identified with long waves at the upper and lower interfaces, respectively.
We note this labelling does not imply that the interfaces are completely decoupled, as their
characteristics inherently depend on the velocities and heights of all three layers.

3.2.2. A special case: pure exchange flow with stagnant middle layer

Of particular interest is identifying the conditions under which interfacial waves become
unstable. To make progress on this question, we examine a special asymmetric case where
uy =—ui, hy =hy and g; = g>. The zero (barotropic) net flow condition implies that
ug = —(urhy +uzh3)/ ho =0 and the coefficient a3 vanishes, leading to zero convective
velocity (1 =0). This corresponds to the simplest three-layer exchange flow, where the
upper and lower layers are symmetric in thickness and stratification, while the middle
layer remains stationary. This case is also highly relevant to the SID flow, particularly near
the centre of the duct. Under these conditions, the expressions for characteristics in (3.12)
simplify significantly (since F| = Fz) yielding

_ Ve \/ 2 2
ho(1+ FE)+hi(1— F7) —
vh 2h (3.15)

V&ih
4= \/h 14+ F)+hi(1-F})+o
34=F—F—F7 m ) 1( )
where o = \/4h0h1F12(1 - Flz) —|—4h%F12 + h%(l — F12)2. Clearly, in this case, if we
further restrict the system to F12 =1 then 212 =0 and A3 4 = F2/g1hoh1/vho +2h;.
Since waves in the upper and lower layers become decoupled in this limit, this result
supports our approach of associating each eigenvalue pair 4; > and 43 4 with a specific
interface. However, we note that interfacial waves are coupled where A # 0 in general.
Equation (3.15) reveals that the onset of complex characteristics, indicative of long-wave
instability, can be anticipated by identifying the condition under which o vanishes. Setting
o =0 yields the critical Froude number thresholds
2r(r — 1) F2r3%/
Fiq: 14 r(r )4:F rl r+2 3.16)
" 1016 A69-11
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Figure 5. The onset of long-wave instability in the pure exchange flow case visible where (a) /l{ >0 and
b) /lf1 > 0. Here, F denotes the Froude number of the upper layer and r represents the ratio of middle-to-
upper/lower layer heights.

where r = ho/ h1 denotes the ratio of the middle layer depth to the upper (or lower) layer
depth. Figure 5 shows /l{ and /141‘ as functions of F 12 for the pure exchange flow. The critical
Froude numbers predicted by (3.16) are shown as red dashed lines. We observe that, for

F 12 > Fi 4 the characteristics become complex, and the largest values of /li occur within
the range Fﬁ + < F12 < Fﬁ_. Moreover, the magnitudes of /1{ and /L{ change abruptly

across the Fi_ curve. We identify Fi_ as the bifurcation Froude number and Fi 4 as
the marginal-stability Froude number for the pure exchange flow case.
The velocity difference between the upper and middle layers is given by u% =F 12 gihi,

since g = 0 in the pure exchange flow. Hence, for F 12 > Fi , the velocity shear between
the upper and middle layers, and between the middle and lower layers, becomes sufficiently
strong to trigger long-wave instability on each interface separately. As r increases, the
middle layer thickens relative to the upper layer, causing the upper layer to thin and
accelerate. This leads to larger velocity differences across the interfaces, particularly
between the faster upper layer and the stagnant middle layer, leading to instability once
F12= Fi 4~ This behaviour is analogous to that observed in two-layer flows, where
sufficiently strong interfacial shear also leads to long-wave instability.

The condition o =0 corresponds to A; = A3 and Ay = A4, which implies that the
interfacial waves on the lower and upper interfaces have equal phase speeds and can
resonate. Instability may therefore arise from this resonance. In the more general
case with non-zero convective velocity, however, the identification of instability is less
straightforward, a point revisited below and addressed in detail in § 4.

3.2.3. Criticality of interfaces
In a two-layer configuration, the sign of the real component of the characteristics sets
the direction of information propagation and the hydraulic regime of the flow, i.e.
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subcritical, critical or supercritical regime (Long 1956; Dalziel 1991; Atoufi ef al. 2023).
The flow is subcritical when A < 8% and information propagates in both leftward (towards
decreasing x) and rightward (towards increasing x) directions, supercritical when 1> 8AR
and information propagates only either rightward or leftward and critical when 1 = §AR.
In a three-layer configuration, complications arise as the upper and lower layers can
individually exhibit different hydraulic regimes. As we found above, 11> and A3 4 are
respectively associated with the upper and lower interface. Therefore, the necessary
condition for the upper (respectively lower) layer to be supercritical is /lf /l§ >0

(respectively /lée/lf > 0). Information on each interface thus propagates in a particular
direction, depending on the signs of the characteristics (Sannino et al. 2007, 2009).

The characteristic pairs /lleg and /lée/lf determine criticality with respect to the
individual layers, not the full three-layer system. For example, the flow may be
supercritical in both layers if /lf/lf >0 and A§ﬂf > 0, yet remain subcritical overall,
e.g. if AR, /l§ <0 and /lée, /lf > 0. The three-layer flow is fully supercritical only when
all layers are hydraulically supercritical and the corresponding characteristics have the
same sign, so that information propagates in a single direction. It is fully subcritical when
all layers are subcritical, or when the layers are supercritical but the characteristic signs
differ, indicating opposing directions of information propagation. A critical condition
arises when at least one characteristic pair satisfies /ll.R /lf =0, at which point information
propagation is blocked and internal hydraulic control is established.

3.2.4. Critical middle layer thickness
The emergence of imaginary components, as conjugate pairs, in the characteristics implies
the onset of instability of long waves as established in Appendix A. Consequently, we can
predict critical values of the layer velocities and heights that cause interfaces to be unstable
to disturbances of the given wavenumber k by examining the coefficients b; of the quartic
stability equation (A10) given below,

by =sinh (k (ho+ 1)),

by = sinh (k (ho — 1)) (uo — u1) — baluy + uz + 2ug) + sinh (k(ho + 1)) (uo — u2),

by = u%(al + ar + 604) + u%(oq +a3) + u%(ag + a3) + duog(uioy + usan) + 4ujuro
+y1+ 1, (3.17)

b1 = (1 —207)(y7 + o) — 010278,
by = M%Vs + 2M301/3102 + 2utudBaor00 + udys +ulys + ve,

and to long waves by examining a; in (3.10) where h= hi1—hy and «;, 0; and y; are
defined in Appendix A.l. For example, the necessary condition guaranteeing only real
roots is that b; should be all positive or all negative (based on the Routh—Hurwitz stability
criterion (Shinners 1998). As wavenumbers k > 0, then b4 > 0 and this condition leads to
one of the b3, by, b1, by < 0 for all k for instability to happen.

In fact, the number of sign changes in b; yields the number of complex roots and
potential instability. As A (i.e. the long-wave limit of the phase speed ¢ of disturbance
waves) appears in the form of complex conjugates, there are four complex roots and a3 21,0
change sign (note a4 is constant inside the duct). In the limit of long waves, using the
b3 = a3z < 0 condition and incorporating the zero net flow condition Q = ughg + u1hy +
uzhz =0 to eliminate uq in a3 yields a restriction for the height of the middle layer that
—2(ho + h)(ho(u1 +uz) — hiuy — hous)/ho < 0 for instability to occur.
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Figure 6. Selected eigenvalues of the three-layer model for the TW case (Re = 650, 8 = 6°): (a,d) real and
imaginary components of the characteristic A; for the upper interface, (b,e) A3 for the lower interface and
(¢, f) product of the real and imaginary components of A; and A3. The dashed and dash-dotted lines correspond
to those in figure 3.

This leads to

h = M (3.18)
uy+uz

as the critical height for the middle layer. Therefore, when 1y < |u1| (i.e. an interface with
a positive slope) and ho > h', the three-layer exchange flow is become unstable to long
waves and may be supercritical. In the limit of short waves, where k > 1, the sign of
b3 depends on the coefficients of the largest k (positive) when expanding b3 with respect
to k. Specifically, when ushg + u1hy 4+ uzhy > 0, we have b3 < 0, satisfying the necessary
condition. This leads to the condition kg > (|u1|h1 — u2h2)/u2, which provides a smaller
lower bound for i and a smaller critical middle layer thickness than in (3.18). Therefore,
it is expected that short waves will become unstable first. Nonetheless, it is the long waves
(hydraulic effects) that set the interface slopes, and thus, the upper and lower layer flow
rates u1hy and uzho, which then determine the value of A that results in b3 < 0 and the
onset of the short-wave instabilities.

3.2.5. Application to the data

The three-layer model, yielding layer characteristics, is applied to the layer-averaged DNS
data in figure 6. The space—time evolution of 4; and A3 in the TW case are shown with
x—t plots. The dashed lines are reproduced from the layer-averaged quantities in figure 3,
indicating the drastic changes in the layer statistics. Noticeably, the left and right lines are,
respectively, in alignment with /lf and /l§ ~ 0, which indicates the emergence of critical
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Figure 7. Instantaneous characteristics of the interfacial waves on the upper and lower interfaces in DNS,
diagnosed using the three-layer hydraulic analysis. The real components of the characteristics, representing
the phase speed of the upper and lower interfacial waves (/l{a and /l§), are shown in (a,c). The imaginary

components, representing the growth rate of the upper and lower interfacial waves (/l{ and /lg), are shown
in (b,d).

points in the upper and lower layer interfaces. The flow becomes critical on these lines,
which is also evidenced by the appearance of hydraulic jumps as illustrated by the sudden
changes of the corresponding layer heights in figure 3. In addition, the three-layer model
predicts one control point near the inlet/outlet of the duct due to geometry changes, which
agrees with the two-layer model in Atoufi et al. (2023).

In figure 6(c), outside of the critical lines, the real components of the characteristics
have the same sign and are positive/negative on the left/right side of the duct, respectively.
Therefore, the information of the three-layer system can only propagate from the critical
point near the inlet/outlet toward the duct centre. In between the critical lines, /lf /l§ <0
and the flow is subcritical. Waves in this region can propagate in either direction. This
region is where the thickening of the middle layer occurs (see figure 3).

The imaginary components of characteristics correspond to the growth rate of the long
interfacial waves (as discussed in Appendix A). As indicated by figure 6(d,e), the long
waves at the upper interface become unstable (/l{ > () in the left and middle regions of
the duct, whereas the long waves at the lower interface are unstable in the middle and right
regions (/lé > 0) where the superscript I refers to the imaginary component of 1. While the
stability of individual interfaces can be deduced from the associated characteristics, the
stability of the three-layer flow system is less straightforward and requires consideration
of resonance between interfaces, which will be discussed in § 4.

The real and imaginary components of the instantaneous characteristics are shown
in figure 7 at t = 120 for the L, SW, TW and I cases, to complement the space—time
distribution of the characteristics, which was previously given only for the TW case. The
instantaneous A® and A’ of all non-laminar cases follow a similar trend. The imaginary
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component in figure 7(b,d) shows that in the L case, AL ~0 for both the upper and
lower interfaces, whereas in the SW, TW and I cases, /l{ , /lg > (0 in most places inside
the duct.

The application of the three-layer theory to the DNS data suggests that three-layer
characteristics are not only useful in quantifying information propagation but also in
informing us about regions where turbulence and mixing occur. We detail this connection
between characteristics and turbulence next.

3.3. Hydraulic regime transitions and turbulence

Here we identify an equivalent Froude number of a three-layer flow that predicts hydraulic
regime transition and control in a three-layer exchange flow in § 3.3.2. Then, we use this
three-layer Froude number to show how hydraulic control leads to turbulence generation
in §3.3.3.

3.3.1. Critical exchange flow regime
To define hydraulic control, we use the steady-state solution of (3.1). For F = 0, the steady
solution of (3.1) can be found by multiplying the inverse matrix A~! = adj(A)/det A on
both sides leading to

dq

. as
x - det AadJ A Bﬁ + det A

where adj(A) represent the transpose of the co-factor matrix of A. A non-trivial steady
solution ¢ (x) of (3.1) requires

adj(A)tq, (3.19)

det A= g182h1hoh2(G — 1) #0, (3.20)
where G is the composite Froude number defined based on the individual layers
G=1+ (e Ff +eF; —1) Fy + (FE — 1) (F5 — 1), (3.21)

where €] = g1/(g1 + g2), €2 = g2/(g1 + g2) are the ratio of cross-interface to total density
differences.

The three-layer flow is hydraulically controlled when 2g =0 or G =1 (i.e. det A= 0).
The condition hy = 0 is trivial as it removes the third layer. Generally, the hydraulic control
condition incorporating (3.21) defines a critical state in the three-layer exchange flow,
where

2 2
,_(F-1) (-1 322)

0= (1 —61F12 —62F22)’

yielding G = 1. This equation imposes a fundamental constraint on the middle layer,
determining its velocity and thickness based on the Froude numbers of the upper and lower
layers, thereby fully characterising its dynamics under hydraulic control. Determining
whether a three-layer exchange flow beyond the critical state is subcritical or supercritical
requires linking (3.21) to the characteristics of long interfacial waves, as discussed in the
next section. Nonetheless, (3.22) allows the exploration of the possible combinations of
supercritical and subcritical flows in each layer even though the overall three-layer system
remains in a critical state. Figure 8(a) shows the middle layer Froude number FO2 at the

critical state, computed from (3.21) for €; =€> =0.5, as a function of F 12 and F22. The
structure is similar to figure 3 in Sannino, Pratt & Carillo (2009), based on a three-layer
model for the Strait of Gibraltar. Figure 8(b) shows the corresponding contour plot in
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Figure 8. Critical state of the exchange flow. (a) Surface plot of the middle layer Froude number FO2 as
a function of the upper layer (F 12) and lower layer (F22) Froude numbers, satisfying the critical condition

given in (3.22). (b) Contour plot of the same critical surface, showing level curves of FO2 in the F12—F22
plane. Regions are labelled using triple inequality notation (e.g. >, <, <), indicating whether each layer is
supercritical or subcritical relative to the others. These combinations illustrate how individual layers may depart
from criticality, while the overall three-layer flow remains in a critical state.

the Flz—Fz2 plane. Following Sannino et al. (2009), Sanchez-Garrido et al. (2011), four

distinct regimes are identified and labelled using the notation (F 2 F22, FOZ), where each
symbol (> or <) denotes whether the corresponding layer is hydraulically supercritical
or subcritical relative to the others. These labels illustrate how individual layers may
exhibit distinct hydraulic states, even though the overall flow remains critical. For instance,
(>, <, >) represents a critical regime where the upper and middle layers are supercritical,
while the lower layer is subcritical. Sannino et al. (2009) referred to the region marked
(<, <, <) as aprovisionally subcritical regime, in which all layers are subcritical and wave
motions in the upper and lower layers are coupled. They referred to the region (>, >, <)
as a provisionally supercritical regime, where the upper and lower layers are supercritical
while the middle layer remains subcritical.

In the special case where the middle layer is stagnant (#g = 0, so that Fp = 0) and either
the upper layer or lower layer Froude number reaches unity, i.e. |Fi|=1 or |F>|=1, a
hydraulically controlled region emerges — bounded by |F1| =1 or | F2| = 1 — in contrast to
the localised control points typically found in two-layer flows (Atoufi et al. 2023).

To extend this classification beyond the critical state, the characteristics must be related
to a composite Froude number G, as introduced in the following section, that reflects the
direction of information propagation.

3.3.2. Three-layer hydraulic regimes identifier
The link between characteristics and G can be highlighted by noting 171.4:1/1,- =ap/a4
combined with (3.20), yielding the identity

(h1+ho+h2) _4

G=1 I A;. 3.23
* g1ghihohy =1 (323)
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Although the condition G =1 in a three-layer flow can be used to identify control
points, neither (3.21) nor (3.23) can provide insights into whether the three-layer flow is
subcritical or supercritical. The reason is that when characteristic speeds of long interfacial
waves at both interfaces have imaginary components, the multiplication of all complex
characteristic speeds mixes up information propagation associated with each interface and
typically gives G > 1. As only the real components of the characteristics determine the
hydraulic regimes (imaginary components quantify the long-wave growth rate, as shown
in Appendix A), based on the definition of G, we define a modified composite Froude
number

G4 POt ) G (AR T AR (3.24)
g182h1hohs

that is capable of identifying hydraulic regimes in three-layer flows with complex

characteristics. Note that G can be negative, and G =1 at control points, but generally
G > G. When the real components of the four characteristics have the same sign, then
G>1, 1ndlcat1ng a supercritical regime. Conversely, when G < 1, the real components
have opposite signs, indicating a subcritical regime. The condition G = 1 indicates critical
flow since the real component of the characteristic associated with one of the interfaces
vanishes.

Thus, G provides a diagnostic based on the direction of information propagation by
long interfacial waves, rather than a strict indicator of a hydraulic regime under instability.
The modified composite Froude number G is specifically defined to involve only the
real parts of the characteristic speeds, avoiding the complications introduced by long-
wave instability. As discussed in Appendix D, the real part /ll.R continues to predict the
direction of information propagation by long interfacial waves to leading order, provided
the spatiotemporal variation in A is weak. Therefore, while G should not be interpreted as
a strict indicator of a hydraulic regime in the classical sense under instability, it remains a
useful diagnostic for identifying regions where long interfacial wave propagation becomes
predominantly unidirectional (i.e. supercritical regime), bidirectional (i.e. subcritical
regime) or blocked (i.e. critical regime), even when the three-layer flow contains unstable
long-wave modes.

3.3.3. Link to turbulence generation

Having established G as an indicator of the hydraulic regime, we now aim to show the link
between transition in hydraulic regimes and the turbulence generation and compare pre-
dictions from the three-layer model to those of the two-layer model of Atoufi et al. (2023).
Following Zhu et al. (2023), we diagnose the local turbulent kinetic energy (TKE)

1
u, -u (3.25)

Em m>

computed from the perturbations around a low-pass filtered velocity field

k,'nE

ALJ2

ﬁm(x,y,z,t)EH/ /zu(x—s,y,z, t)ds, (3.26)
—AL

u;n(x,y,z,t)zu—ﬁm. (3.27)
We choose the same constant filter width AL = 10 to maximise the time- and duct-volume-

averaged kinetic energy. Figure 9(a,b,c) shows the normalised TKE averaged over the duct
cross-section and figure 9(d,e, f) shows G. For comparison, we also show the modified
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Figure 9. (a—c) Normalised TKE k;, /(k,,)y, averaged over the duct cross-section ({-)}, , denotes the spatial
and temporal average). (d—f) Modified composite Froude number for the three-layer model, G, as defined in
(3.24). (g—i) Modified composite Froude number for the two-layer model, G2L as defined in (3.28). The first
row represents the SW case, the second row represents the TW case and the third row represents the I case.
The dashed and dashed-dotted green curves are identical to those in figure 3.

composite Froude number for the two-layer hydraulic model,
2L 4 2L
hl + h2 R2L
(02F — p2L)Ri cos 0 2L 2L

GL=1+ AR (3.28)

in figure 9(g.h,i), where the superscripts ‘2L’ denote variables based on the two-layer
averaging of Atoufi et al. (2023) where the expressions for Ay and A, are also given in
their (4.10).

As expected, G in figure 9(e) is consistent with figure 6(a,b) for the TW in the sense
that it indicates control points as well as the hydraulic regime. In all three cases, the flow
experiences a transition from supercritical to subcritical in the central region of the duct
where G changes sign. The same auxiliary dashed guidelines (i.e. space—time variation
of middle layer height) presented in figures 3 and 6 agree well with G ~ 1. We observe
a similar agreement between G and the characteristics in the SW and I cases, although
their x—¢ plots are not shown for brevity. Therefore, G identifies hydraulic regimes and

control (i.e. flow regularisation when G = G = 1 discussed in § 3.4) even in the presence
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of mixing and beyond the limit where (3.1) is no longer hyperbolic. Although not shown
here, the contours of G have qualitatively similar patterns to G except that G > 1 in the
entire x—¢ plots for the SW, TW and I cases due to Al 0. Reduced values of G are also
observed at the same locations and times where G < 0 in figure 9(d,e, f).

In the centre of the duct between the auxiliary curved lines (corresponding to the
upper and lower interface locations) in figure 9, the averaged TKE tends to be elevated
in the TW and I cases (figure 9b,c), suggesting a correlation between enhanced turbulence
and hydraulic regime transitions identified by G =1 (figure e, f). In these cases, large
values of (k;,)y . coincide with regions where G transitions from G > 1 (supercritical)
oG <1 (subcritical), particularly near the duct exits and within central interior regions.
In the SW case (figure 9a) this trend is less apparent where the TKE appears visually
weak across most of the space-time domain. This reflects a lower level of turbulence
rather than a lack of correlation. Nevertheless, localised turbulence is still present,
especially near the duct ends and at the central region, which align with changes in G
(figure 9d). These observations indicate that, although the spatiotemporal correspondence
between TKE and hydraulic regime transitions is strongest in the TW case and more
distributed in the I case, it remains qualitatively evident across all three cases. In the I
case, small-scale shear instabilities — such as Kelvin—Helmholtz roll-up and breakdown —
embedded within the non-hydrostatic pressure gradient force F also contribute to
turbulence generation, in addition to hydraulic effects that are primarily governed by
the hydrostatic pressure distribution. As shown in Atoufi et al. (2023), the influence
of non-hydrostatic pressure is more pronounced in the I case than in the SW and TW
cases.

Near both ends, we typically observe short waves forming and breaking leading to
turbulence (Zhu et al. 2023), suggesting that the flow is unstable to both long- and short-
wave instabilities there. As we approach the centre of the duct, the contribution of long
waves to the destabilisation of the flow becomes increasingly significant.

For the two-layer model, G2l =1 is more weakly correlated with (k) .. A key
result of this paper is that the three-layer G outperforms the two-layer G*L in predicting
regions (not only points) where the flow is most unstable and turbulent. Therefore, regime
transitions identified by changes in sign of G (i.e. changes in the direction of information
propagation) provide excellent predictions of where and when turbulence is generated and
strong mixing is expected in stratified exchange flows. The mechanism underlying this
agreement is explained in § 4.

3.4. Hydraulic control mechanisms

The characteristics specify the directions of information propagation whereas the control
mechanisms specify how information propagates along the characteristics (see §3.2).
Hydraulic control mechanisms are set by some regularity conditions where hydraulic
regime transitions occur. To see this link, one can deduce from (3.19) that a solution
exists either when det A # 0 or when det A = 0 with some regularity conditions allowing
acceptable solutions. Mathematically, at the control points where det A = 0 the flow should
be regularised by the condition

adj(A) Bg—s r =0 (inviscid) and |ladj(A)zql|lF =0 (viscous), (3.29)
X

where ||-||  refers to the Frobenius norm.
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3.4.1. Inviscid control mechanism
The inviscid regularity condition in (3.29) implies that

db
giurhy (u% — gohyg (1 — Fzz)) (tan@ — a) — gzhzu%ul

db
g182hihaug (1 — F2) + (g1h1)? uo (1 — F?) (tane — E)

db
| 5 gaun (hlu%—glh()hl (l—Flz))—glhlu%uz (tan@—a)
S
Fadi(A)B— = 0 —0
X
gzhlhzu(z) — g1h1 (hzug — g2h0h2 (1 — Fzz)) (tan@ — a)

db
g182hohihy (1 — F3) <£ — tan 9) — g1g2hohihy (1 — F?)

db
gihihou} <tan9 — E) — gohy (hud — gihohy (1 — F}))
(3.30)

at the control points. We recall that two conditions lead to det A = 0 and hydraulic control:
either (i) hp =0 or (ii) ho # 0 but G = 1, which further requires |F;|=1 or F> =1 and
Fo=0(.e. up=0).

For condition (i), (3.30) enforces ug = 0. Therefore, both the criticality and inviscid
control mechanisms imply that the middle layer velocity vanishes near the jumps. This is
consistent with the sudden reduction of |ug| near the duct ends and close to the control
point in figure 4(d). Note that near the duct ends where |db/dx| >> tan 6 the flow is also
hydraulically controlled as hg =~ 0 (condition (i)) and |ug| drops sharply in figure 4(a) to
satisfy (3.30). Inside the duct db/dx = 0 and |ug| drops more smoothly.

As stated above, one possibility for G =1 is Fp =0 and either |Fi|=1 or |F3| =1
at control points. For condition (ii), (3.30) enforces that |Fy| =1 (critical upper layer)
yields |F>| =1 (critical lower layer), assuming the middle layer has non-zero velocity.
However, this implication does not hold in general. For example, when ug=0, F; =0
and db/dx =tan 6, all terms in (3.30) vanish, the condition is trivially satisfied and does
not constrain F,, meaning that both interfaces need not be simultaneously critical. This
reflects the fact that when the middle layer is stationary near the control point, the system
may exhibit decoupled dynamics at the upper and lower interfaces. Criticality may occur
in one interface without enforcing it in the other as also discussed for the special case
of pure exchange flow in §3.2.2. This type of decoupling, particularly relevant for N-
layer (N > 2) flows with stagnant interior layers, was analysed by Engqvist (1996), who
showed that under such conditions, the upper and lower groups of non-stagnant layers can
be governed by independent control criteria.

In summary, in addition to flow regularisation, condition (i) implies a thin middle layer
and a two-layer exchange flow at both ends. Under condition (ii), when the middle layer is
dynamically active, the two oppositely propagating flows at critical velocity (| F1| = | F2| =
1) cause vigorous mixing (ko # 0) in the middle of the duct (due to symmetry). However,
when the middle layer is stationary near the control, the upper and lower interfaces may
become decoupled, and criticality may occur independently at one or both interfaces
without requiring symmetry.
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Figure 10. Control mechanisms that dictate how information propagates along the characteristics in the three-
layer model at # = 110 for all cases: (a) viscous control and (b) the sum of all terms on the right-hand side
of (3.1). Solid lines (¢1) and dashed lines () represent the first and second momentum equations (first and
second rows, respectively) in (3.1). The lines are shown for the SW, TW and I cases in light purple, dark purple
and yellow, respectively.

3.4.2. Viscous control mechanism

The effects of viscosity are of particular importance as they allow for enhanced dissipation
in hydraulic jumps, and are connected to turbulent mixing when the hydraulic regime
transitions from supercritical to subcritical.

In figure 10 we computed the viscous control term tq (non-zero elements) to verify that
it indeed dominates the right-hand side of (3.1) in the central region of the duct where
G =1 (at a representative time ¢ = 110). Panels (a,b) present the viscous terms and the
sum of all the terms on the right of (3.1), respectively, and show that the viscous term
dominates, particularly in the central region of the duct. For the wave cases, the viscous
control mechanism, represented by Tq, becomes < 0.01 in the centre of the duct to regulate
the flow (§ 3.4) at the internal control points. The summation of these terms also reaches
a local minimum near the control points. Note that the viscous term and sum also become
approximately zero at the duct ends, where geometric control is established. The regularity
condition is therefore satisfied for all control mechanisms at the duct ends.

The large contribution of viscous terms tq suggests that information propagation along
the interfaces is predominantly modulated by viscous effects (see § 3.2). By comparing
figures 7 and 10, we observe that along the upper interface, viscous damping occurs on
the left side of the duct, where {; = (7g); > 0 (with the subscript 1 indicating the term
from the velocity difference equation between the middle and upper layers, i.e. the first

row of (3.1)) and /lf > 0, indicating viscous dissipation. On the right side of the duct,

where {1 = (tg)1 <0 and /lf < 0, the viscous forcing reinforces the direction of wave

propagation. This results in a local amplification of interfacial waves due to enhanced
mixing with the lower layer. Similarly, along the lower interface, viscous damping is
observed on the right side, where £, = (1¢)2 < 0 and /lée > 0, again indicating dissipation.
Here, the subscript 2 refers to the velocity difference equation between the lower and
middle layers (the second row of (3.1)). On the left side, where (7g)2 > 0 and /l§ <0,
viscous forcing contributes constructively to wave propagation, leading to amplification
through mixing with the upper layer.
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Figure 11. Space-time plots of the long-wave growth rate simultaneity, /lé/li, for (a) SW, (b) TW and
(c) I cases.

Thus far our focus has been primarily on the physical significance of characteristics in
hydraulic control and regime transition embedded in AR. Although we showed a strong
correlation between turbulence generation and AR to reveal their true connections, we
need to consider instabilities through the imaginary part A, as we do next.

4. Three-layer instabilities and resonances
4.1. Simultaneous amplification in the growth rate of the long waves

In Appendix A we show that the characteristics A obtained from (3.9) are identical to the
phase speed of linear long waves (with wavenumber k < 1) propagating in a background
three-layer flow. In § 3 we discussed the essential roles of the A to predict the control
points and hydraulic regimes, which are closely associated with the laminar—turbulence
transition in SID flows. Nonetheless, a consequence of the equality of the A and phase
velocity of the linear long wave is that A/ > 0 represents their growth rate. Therefore, it
is reasonable to anticipate that the space—time distribution of the imaginary components
presented in figure 6(c,d) may be a proxy to the TKE shown in figure 9(a,b,c). However,
upon comparing their distributions, it is evident that this is not the case. In figure 6(c)
the imaginary components of characteristics of the upper interface /l{ exhibit a positive
growth rate in the right and middle regions of the duct (separated by the auxiliary lines
in figure 6¢), while /lé associated with the lower interface displays a positive imaginary
component in the middle and right regions of the duct. They do not match with the
TKE distribution in figure 9(b), which shows the largest TKE in the middle of the duct.
However, when multiplying /lé (x,1) and /li (x, t) to diagnose whether both interfaces

simultaneously grow or not, we expect /lé/li (x, t) to agree with the TKE distribution,
which will be discussed next.

We show in figure 11 the spatiotemporal distribution of the simultaneous amplification
/15/1‘11 (x, 1), reflecting the growth of long waves at the upper and lower interfaces in the
SW (a), TW (b) and I (c) regimes. In all cases, the central region of the duct exhibits
the largest /léxlfl and the amplitude growth of the long waves (indicated by light colours)
occurs at the same rate, even though /lé and /14{ attain their highest values in regions
corresponding to dark contours. A qualitative correspondence can be observed between
regions of elevated /15/141‘ in figure 11 and enhanced TKE in figure 9(a—c), particularly
in the TW and I cases. In these cases, simultaneous growth in the amplitude of long
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interfacial waves is followed (with some time delay) by the emergence of turbulence,
supporting a linkage between long-wave amplification and the eventual onset of smaller-
scale generation through nonlinear energy transfer and wave breaking. In the SW case,
however, this correspondence is less clear due to weaker turbulence levels. Differences
across the cases may also arise from the emergence of short-wave instabilities, which are
addressed in the following section.

Further understanding of the simultaneous growth in a three-layer exchange flow can be
gained by building-block decomposition of the inviscid homogeneous limit of (3.1), which
will be discussed next.

4.2. Instability arising from long waves: isolated-layer perturbation

Although A represents the growth rate of the linear long waves (see Appendix A), the
origin of this imaginary component in the characteristics remains unclear. In two-layer
flows the presence of A’ is linked to the cross-interface shear exceeding a certain threshold,
which induces the appearance of the imaginary component (Long 1956; Dalziel 1991;
Lawrence 1993; Atoufi et al. 2023). However, for three-layer flows, identifying a single
threshold is not feasible due to the increased complexity and number of variables involved.
The resulting analytical expression for the characteristics, as given in (3.12), is too lengthy
and intricate to define a simple criterion. Therefore, we seek an alternative approach that
relates A’ to interactions between the layers.

We focus on the free propagation of the long waves described by the inviscid
homogeneous limit of (3.1) where C(dq/dr) + A(dq/dx) =0 and we decompose the

coefficient matrices as
A A
A=A — A — ],
( 1+ > ) + ( o+ > )

(4.1)
C
C= C1+—0 + Cz'l'@ ,
2 2
such that
—u18i1  uodio 0 0 81 g1
0 —updio U282 0 0 82
| o=m om0 s wosie 0O
Ai= 0 —ho ha 0 —uodio u28in |’ 4.2)
0 0 0 1 1 1
hi ho ha u1diy - uodio  u2é;i2
—8i1  bio 0 0 0O O
0 =80 6 O 0O O
0 0 0o -1 1 0
CG=1 o o o o -1 1 | 4.3)
0 0 0 0 0 0
0 0 0 0 0 0

where i =0, 1, 2 and §;; denotes the Kronecker delta function. To facilitate theory, we
introduce the coefficient matrix pairs
W=(A,C), Y=(A, C), Z=(Ay C). (4.4)

The first matrix pair, W, represents an isolated upper layer moving over stationary middle
and lower layers, as if these two layers act as a hypothetical topography that restricts the
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frictionless motion of the upper layer. Notably, ug and u; from A and the corresponding
columns in € do not appear in W, reflecting the isolation of the upper layer. Similarly, the
second matrix pair, Y, denotes the isolated lower layer moving without friction beneath the
stationary middle and upper layers, which act as a topography restricting its motion. Here,
ug and u; from A and their corresponding columns in C are absent from Y. Finally, the
third matrix pair, Z, represents an isolated middle layer moving without friction between
the ‘topography’ provided by the stationary upper and lower layers.

The generalised eigenvalue problem associated with each matrix pair has only real
solutions of the form:

AW)=u; £/gihi, 4.5)

A(Z)z(uo— £182 h()) (uo+ 8182 ho>, (4.6)
81+ 82 g1+&

AY)=uy £+ /g2ha. (4.7)

Now consider that the isolated upper layer matrix pair Wis perturbed by Z/2 through the
interaction between the upper and middle layers. Similarly, we allow Z/2 to perturb the
isolated lower layer, accounting for the interaction between the lower and middle layers.
We denote these perturbed layers with the following matrix pairs: W=W-+ Z/2, Y=
Y+ Z/2, and we note that X=(A, C)=W+Y. We refer to W as the perturbed upper
layer matrix pair and Y as the perturbed lower layer matrix pair, noting that X yields the
original three-layer exchange flow in the inviscid homogeneous limit.

Since the flow is stably stratified, with g, go >0, all eigenvalues in (4.5) are
real. However, the perturbed matrix pairs introduce imaginary components in their
characterlstlcs such that A/ (W) #0, Al (Y) # 0 in general. Therefore, attributing the
criterion A’ (X ) >0 to the onset of long-wave instabilities (see Appendix A) reveals
that the instability arises exclusively from W and Y, the perturbed upper and lower
isolated layers influenced by the middle layer. We note that A(W+ Y) € R meaning that
perturbing W by Y alone (and vice versa) does not introduce imaginary components
in the characteristics. This implies that the origin of the imaginary components results
specifically from the interaction of the isolated upper and lower layers with the middle
layer.

The matrix pairs W and Yrepresent a building-block decomposition, illustrating that the
full system X comprises two interacting subsystems: the perturbed upper layer (W) and
the perturbed lower layer (Y).

In a three-layer system, three types of resonance are possible: (i) resonance between
interfacial waves at the upper interface alone, (ii) resonance at the lower interface alone
and (iii) resonance due to interactions between waves propagating on both interfaces. The
decomposition into W and Y also offers a framework for diagnosing all three cases by
isolating contributions from each layer and their coupling.

To illustrate this, we consider the special case of pure exchange flow discussed in
§3.2.2. In this case, ||W||F = ||Y||F, leading to A1 2= /l(Y) and A3 4= /l(W) Recall
that when Fj 2> Fi 4> the phase speed of long waves associated with a single interface
acquire 1mag1nary components due to increased shear. This can be understood as the result
of interaction between the isolated upper and middle layers, which generates sufficient
shear, reflected in A/ (W), to destabilise the upper interfacial waves. Similarly, interaction
between the isolated lower and middle layers can produce shear strong enough to drive
instability, captured by A’ (Y). Thus, in the absence of coupling between interfacial waves,
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the imaginary parts A/ (W) and A/ (Y individually capture instabilities arising at the upper
and lower interfaces, respectively.

In more general cases where the middle layer is non-stagnant and the upper and lower
layers are not symmetric, so that 21 2 # A(Y) and A3 4 # A(W), the characterlstlcs of the
individual building blocks still provide a useful diagnostic. By comparing Al (W) and
AL Y) with the full system Al (X ), one can assess whether the dominant instability arises
at the upper interface (i), the lower interface (ii) or from cross-interface coupling (iii).

In this study we primarily focus on the third type of resonance — interfacial interactions
across the layers. In the next section we examine the instability mechanisms that emerge
from resonance between long interfacial waves propagating on different interfaces.

4.3. Spectral gap and long-wave resonance indicator

In the preceding section we demonstrated that a pathway for the long-wave amplitude
growth A/ (X ) originates from the growing waves in perturbed upper and lower layers
denoted by A/ (Y) and A’ (W) respectively. In a three-layer flow, the long waves associated
with these perturbed lower and upper layers can resonate, to_amplify the imaginary
component of the characteristics of the full three-layer system A(X).

4.3.1. Diagnosing long-wave resonance across interfaces from DNS
In matrix perturbation theory (Stewart & Sun 1990), the term spectral gap is often
used to describe the difference between the spectra of two matrix pairs. Given a
matrix pair (A, C), where we consider the generalised eigenvalue problem Av =
ACv, a perturbation of the matrix pair results in a perturbed generalised eigenvalue
problem (A+ AA, C+ AC). The spectral gap in this context quantifies the variation
in eigenvalues caused by the perturbation of both matrices in the pair. This measure
quantifies the effects of small changes to both matrices on the generalised eigenvalues
and, consequently, the stability and dynamics of the system. In the context of perturbed
upper and lower layers (represented by matrix pairs W and Y, respectively), the spectral
gap measures how the spectra of these perturbed layers deviate from each other and from
the isolated middle layer represented by Z. By examining the spectral gap, we gain insight
into how resonant interactions between perturbed layers influence the characteristics of the
full three-layer system. Further explanations and mathematical descriptions for the spectral
gap in the context of perturbed layers are provided in Appendix B.

To quantify such resonant interactions in DNS data, we measure the relative spectral
gap between (characteristics of) perturbed upper and lower layers with respect to the
(characteristics of) isolated middle layer as

A7 1+ [P = a1+ [ P |
R(W, Y) = max max — = — —, (“4.8)
AT+ 4N+ AT+ )|

where A/lW [/lR(W) — A2+ 14! (W) and MY [/lR(Y) — A+ 14! (Y). The
superscripts R and I refer to real and imaginary components of the correspondmg
characteristics and i, j =1, ..., 4 are indices counting individual characteristics. Note
that R(W, Y)="R(Y, W). The reader is referred to Appendix B.2 to see a further
description and mathematical derivation of (4.8). _ _

Equation (4.8) yields that under the condition where AR (W) =A%(Y)=A(Z) and

Al (7) =A! (VT/) > 0, then R(W, Y) =0, which implies that long waves can resonantly
1016 A69-26



https://doi.org/10.1017/jfm.2025.10369

https://doi.org/10.1017/jfm.2025.10369 Published online by Cambridge University Press

Journal of Fluid Mechanics

()

200

Figure 12. Contours of the long-wave resonance indicator R plotted in space-time (x,¢) for the SW
(a), TW (b) and I (c) cases. The dark regions indicate the minimum spectral gap, as defined in (4.8), between
the perturbed upper and lower layers, derived from the building-block matrix decomposition of the three-layer
system into perturbed upper and lower layer subsystems in (4.1).

interact since they are phase locked and have an equal growth rate. Therefore, R — 0
(note that 0 <R < 1) is a condition for near resonance, whereas when R — 1, long waves
are not phase locked and do not resonate. Note that for the special case of pure exchange
flow discussed in § 3.2.2, the F; 2= =F3 z o condition that defines the neutral stability curve

for long waves also leads to /I(Y) = /l(W), which corresponds to the resonance condition
R =0 (since A; = A3 and A = A4). Equivalently, R = 0 marks the neutral stability of the
long waves.

This equivalence highlights a connection between the resonance mechanism and the
onset of long-wave instability in pure exchange flows. For more general three-layer
exchange flows, where the neutral stability curve cannot be expressed analytically, we
expect the resonance measure R to continue to serve as a useful diagnostic for identifying
resonant interactions between interfacial waves. To confirm this, we apply the 'R measure
to DNS data in the following section.

4.3.2. Application to the data
The contours of the long-wave resonance indicator R are shown in figure 12 for the SW,
TW and I cases. All cases qualitatively correspond to the G contours in figure 9(d—f),
particularly in the sense that the regime transitions from a supercritical hydraulic regime
((N? > 1) to a subcritical regime (6 < 1) when R = 0. This similarity is noteworthy and
not self-evident as the characteristics of the perturbed upper layer and those of the
upper _interface in the original three-layer flow are different by definition, i.e. /l(W) #
A1, 2(X ), and, 51m11ar1y, /l(Y) # A3, 4(X ) in general. Therefore, one would expect that
/I(Y) + /1(!!/) * /l(X ). The striking resemblance between the spatiotemporal distributions
of R and G suggests that the building-block decomposition introduced in § 4.2 provides
valuable insight not only into the pathway for growth of interfacial waves but also
their interactions and three-layer hydraulics. Moreover, it suggests that the hydraulic
regime transition, driven by changes in the direction of information propagation along
the interfaces, is also accompanied by long-wave resonance.

This long—long-wave resonance will modify the base state (mean flow) by the long
waves themselves (figure 2). Such changes in the base state may lead to the onset of
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short-wave instabilities and result in the TKE generation at later times, as also found in
Zhu et al. (2024). For all cases, the contours of R are consistent with the TKE contours
presented in figure 9 in the sense that strong TKE events are linked with interfacial
wave resonances (i.e. the strong TKE occurs generally in places with the smallest R).
A more detailed comparison between instantaneous profiles of TKE and ‘R is presented in
Appendix C.

To properly establish the link between long-wave resonance and TKE generation, we
also identify the resonance between long-wave and short-wave packets, eventually leading
to the generation of small scales, which will be discussed next.

4.4. Indication of resonance between long and short waves

In this section we investigate the resonant interaction between long and short waves
and provide evidence for the link between these interactions and the TKE. We begin
by examining the connection between long- and short-wave instability in hydraulically
controlled flow (§ 4.4.1). We then identify the conditions under which resonance between
these waves can occur (§4.4.2). In §4.4.3 we explore how such resonance contributes
to turbulence generation, extending the analysis beyond linear wave stability. Finally, we
apply the resulting diagnostics and criteria to DNS data in § 4.4.4.

4.4.1. Linking long-wave and short-wave instability: hydraulically controlled instability
In the previous section we examined the link between internal hydraulics and the instability
of long waves. We now show that the stability of the entire wave spectrum — including short
and intermediate waves — is likewise governed by the internal hydraulic state, characterised
by the layer Froude numbers. This mechanism, which we refer to as hydraulically
controlled instability, highlights that although the system is a stratified shear flow both
the shear and stratification are prescribed by hydraulic conditions, which in turn control
stability across all wavenumbers.

To illustrate this, we again consider the pure exchange flow case discussed in § 3.2.2,
which simplifies the analysis. The imaginary components of the phase speeds of all waves
in the spectrum, derived from the linear theory developed in Appendix A, are shown in
figure 13. The top row corresponds to the bifurcation Froude number Fi_ and the bottom

row to the marginal-stability Froude number Fi - As the Froude number increases from

Fi_ to F j > the wave instability structure changes qualitatively across all wavenumbers —
not just in the long-wave limit.

Figure 13(a,b) shows that when F' 12 = Fi,, unstable modes span a broad wavenumber
range — from long to short waves — up to k < 10, particularly in three-layer flows with a
thick middle layer (» > 1), where r denotes the ratio of middle to upper layer thickness.
Moreover, the phase speeds c¢; and cs4 exhibit similar imaginary components across
wavenumbers, indicating that interfacial waves at both interfaces grow at nearly the
same rate. In contrast, when F 12 = Fi 4> corresponding to marginal long-wave stability,
instability is confined to short waves, which persist across a wide range of r, as shown
in figure 13(c,d). In this case, the c{ and c‘{ differ significantly, both in the values of r
that support instability and in the wavenumber ranges associated with peak cl’ and c‘{,
reflecting a decoupling of instability mechanisms across the layers.

These results suggest that the layer Froude numbers dictate both the onset and extent
of instability across the wave spectrum. The observed similarity in the c{ and ci in the
F 12 = Fi_ case between long- and short-wave behaviour raises the question of whether
these waves can interact resonantly — a possibility we now explore.
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Figure 13. Instability map from contours of the imaginary component of the phase speed, ¢!, for linear
disturbance waves in a three-layer pure exchange flow with a stagnant middle layer mtroduced in §3.2.2.
Both the bifurcation Froude number case F 12 = Fi7 and the marginal-stability Froude number case F' 12 =F i i
defined in (3.16) are shown, isolating the dependence of wave amplification on the layer depth ratio » and
wavenumber k. For Fi—’ the interfacial modes ¢ and ¢4 exhibit similar values of ¢/, indicating comparable
growth rates at both interfaces. In contrast, for Fi _» the growth characteristics differ between interfaces, with
distinct ranges of r and k contributing to instability.
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Figure 14. Imaginary component of the phase speed of the lower interfacial wave, ci, for pure exchange
flow with a stagnant middle layer introduced in § 3.2.2 at selected wavenumbers k = 0.001 (a), 1 (b) and 10
(c), plotted as a function of layer thickness ratio » and Froude number F 12

4.4.2. Resonance between long and short waves

To assess the potential for resonance between long and short waves, figure 14 shows ci for
the pure exchange flow at selected wavenumbers (k = 0.001, 1 and 10), across a range
of layer thickness ratios r and Froude numbers. At k =0.001 shown in figure 14(a),

cf1 closely matches its value in the long-wave limit (k — 0) shown previously in
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figure 13(b), confirming that the solution represents a long-wave mode. As can be seen
from figure 14(a—c), for k < 1, the variation in phase speed as the wavenumber changes
is relatively weak, while for k£ > 1, the phase speed continues to change significantly. This
suggests that dispersion is strongest around k = 1, where small differences in wavenumber
lead to substantial differences in propagation speed. This behaviour implies that wave
packets centred near k = 1 are highly dispersive — that is, their constituent wavenumbers
propagate at different phase speeds and, consequently, different group velocities. The
implications of this for resonance and energy exchange will be explored in the following
section. Additionally, increasing k broadens the region of instability as shown in
figure 14(a—c), extending to lower Froude numbers (F ]2 < Fi +) and a wider range of r,

indicating that short-wave instability becomes more prominent where F’ 12 <F i 4

For systematic identification of resonance between long and short waves, let us recall
that a packet of linear waves with phase velocity ¢ propagates at the group velocity,

d(ck) dc
Cg = (8k =c—|—ka—k=c+kd, 4.9)

where d, = dc/0k measures the wave dispersivity. The kinetic energy is carried by the
group velocity ¢, as the wave packet propagates, and c is the phase velocity, whose
mathematical expression is defined in Appendix A (from (A10)). Of particular interest
is a packet of short waves with a group velocity close to the phase speed of the long waves
(i.e. cg = A), since long and short waves can then resonate (Ma 1981).

In general, c € C, so ¢, also contains real and imaginary parts. The real part c?

09~

represents the propagation speed of the wave envelope, while the imaginary part ¢
corresponds to its temporal growth. Resonance between wave packets and long interfacial
waves is most likely when both ¢® ~ A% and ¢! ~ A!.

We utilise the general form of the spectral gap, as defined in (B13), to assess the relative
group velocity of short wave packets compared with the phase speed of long waves at
both the lower and upper interfaces. For a given wavenumber k¢, we interpret the group
velocity cglk=k,) € C as thE generalised eigenvalue of a perturbed matrix pair involving

the three-layer matrix pair X= (A, C), expressed as
Col(k=ko) = AX+ M), (4.10)

where M” is a perturbation matrix pair that accounts for the finite-wavenumber
modulation of the wave packet. We recall that 1(X) yields the phase speed and growth
rate of long interfacial waves in the three-layer flow, while A(X+ M") provides the
corresponding quantities for the amplitude envelope of a wave packet centred around k.
Using this interpretation, we apply the spectral gap definition from (B13) to compute

S=Sz(M"), @.11)

i.e. the spectral gap between long waves and short wave packets, by substituting M=X
and M’ = M" in (B13).

The spectral gap S thus provides a diagnostic criterion for identifying near-resonant
interactions between short-wave packets and long interfacial waves. Unlike the dispersion
relation, which describes the behaviour of individual modes, S quantifies the extent
to which a short-wave packet can propagate at the same speed as a long wave. When
this condition is met, efficient energy transfer from the long-wave to the short-wave
packet becomes possible. In the next section we examine how this resonance mechanism
contributes to turbulence generation, particularly through the amplification of short-wave
disturbances in regions where S is small.
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4.4.3. The role of resonance in turbulence generation

The product céci, shown in figure 17(c) for the TW and I cases, highlights regions in
(x, k) space where both interfacial modes are simultaneously unstable. These regions
of modal amplification are especially pronounced for k <1 and spatially coincide with
zones of elevated TKE in figure 9. Although the peak values of cé and ci do not occur
at the same x for all wavenumbers, their product effectively identifies regions of overlap
where both modes contribute to instability. This spatial alignment suggests that energy
amplification is not solely attributable to isolated modal growth, but may be enhanced by
interactions between wave modes on both interfaces. In particular, simultaneous instability
at the upper and lower interfaces permits resonant coupling between long interfacial
waves and dispersive short-wave packets, enabling efficient energy transfer across scales.

To understand the conditions that allow this energy transfer, we consider the limitations
of the dispersion relation alone. While the dispersion relation derived in Appendix A plays
a central role in identifying both long- and short-wave instabilities, it does not capture the
interactions between modes at different scales. For instance, figure 17 shows that unstable
modes exist on both interfaces over a broad wavenumber range. However, the dispersion
relation does not indicate whether these modes are phase locked, whether their group
velocities coincide or whether energy can be transferred between them.

This motivates the introduction of the spectral gap S, which quantifies the proximity
between the group velocity of a short-wave packet and the phase speed of a long wave.
When § — 0, a near-resonant condition is established: the short-wave packet is not only
unstable but can also efficiently extract energy from long energetic waves. This leads
to resonance-driven amplification of short-wave disturbances, even in parameter regimes
where their modal instability alone may not explain the observed turbulence.

4.4.4. Application to the data

To apply the theoretical framework developed above, we must select a representative
wavenumber ko around which to evaluate the spectral gap S. This choice is guided by
both dispersivity analysis and prior evidence of potential resonance. In particular, from
the discussion in § 4.4.2, we have already seen that short-wave packets centred at kg = 1
exhibit phase speeds comparable to those of long interfacial waves, suggesting conditions
favourable for resonance.

This is further supported by the dispersivity analysis shown in figure 18, which reveals
that the wave dispersivity |d,| peaks at ko = 1, indicating the strongest dispersion and the
wavenumber, therefore, is effective for coherent wave packet formation that carries energy
through the flow. It is noteworthy that the dispersivity of small-amplitude long waves tends
to zero as k — 0, since these waves are non-dispersive. In contrast, for short-wave packets,
the dispersivity peaks at a wavenumber ki, where |d,| is maximal. Importantly, at ko = 1,
the phase speed c (ko) remains O(1), which is comparable to the long-wave phase speed
A. Furthermore, since ko|dg| < |c|, the group velocity ¢, is close to ¢, and hence, also
comparable to A. Therefore, wave packets centred at kg = 1 travel at approximately the
same speed as long waves, facilitating resonant coupling.

Figure 15 shows space—time contours of S and demonstrates it qualitatively corresponds
to R and TKE for all cases despite their fundamentally different mathematical definitions.
For example, figure 15(a,b) suggests that in the SW and TW cases, S is smallest in
the central regions of the duct and, therefore, the relative velocity between packets of
short waves and long waves is small in this region. Consequently, in SID, in the central
region where long interfacial waves are in near resonance, they also resonate with energy-
carrying short-wave packets, amplifying the growth of the unstable short waves, resulting
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Figure 15. The resonance between long waves and short-wave packets measured by S from (4.11): the spectral
gap between most dispersive short-wave packets (i.e. wavenumbers centring around k = 1) and long waves in
(a) SW, (b) TW and (c) I cases.

in breaking and generating small-scale turbulence and TKE. A more detailed comparison
of the spatial distributions of TKE, R and S for the SW, TW and I cases at various times
is presented in Appendix C.

Therefore, S and R serve as complementary diagnostics to unravel the route to
turbulence and small-scale generation in a stratified exchange flow such as SID. The next
section summarises these mechanisms.

4.5. Summary: resonance indicators and turbulence generation in space-time

In §4.3 we introduced the indicator R to quantify the long—long wave resonance, which
we associate with large-scale energy transfer and the onset of instability in hydraulically
controlled three-layer flows. This process is distinct from subcritical-to-supercritical
hydraulic transitions, which do not require instability and are well known from single-layer
theory. In § 4.4 we introduced S to indicate small-scale generation through short-wave
instability (long—short wave resonance). As shown in figures 12 and 15, both R and S
have similar spatiotemporal distributions and both are consistent with the TKE distribution
(see also Appendix C). Therefore, both long—long wave and long—short wave (packet)
resonance contribute to the TKE and, consequently, influence the onset of turbulence
in SID. The close similarity between the x—¢ distributions of R and S suggests an
intrinsic connection between them, despite their fundamentally different mathematical
definitions.

This process is also interpreted through the vertical structure of the wave modes. Long
waves refer to disturbances with a small horizontal wavenumber k, corresponding to
large-scale structures in the streamwise (x) direction. Because they vary slowly in x, the
associated pressure and velocity perturbations extend over the full vertical depth of the
duct, leading to broad vertical mode structures that align well with the background shear
U (z). This vertical coherence allows long waves to efficiently extract energy from the
mean flow. However, their smooth structure induces weak vertical gradients, making them
ineffective at generating localised shear or mixing across density interfaces.

Short waves, in contrast, are associated with a large horizontal wavenumber k and are
confined near the density interfaces, with vertical structures that decay rapidly away from
these regions. Although their projection onto the background shear is weaker, limiting their
ability to extract energy directly from the mean flow, they can generate sharp interfacial
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Figure 16. Conceptual profiles illustrating the instantaneous resonance indicators for long—long wave (R) and
long—short wave packet (S) interactions, shown alongside TKE for comparison. The parameter A represents
the length-to-height aspect ratio of the stratified exchange flow considered here.

gradients that enhance local shear and promote mixing. Thus, they are more effective at
driving the small-scale turbulent structures responsible for mixing across layers.

A key point revealed by our analysis is that long—short wave resonance enables a (non-
linear) energy transfer from long waves to short waves. In regions where both R and S are
minimised, long waves that have extracted energy from the mean flow can resonantly trans-
fer energy to short waves, thereby amplifying them and facilitating intense mixing. This
interaction contributes to the observed generation of TKE and mixing in the middle layer.

This interpretation is supported by the qualitative similarity of low R and S values with
regions of enhanced TKE, as well as by previous theoretical work on long-wave-induced
instability in exchange flows (Zhu et al. 2024). Together, these observations demonstrate
the complementary roles of long and short waves in driving the transition to turbulence in
stratified exchange flows such as SID.

The schematic profile in figure 16 illustrates the spatial distribution of long—long and
long—short wave resonances within the SID flow, integrating the space—time interactions
shown in figures 12 and 15 and comparing them with the TKE distribution presented in
figure 9(a—c). This schematic also incorporates the spatial profiles in figure 20 and the
analysis in Appendix C, providing insights into the identification of wave resonances and
the hydraulic transition to turbulence. In the wave cases, as well as during the quiet phase
of the I case, critical regions near the duct ends (where G & 1) are observed, where the
lowest values of R coincide with the strongest TKE, while S remains minimised. This
pattern suggests that hydraulic transition and TKE generation are primarily driven by
long—long wave resonance, in conjunction with short-wave instabilities at the upper and
lower interfaces without substantial resonant interactions. In the duct centre (subcritical
region where G < 1), both long—long and long—short wave resonances coexist, facilitating
the hydraulic transition to turbulence. As the central hydraulic jumps progress toward the
duct ends and the subcritical region expands, these regions of resonant interaction grow,
occupying an increasingly extensive portion of the duct.
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4.6. Application to oceanic flows

The theoretical framework developed in this study, based on three-layer hydraulic analysis
and the diagnosing resonant interactions between long and short waves, can be applied
to stratified exchange flows in the ocean. These include confined regions like straits,
estuaries, fjords, canyons and semi-enclosed basins, where salinity and/or temperature
stratification often create three-layer flows governed by hydraulic controls. A notable
example is the Bosphorus Strait, linking the Black Sea and the Mediterranean, where
bathymetric constriction and density differences support layered, hydraulically controlled
stratified exchange. Below, we outline several potential applications.

4.6.1. Implementations for adaptive resolution in ocean models

Recent advances in high-resolution numerical ocean modelling, particularly the lat-lon-
cap (LLC) simulations such as LLLC4320 (Gallmeier et al. 2023), have enabled global
ocean simulations at approximately 1/48° horizontal resolution (~2 km at the equator)
using the Massachusetts Institute of Technology general circulation model (MITgcm).
Despite this relatively high spatial resolution, turbulence is far from being resolved, and
mixing remains parameterised through local gradient-based closures.

The diagnostic measures R and S developed in this study quantify the conditions under
which long waves resonate with dispersive short-wave packets. Since these diagnostics
rely only on layer-averaged quantities — velocities, densities and interface displacements —
they are directly applicable to model outputs.

In coastal and marginal seas, particularly in estuarine and strait-like geometries where
the Rossby number is large and rotational effects are weak, the three-layer approximation
proposed in this study is especially appropriate. Our results imply that even without
directly resolving turbulence, ocean models can leverage these diagnostics to identify
zones of intensified TKE generation. This insight may be valuable for implementing
adaptive mesh refinement in regional models, where local grid refinement could be
concentrated in dynamically active zones suggested by long—short wave resonance
conditions. Because all diagnostic expressions derived here are analytical, this integration
poses no additional computational burden and presents a promising route toward physics-
informed resolution enhancement in estuarine and strait flows.

4.6.2. Implications for mixing parametrisation
While in this study we applied the theoretical framework to DNS datasets of SID
flows, the methodology can be extended to ocean circulation models, which typically
solve shallow water or layer-averaged primitive equations. These models do not resolve
turbulence explicitly and usually assume hydrostatic balance, thus neglecting non-
hydrostatic pressure gradients that play a key role in wave-driven turbulence and mixing.
The model output can be decomposed into three effective layers by discretising the
vertical structure into bulk velocity, density and thickness in each layer via appropriate
integration. These layer-averaged quantities serve as input to the theory developed here,
enabling the computation of resonance diagnostics R and S, the linear wave speed c,
the imaginary part ¢; as a proxy for instability and the dispersivity |d,|, defined as the
magnitude of the group velocity derivative with respect to wavenumber. In regions where
S is locally minimum or |dg| is large, we suggest that turbulent viscosity in mixing
parametrisations could adopt a velocity scale based on the group velocity of the most dis-
persive wave packet, cg (ko), where ko corresponds to the wavenumber at which |dg| peaks.
This provides a leading-order correction to existing mixing schemes that rely solely
on local shear or stratification. It leverages the resolved mean state of an ocean model
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to estimate non-hydrostatic, wave-induced pathways to turbulence, which are otherwise
absent in hydrostatic model formulations. Consequently, it offers a route to enhance
parametrisation schemes with minimal computational overhead while capturing key
non-local mixing mechanisms.

4.7. Outlook

The good agreement between DNS and temperature-stratified shadowgraph experiments
in Zhu et al. (2023) suggests that hydraulic effects, including both long—long and long—
short wave interactions, play an important role in these experiments. Furthermore, recent
augmented experimental data (Zhu et al. 2024) from salt-stratified experiments using
physics-informed neural networks and the reconstructed pressure field indicates that the
offset of the density interface, and thus, the asymmetry in short (Holmboe) waves are also
caused by hydraulic effects. However, the question of how the Prandtl number influences
these interactions remains open.

A promising direction for future work is the inclusion of a steady or oscillatory
barotropic background flow. In many geophysical contexts, particularly in estuaries
and straits, the exchange flow is influenced by persistent barotropic currents or low-
frequency tidal forcing. A key assumption in the present formulation is that the net
volume flux vanishes, i.e. ujh| + uzhs + ugho = 0. In the presence of barotropic forcing,
this condition generalises to uihy + u>ho + upghg = Q(x, t), where Q is a prescribed
barotropic volume flux. This introduces spatiotemporal variability into the base state
and alters the characteristics of the three-layer flow. Consequently, resonance conditions
and growth rates become time dependent on the scale relevant to the forcing time scale,
potentially modifying the nature and location of mixing.

Another natural extension is to incorporate rotation. While the present study assumes
non-rotating flows — a valid assumption in narrow, laterally confined geometries — large-
scale oceanic flows are influenced by Coriolis effects, including continental shelf regions,
curved straits and deep ocean canyons. Including rotation would introduce geostrophic
balance into the mean flow and modify the structure of internal wave characteristics. This
could suppress or enhance wave interactions depending on the local Rossby number and
geometry.

These extensions, accounting for barotropic variability and rotational effects, represent
important steps toward adapting the resonance-based framework developed here into a
more general predictive tool for mixing in real oceanic flows.

5. Conclusions

This paper has discussed the three-layer hydraulics of stratified exchange flows in inclined
ducts and significantly improved upon the two-layer hydraulics of Atoufi et al. (2023). The
improvement lies in the inclusion of viscous effects, non-hydrostatic pressure gradients
and a third mixed layer in the quantitative analysis of the internal hydraulics and wave
instabilities, which is generalisable to any three-layer exchange flows with mixing.

We first introduced the viscous three-layer-averaged equations with non-hydrostatic
pressure gradients and mixing. We then provided expressions for the eigenvalues of the
homogeneous system of equations (i.e. characteristics) and the propagation of information,
and defined a composite Froude number based on the characteristics of the three-layer
flows. While related formulations have appeared in prior work, this approach based
on characteristics has not, to our knowledge, been previously reported. Unlike two-
layer hydraulics, three-layer hydraulics predict a subcritical/critical region, separated
by two hydraulic control points, within which flow transitions from supercritical to
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subcritical, and is accompanied by TKE generation. We have shown theoretically that the
imaginary component of characteristics represents the growth rate of the linear long waves
propagating on a background three-layer flow.

The system was then decomposed into three isolated layers through matrix
decomposition, where the characteristics are strictly real. We demonstrated that long-
wave growth occurs when interactions between these isolated layers are allowed. From
this decomposition, perturbed upper and lower layers were defined resulting from the
interaction between the isolated upper and lower layers, and influenced by the isolated
middle layer. The spatiotemporal TKE was linked to long-wave resonance by quantifying
the spectral gaps between the characteristics of the perturbed upper and lower layers.
Additionally, we connected TKE to the resonance of dispersive short-wave packets
carrying energy, characterised by a wavelength three times the duct height, whose group
velocity drives kinetic energy transfer.

The first turbulent transition mechanism arises when long waves have identical speeds
and growth rates, facilitating resonance between them. In this case, the spectral gap
between the perturbed upper and lower layers vanishes. Such a resonant interaction also
changes the base state around which the perturbation evolves and triggers instabilities. The
next mechanism arises when long waves directly interact with a packet of dispersive short
waves, where the phase speed and growth rate of their amplitude envelope are equal to
those of long interfacial waves. In this case, direct interactions between long and short
waves trigger instability and the generation of smaller scales.

This paper has focused on the three regimes identified in Zhu et al. (2023): stationary
and travelling wave regimes (SW and TW case) together with the intermittently turbulent
regime (I case). We provided the first evidence from three-dimensional DNS datasets
that strong TKE correlates with long—long waves and long—short wave packet resonance.
We deduce that the transition to turbulence in stratified exchange flow exhibits a high
degree of non-locality owing to resonant interactions between long and short waves. The
parametrisation of mixing in applications, including in the ocean, is often based on local
gradients of the flow. This paper underscores the need to revisit modelling strategies to
account for non-local pathways to turbulence, especially in situations where the flow is
hydraulically controlled or influenced, and susceptible to long-wave instability (e.g. in
estuaries and straits).
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Appendix A. Linear instabilities and the link to three-layer hydraulics
We assume three-layer piecewise constant base velocity and density profiles of the form

h h h h
uj —O<z<h1+?0, 1 70<z<h1+70,
h h h h
U) = ug —?O<z<?0, R(z)=1 po —?0<z<70, (A1)
I h0< ho I h0< ho
- __\ <__7 - __\ <__’
uj 2 2 Z 3 P2 2 > Z )

1016 A69-36


https://doi.org/10.1017/jfm.2025.10369

https://doi.org/10.1017/jfm.2025.10369 Published online by Cambridge University Press

Journal of Fluid Mechanics

where we use layer-average quantities from DNS data to compute ¢/(z) and R(z). We
add a perturbation streamfunction of the form 1//(z)exp ik(x — ct) to represent linear
disturbance waves propagating in a background flow with prescribed U/ (z) and R(z). We
implicitly assume that the above parallel base flow is a good model for exchange flows
varying slowly along x compared with the wavelength of the perturbation. The evolution
of the perturbation inside the duct (away from the inlet/outlet) is given by the forced
Taylor—Goldstein equation (TGE) (Atoufi et al. 2023):

RicosO R ~
U—-c

where primes denote d/dz. For the three-layer base flow (A1), U” =R’ =0 everywhere
except at the interface, the TGE (A2) reduces to

v =K =0 (A3)

everywhere except at the lower and upper interfaces and we therefore seek the solution of
the form

Ry
w_—%Rz sin 0 |:Z/{ 4

(U@ —UP] — WU~ K —

] . (A2)

Mlslnhk<h1+@—z> @<z<h1+@,
2 2 2
—~ . ho ho
W = 4 M sinhk(z) + M3 coshk(z) — > <z< B (A4)
M4sinhk(h2+h—0+z) o ho
2 2 2

We note this solution satisfies _the 1mpermeab111ty condition at z =—hy — (ho/2) and
z="h1 + (ho/2) where w = zkw 0 since the vertical velocity of the disturbance waves
vanishes at the upper and lower boundaries. We also note that

U’=(u1—M0)3<Z—%)+(uo—uz)3< %)
(A5)

R = s ho 5 ho
= (p1 — po) (Z—7)+(po—pz) < 7),

where § is the Dirac delta function and U” =R’ =0 everywhere except at the lower
and upper interfaces. The matching conditions are derived by integrating (A2) over the
neighbourhood of the lower and upper interfaces (z = £h¢/2) leading to

Hu?cﬂm -0

A/ v
[[(Z/[ -y ]]r],- T8 <m)z=ﬂi -

where n; (i =1, 2) refers to lower and upper interface locations as determined in § 2.2.
In deriving the matching conditions (A6) we also considered the small angle limit where
sin(f) < cos 6 and neglected the right-hand side of (A2). The first and second conditions
guarantee the continuity of normal velocity and pressure fluctuations, respectively, across
the interfaces. Equation (A6) provides a 4 x 4 system of algebraic equations that we solve
to find M, M, M3, and M. The condition for the non-trivial solution of (A6) leads to
the phase velocity of the linear disturbance waves to satisfy the general quartic equation

Zizo by (q, k)" =0, where the coefficients are introduced in the next section.
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A.l. Coefficients in quartic equation derived from three-layer TGE

To manage the complexity of the coefficients b, in the quartic dispersion relation, we
introduce hierarchical auxiliary variables grouped in three decks, facilitating compact
representation and analytical traceability.

The upper deck contains the main coefficients b, appearing directly in the dispersion
relation

by =03,

b3 = sinh(k(ho — h1 + h2)) (uo — uy) + sinh(k(ho + hy — h2)) (uo — u2)
—03Quo +u1 +u2),

by = ug(ar1 + a2 + 60t4) + ui(on + 03) + 5 (e + e03) + duo(uioy + uzes)
+duuraz +y1 + 2, (A7)

b1 = (1 —=207)(y7 + y9) — T102V5,

by = u(z)y3 + 2u301/3102 + 2u%u%ﬁ401 oo + u%y4 + u%ys + 6.

The middle deck collects all hyperbolic expressions that depend on the layer depths

and wavenumber. These consist of combinations of sinh and cosh terms and provide the
building blocks of the system

o1 = cosh (#) . op=sinh (%) . o3 =sinh (k(ho+ h1 + h2)) .
o1 = cosh(hok) cosh(h k) sinh(hyk), ap =cosh(hok) cosh(hyk) sinh(h k),
o3 = cosh(h k) cosh(hak) sinh(hok), a4 = sinh(hgk) sinh(h k) sinh(h2k),
a5 = cosh(hok) sinh(h1k) sinh(hak), o = cosh(hak) sinh(hok) sinh(h k),  (A8)
a7 = cosh(h k) sinh(hok) sinh(h2k),
B1 =sinh(h1k) sinh(hyk), Bz =cosh(hik) sinh(hak),
B3 =cosh(hyk) sinh(h1k), B4 =cosh(hik) cosh(hyk).
The lower deck expresses all composite terms that couple the middle-deck hyperbolic

functions with velocities and gravitational accelerations. This layer systematically
simplifies and organises the structure of b,

g1(as +ae) g2 (a5 +a7) (1=207)B1(g1 + 82)
VM=———, "> WV=—"T—7F" > V= )
k k k
_ 2g81B30102 _ 28pr0102 _ 2g18201B102
- k ’ J/S - k ’ J/6 - k2 ’
2u +
7 =2(uout + ufur)Ba + 2(uou3 + uduz) 3 + M, (A9)
4g1B3 4¢282
vs = 8ud B1 + durus(uy + u2)fa — uz gk —u gk ,

yo=(1=207)(uip2 —u3p3).

A.2. Dispersion relation

The dispersion relation for the small tilt angle such that sin 8 < cos 6 can be expressed in
the form

4
> " ba(g. k)" =0, (A10)
n=0
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where the wavenumber-dependent coefficients b, are given in Appendix A.1 and the
analytical solution to (A10) is obtained by replacing a, with b, in (3.9) whose solution
is given in (3.12). Note that the two solutions cj > (the first and second root of (A10)) are
the speed of linear waves on the upper interface while the two solutions c3 4 (the third
and fourth root of (A10)) are those on the lower interface. In the long-wave limit where
khi, kho, kho, — 0, we find that b; — ka; (i =0, ..., 3) and that

cilk) — A Vie{l,2,3,4} whenk < 1. (A1)

Therefore, c1, c2, c3 and ¢4 individually converge to Ay, A2, 13 and A4 in the long-
wave limit. The characteristics are thus the phase speed of the linear long waves of
small amplitude disturbing individual interfaces. Consequently, the imaginary part of the
characteristics A/ of the three-layer flow also describes the potential growth (1! > 0),
decay (A1 < 0) or neutral state (A/ = 0) of these linear long waves on each interface.

Although we neglected horizontal buoyancy forcing in the three-layer dispersion
relation, it is noteworthy to comment that in the proximity of the critical layer this forcing
dominates and shapes the structure of the unstable modes. This influence is attributed to
the vertical derivative present on the right-hand side of (A2), leading to the appearance of
(U — ¢)~? terms, particularly evident in the long-wave limits (owing to the 1/k prefactor).
In future work we will further investigate the properties of the solution to (A2) for various
wavenumbers near the critical layers.

A.3. Pure exchange flow with stagnant middle layer

In the limit ug =0, up = —u;, hp =h; and go =g, corresponding to a symmetric
exchange flow with a stagnant middle layer, the dispersion relation coefficients simplify to

by =sinh(k(ho +2h1)), b3=0, b1 =0,
2
by = g1 sinh(h1k) sinh(k(ho + h1)) — kui sinh(k(ho — h)) cosh(hik)]. (A12)

by = %[glu% sinh(2h k) + k(g% sinhz(hlk) + u‘l1 coshz(hlk))] cosh (%) sinh (%) .

For long waves (k < 1), the phase speed converges to the analytical expression given
in (3.15), becoming effectively independent of k and, hence, non-dispersive. In this
regime, the numerically computed branches /l{ and /lft, as illustrated in figure 5, are
indistinguishable from long-wave speeds c{ and ci, where k = 0.001 is chosen to represent
the long-wave limit.

A.4. Application to the data
The growth rate of the linear waves on the upper interface cé and the growth rate of the
linear waves on the lower interface c‘{ are shown in figure 17(a,b) for the TW case (left
column) and the I case (right column) at a representative time of ¢ = 180. The fastest
growth in the upper (lower) interfacial wave in the TW case occurs in the region where
x < —15 (x > 15). In the I case, although both upper and lower interfacial waves are
unstable almost everywhere inside the duct, the x > 15 and x << —15 regions exhibit the
fastest growth rates. In both cases, both long waves (k < 1) and short waves (k >> 1) are
unstable. The range of wavenumbers with the fastest growth rate is 0.1 <k <2, with
the peak around k = 1. Consistently, many previous linear studies showed saturation in
the growth rate of short waves for k = 1.5, leading to Kelvin—Helmholtz and Holmboe
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Figure 17. Dispersion relation of the linear interfacial waves for the TW case (left column) and the I case (right
column) at ¢ = 180. Based on the analytical solution given in (A10) and (A9), we show (a) the lower interface
growth rate cé, (b) the upper interface growth rate ci and (c) the amplification of the growth rate cé ci.

instabilities, depending on the thickness of the density interface (Smyth & Peltier 1991;
Lefauve et al. 2018; Ducimetiere et al. 2021).

In figure 17(c) the product cécf1 is shown to highlight the regions in the flow with

simultaneous amplification of the growth rates of the interfacial waves. The product cé ci

is largest for medium and long waves (k < 1) in all cases. In the I case, this simultaneous
amplification occurs over a more extended region inside the duct compared with the TW
case, where it is more localised near the centre at x = 0, consistent with the large values
of TKE in figure 9 at the duct centre.

The dispersivity d, of the I case at various x locations are shown in figure 18(a,b) (active
stage) and figure 18(c,d) (quiet stage). The d, plot for the SW and TW cases is overall
similar to the quiet stage of the I case and is not shown here for brevity. We observe that
dgy — 0 in the long-wave limit (k — 0) as expected. The most dispersive waves are short,
with 1 <k < 2 for all x and ¢. This range of wavenumbers also corresponds to the fastest
growth in the amplitude of the linear waves, as shown in the right columns of figure 17(a,b)
for these short waves. In the quiet stage, the dispersivity of the waves is almost independent
of x away from the inlet and outlet (figure 18¢,d). In the active stage, however, the spatial
variation in dg is more pronounced.

Appendix B. Spectral gap and long-long-wave resonance

The concept of the spectral gap is well established in matrix perturbation theory (see,
for example, Stewart 1975; Elsner & Sun 1982). In this section we review this concept
for completeness and apply it within the context of a three-layer system and the
resonance between long waves in the subsystems defined in the building-block (matrix)
decomposition of (4.1).

B.1. Three-layer system decomposition and the spectral gap

We consider a real matrix pair, denoted M, with dimensions 6 x 12, associated with a
three-layer system. Using figure 19, we represent its characteristics, A(M) € C, which
consist of real and imaginary components, as

AM)Y = 28 +i 2l (M) = AR, 2L (M, 0) = P.. (B1)
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Figure 18. Dispersivity values |dg| of disturbance waves in case I at various x locations at t = 110 during the
active stage (a.,b) and at t = 180 in the quiet stage (c,d). In panels (a.c) the |dg| of the upper interfacial waves
is presented, while panels (c,d) show the dispersivity of the lower interfacial waves.

Next, we apply stereographic projection to map these characteristics onto the unit
sphere. Stereographic projection is a standard technique for mapping points from a plane —
in this case, the complex plane of eigenvalues — onto a (Riemann) sphere. This projection
enables a geometrically meaningful analysis of the matrix’s spectral properties, as each
point on the sphere corresponds to a pair of real and imaginary components from the
complex plane, revealing insights into the eigenvalue structure. This approach is also
geometrically instructive for examining A(M) against a second matrix pair with strictly
real characteristics, which vary within the range [—1, 1], as is the case, for example, for
A2).

We define a point on the sphere as P = (A%, A/, A(Z;)) that is the stereographic
projection of P, where the unit sphere is constructed such that

(AR + (A + 4z ) =1. (B2)

The north pole of the sphere is denoted by N = (0, 0, 1), and the line connecting N to
the point A(M) on the complex plane is given by the parametric equation
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(Af, A1, AZ)) = (1 —$)AM) + sN
=1 =98, A =HA' (M), s), VseR—{1}. (B3)

Here, s is a parameter that controls the position along the line between the point A(M)
and the north pole N. When s =0, the point is at A(M), and when s approaches unity
the point reaches the north pole N. If one takes the magnitude of both sides of (B3) and
substitutes the condition of the unit sphere, given by (B2), we relate the square of the
distance between the projection point and the origin (i.e. the squared magnitude of A(M)
in the complex plane) to the parameter s:

AP = (R M0)* 4 (2 ) = (B4)

This result shows that the stereographic projection maps points from the complex plane
onto the sphere in such a way that the distance from the origin in the complex plane,
|[A(M)|, is related to the projection parameter s by the formula (1 +s)/(1 —s). This
relationship provides a geometric interpretation of how the spectral characteristics of the
matrix are represented on the sphere. To do so, we solve for s to obtain

|A(M))? =1
§=————.
|A(M))? 41

We now substitute (B5) into (B3) to express the real and imaginary components of the
projection on the sphere:

228 (M 221 (M AM)H> =1
,1{?:—()2’ ,1{:;)2’ A(ZI):H)—B.
1+ |A(M)] 1+ |A(M)] [A(M)]~ + 1

(BS)

(B6)

The stereographic projection allows us to map all points (1%, /l{ , A(Z)) on the sphere to
corresponding points in the complex plane C, constructed from the eigenvalues of M.
Next, consider another point Q = (AR, /lé, A(Z)) on the sphere, where

(5 + () +az?=1. (B7)

which connects N to A(M+ M’). We can write a similar expression to relate the
components of @ to AR(M+ M’ ) and A/ (M+ M’) as

R 2Akmymy o 22M+ M)
2 2T AM M

IAM+M))> -1

IAM+ M) +1
(B8)

— , AUD) =
1+ M+ M2 )

The Euclidean distance | P Q| between P and Q is

PQI=/(aF — AF) 1 (Al — ) + (A2 — A2
= \/ 22 (AR + A + AZHAZy)) (B9)

due to the constraints (B2) and (B7), noting that the term inside the bracket yields P - Q
that is equal to the cosine of the angle between the two vectors connecting P and Q to the
origin. Using the expressions from (B6) and (B8), we conclude that

200(M+ M) — A(M))?

, B10
(IAM+ M")|> + 1) (JAM) [ + 1) (B10)

AR M+ azpaz)=1-
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Figure 19. Spectral variation between two matrix pairs, Mand M+ M’, measured by Q P, the back projection
of Q.P. onto the unit sphere that encompasses the spectrum of a third matrix pair, ¢, whose eigenvalues
satisfy A(¢) € [—1, 1]. The north pole on the unit sphere is denoted by N = (0, 0, 1), and Q. P, represents the
stereographic projection of Q P. The spectral gap, Sy(M') =|Q P|/2, quantifies the magnitude of spectral
variation between M and M+ M’. The resonance condition requires P* = Q*.

which leads to the final form of the Euclidean distance:
[AMA+M") — A(M)|

: (B11)
\/|/1(M+ M)+ 1\/|/1(M)|2 +1

P Q| =

This expression represents the distance between two arbitrary points on the Riemann
sphere based on the spectra of two arbitrary matrices. The matrices M and M+ M’ are
square matrix pairs of size 6 x 12, each having six eigenvalues. Based on (B11), we can
construct the spectral variation matrix as

A;(M+M") — (M)

. 1<j k<4, (B12)
\/|/1j(M+ M)|* + 1\/|/lk(M)|2+ 1

djk(M+ M/, M) =

which measures variation among all characteristics of M and M+ M’. The spectral
variation between M and M+ M’ is also illustrated in figure 19 by the magnitude of
the the vector Q P as the back projection of Q. P, onto the unit sphere, encompassing
—1<A(¢) < 1. For each row in dji, we search for the k that results in the minimum
column-wise values for D; =min {|d;1|, |dj2|, |d;3|, |d;4|} to construct a vector from the
columns of dj that yields the least spectral variation in the jth row. The spectral gap is
then the infinity norm || D|| .. Collectively, the spectral gap is computed as

Sm(M") = max mkin ldjx(M+M', M)|, 1</, k<4, (B13)
J
which is consistent with the definition of Stewart (1975) and Elsner & Sun (1982).

B.2. Long-wave resonance indicator

Let us now substitute the pairs M and M+ M’ with W and Z, representing the isolated
upper and middle layer system defined in (4.5). Using (B13), the quantity Sz(W) measures
the spectral gap between W and Z. Similarly, Sz(Y) measures the spectral gap between Y
the isolated lower layer and Z the isolated middle layer.

1016 A69-43


https://doi.org/10.1017/jfm.2025.10369

https://doi.org/10.1017/jfm.2025.10369 Published online by Cambridge University Press

A. Atoufi and others

—— TKE ---= R e 8

s %)
M 103 L2«
B 10 1072 03
1074 103
10
t=11010243* £107!
m %)
M 103 102 5
= 10 &
104' .10—3
10
t=1701024== ‘107!
&9 %)
M 3 ] L1022~
210 10 S,
10744 103
10

Figure 20. Instantaneous profiles of the TKE from (3.25) averaged over the duct cross-section, along with the
long-long wave resonance indicator R from (4.8) and the long—short wave resonance indicator S from (4.11),
at different times for the SW, TW and I cases.

To quantify resonant interactions in DNS data, we measure the relative spectral gap
between perturbed upper and lower layers with respect to the isolated middle layer as

|Sz(W) — Sz(Y)|
Sz(W) +Sz(Y) '
which yields R(W, Y) =R (Y, W), whereas Sz(W) # Sw(Z) # Sz(Y) in general. From

the definition of R(W, Y) in (B14), and employing (B13) to compute Sz(W) and Sz(Y)
while utilising the fact that A(Z) has only one real value, we deduce (4.8).

RW,Y)= (B14)

Appendix C. Instantaneous profiles of TKE, R and S

Figure 20 presents the instantaneous profiles of the TKE, averaged over the duct cross-
section, alongside the long-long wave resonance indicator R and long—short wave
resonance indicator S at r =0, t = 110 and ¢ = 170 for the SW, TW and I cases. Although
the space—time distributions of these quantities are already shown in figures 9, 12 and 15,
these profiles provide a more detailed visualisation of their distribution at specific times.
For all cases, R reaches local minima near the ends of the duct, where the TKE is most
pronounced. In contrast, S is not minimised at the duct ends, suggesting that long—short
wave resonance does not occur there; instead, the route to turbulence stems from both
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long-long wave resonance and short-wave instability without significant interaction with
long waves.

In the wave cases, as we move towards the centre of the duct, long—short wave resonance
becomes more prominent, with S reaching minimum values where small local minima of
‘R and strong TKE are observed. For the I case, the entire duct exhibits strong fluctuations
at t =80 and ¢ = 110 due to intense turbulence, indicating that the transition has likely
occurred, making further discussion of hydraulic transition less relevant. However, at t =
170, fluctuations are significantly reduced due to the intermittent nature of this case. Here,
‘R shows minimum values near the duct centre, and S is reduced in a pattern similar to
that observed in the wave case. This suggests that both long—long and long—short wave
resonances may also occur during the quiet phase of the intermittent case, potentially
leading to stronger turbulence at later times.

Appendix D. Information propagation in the presence of complex characteristics

When A is real, the coordinate transformation £+ = ¢ &+ x /A identifies characteristic curves
along which combinations of flow variables are conserved in the homogeneous inviscid
limit. We now explore the implications of this transformation when A € C, and the system
is extended into the complex plane using the transformation

X=x(1+4e€i), T=t(l+e€i), (D1)

where € < 1 is a small parameter and i is the imaginary unit. Using the chain rule we
relate spatiotemporal variation of the state vector g (x, ¢) and the transformed state vector
q(x, 1) directly, i.e.

dg(x. 1) _ 8CI(JC 7) oq(x, 1) L g(X,1)

to leading order. We also expand A(x, ¢) in terms of (X, 7) using a Taylor series expansion

A, ) =AE T —ei (x Bﬂgx D) +~M(axt A)) O(e?). (D3)
Substituting (D2) and (D3) into
D, ,q(x, D)= % A, t)%, (D4)

and using (3.8), we obtain the modified equation in terms of (¥, 7), i.e.

q(x,1) ~ ~0q(x, 1)
D(X_t)q(x,l)=R6<T+/l( )T>

D(X [)q(x 1)

3%2q 9ddq\ ~(. 9*q 91dgq )
Re( €i /1— 7 —— @) , (D5
e(el|: ( +a o7 )+ ( 8x8t+8t8 ):|+ (¢ )) (D5)

assuming that g (%, 7) and A(X, 7) are both analytic.
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D.1. Transformation to characteristic variables

We now introduce characteristic coordinates
~ X ~ X
5+=t+m, $—=1—m- (D6)
These define complex-valued curves in space—time. The real parts of these coordinates
correspond to directions of propagation in physical space, with inverse

~ 1 ~ A
t=5Er+8), r=76—&), (D7)

and, therefore, become complex if characteristics are complex, which justifies our change
of coordinate from x and 7 to X and ¢. Using the chain rule

9 06 d 9 _ 0k d

—_—===—, —==——"), (D8)
90X ox déi at ar déx
with
9k, 1 X od 0 X 04
ax A A29%  ar 2201
(DY)
- 1 X0 as__l X 04
ax A A29x°  or 229t

Substituting (D9) into (DS), and applying the chain rule for all first- and second-order
derivatives, we obtain

~ ~d
D(x,t)q(x7 t) — Re Ai(x, [) zl(gi:l:)

D(E,T) Q(Y:TN)

+ei-Co (X, T, qEL) + O |, (D10)

where the coefficient functions are

- 22 XAy + &7 XA+ 17
A+(x9?)= x/izx—i_ t) _X( x/lz—‘l_ t)’

where we denote A5 := (04/9%) and A7:= (394/07). The terms C+(X, 7, ¢) denote first-
order correction terms that arise from the chain rule and Taylor series expansions, and
include all contributions involving second derivatives of ¢, as well as spatial and temporal
derivatives of A, evaluated at (X, 7). Therefore, to leading order, we can reconstruct (3.8)
in the transformed (X, 7) coordinate as

v C(D,, q(x.0) =v" CRe(D ;4 F. 1) =0. (D12)

, A_X, D= (D11)

In the limit of weak spatiotemporal variation of A4, i.e. Az, 47~ 0, we find that A+ become
constant, yielding

dgf)
déﬂ’f =0. (D13)

Thus, a combination of flow variables in the transformed coordinate is conserved to
leading order along the real component of the complex characteristics. Hence, to leading
order, information propagates along the complex characteristic curve £, with the direction
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governed approximately by the real part AR. Therefore, even in the complex setting, the
effective characteristic curve in real space—time is given by

X R X

" §2=1- " (D14)
which reflects the fact that information propagation along complex characteristics on the
leading order is tied to AX.

R =1+
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