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Abstract
Subglacial drainage models, often motivated by the relationship between hydrology and ice flow,
sensitively depend on numerous unconstrained parameters. We explore using borehole water-
pressure time series to calibrate the uncertain parameters of a popular subglacial drainage model,
taking a Bayesian perspective to quantify the uncertainty in parameter estimates and in the cali-
brated model predictions. To reduce the computation time associated with Markov Chain Monte
Carlo sampling, we construct a fast Gaussian process emulator to stand in for the subglacial
drainage model. We first carry out a calibration experiment using synthetic observations consist-
ing of model simulations with hidden parameter values as a demonstration of the method. Using
real borehole water pressures measured in western Greenland, we find meaningful constraints on
four of the eight model parameters and a factor-of-three reduction in uncertainty of the calibrated
model predictions. These experiments illustrate Gaussian process-based Bayesian inference as a
useful tool for calibration and uncertainty quantification of complex glaciological models using
field data. However, significant differences between the calibrated model and the borehole data
suggest that structural limitations of the model, rather than poorly constrained parameters or
computational cost, remain the most important constraint on subglacial drainage modelling.

1. Introduction

Subglacial drainage models have numerous uncertain parameters that control their behaviour
(e.g. Werder and others, 2013; Hager and others, 2022). If accurate subglacial drainage mod-
els are important in reproducing realistic ice-flow patterns as is often claimed (e.g. Khan and
others, 2024; Sommers and others, 2024), it follows that well-constrained model parameters are
important for well-calibrated model predictions. Such predictions should have an associated
uncertainty, and the predictive skill of any calibrated model should be critically assessed.

A common strategy used to select parameter values in a subglacial drainagemodel is to iden-
tify ‘low’, ‘medium’ and ‘high’ values for a subset of influential parameters (e.g. Dow, 2022) and
to sample these values with one-at-a-time (e.g. Khan and others, 2024) or, rarely, all-at-once
(e.g. Hager and others, 2022) sampling. In the absence of field data, parameter values may be
selected based on producing a modelled drainage system consistent with prior expectations of
realistic subglacial drainage (i.e. water pressure near ice overburden, seasonal development of
subglacial channels) (e.g. Werder and others, 2013). When data are available, models have been
tuned based on consistency with radar specularity as a hypothesized indicator of channelized
versus distributed flow (e.g. Dow and others, 2020; Hager and others, 2022), satellite-altimetry-
derived subglacial lake filling and drainage cycles (e.g. Wearing and others, 2024) and mapped
locations of eskers and other subglacial landforms indicative of past subglacial drainage charac-
teristics (e.g. Hepburn and others, 2024). Coupled hydrology–ice-flow models have also been
tuned to match observed ice surface velocities (e.g. Ehrenfeucht and others, 2023; Khan and
others, 2024).

A suite of field data has been used in inverse models to infer more about subglacial drainage
properties than revealed by manual tuning. Certain parameter values, such as the roughness of
ice-walled englacial conduits which plays a role in heat transfer and conduit enlargement, have
been inferred from experiments with tracer dye injections into moulins (e.g. Werder and Funk,
2009) and moulin water-pressure measurements (e.g. Pohle and others, 2022). However, given
the expected discrepancy between modelled and observed subglacial drainage, the parameter
values that describe the real system may not produce the best model–data fit. Inverse mod-
elling approaches have constrained subglacial channel-network characteristics such as channel
radius and hydraulic gradient based on dense passive seismic measurements (e.g. Nanni and
others, 2021) or a combination of borehole water-pressure time series and tracer transit times
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(e.g. Irarrazaval and others, 2019, 2021). Based on a dense borehole
array, Rada Giacaman and Schoof 2023 characterized a spectrum
of seasonal water-pressure patterns.

Formal model calibration and uncertainty quantification (e.g.
Kennedy and O’Hagan, 2001; Higdon and others, 2004), based
on evaluating the misfit between model outputs and actual data
over the entire space of plausible parameter values, provides a
path forward for constraining the values of all influential model
parameters and determining the corresponding best model pre-
dictions with associated uncertainty. Formal calibration of sub-
glacial drainage model parameters has rarely been attempted. For
instance, Irarrazaval and others (2019, 2021) inferred the poste-
rior distributions of channel network characteristics and hydraulic
transmissivity by using a simplified, steady-state forward hydrol-
ogymodel to enable Bayesian inference. In the coupled hydrology–
dynamics setting, calibration has been carried out by comparing
modelled and satellite-derived annual average ice surface speed
(Brinkerhoff and others, 2021).

In a previous study (Hill and others, 2025), we constructed
a Gaussian process emulator (e.g. Higdon and others, 2008) of
the Glacier Drainage System (GlaDS) subglacial drainage model
(Werder and others, 2013) that accelerates modelling by three
orders of magnitude. In this study, we combine the Gaussian pro-
cess emulator with borehole observations from western Greenland
(Meierbachtol and others, 2013; Wright and others, 2016) to
explore the possibility of more directly constraining subglacial
drainagemodel parameters. Using Bayesian inference (e.g, Higdon
and others, 2004; Gelman and others, 2013), we infer distribu-
tions of the eight most-uncertain GlaDS model parameters along
with the corresponding uncertainty in calibrated model outputs.
We first carry out a calibration experiment using a synthetic,
model-generated water-pressure time series to quantify the per-
formance and benefits of the emulator-based Bayesian calibration
approach. Then, using real borehole water-pressure data, we derive
calibrated, probabilistic estimates of parameter values and corre-
sponding calibrated model predictions, and assess the remaining
uncertainty and discrepancy in drainage-system characteristics to
identify performance-limiting issues.

2. Real and synthetic water-pressure time series

The calibration experiments are carried out on a ∼ 13 000 km2

catchment in the Kangerlussuaq sector of western Greenland that
includes Isunnguata Sermia (IS), Russell Glacier (RG) and Leverett
Glacier (LG) basins (Fig. 1). This well-studied portion of the ice
sheet has been used extensively for in situ and modelling stud-
ies of Greenland hydrology (e.g. Bartholomew and others, 2011;
Sole and others, 2013; Lindbäck and others, 2015; Derkacheva
and others, 2021; Harper and others, 2021), including previous
emulator-based subglacial drainage modelling (Brinkerhoff and
others, 2021; Verjans and Robel, 2024). Importantly, this sector of
west Greenland has a suite of borehole time series data, including
basal water pressure, obtained along a transect from near the mar-
gin up to 46 km inland spanning 2010–15 (see Table 1 fromWright
and others, 2016).

2.1. Borehole water-pressure data

We use hydraulic head measurements from a drilling campaign
described in Meierbachtol and others 2013 and summarized by
Wright and others 2016. Over the 2010–15 period, a total of 32
boreholes were drilled to the bed, with 14 of these boreholes

measuring basal water pressure. The majority of the boreholes
where water pressure was measured were inferred to have inter-
sected hydraulically isolated basal cavities (e.g. Meierbachtol and
others, 2016). Since the subglacial drainage model is a contin-
uum model that assumes hydraulically connected drainage across
the domain, we select a single water-pressure time series from a
borehole ∼27 km from the margin (67.204∘ N, 49.718∘ W; Fig. 1c),
denoted GL12-2A, as the only time series representing hydrauli-
cally connected drainage and that includes data from within and
outside of the melt season (Fig. 1e). This borehole intersects a bed
trough approximately 3 km across and 200m deep, where the ice
thickness is 695.5masmeasuredwith the drilling hose (Wright and
others, 2016). Hydraulic head values are converted into a fraction
of overburden using the reported ice thickness and assuming an
ice density 𝜌i = 910 kgm−3 (Wright and others, 2016). The flota-
tion fraction time series spans 16 June 2012 to 24 July 2013, and
we use the data from the beginning of the record only until the end
of 2012 for calibration since the data quality degrades the longer
the instruments are deployed (personal communication from J.
Harper, 2024). We compute the daily mean of the ∼ 15-min data
for comparison with model outputs.

2.2. Synthetic water-pressure data

We carry out a synthetic calibration experiment on the domain
described above as a methodological example and to derive an
upper bound on the strength of constraints that could be learned
from point-scale water-pressure time series. Since there will be
irreducible discrepancy between the model output and real bore-
hole data, the real calibration experiment is expected to produce
weaker constraints. The synthetic water-pressure data consist of
modelled water pressure (as described in Section 3) using hidden
parameter values, and the goal of the experiment is to assess the
accuracy and uncertainty in inferred values. We use outputs cho-
sen from a simulation that has high winter water pressure and low
summer water pressure relative to the median simulation (Fig. 1d),
since subglacial drainage models commonly underestimate win-
ter water pressure relative to observations (e.g. Downs and others,
2018).

3. Forward model

3.1. Subglacial drainagemodel

We use the GlaDS model (Werder and others, 2013) as the
physically based forward model of subglacial drainage. GlaDS
represents interacting distributed and channelized drainage sys-
tems. Distributed drainage is modelled as macroporous sheet flow
and is intended to represent area-averaged flow through a net-
work of hydraulically connected cavities formed in the lee of bed
obstacles. Sheet flow transitions between laminar and turbulent
regimes depending on the local Reynolds number (Hill and others,
2024). Channelized drainage is modelled as a network of one-
dimensional channels melted into the ice (Röthlisberger, 1972),
numerically located on the edges of mesh elements. The model
does not represent hydraulically isolated or weakly connected
drainage (e.g. Murray and Clarke, 1995; Andrews and others,
2014), which has been shown to play an important role in relating
borehole water-pressure time series to surface-velocity observa-
tions (Hoffman and others, 2016). We have therefore selected the
borehole water-pressure record (as described above) that appears
to best represent hydraulically connected drainage.
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Figure 1. Greenland numerical domain and calibration data. (a) Study area within Greenland Ice Sheet. (b) Numerical mesh and flotation fraction for an example model
output with approximate equilibrium line altitude sketched as dashed line (Smeets and others, 2018). (c) Example flotation fraction and channel discharge for the area below
1850ma.s.l. with moulin positions from Yang and Smith 2016 and location of in situ borehole water-pressure data (Meierbachtol and others, 2013; Wright and others, 2016)
shown as a blue triangle. Atmospheric pressure (pw = 0) outlet nodes for Isunnguata Sermia (IS), Russell Glacier (RG) and Leverett Glacier (LG) are shown as red stars. (d)
Ensemble of GlaDS-simulated flotation-fraction values and synthetic data. (e) Ensemble of GlaDS-simulated flotation-fraction values and in situ borehole data (Meierbachtol
and others, 2013; Wright and others, 2016). Vertical dashed line in (d, e) corresponds to the day shown in (b, c).

GlaDS requires specification of several poorly con-
strained parameters. We consider eight parameters,
[ks, kc, hb, rb,A, lc, 𝜔, ev] (defined in Table 1), as the uncer-
tain parameters to be calibrated. These parameters control the
transmissivity of the drainage system (ks, kc), the geometry of
subglacial cavities (hb, rb), the material rheology of the basal
ice layer (A), the width of sheet flow that contributes to chan-
nelization (lc), the bulk Reynolds number at which sheet-flow
transitions from laminar to turbulent (𝜔) and the englacial void
fraction available for transient water storage (ev). One could in

principle consider the channel-flow exponents 𝛼c = 5/4 and
𝛽c = 3/2 as uncertain calibration parameters as well. However,
we assume flow in R-channels is well-described by turbulent

Darcy–Weisbach flow Q = −kcS𝛼c ∣ 𝜕𝜙c

𝜕x
∣
𝛽c−2 𝜕𝜙c

𝜕x
(Werder and

others, 2013) for dischargeQ, channel area S, hydraulic potential 𝜙
and along-channel coordinate x and keep these parameters fixed.
Other model parameters are physical constants, so we consider
this to be a comprehensive assessment of parametric uncertainty,
conditioned on the turbulent-channel assumption.
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Table 1. Constants (top group), fixed model parameters for GlaDS simulations
(middle group) andmodel parameters and ranges used for training the Gaussian
process emulator and inference (bottom group). The basal speed ub and basal
melt rate .ms are fixed, spatially varying fields, with bracketed values indicating
the minimum and maximum

Parameter Value Units

𝜌w Density of water 1000 kgm−3

𝜌i Density of ice 910 kgm−3

g Gravitational
acceleration

9.81 ms−2

L Latent heat of fusion 3.34 × 105 J kg−1

cw Specific heat capacity of
water

4.22 × 103 J kg−1

ct Pressure melting
coefficient

−7.50 × 10−8 KPa−1

𝜈 Kinematic viscosity of
water at 0∘C

1.793 × 10−6 m2 s−1

𝛼c Channel-flow exponent 5/4 –
𝛽c Channel-flow exponent 3/2 –
ub Basal speed [0.11, 52] ma−1

n Ice-flow exponent 3 –
.ms Basal melt rate [0.0026, 0.043] mw.e. a−1

ks Sheet conductivity [0.001, 0.1] Pa s−1

kc Channel conductivity [0.1, 1.0] m3/2 s−1

hb Bed bump height [0.05, 1] m
rb Bed bump aspect ratio [10, 100] –
A Ice flow-law coefficient [10−24, 10−22] Pa−3 s−1

lc Width of sheet beneath
channels

[1, 100] m

𝜔 Laminar–turbulent
transition parameter

[1/500, 1/5000] –

ev Englacial void fraction [10−4, 10−3] –

3.2. Model domain and discretization

The model domain is defined as a subglacial hydraulic catchment
for the three proglacial outlets identified in Figure 1. These out-
lets correspond to the Isortoq River (for the IS sub-catchment) and
two branches of the Sandflugtsdalen River (for the RG and LG sub-
catchments) (fig. 1 from Lindbäck and others, 2015).The hydraulic
catchment outline is defined by assuming water pressure is equal
to ice overburden, pw = 𝜌igH, using 150m-resolution IceBridge
BedMachine Greenland (Morlighem and others, 2017, 2022) for
surface elevation, bed elevation and the land–icemask.Thenumer-
ical domain consists of a triangular mesh with 4897 nodes that
is refined to have edge lengths ∼500 m below 1000m a.s.l. and
as large as 5000m above 2000m a.s.l. (Fig. 1). For calibration and
to generate synthetic data (Section 2.2), we extract modelled val-
ues at a single node near the borehole that was chosen to be most
representative of observed conditions (Figs S1 and S2).

3.3. Melt and basal velocity forcing

We force GlaDS with daily surface melt and steady basal melt
fields. Surface melt rates consist of daily mean 5.5 km-resolution
RACMO2.3p2 (Noël and others, 2018) surface runoff outputs for
2010–13. Meltwater is routed to the bed through 148 moulins pre-
viously mapped by Yang and Smith 2016, with meltwater instan-
taneously accumulated within sub-catchments defined as Voronoi
diagrams centred on each moulin. Basal melt rates are prescribed
as the sum of melt rates from time-invariant geothermal and fric-
tional heat fluxes. The geothermal flux linearly varies between
27mWm−2 at the margin and 49mWm−2 at the ice divide based
on borehole observations (Meierbachtol and others, 2015). The
frictional heat flux from sliding is computed as ub𝜏b for basal

speed ub and basal drag τb. We assume that basal speed ub, basal
drag and therefore frictional heat flux, are constant in time while
acknowledging that substantial seasonal melt-forced velocity vari-
ations are observed in this region (e.g. van deWal and others, 2008;
Derkacheva and others, 2021). Basal drag is approximated as equal
to the driving stress, 𝜏b = 𝜌igH|∇zs|, where zs is the surface eleva-
tion. Basal velocity is estimated as a uniform fraction ofMEaSUREs
multi-year (1995–2015) average surface velocities (Joughin and
others, 2016, 2018) by computing the ratio (0.33) that results in
a maximum frictional-melt rate of 4 cmw.e. a−1 to match maxi-
mum frictional-melt rates derived from borehole data and satellite
observations (Harper and others, 2021).

We use daily average melt forcing and borehole water pres-
sures, rather than resolving diurnal variations, to calibrate the
drainagemodel because of the difficulty themodel has in reproduc-
ing realistic diurnal variations and the challenge of constructing
reasonably realistic sub-daily resolution melt inputs to drive the
drainage model. When forced with diurnally varying melt inputs,
GlaDS tends to produce muted variations over 24 hour periods,
with larger variations onmulti-day timescales (e.g. Hill and others,
2024).This incorrect spectral response is opposite to that shown by
the borehole time series, which has variations in the baseline water
pressure on the order of 5% of overburden, with diurnal varia-
tions up to 15%of overburden. Perhaps because themodel does not
produce strong diurnal variations, themodel predicts minimal dif-
ferences in drainage system evolution between daily and sub-daily
forcing (Werder and others, 2013).

3.4. Boundary and initial conditions

No-flux subglacial drainage conditions are prescribed everywhere
along the boundary, except at the three proglacial outlets where we
prescribe zero water pressure. The outflow nodes are chosen as the
nodes with locally minimum hydraulic potential, assuming water
pressure equal to ice overburden, near the prescribed outlets used
to define the hydraulic catchment (Fig. 1). We do not include an
outflow node for the Point 660 catchment between the IS and RG
catchments (Lindbäck andothers, 2015) sincewedonot find a clear
hydraulic potential minimum in this location. The model is initial-
ized with no channels, water pressure equal to ice overburden and
water layer thickness equal to 20% of the bed bump height. We run
the model from 2010 until the end of 2012 and discard the first
2 years (2010–11) as a spin-up period to bring the model into a
quasi-periodic state (e.g. Ehrenfeucht and others, 2023; Sommers
and others, 2024).

3.5. Numerics

For the large ensemble of GlaDS simulations (Section 4.3), we have
found that it is necessary to use a 0.2 h timestep and a solver resid-
ual tolerance of 10−5. This timestep is short compared to the daily
melt-forcing frequency, and the 10−5 solver tolerance is smaller
than often used for more typical GlaDS simulations. Using numer-
ical parameters that are less strict results in noticeable changes in
modelled water pressure for certain simulations in the ensemble
(Fig. S16). Since we are purposely running GlaDS with unusual
parameter values as part of the large ensemble, it is not unexpected
that we need to be cautious in selecting numerical parameters to
ensure that model runs are appropriately converged. We have also
found that using simulations with numerical artefacts results in an
emulator with high prediction error and parameter estimates that
are inconsistent with the true parameter values in the synthetic
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calibration experiment since the simulation outputs do not change
predictably with respect to model parameters. With these numer-
ical parameters, each GlaDS simulation takes ∼8.75 hours on a
single AMD Rome 7532 CPU and requires ∼1 GB of memory.

4. Inverse model

4.1. Bayesian inference

Given time series observations of subglacial water pressure, we aim
to estimate the GlaDS parameter values that produce modelled
water pressure consistent with the observations. Model–data fit is
assessed by the sum-of-squares error between the observed time
series and the modelled time series extracted at the node nearest
to the borehole location. We use Bayesian inference to estimate
probability distributions of GlaDS parameter values that minimize
model–data squared error.

Let y ∈ ℝnt be the standardized observations, consisting of a
number nt days of flotation fraction values. The observations y are
standardized by subtracting the mean and dividing by the stan-
dard deviation of the simulation ensemble (Section 4.3). Consistent
with previous work (e.g. Brinkerhoff and others, 2021), we apply a
log-transform to the model parameters and standardize the log-
parameters such that they fall in the interval [0, 1]. We denote
the vector of log-standardized GlaDS parameters t ∈ [0, 1]d,
where d = 8 is the number of calibration model parameters. With
F(t) the standardized (i.e. centred and scaled by the simulation
mean and standard deviation) forward model (GlaDS) evaluated
for log-standardized parameter values t, we model the observa-
tions as being generated from the forward model evaluated for
some unknown calibration parameter values t = 𝜽,

y = F(𝜽) + 𝝐y. (1)

The observation error 𝝐y ∼ 𝒩(0, Σy) is modelled as multivariate
normal with zero mean and covariance Σy = 𝜆−1

y I parameterized
by precision 𝜆y.That is, we assume that the observations y aremul-
tivariate normally distributed withmean given by the standardized
forward model evaluated for the unknown calibration parameters
F(𝜽) and with covariance Σy: y ∼ 𝒩(F(𝜽), Σy).

From Bayes’ theorem, the distribution of the model parameters
𝜽 given the data, also called the posterior distribution, is

P(𝜽|y) ∝ P(y|𝜽)P(𝜽). (2)

The first term on the right-hand-side, P(y|𝜽), called the likeli-
hood, is the probability of sampling the data y from the model (1)
given certain GlaDS parameters 𝜽 and represents model–data fit.
For normally distributed errors, model–data fit is quantified by the
squared error. The second term, P(𝜽), called the prior distribu-
tion, specifies our prior belief about the value of 𝜽. Equation (2)
indicates that we should update our belief in the calibration param-
eter values 𝜽 in light of the data y in order to reduce the squared
error between the model and data. By maximizing the poste-
rior probability (Eqn (2)), we minimize model–data misfit, with
the prior distributions taking the place of regularization terms.
As is common for Bayesian inference (e.g. Higdon and others,
2004; Gelman and others, 2013), we approximate the posterior dis-
tribution by iteratively sampling from the posterior distribution
with Metropolis–Hastings Markov Chain Monte Carlo (MCMC;
Metropolis and others, 1953; Gattiker and others, 2020). However,
each likelihood evaluation P(y|𝜽) involves running a forward
GlaDS simulation. For the GlaDS model as used here, which

Table 2. Prior distributions on log-standardized subglacial drainage model
parameters and Gaussian process hyperparameters. Uniform distributions
U(a, b) are parameterized by the interval [a, b]. Gamma distributions Γ(a, b)
are parameterized by the shape parameter a and the rate parameter b such
that the mean is a

b

Parameter Distribution

𝜽 Standardized GlaDS parameters U(0, 1)
𝜆y Observation precision Γ(5, 5)
𝜆𝜂 Simulation precision Γ(a𝜂, b𝜂)
𝝀w Gaussian process precision Γ(5, 5)
𝜷 Gaussian process input sensitivity Γ(5, 5)
𝝀n Gaussian process nugget precision Γ(3, 0.003)

takes ∼9 hours to run, sampling from the posterior (Eqn (2)) is
intractable since theMetropolis–Hastings algorithm often requires
thousands of sequential iterations to approximate the posterior dis-
tribution. To avoid this complication, we construct an emulator to
stand in for GlaDS (e.g. Higdon and others, 2004; Brinkerhoff and
others, 2021).

4.2. Gaussian process emulator

Based on an ensemble of simulations with the forward model
(GlaDS), the emulator estimates the simulated values for untested
parameter values. We use a Gaussian process (GP) emulator that
is more fully described by Hill and others 2025. Instead of emu-
lating the full spatiotemporal model outputs, here we emulate the
flotation-fraction time series for the node representing the bore-
hole. The GP requires additional parameters, which we call ‘hyper-
parameters’, whose values must be estimated (Table 2). We denote
their calibration values 𝝓 to distinguish them from parameters of
the subglacial drainagemodel (Table 1). Figure 2 andAlgorithm S1
summarize the emulator-based calibration workflow.

Since GPs do not naturally scale to multivariate outputs such as
a time series, we follow Higdon and others 2008 in simplifying the
problem using a principal component basis representation for the
forward model outputs. Letting p denote the number of principal
component basis vectors used in the representation, we model the
standardized forward model output as

F(t) =
p

∑
j=1

kjwj(t, 𝝓) + 𝝐𝜂, (3)

where kj (1 ≤ j ≤ p) are the principal component basis vectors
and wj (1 ≤ j ≤ p) are independent GPs. For convenience, we
refer to the first term as the emulator 𝜂(t, 𝝓) = ∑p

j=1 kjwj(t, 𝝓).
The error term 𝝐𝜂 ∼ 𝒩(0, 𝜆−1

𝜂 I), represents basis truncation error
and is parameterized by the emulator precision 𝜆𝜂. The number of
principal components p that are retained is an important choice
as it influences the fidelity of the emulator predictions. We will
select the number of principal components for each application by
considering the proportion of variance in the simulation ensemble
that is explained, the truncation error and by inspecting the resid-
uals in the basis representation. Full details of the consequences of
the basis representation, including an expression for the likelihood
P(y|𝜽, 𝝓), are presented by Higdon and others 2008.

Each individual GP wj is specified by its mean and covari-
ance model. We use zero-mean GPs with a squared-exponential
covariance function,

kj(t, t′) = 1
𝜆w,j

exp(−
d

∑
i=1

𝛽ij(ti − t′i )2) , (4)
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ISSM
Larour and others (2012)

SEPIA
Gattiker and others (2020)

512× Sobol’ sequence sample

Repeat
× 5,000

Posterior

Calibrated model

Sample 256×

GlaDS
Flotation fraction

Werder and others (2013)
Hill and others (2023)

RACMO2.3p2 surface 
runoff

(Noël and others, 2018)

Moulins & catchments
(Yang & Smith, 2016)

BedMachine bed 
topography, thickness
(Morlighem and others, 2017)

Priors

Likelihood

Water-pressure 
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Metropolis-Hastings 
update & record

Emulator

+

Principal components

Figure 2. Workflow for Gaussian process emulator-based calibration. t is the vector
of log-standardized model parameters, with t = 𝜽 the calibration parameters that
best fit the data y, and F(t) is the modelled time series of water pressure (expressed
here as flotation fraction) corresponding to log-parameters t. The emulator 𝜼, with
hyperparameters 𝝓, is constructed as a linear combination of p principal component
basis vectors kj and independent scalar emulators wj for j = 1, … , p. Uncertainty
in the calibrated model is estimated by Monte Carlo sampling from the posterior
parameter distribution.

where 𝜆w,j is the marginal precision (inverse variance) of the GP
wj and the 𝛽ij (i = 1, … , d) hyperparameters control the strength
of dependence on each of the inputs. In practice, a small addi-
tional diagonal covariance matrix parameterized by precision 𝜆n
(𝒪(103)), sometimes called a nugget, is added to each GP covari-
ance matrix to improve the numerical conditioning of the matrix.
The complete hyperparameter vector, accounting for the p sepa-
rate values for the GP marginal precision 𝝀w, input sensitivity 𝜷
and nugget 𝝀n, is 𝝓 = [𝜆y, 𝜆𝜂, 𝝀w, 𝜷, 𝝀n].

We sample from the joint posterior distribution,

P(𝜽, 𝝓|y) ∝ P(y|𝜽, 𝝓)P(𝜽)P(𝝓), (5)

which accounts for the uncertainty in the data y (Eqn (1)) as well
as the replacement of the forward model with the GP emulator.
We use the SEPIA package (Gattiker and others, 2020) v1.1 to con-
struct the emulators and carry out Metropolis–Hastings sampling.
Choices for the prior distributions are discussed in Section 4.3.
The foundation in uncertainty quantification is a primary bene-
fit of GP modelling compared to other deterministic options for
the emulator. In particular, the addition of the emulator uncer-
tainty to the observation uncertainty in defining the GP likelihood
(Higdon and others, 2008) means that uncertainty in GP pre-
dictions is accounted for in inferring distributions of the model
parameters. If the emulator has large uncertainty relative to the
observational uncertainty, then the resulting posterior parameter

distributionswill be noticeablywider than hadwe used the forward
model directly (e.g. Downs and others, 2023).

4.3. Ensemble design

We design the simulation ensemble to uniformly sample the log-
standardized input space in order to construct an emulator with
prediction performance that is approximately uniform across the
log-inputs. For this, we use a Sobol’ sequence (Sobol’, 1967) over the
logarithmof the parameters within the bounds provided in Table 1.
Wedraw 512 samples from the Sobol’ sequence, using its sequential
design properties to evaluate emulator performance with power-
of-2 subsets of the full sequence. We construct an independent set
of inputs for testing the emulator consisting of 100 samples from a
space-filling Latin hypercube design.

For parameters with a physical interpretation (e.g. the bed
geometry as described by the bump height hb and aspect ratio
rb, the ice-flow coefficient A and the laminar–turbulent transition
parameter 𝜔), we have chosen parameter ranges that encompass
plausible values. For the remaining parameters, we have chosen
their ranges to be reasonably wide whileminimizing the number of
unrealistic simulations, for example as indicated by water pressure
exceeding 300% of overburden. We have found that this pressure
constraint limits the lower bound of channel conductivity kc, sheet
conductivity ks and englacial storage parameter ev.

These ranges largely encompass the values commonly used for
modelling Greenland outlet glaciers with the GlaDS model (e.g.
Gagliardini andWerder, 2018; Cook and others, 2020; Ehrenfeucht
and others, 2023; Khan and others, 2024; Verjans and Robel, 2024;
Hill and others, 2024). Some exceptions include literature val-
ues of the englacial storage parameter as low as ev = 10−5 (e.g.
Ehrenfeucht and others, 2023; Khan and others, 2024), channel
conductivity as low as kc = 0.05m3/2 s−1 (e.g. Khan and others,
2024) and an ice-flow coefficient A = 2.5 × 10−25 Pa−3s−1 indica-
tive of basal ice below the pressure-melting point (Ehrenfeucht
and others, 2023). Considering the laminar–turbulent sheet-flow
model, it is difficult to compare the sheet conductivity range except
for studies using a laminar sheet-flow model. Gagliardini and
Werder 2018 and Cook and others 2020 use a lower sheet conduc-
tivity value ks ≈ 2 × 10−4 Pa s−1, which we have found results in
peak water pressures exceeding 300% of overburden for our setup.

4.4. Prior distributions

The prior distributions of GlaDS parameters P(𝜽) and GP hyper-
parameters P(𝝓) in Eqn (5) are used to express our belief in the
values of these quantities. For model parameters 𝜽, we take a uni-
form U(0, 1) prior distribution for the log-standardized values to
express a lack of prior belief in the most likely parameter val-
ues. We use Gamma distributions Γ(a, b), parameterized by shape
parameter a and rate parameter b, for the hyperparameter prior
distributions P(𝝓) (Table 2) due to the flexibility of the Γ family
of distributions and the fact that the probability density goes to 0
when 𝝓 = 0. Since the inputs are scaled to the range t ∈ [0, 1]d
and the outputs are centred and scaled to have unit variance, we
select prior distributions for the observation precision 𝜆y, GP pre-
cision𝝀𝜂 andGP sensitivity𝜷 that encourage values near 1.TheGP
nugget 𝝀n prior distribution encourages high precision (i.e. a small
nugget) with a mean of 1000 and 95% interval spanning approxi-
mately an order of magnitude. We choose the prior distribution
for the simulation precision 𝜆𝜂 to express our belief that this term
should account for error in the truncated principal component
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basis. We choose the hyperparameters a = a𝜂 and b = b𝜂 to
express this belief by constraining the mode to be equal to the
precision of the basis representation, denoted 𝜆p. We have found
that prescribing a prior distribution that allows a wide range of
simulation-precision values can sometimes result in the simula-
tion error term 𝜖𝜂 absorbing all of the variations in the output with
respect to 𝜽, leaving the GP to revert to the mean irrespective of
the given values of 𝜽. To express our belief that the GP should take
up variations in the simulator response for different parameter val-
ues, and therefore that 𝜆𝜂 represents the basis truncation error, we
place 95% of the probability mass of the simulation-precision prior
distribution within an interval with width equal to half of the basis
precision𝜆p. For the truncation error in synthetic and borehole cal-
ibration experiments, the prior distribution parameter values are
approximately a𝜂 ≈ 100 and b𝜂 ≈ 2.

4.5. Posterior predictions

We produce calibrated GlaDS predictions by drawing 256 sam-
ples from the MCMC chain of GlaDS parameters (labelled 𝜽post
in Fig. 2) and running the forward model (GlaDS) on the sam-
ples. Using GlaDS instead of the emulator to produce calibrated
predictions allows us to investigate additional outputs such as the
full spatiotemporal flotation fraction field and the distribution
and extent of subglacial channels that are not predicted by the
emulator.

5. Results

5.1. Emulator performance

The performance of the emulator is evaluated by computing the
root-mean-square error (RMSE) between the flotation fraction of
the test GlaDS runs extracted at the borehole location and the cor-
responding emulator predictions. The RMSE of the emulator is
relatively consistent for different choices of the number of princi-
pal components and the number of simulations in the ensemble
used to train the emulator (Fig. S4), with median time-integrated
RMSE between 0.064–0.088 (in units of fraction of overburden).
The RMSE decreases when increasing the number of principal
components from 5 to 10, with minimal change for models with
more principal components. Emulator performance improves for
larger training ensembles, but with differences in the median per-
formance remainingwithin the interquartile range. In other words,
GP performance can be slightly improved by includingmore train-
ing simulations and principal components, but the error reduction
is small compared to the variation in emulator error across the test
set. The relatively weak sensitivity to the number of principal com-
ponents and training simulations reported here is consistent with
the more in-depth analysis carried out by Hill and others 2025 for
a simpler synthetic application. We choose to use the full set of 512
training simulations and 15 principal components, based on the
levelling off of the emulator RMSE and the principal component
truncation error (Fig. S3). In this case, the first 15 principal compo-
nents explain 98% of the variation of the 512-member simulation
ensemble.

The accuracy of the chosen emulator varies throughout the year
and across the test set. To evaluate best- and worst-case scenarios
for the emulator performance, we evaluate the 5th, 50th and 95th
percentile realizations (Fig. 3). Absolute emulator prediction error
is highest in the spring (days ∼150–175) and for simulations with
high peak water pressure (e.g. Fig. 3a). After day ∼175, emulator

Figure 3. Evaluation of the Gaussian process emulator. Comparison of GlaDS sim-
ulations and emulator predictions on the test set for individual simulations with
high (95th-percentile, a), median (median, b) and low (5th-percentile, c) root-mean-
square-error (RMSE).

predictions capture the amplitude and duration of water-pressure
variations with lower absolute error. The relative emulator error
is more consistent through the year, and for some test simula-
tions is as large through late summer as during the spring pressure
peak. Winter water pressure is reproduced within a few per cent
of overburden. Correspondingly, emulator predictions are most
uncertain, as measured by the width of the 68% and 95% predic-
tion intervals, between days 150–175, with uncertainty reducing
to a small fraction of overburden by winter. The 95% emulator
prediction intervals mostly overlap the simulated values, except in
spring (Fig. 3a), indicating the emulator is appropriately estimating
prediction uncertainty.

5.2. Synthetic calibration experiment

For the synthetic calibration experiment, which aims to recover
the true but hidden parameter values used for a reference GlaDS
simulation that is labelled as data, emulator-based inference recov-
ers the true parameter values within one standard deviation of the
posterior distributions except for the sheet-channel width param-
eter lc (Figs. 4 and S13). For all parameters except the laminar–
turbulent transition parameter 𝜔, the marginal posterior distribu-
tions (diagonal panels in Fig. 4) aremore informative than the prior
distributions. The posterior estimates of the channel conductivity
kc, ice-flow coefficient A and the englacial storage parameter ev
are especially well-constrained relative to their prior distributions.
We have found moderate pairwise correlations, including r = 0.48
between sheet conductivity ks and the bed bump aspect ratio rb,
and r = 0.48 between kc and A. The relatively weaker constraints
on remaining parameters are consistent with a previous analysis of
the sensitivity of flotation fraction to these parameters (Hill and
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Figure 4. Posterior distributions P(𝜽|y) using synthetic water-pressure data. Diagonal panels show marginal prior and posterior distributions along with the hidden parameter
values used to generate the synthetic data. Lower left panels show pairwise joint posterior distributions and values used to generate the data as crosses. Upper right panels
show the estimated pairwise Pearson correlation coefficient.

others, 2025). For 𝜔, the lack of sensitivity may indicate that mod-
elled sheet-flow at the borehole location remains laminar since this
area tends to become channelized early in themelt season (Hill and
others, 2024)

Repeating the calibration experiment by individually consider-
ing each of the 100 test simulations as data, we consistently infer
strong constraints on the value of the channel conductivity kc,
ice-flow coefficient A, englacial storage parameter ev and the bed
bump aspect ratio rb (Fig. S14) with very little bias (Fig. S15).
While we typically constrain the sheet conductivity ks, bed bump
height hb and sheet-channel width lc values relative to their prior
distributions, the true values are more likely to be in a lower
posterior probability region (Table S1).

Calibrated model predictions have a 95% prediction interval
that is 3.8 times narrower than that of the ensemble of simulations
with parameter values sampled from the uniform priors (Fig. 5).
As expected with synthetic data produced by the model, the cali-
brated predictions always overlap the synthetic datawithin the 95%
prediction interval and often within the 68% interval (i.e. approxi-
mately within one standard deviation of themean).While flotation
fraction values between days∼150–200 have been constrained rel-
ative to the prior distribution, there remains a spread of ∼100%
of overburden in the 95% prediction intervals. However, this has
been reduced from a spread of >200% of overburden in the origi-
nal ensemble. The main discrepancy between the calibrated mean
and the synthetic data is during the late-season melt events near
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Figure 5. Comparison of prior and calibrated ensembles of GlaDS simulations using the synthetic flotation-fraction time series. The mean and prediction intervals of the
calibrated model are computed by running GlaDS with 256 samples from the posterior distribution.

day 250. Perhaps as a result of the biased posterior modes, the cal-
ibrated model has a faster flotation-fraction decay between these
melt events than in the synthetic data.

5.3. Borehole calibration experiment

For the borehole data that covers the last 199 days (16 June to 31
December) of 2012, we choose to emulate only the corresponding
period ofmodelledwater pressure, rather thanmodelling the entire
year as was done in the synthetic calibration experiment. This sim-
plification allows us to reduce the number of principal components
used by the emulator from 15 to 12while still explaining 98% of the
variance of the ensemble. We continue to use the full ensemble of
512 simulations to train the emulator.

5.3.1. Full time series calibration
As expected, calibration using the borehole water-pressure time
series from 16 June to 31 December 2012 produces wider pos-
terior distributions than the synthetic experiment (Fig. 6). Since
we use the same prior distributions and GlaDS ensemble as in
the synthetic experiment, these differences reflect how informative
the real observations are compared to the synthetic observations.
As we found in the synthetic calibration experiment, we obtain
some constraint relative to the prior distribution on each parame-
ter except the laminar–turbulent transition parameter𝜔.We obtain
especially distinct posterior modes for channel conductivity kc,
the bed bump aspect ratio rb and the ice-flow coefficient A. The
bed bump height hb, sheet–channel width lc and englacial storage
parameter ev have indistinct modes but with a preference towards
one side of their ranges. While we do resolve a posterior mode for
the sheet conductivity ks, this peak is not consistently observed for
all emulator architectures (i.e. p values, Fig. S11) or when using
different subsets of the simulation ensemble (Fig. S12), so we do
not consider this a robust estimate. There is a moderate inverse
correlation (r = −0.43) between kc and lc, with weaker correla-
tions between other pairs. Compared to the synthetic experiment,
even for parameters with a clear posterior mode (e.g. kc and rb),
the probability is nonzero across most of the range of values when
using borehole data. The major exception is the ice-flow coefficient
A, which has nearly zeromarginal probability overmost of its range
except for the extreme upper end, indicating that the model is

inconsistent with the borehole data for all but the highest A values
(Section 6.1).

Calibrated model predictions (Fig. 7) highlight that, while the
calibrated model sometimes aligns with the borehole time series,
significant discrepancy remains between the calibrated model and
the borehole time series. For instance, the coefficient of determi-
nation (the proportion of variance in the data explained by the
calibrated model) is −3.2, where the negative indicates that the
mean borehole flotation fraction is a better predictor than the cal-
ibrated model. For reference, the calibrated model predicts 93%
of the variance in the synthetic calibration experiment. The neg-
ative coefficient of determination is a result of differences in the
response to melt input variations between the calibrated model
and the observations. In part, the model–data discrepancy may be
a result of the borehole time series indicating a switch from con-
nected to unconnected on day ∼215 of 2012. For the whole dura-
tion of the record, the model consistently responds more strongly
to increases in melt rate than the borehole water-pressure time
series, rapidly increasing water pressure by 5% to >10% of over-
burden. For various instances, the borehole water-pressure time
series shows negligible pressure variations (e.g. after day 250) or
out-of-phase variations (e.g. near day 175) relative to the calibrated
model. Following day ∼220, the observed baseline water pressure
increases by ∼5% of overburden. This increase is not reproduced
by the model for any parameter combinations, as evidenced by
the intermittent lack of overlap of the model 95% prediction inter-
vals with the observations.The borehole record unfortunately does
not cover the spring speedup event associated with high modelled
water pressures. The calibrated model, which is therefore relatively
unconstrained in the spring, predicts unrealistically high water
pressure from days ∼150–165, with the mean prediction exceed-
ing 150% of overburden and the 95% prediction interval reaching
nearly 250%.

5.3.2. Independent summer and winter calibration
A major shortcoming of GlaDS and other similar models is that
they typically produce low winter and high summer water pres-
sures relative to measured or inferred water-pressure variations.
This problem, in particular unrealistically high spring water pres-
sure, persists in the calibrated model predictions. As one approach
to improve the balance of winter and summer water pressure,
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Figure 6. Posterior distributions P(𝜽|y) using borehole flotation-fraction data. Diagonal panels show marginal prior and posterior distributions. Lower left panels show
pairwise joint posterior distributions. Upper right panels show the estimated pairwise Pearson correlation coefficient.

Downs and others 2018 proposed using separate values for the
sheet conductivity ks within and outside of the melt season. To
assess the extent to which we might infer distinct parameter val-
ues for these time periods, we separately calibrate the model using
subsets of the borehole time series taken within and outside of
the melt season. We use within melt season data between day 166
(the beginning of the record) until day 216, when the amplitude of
diurnal variations suddenly decreases (not shown), suggesting the
borehole may have lost full hydraulic connectivity. Since modelled
and observed flotation fraction is nearly constant through win-
ter, the principal component decomposition does not add value in
terms of describing flotation-fraction patterns (i.e. the first princi-
pal component explains ≫ 99% of the variance), and so we define

the (scalar) winter flotation fraction as the average over the last 30
days of the year.

By using different subsets of the borehole time series, we infer
distinct posterior modes with overlapping distributions for the
channel conductivity kc, bed bump aspect ratio rb and englacial
storage parameter ev (Fig. 8). High values of the ice-flow coeffi-
cient A are preferred in all cases, but this preference is significantly
weaker when using summer-only data. For the sheet conductiv-
ity ks, the strongest posterior constraint is obtained by using the
full time series. We do not find differences in the most-likely sheet
conductivity values by separately using winter and summer data
for calibration, despite the fact that the Downs and others 2018
sheet conductivity parameterization motivated this experiment.
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Figure 7. Comparison of prior and calibrated ensembles of GlaDS simulations using the real borehole flotation-fraction time series. The mean and prediction intervals of the
calibrated model are computed by running GlaDS with 256 samples from the posterior distribution. The dashed box in (a) indicates the area shown in more detail in (b).

The distinct posterior parameter estimates for kc and rb act to
increase winter water pressure and reduce summer pressure, con-
sistent with the purpose but not the form of the sheet conductiv-
ity parameterization developed by Downs and others 2018. The
englacial storage parameter ev, which displays posterior modes at
opposite extremes of its range using winter-only data compared to
summer-only and all data, does not obviously fit this pattern. The
preferentially high values using summer-only and all data may be a
result of themodel reducing the amplitude of the pressure response
to surface melt events. While we have obtained some differences in
estimated parameter values by using different subsets of the bore-
hole data, we did not find a clear and useful pattern that supports
seasonally changing GlaDS parameter values.

5.4. Posterior constraints on subglacial drainage system

In both synthetic and borehole experiments, the single point-
scale time series reduces model uncertainty everywhere in the
domain (Fig. 9). More uncertainty remains in the borehole cal-
ibration experiment, consistent with the wider spread in spring
flotation-fraction predictions at the borehole location (Figs. 5 and
7). In the synthetic calibration experiment, we have approximately
halved the uncertainty in the total volume of the channel net-
work relative to the spread of the original ensemble, with a pos-
terior distribution consistent with the volume corresponding to

the synthetic observation (Fig. 9d). In contrast, the borehole time
series does not strongly constrain the volume of the channel net-
work, but it does result in a preference towards larger channel
networks than the original ensemble (Fig. 9e).

While the uncertainty in drainage system characteristics that
remains after calibration with the borehole time series is larger
than in the case of synthetic data, we do obtain meaningful con-
straints on channel network development throughout the domain
and especially near the borehole location. Consistent with the
channel network statistics (Fig. 9e), the model calibrated with the
borehole time series shows, on average, higher channel discharge
throughout the domain and especially within the IS sub-catchment
(Fig. 10, see Fig. 1c for sub-catchment labels). Near the borehole,
the calibrated model preferentially routes channelized flow along a
consistent pathway that passes through the node used to represent
the borehole. The calibrated model also has reduced flow through
tributary branches which join below the borehole. Based on the
difference in mean channel discharge, the borehole time series
appears to provide some constraint on hydraulic potential gradi-
ents not only near the borehole but across the entire catchment.

5.5. Computational savings

The emulator accelerates MCMC sampling by ∼5000 times
(Table 3). This sampling density is not possible using GlaDS
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Figure 8. Comparison of marginal posterior parameter distributions using all bore-
hole data or separately using summer and winter data.

directly. Each GlaDS simulation takes∼9 hours, and since we have
used 5000 MCMC samples, drawing this many MCMC samples
would take∼5 years since MCMC demands sequential evaluation.
Using the GP emulator with 512 simulations and 12–15 PCs, draw-
ing the MCMC samples takes ∼6.5–8 hours. While more efficient
sampling strategies are available that would require fewer sam-
ples, e.g. Metropolis-adjusted Langevin algorithm (Besag, 1994;
Roberts and Tweedie, 1996) or No-U Turn Sampling (Hoffman
and Gelman, 2014), emulator-based sampling will provide denser
samples and more fully resolved posterior distributions than using
GlaDS directly for any of these sampling strategies. While it seems
that some of the bias in posterior modes (e.g. Figs. 4, S14 and
S15) may be partly a result of emulator error, this bias seems
to be an appropriate trade-off for such a significant speedup in
sampling.

6. Discussion

6.1. Parameter estimates

The synthetic calibration experiment shows that, even with perfect
model–data fit, we do not learn about the true value of all param-
eters. This limitation arises in part because various parameter
combinations produce similar outputs, as evidenced by the pair-
wise correlations up to |r| ≥ 0.4), and also because the point-scale
flotation fraction is not sensitive to all parameters (e.g. Hill and
others, 2025). The slight bias in the most-likely inferred values

might be partially explained by differences between emulator pre-
dictions and GlaDS simulations, as evidenced by the reduction in
bias associatedwith includingmore principal components (Fig. S9)
and adding more GlaDS simulations (Fig. S10), both of which
reduce emulator prediction error (Fig. S4).

The real borehole time series yields weaker parameter con-
straints than the synthetic experiment. This is to be expected given
the shorter observation period, which does not include the spring
event, and the seriousmodel–data discrepancy (e.g. Fig. 7). Despite
these limitations, the posterior parameter distributions can guide
parameter selection to produce model outputs that are closer to
reality than by using uncalibrated values. In the case of the ice-
flow coefficient, the inferred value A ≈ 10−22 Pa−3 s−1 is outside
the range typically suggested for basal ice at the pressure-melting
point (e.g. Cuffey and Paterson, 2010) and perhaps points tomodel
shortcomings, limitations in the model setup or discrepancy in
the assumed n= 3 stress exponent (e.g. Millstein and others, 2022;
Schohn and others, 2025). Other basal characteristics such as the
anticipated high water content of basal ice (e.g. macroscopic water
content of 2.9–4.6% within temperate basal ice; Brown and others,
2017), anisotropic viscosity of basal ice (e.g. Hofstede and others,
2018) and entrained debris (e.g. Harper and others, 2017) may
also contribute to this high A value. For example, Cohen 2000
inferred ice-flow coefficients for simple shear as high as A = 1.5×
10−22 Pa−3 s−1 at Engabreen, Norway, explained as representing
enhanced shear as a consequence of bed-parallel unbound water
layers laminated between layers of clean and dirty ice. Combined
with the influence of unknown, irregular cavity geometries on
creep-closure rates (e.g. Helanow and others, 2021), it is not clear
where to set a reasonable upper bound for the creep-closure ice-
flow coefficient.

Of the eight calibration parameters (Table 1), the sheet conduc-
tivity ks, describing the transmissivity of the drainage system as
a whole, the form of bed bumps as described by their height hb
and aspect ratio rb, and the channel conductivity kc most directly
describe physical aspects of the subglacial drainage system. Other
parameters are necessary for the model but describe aspects of
the englacial drainage system (englacial storage parameter ev) or
basal ice that could be inferred through other means (ice-flow
coefficientA), could be constrained by fluid-flow physics (laminar-
turbulent transition parameter 𝜔), or are model-specific parame-
ters with little physical interpretation (sheet-width below channels
lc). The strongest constraints on physical subglacial hydraulic pro-
cesses, therefore, would come from calibrating parameters in the
first group listed above; however, we have obtained the strongest
constraint on the ice-flow coefficient A. While the channel con-
ductivity perhaps includes some information about subglacial and
englacial conduits (e.g. Pohle and others, 2022), we do not robustly
learn about the scale of cavities through hb or the transmissivity of
the drainage system through ks (Figs. 6 and S14). We have learned
about ks in the synthetic calibration experiment, suggesting that
model–data discrepancy, and perhaps the lack of borehole data
during the spring, limits our ability to estimate this parameter from
the data. In neither case do we learn about the bed bump height
hb, which controls the maximum water depth in subglacial cavi-
ties, reinforcing that point-scale water pressure is not sensitive to
hb (e.g. Hill and others, 2025).

The posterior estimates that we have derived based on calibra-
tion with the real borehole water-pressure time series differ from
those derived by Brinkerhoff and others 2021 based on calibrat-
ing parameters of a coupled hydrology–ice-flow model applied to
the same region in western Greenland. With a slightly modified
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Figure 9. Calibrated drainage system characteristics and uncertainty. (a–c) Melt season-averaged flotation-fraction ensemble spread as measured by the width of the 95%
prediction intervals before calibration (a), after calibrating with synthetic observations (b) and after calibrating with borehole observations (c). (d–e) Prior and calibrated
domain-integrated channel volume on day 229 (16 August) corresponding to synthetic (d) and borehole (e) observations. The true channel volume in (d) corresponds to the
simulation used as synthetic observations.

version of GlaDS as the hydrology model, Brinkerhoff and others
2021 used a neural network emulator to estimate parameter distri-
butions that produce the best fit to satellite-derived annual-average
surface velocities. Our study and Brinkerhoff and others 2021 both
constrain themost likely channel conductivity kc, bed bump aspect
ratio rb, and to some extent, the englacial storage parameter ev.
We obtain overlapping estimates with Brinkerhoff and others 2021
for rb and ev, while our range of inferred kc values is two to three
orders of magnitude higher. In addition to the parameters that we
are able to infer, Brinkerhoff and others 2021 constrain the value of
the sheet conductivity ks and the bed bump height hb. We obtain a
strong constraint on the ice-flow coefficient A, which Brinkerhoff
and others 2021 did not calibrate.These studies infer different pair-
wise correlations between subglacial drainage model parameters.
Brinkerhoff and others 2021 find correlation r = −0.79 between
ks and hb, while we find a much weaker relationship (r = −0.24).
This difference may be a consequence of the different sheet-flow
parameterizations or that the values of A that we infer are com-
pensating for model shortcomings that are otherwise taken up by
other parameters including ks and hb.Wefind a correlation r = 0.31
between rb and ev, whereas Brinkerhoff and others 2021 report a
slightly lower correlation of r = 0.2.

The comparable or stronger parameter constraints obtained
by Brinkerhoff and others 2021 suggest that this single borehole

water-pressure time series does not contain more information
to constrain the parameters of subglacial drainage models than
annual-average surface velocities, despite the impact of the filtering
effect of ice flow on estimates based on surface velocities. This con-
clusion hinges on the discrepancy of the subglacial drainagemodel
compared to the borehole water pressure since we obtain much
more informative distributions when we remove the discrepancy
by using synthetic model-generated data for calibration (Fig. 4).
It is also possible that we would more strongly constrain other
parameter values, particularly for parameters correlated with A, if
we did not vary A across the ensemble (cf. Brinkerhoff and others,
2021). Stronger constraints may also be obtained with multiple,
multi-year borehole water-pressure records that cover the full melt
season including the spring speedup and amodel that more closely
matches the measured time series (e.g. Andrews and others, 2014;
Ryser and others, 2014; Hoffman and others, 2016). With multiple
multi-year borehole time series, it could also be worthwhile
to repeat the separate summer–winter calibration experiment
(Fig. 8) to reassess whether the results support seasonally varying
parameter values (e.g. Downs and others, 2018). Combining both
surface-velocity observations and borehole water-pressure
data into a single calibration exercise could also provide
stronger parameter estimates and further reduce prediction
uncertainty.
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Figure 10. Posterior channel network constraints. Mean channel discharge (using a minimum channel threshold Q ≥ 2m3 s−1) on day 229 (16 August) for the area below
1850m (left column) and near the borehole (right column) from the prior ensemble (top row) and after calibrating with borehole observations (bottom row). Mean flotation
fraction for the corresponding ensembles is shown for context.

Table 3. Computation time corresponding to each step in the study.
Computations were timed on AMD Rome 7532 CPUs on the Digital Research
Alliance of Canada Narval cluster

Task CPU time (dd-HH:MM:ss)

Single GlaDS simulation 08:45:00
GlaDS ensemble 187-00:00:00
MCMC sampling 06:33:06–07:55:08
Likelihood evaluation 00:00:4.7–00:00:5.7
Emulator prediction 00:00:17
Calibrated GlaDS ensemble 93-00:00:00

6.2. Calibrated predictions and drainage-system
characteristics

Using a single point-scale flotation-fraction time series, we have
reduced the uncertainty inmodelled flotation fraction and the con-
figuration of subglacial channels by at least a factor of three in
both synthetic and borehole experiments. Uncertainty reduction
is appealing from a modelling perspective, however, it is concern-
ing from the view of realistic subglacial drainage. Borehole records
such as the one we have used to calibrate the model show pres-
sure gradients as steep as 10 kPam−1 between boreholes separated
by tens of meters (e.g. Ryser and others, 2014; Wright and others,
2016) and hydraulic connectivity that varies over similar length
scales (e.g. Wright and others, 2016; Rada Giacaman and Schoof,
2023). The lack of representation of this basal heterogeneity in
models (cf. Hoffman and others, 2016) results in unrealistically
high confidence in inferred parameter values and calibrated pre-
dictions. The extent of overconfidence could be assessed by repeat-
ing the inference with multiple water-pressure time series from
nearby boreholes that intersect hydraulically connected drainage
if such data were available. For other model limitations, it is more
challenging to assess how deficiencies in the theory underpinning
models impacts uncertainty in the calibrated model (Section 6.4)

6.3. Modelling limitations and challenges

We have made numerous choices in setting up the subglacial
drainage model, for instance forbidding cavities from opening by
viscous creep, using the laminar–turbulent sheet-flow model (Hill
and others, 2024), and using satellite-mapped moulin positions
rather than transferring surface melt directly to the bed at each
node. It would be possible to include the effect of these choices in
the calibration by encoding them as categorical variables. We have
instead opted to use the most physically justified option in each
case and infer the corresponding parameter values conditioned on
the model configuration.

For cavity creep opening, we argue that disallowing opening by
viscous creep is the more physically realistic choice because of the
disparate timescales between slow creep-opening (days to weeks)
and the timescale corresponding to subglacial overpressurization
(hours to days) along with the associated unmodelled processes
(e.g. hydrofracture, Das and others, 2008; Tsai and Rice, 2010).
Furthermore, allowing cavity creep-opening results in extensive
regions (e.g. tens of kilometres inland along bed troughs) with
sheet thicknesses exceeding the bed bump height for much of the
melt season and effectively forming a subglacial lake.We have used
the most realistic meltwater inputs reasonably possible at daily res-
olution, using moulins mapped from Landsat imagery (Yang and
Smith, 2016) and surface runoff outputs from the RACMO2.3p2
model (Noël and others, 2018). The laminar–turbulent sheet-flow
model is consistent with the well-understood physics of poten-
tial gradient-driven flow and produces improved winter water
pressures relative to a turbulent-onlymodel (Hill and others, 2024).

Based on sensitivity tests, modelled water pressure at the bore-
hole location is sensitive to the above modelling choices (Fig. S17).
Despite efforts to produce a realistic, data-informed model setup,
using a simpler, less realistic model results in a better fit to the
borehole data in the case of cavity creep-opening and the moulin
configuration (Fig. S18), although the single borehole record used
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here does not provide enough data to assess these modelling
choices more generally. For meltwater inputs through moulins, it
is possible that we are missing additional moulins that are fed by
streams that are too small to be resolved in the 15m-resolution
Landsat imagery (Yang and Smith, 2016). If this is the case, then
a denser moulin configuration may result in model outputs closer
to those obtained by transferring surface melt to the bed at every
node, while being more realistic. The paradox that using more
data in the model setup and intentionally choosing, a priori, the
most reasonable parameterizations degrades model performance
highlights the challenge of modelling subglacial drainage with the
current generation of models and input data. It remains possi-
ble that two-way coupling with an ice-flow model which cap-
tures hydrology–sliding feedbacks could improve model outputs
by reducing the amplitude of pressure variations and increasing
winter water pressure (e.g. Hoffman and Price, 2014).

The discrepancy in spatial footprints of the observations and
the model makes it difficult to determine which node should be
used as the most representative of the borehole observations. For
the numerical mesh used here, there are three nodes similarly
spaced within 386–454m of the borehole (Fig. S1). We have cho-
sen to use a node located in the centre of the trough that most
consistently has a modelled subglacial channel passing through
it (Fig. 10). Since water pressure sometimes varies between these
three similarly distant nodes (Fig. S2), it would be best practice
for future calibration studies to refine the model mesh around the
location of any observations, consider forcing the mesh to have
a node at the precise location of the borehole, and to evaluate
the sensitivity of the calibration results to the node being used
for calibration, considering the possibility of errors in bed eleva-
tion. Ideally, multiple borehole time series co-located within the
same mesh element could be averaged to upscale the observa-
tions. However, the expense of drilling and the high likelihood
of intersecting hydraulically isolated bed patches with any given
boreholemake it rare to findmultiple co-located boreholes suitable
for comparison with continuum models. Instead, complementary
data such as proglacial discharge estimates tracer transit times and
concentrations could be used in a multi-stage Bayesian calibra-
tion (e.g. Aschwanden andBrinkerhoff, 2022) to provide additional
constraints on the drainage model.

6.4. Perspectives on subglacial drainagemodels

Thediscrepancy between the subglacial drainagemodel and reality
(Fig. 7), and the finding that model predictions are made worse by
including more physical insight when making model choices and
using real data in the model configuration (Figs S17 and S18), sug-
gests that we should ask: is the subglacial drainage model a useful
representation of borehole water pressure? From the perspective
of model–data misfit, the model is less useful than simply averag-
ing the observations to obtain a singlemean value of water pressure
over time. In other words, themodel does not effectively reproduce
observed variations in borehole water pressure for any parameter
values that we have tested. This conclusion does not even consider
the behaviour of the model in the spring, when modelled pres-
sure exceeds 150% of overburden for at least several days over a
large portion of the domain, violating basic vertical force balance.
It does not appear that the model–data misfit will improve with
additional data to constrain it, since themisfit appears to be at least
partially related to fundamental model shortcomings, rather than
arising from residual parameter uncertainty which could plausibly
be reduced by additional measurements.

Should the goal of subglacial drainage modelling be to precisely
match individual borehole water-pressure time series? Borehole
observations characteristically exhibit variability in baseline water
pressure and the response to melt forcing over spatial scales of
tens of meters or less (e.g. Murray and Clarke, 1995; Ryser and
others, 2014; Wright and others, 2016). Considering that ice flow
is sensitive to basal conditions averaged over scales of several
ice thicknesses (e.g. Kamb and Echelmeyer, 1986), this does not
seem like a productive goal for the purpose of explaining and
predicting variations in sliding rates, which is the most common
motivation for subglacial drainage model development. Instead, a
more approachable goal would be to match the average features
observed inmultiple boreholes, intersecting both hydraulically iso-
lated and connected drainage, within a spatial footprint of several
ice-thicknesses.

These conclusions put modellers in a challenging position. It is
well-understood that surface melt-forced variations in subglacial
drainage influence glacier (e.g. Iken and Bindschadler, 1986) and
ice-sheet dynamics (e.g. Joughin and others, 2008; Bartholomew
and others, 2010; Palmer and others, 2011). However, our applica-
tion of a popular subglacial drainage model suggests that it cannot
reasonably reproduce direct measurements of subglacial drainage,
even when calibrated with real data and parametric uncertainties
are accounted for. We suggest that a productive path forward is to
re-examine the overall structure of subglacial hydrology models,
for instance englacial storage, processes associated with pressures
exceeding overburden (e.g. Tsai and Rice, 2010; Schoof and oth-
ers, 2012), two-way hydrology–sliding feedbacks (e.g. Hoffman
and Price, 2014), the form of the relationship between hydrol-
ogy and basal friction (e.g. Gilbert and others, 2022) and het-
erogeneous hydraulic connectivity (Hoffman and others, 2016),
to improve model behaviour on appropriate spatial and tempo-
ral scales. Concurrently, ice-flow models could adopt effective-
pressure parameterizations that are consistent with observed bore-
holewater pressures, e.g. effective pressureN = 5–20% of overbur-
den (e.g. Wright and others, 2016) until such subglacial drainage
models are developed.

7. Conclusions

We have applied an emulator-based Bayesian calibration method
to enable efficient Bayesian inference of parameters of the GlaDS
subglacial hydrology model (Werder and others, 2013) given time
series observations of flotation fraction (i.e. water pressure rela-
tive to ice overburden) at daily resolution. Using borehole water-
pressure data from western Greenland, we obtain meaningful
constraints on the channel conductivity kc, bed bump height rb,
ice-flow coefficient A and englacial storage parameter ev, with
correspondingly reduced uncertainty in modelled water pres-
sure. Relative to the uncalibrated model, we have constrained the
configuration of subglacial channels near the borehole and, to a
lesser degree, across the entire catchment.

The calibrated water-pressure time series overlaps with the
overall range of water pressure observed in the borehole, but
the calibrated predictions fail to match observed surface melt-
forced water-pressure variations. We have shown that this discrep-
ancy between modelled subglacial drainage and borehole obser-
vations is not a result of the choice of model parameters, but is
rather a structural feature of the model and therefore is unlikely
to be reduced by integrating additional field data. While it is
unreasonable to expect a spatially distributed continuum model
to precisely predict point-scale (i.e. borehole) water-pressure
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variations, the structural discrepancy suggests that the limita-
tions of physics-based drainage models, rather than parameter
uncertainty or their computational cost, are a rate-limiting step in
predicting hydraulically-forced seasonal ice-flow variations.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/aog.2025.10016.

Data availability statement. Code for runningGlaDS experiments and cal-
ibrating the drainage model, GlaDS model outputs and MCMC samples are
available at https://doi.org/10.5281/zenodo.15412093 (Hill and others, 2025b).
Surface elevation and ice thickness data are from https://doi.org/10.5067/
GMEVBWFLWA7X (Morlighem and others, 2022). The SEPIA package v1.1
(Gattiker and others, 2020), used for emulator-based Bayesian inference, is
available at https://github.com/lanl/SEPIA/. The Ice-sheet and Sea-level System
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gov/ (Larour and others, 2012). Borehole water-pressure data are available
at https://doi.org/10.18739/A20C4SM8X (Harper and Humphrey, 2010-2014).
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