Comprehensive perceptions at the interface between health and environment: Applications models with a Citizen Science Tool

Frauke Nees¹⁺, Ph.D., Karina Janson^{1,2}, M.Sc., Stephan Lehmler¹, M.A., Sarah Böttger³, M.Sc., Mira Tschorn³, Ph.D., Philipp Hummer⁴, M.Sc., Gunter Schumann^{5,6}, M.D., Michael Rapp³, Ph.D., Sebastian Siehl^{1#}, Ph.D., Nathalie Holz^{2,7#}, Ph.D., for the environMENTAL Consortium*

*A list of authors and their affiliations appears at the end of the paper

#shared last authorship

¹ Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany; ² Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim and University of Heidelberg, Mannheim, Germany; ³ Social and Preventive Medicine, Department of Sports and Health Sciences, University of Potsdam, Potsdam, Germany; ⁴ SPOTTERON Citizen Science, Vienna, Austria; ⁵ PONS Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Charité Universitätsmedizin, Berlin, Germany; ⁶ Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, PR China, ⁷German Center for Mental Health (DZPG), partner site Mannheim-Heidelberg-Ulm

+Corresponding author: Frauke Nees, Ph.D., Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Preußerstraße 1-9, 24105 Kiel, phone. +49 431 500 30800, e-mail: nees@med-psych.uni-kiel.de

This peer-reviewed article has been accepted for publication but not yet copyedited or typeset, and so may be subject to change during the production process. The article is considered published and may be cited using its DOI.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Abstract

Background:

Lived experience – how individuals perceive and interact with their environment – plays a

central role in understanding mental health. Yet, insights into this first-person perspective,

including subjective thoughts, emotions, and socio-contextual influences, remain limited in

current research approaches.

Methods:

To address this gap, we developed StreetMind, a scalable, secure, and user-friendly digital

citizen science platform grounded in a psycho-socio-geographic framework. The platform

collects self-reported data on individuals' activity spaces through a mobile app and web

interface, capturing location visits, travel routes, and daily experiences. These subjective

reports are combined with objective real-time health, environmental, and socio-cultural data

to generate integrated community "footprints."

Results:

Initial usage data (N = 1010 for location and route entries; N = 509 for daily experiential

data) demonstrate the platform's structural robustness and functional feasibility. StreetMind

enables classification of daily experiences by linking personal perceptions with contextual

environmental data. This integration facilitates the identification and quantification of key

environmental and psychosocial factors associated with mental well-being.

Conclusion:

StreetMind offers a novel, data-rich mapping of health-environment interactions by merging

individual lived experience with environmental metrics. This approach supports the creation

of dynamic "health-environment spaces" and holds promise for informing public health

strategies and advancing precision mental health care.

Keywords: mental health; citizen science; environment; psychogeography; path mapping;

behavior; precision medicine

Introduction

Mental and psychophysiological disorders are among the most significant causes of years

lived with disability [1]. Even with optimal care, less than 30% of the burden from mental

disorders can be alleviated, highlighting the need to better understand factors that influence

health and well-being. Despite decades of research, many gaps remain in our understanding

of how health is shaped by the environment, which hampers advancements in precision

medicine – an approach aiming to develop personalized strategies for individuals and public

health system. Among recognized determinants of health, the integration of information

regarding environmental factors is becoming increasingly important. Environmental factors

are increasingly recognized as central determinants of health. Recent tools in GPS tracking

and citizen science have explored dynamic environmental exposure, yet few have combined

subjective and objective real-time data with individual interaction and perception at this level

[2-8]. Our physical surroundings - where we live, learn, work, play, and socialize - shape

daily behaviors, experiences, and emotions. The World Health Organisation and numerous

studies [9,10] estimate up to 20% of mental health conditions like depression and anxiety can

be attributed to physical environmental influences.

A growing body of research has connected mental health and environmental factors including

urbanization, climate change and access to nature, with proximity to green spaces exerting

positive effects on health [9–16]. Access to and contact with nature with green and blue spaces such as forests, lakes, and coastlines have been associated with improved mental well-being [2,3], possibly due to psychological connectedness to nature [17]. However, many of these studies rely on satellite data [3,4] and lack insights into how individuals actively engage with their environments, limiting conclusions about underlying mechanisms [5].

To address this, new tools are needed that go beyond passive tracking (e.g., GPS logging [18,19]) to capture individuals' interactions with their environments, including detailed travel diaries, user ratings, or contextual experiences. These methods can help visualize lived experiences and provide more meaningful data on environmental exposure through participatory approaches such as citizen science [20–22]. Rather than focusing solely on proximity, we must also consider the quality and nature of how people engage with environmentss. In general, environmental factors can impact health both directly, for example through prolonged noise or heat exposure in the sense of physical harm, and indirectly through stress, particularly when environmental demands exceed individuals' abilities to cope [23]. While many studies have explored the influence of stress and annoyance in this context [11,24,25], there is still limited understanding of the cumulative impact complex environmental exposures on both physical and emotional outcomes.

Importantly, the effects of environments are shaped not only by objective characteristics but also by subjective perception [26]. Theories like the stress appraisal model by Lazarus and Folkman [27], the attention restoration [28,29], the stress reduction theory [30] and the biophilia hypothesis [31] emphasize that stress arises when there is a mismatch between situational demands and an individual's perceived capacity to cope and that natural environments can help alleviate stress. Even in the absence of physical harm, environments can negatively impact mental health if they are perceived as demanding or unsafe. Understanding how movement patterns intersect with environmental experience may offer

valuable insights for personalized prevention strategies. Although prior research has

considered individual competencies, physiological characteristics, lifestyle, urban land use,

development density, transportation systems, and other aspects of the built environment [32-

34], there remain a lack of integration between subjective rating, passive data, and

environmental context. This disconnect can lead to overly general intervention that miss

individual needs.

Emerging tools like UrbanFootprint [6] and OpenStreetMap [7] offer precise spatial data,

which, when combined with subjective user input, provide a deeper view of individual

health-environment interactions. Mapping routes and frequently visited places ("spots") with

individual ratings reveals what people notice, value, or avoid, making it possible to identify

emotional triggers or restorative locations. This can support more effective and personalized

preventions and interventions strategies.

To advance this, we must move beyond lab-based models and gather data that is more closely

related to everyday life, which is possible with digital tools [8]. Smartphone apps enable

ecological momentary assessments (EMAs) to assess feelings, emotions and health-related

aspects throughout the day [35-38], digital travel diaries [39]. Yet, we also need to expand

beyond traditional tools in epidemiology and environmental research that focus on logistics,

freight efficiency, or broad infrastructure mapping (e.g., BetterFootprint/SmartWay [40], N-

PHAM [41], EnviroAtlas [42]). By involving individuals more actively via citizen science

[43], we can make health and environmental monitoring more transparent, interactive, and

scalable. This participatory approach helps ensure interventions remain relevant and

meaningful for users, while also serving as a resource for policy and public health planning

[44–46]. This ensures that interventions are both meaningful to individuals and scalable to

populations.

To address these challenges, we developed StreetMind (https://www.streetmind.eu), a

modular digital citizen science platform at the nexus of environmental exposure and mental

health. StreetMind allows for dynamic mapping of (daily) behaviors and emotional states in

relation to physical surroundings. In addition to passive data collection like location tracking,

it integrates self-relevant information and activities about regular paths, places, and

perceptions. By combining these insights with environmental and demographic information,

StreetMind supports a psycho-socio-geographic citizen science approach to precision health.

It bridges disciplines - from clinical and cognitive science to urban planning - to develop

cost-effective, scalable assessments for real-world health monitoring and intervention design.

Our research integrates both subjective and objective measures and assesses multiple

environmental co-factors. We hypothesize that perceptions and exposures interact at different

levels to influence mental health. In this manuscript, we present application models of the

platform using data from a pilot sample, demonstrating how individual movement,

perception, and context shape daily behaviors and mental well-being.

Methods

StreetMind: modular functionality, assessment concepts, and Citizen

Science principles

Overview and Modular Design

StreetMind is a modular and user-adaptable assessment platform, comprising a smartphone

app (Android: https://play.google.com/store/apps/details?id=com.spotteron.streetmind; iOS:

https://apps.apple.com/us/app/streetmind/id1642341183) website and a

(https://www.streetmind.eu), designed to capture subjective and objective information about

individuals' lived environments, experiences, and well-being in a scalable and personalized

way, which reflects the dynamics of societal and healthcare challenges [47]. Its structure

supports active and passive data collection, combined with citizen science engagement tools

and both app-based and web-based interfaces. It can be applied in a wide range of

applications, and from small-scale empirical and clinical studies to large epidemiological

cohorts and community engagement.

The StreetMind app (Figure 1a-f) allows users along flexible pipelines (Figure 1b) to post

frequently visited spots, travelled upon routes and daily emotions and behaviors in their

environment (Figure 1a,c). The StreetMind website provides a survey tool for participants to

complete validated questionnaires. StreetMind is user-friendly, interactive, and fosters citizen

science and capturing dynamic real-world experiences aligning with calls for technology in

health care to prioritize public benefit over private profit [48]. Additionally, it aims to explore

citizens' perceptions of the challenges and ethical considerations inherent in research and

innovation ("innovation dilemmas"), such as ensuring data privacy and balancing societal

benefits with commercial objectives [49]. The platform comprises three main functional

domains: spatial, temporal, and socio-emotional assessment, presented through modular

subcomponents (Figure 1d-f), and accessible either via app or browser using a unified user

account system.

App features and module overview

A) Assessment Modules: Spatial, Temporal, and Socio-Emotional Contexts

StreetMind contains three core user-facing modules - MySpots, MyRoute, and MyDay - which

collect both structured self-report and passively recorded data across different domains:

• "My Spots" allows users to indicate frequently visited locations using geo-positioning

and annotate each location with structured questions on purpose of location (e.g.,

work), environmental factors (e.g., closeness to green/blue spaces), social aspects

(e.g., social connectedness), physical activity and well-being, evoked emotions, and

mental well-being (Figure 1d; Suppl. Table 1).

- *My Route* enables user to draw or track routes they frequently travel and respond to similar questions as in *My Spots*. Both modules support active marking and passive GPS recording, and entries can be updated over time. These spatial records (spots and routes) can be made either with or without real-time tracking (Figure 1f).
- My Day captures daily subjective experiences and behaviors using an EM structure.
 Questions are grouped into five different sections: physical and mental health, social aspects, environmental factors, substance use and nutrition (Figure 1e; Suppl. Table 1). Items are adapted from the Research Domain Criteria domains, including social processes and positive & negative valence [50].

These modules are equipped with citizen-science features (see also below; Figure 2), including optional feedback, interactivity, and engagement tools, to foster engagement and interaction throughout the assessment process.

B) Combination of objective and subjective information and daily specificities

StreetMind enables the construction of individualised network models of participants` lived environments through the integration of:

- Subjective entries (e.g., emotional valence, perceived social connectedness),
- **Objective geo-data** (e.g., GPS, activity tracking, physical distance between nodes),
- **Temporal context** (e.g., daily variation via *MyDay* EMA).

Each user's environment is thus modelled as a spatial network of nodes (spots) and edges (routes), allowing for both within-person and between-group analysis of how emotional experience, place characteristics, and behavioral patterns interact.

These multilayered data enable investigation of both stable and context-dependent influences on health and well-being. For example, emotional ratings and social connectedness in My Spots, My Route, and My Day can be correlated with movement patterns and neighbourhood features captured through passive recordings.

B) Platform Flexibility and Adaptability

The modules serve as the building blocks of StreetMind supporting modular reconfiguration

and allowing different combinations of feature sets across research studies and user groups.

All modules are embedded into a platform-wide environment where projects can be managed

independently while sharing common infrastructure and data formats (Figure 1b). Contents

can be changed depending on the study, sample, or consortium, without changing platform.

This allows quick implementation and adaptation for new studies or cohorts, including cross-

national or longitudinal studies, while keeping inter-study compatibility and reuse of existing

pipelines.

C) Citizen Science principles and interactive features

StreetMind is based on citizen science principles, i.e., research for the people, with the people

and by the people [46], and so promotes co-creation, transparency, and public engagement:

• Interactive elements include map-based visualization (e.g., switchable layers in Figure

2a), chat functions, blog updates, and customizable feedback (details can also be

found in the Supplement 1.2).

• Individual feedback is provided through heat maps visualizing aggregate or

personalized emotional/environmental data over time. These highlight positive or

problematic areas (e.g., low well-being zones, perceived noise exposure) and how

these shift longitudinally.

• Gamification tools, including badges (e.g., for first entry), user rankings, and

timelines, enhance engagement and reinforce sustained participation (Figure 2b).

These features aim to empower users, foster scientific understanding, and contribute to

community-level knowledge transfer across disciplines.

The *StreetMind* platform was designed and developed together with the SPOTTERON Citizen Science App Platform (https:///www.spotteron.net), who provide visual design, technical development, IT-infrastructure, and support to run both applications.

E) StreetMind web interface and psychometric and trait level assessment

The *StreetMind* website (https://www.streetmind.eu/) complements the app and includes access to standardised questionnaires, used in studies for basic trait-like sample characterizations. An example of a currently used survey includes questions about sociodemography, urbanicity, eco-anxiety, personality, physical and mental health, and health-related behaviors (reward, inhibition, intention; Suppl. Table 2). Projects can select and configure these instruments per study using user-role tagging. Web-inclusive features include newsletter subscription, blog function, and optional data contributions via the browser.

F) Privacy, data protection and data management

Participants can choose to save information on spots and routes to be visible to other users, who can interact with them by, e.g., liking or commenting on a spot. They can also choose which entries will be visible to other users and decide when they want to accept geolocationrecording (not set in a 24h mode). Very sensitive information (e.g., spot links to home/workplace, and sensitive information in the My Day section will never be made visible others. **SPOTTERON** to also provides data management tools (https://www.spotteron.net/citizen-science-app-features/data-handling), and data is stored on secure servers at the Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein in Kiel. More information on privacy settings, data protection, and data management can be found in the supplementary material 1.1.

G) Pilot Use Case and Application Feasibility

We present first data and analyses to demonstrate the feasibility and application potential of the *StreetMind* app, according to factors on objective and subjective indicators of the

environment and its link to individual health). The application models are based on *N*=1010 entries to the *My Spots* and *My Route* and *N*=509 for *My Day* from a community sample in Kiel, (58.8% female, age=32.5 years (SD=13.65)), captured over a period of four weeks with *My Day* questions being asked one time per day (evening: "How was your day?"). Eligible individuals were 20-40 years old, resided within Kiel city limits, owned an Android (v9+) or iOS (v14+) smartphone with a mobile data plan, and consented either (a) to share background GPS data which they could start or stop at any time or (b) to enter their locations manually on the in-app map. Inclusion criteria age of 18-65 years and sufficient knowledge of German language, and exclusion criteria were any current or pre-existing neurological or psychiatric condition, intake of psychopharmacological medication, no smartphone, no regular internet access.

For data analyses, we used R (version 4.3.1, https://www.r-project.org) and Python (version 3.12.0, https://www.python.org) (see Suppl. Table 3 for detailed technical methods, code, and spatial analysis pipelines). Individual ratings of regular spots, routes, and daily assessments, alongside day-specific details served as subjective information. These elements are crucial individual co-determinants indicating how personal factors shape experiences. To ground subjective data in objective context, we enriched this data with information gathered from OpenStreetMap (OSM), which also allows to link individual information from the app to information on the built environment elements collected by the tool. Geospatial objects in *StreetMind* are stored as either GeoJSON-objects or Latitude/Longitude pairs in World Geodetic System 1984 (WGS 84) format to ensure precise location tracking. For a deeper understanding of accessibility and connectivity in participants' environments, we extracted the street networks e from OSM and calculated network centrality measures to street segments and whole streets using street-name in OSM, which allows the analysis of how the connectedness of streets might influence participant experiences and perceptions. We further

calculated spatial distance between points marked on the map (individual spot entries) using

the spherical haversine approximation. This distance analysis supported to assess the spatial

distribution of activity spaces, allowing for insights into how the geographic spread of

participants' environments might impact their well-being. To explore relationships between

subjective health and environmental ratings, we calculated correlation networks using

polychoric correlations for ordinal variables (derived from a 5-point Likert scale). We then

used spider charts to compare daily ratings by location by calculating the frequency of

attributes used to describe places within and outside a predefined bounding box (covering the

city of Kiel) and normalizing for number of points observed. Finally, we estimated spatial

and variable-specific densities to identify areas and experiences that are most frequently rated

or reported. For spatial density, we applied an axis-aligned bivariate normal 2D-kernel for the

estimation of and for the other variables, we used a 1D gaussian kernel in the ridgeplots.

These density estimates highlight "hotspots" of activity and emotional responses, allowing us

to pinpoint where certain experiences are concentrated and how participants' environments

might shape their perceptions.

Results

Validation of response variability across the app items

We can demonstrate very good variability among the participants regarding the different

items from the StreetMind modules, enabling targeted analyses for different project (see

Figure 3).

Into fine-grained subjective information and variations of individual affect

and perceptions of and behaviors in the environment

To illustrate how individual ratings of health and environment are influenced by the specific

characteristics of each day, we plotted the overall distribution and variations in mental states

(Figure 4a,e (affect)) and environmental engagement like feelings or time spent in specific settings (Figure 4b, f (environment)). We then linked these ratings to the whether a day was regular or special, along with its specific characteristics, including the social environment (Figure 4c) and the reasons for special days Figure 4d), which is reflected in partially different affect- and location-related environmental ratings (Figure 4a,b). While affect is rather similar for regular and special days, this is not the case for environmental perceptions and behaviors, indicating that the subjective perceptions of the environment are important. It shows that an objectively favourable location, such as green space, can have markedly different subjective effects depending on various individual circumstances or is even not the driving force for health and related behaviors. From our pilot data, we for example see that particularly time spent in nature and in green spaces marks the subjective experience of whether a day is special. Even a single side factor, like whether it is a regular or special day, can thus make a significant difference. In addition to the physical environment, special days are also characterized by changes of the social environment of participants, for instance an increase of interactions with the family members. This may be a critical co-determinant or even driving force of health-environmental interactions, and that various reasons stand behind the classification of a regular or special day. Thus, *StreetMind* captures the contextual factors that shape well-being beyond momentary emotional states. This opens up a window into new and so far hidden factors which are important both to investigate specific types of days to improve data modelling and to avoid potential bias with respect factors triggering health. It also adds increased temporal granularity by considering leading to potential varying emotional, social and environmental experiences throughout the day.

While having focused on the novel aspect of *StreetMind*, the description of daily experiences, including health items, can be analysed on any other granularity suitable for specific research questions. For example, by not only capturing both objective patterns and subjective nuances,

but also according to commonly used EMAs in health-related studies or map-based solutions

used for environmental and epidemiological studies including urban planning and

distributions of health- and environmental-related risk factors for the population.

Into fine-grained subjective information and variations of specific local

areas

Integrating geo-referenced location markers into the models, we illustrate a targeted focus on

specific areas and the creation of multidimensional area profiles in relation to both subjective

and objective health indicators. Here, we can see that both ratings on environmental features

and affect differ comparing urban and rural settings (Figure 4g). While rural areas are

described more in terms of positive visual features such as beauty and nature, city areas are

more strongly characterized in terms of interactive features. These profiles are reflected in

indicated affect dimensions, with a rural area felt as being more inspiring and thus rather

reflecting the so-called "hot" cognitive functions that are related to emotions and reward,

while a city area as fostering more so-called "cold" cognitive processes such as increased

attention. Moreover, there is a divergent association between environmental and affect ratings

for these two areas indicating not only that each area may foster a different engagement, but

also that specific subjective characteristics of an environment are differently linked to the

self-relevant affect-related indicators of health depending on the objective characteristics of

an area (here: rural and city area). The integration of static location-bound data with dynamic

information enables a more granular capture of both subjective and objective mental

processes and interactions within an individual's environment. This approach facilitates a

nuanced modeling of environmental differences and linking these to health-related behaviors

or long-term effects of environmental interactions.

Into "hotspots" of subjectively described environments and the link to their

objective markers

In addition to characterising specific areas, we also zoomed into user-marked spots, examining detailed subjective and objective data, such as emotional responses, environmental descriptors, and functional attributes. By summarizing key variables and activity levels as heatmaps, we gained insights into how different spots are subjectively perceived and whether there is alignment with broader objective categorizations, such as whether a spot is in an urban area, near green spaces, or close to water (Figure 5a). The discrepancies in these objective categorizations underscores the usefulness of having additional self-relevant, subjective information. This allows us to assess whether these broader environmental categories are consistently reflected in individual perceptions or if there is a variability between objective characteristics and subjective impressions. This unique combination of spatial and psychological data can be expanded using further information such as pictures

Into subjectively informed health-environmental networks of spots and

granular decomposition of physical space and their contribution to health.

from StreetMind. Linking physical features to mental states in future studies allows for a

routes

We further integrated spatially linked data with subjective daily experiences, routes, and locations. This creates a "health space" map that connects emotional networks (how people feel in specific places) with individual spatial-cognitive maps (how people perceive and organize these places mentally). Thereby, it can be inferred how specific spots are emotionally linked, i.e. whether they elicit similar feelings, and how individuals represent these spots in terms of spatial distance or closeness with the goal to determine whether individuals differ in the number and diversity of such networks (Figure 5b). By continuous tracking over several weeks, these data enable to assess whether these emotional-geographic

networks are stable over time and how frequently they occur. This enables to build transit maps ("footprints") that show movement patterns across specific areas, such as a city, and associating these patterns with mental health risks or resilience. Therefore, we modelled the spatial proximity and emotional similarity of the individual spots, creating a multidimensional view of the environment network of the Kiel area (Figure 5c). This allows to see whether physically close spots are also rated emotionally similar and to identify "hotspots" of wellbeing and mental health risks.

Interactions between between daily subjective emotions, internal feelings, and environmental perceptions

We explored the relationship between subjectively reported environmental, psychological, social, and physiological factors, both for daily affect and between affect and environmental perceptions. A correlation network was created, showing how different emotions co-occur together during the day, which can be valuable for understanding well-being and targeting specific emotional states in interventions (Figure 6a). As such, emotions are interconnected in distinct positive and negative clusters, with positive emotions tending to co-occur and negative emotions similarly grouped. The inverse relationship between positive and negative emotions suggests that certain mental states can help buffer against others (e.g., feeling determined and altered may reduce feelings of unease). This allows to identify factors of well-being and see whether these patterns are shaped by different environments or occur independently. These analyses can be conducted on an aggregated level, as shown here, but could also be used for group comparisons or longitudinal individual-level assessments, offering insights into how emotional states evolve over time within unique contexts.

Additionally, we have modelled how different feelings are related to specific perceptions of connectedness to social and physical environments (Figure 6b). With increasing connectedness the emotional ratings follow similar patterns across the physical and social

environment, with higher levels of activeness, alertness and inspiration This is interesting because it shows that social and nature-based experiences have similar effects on individual well-being. This insight is highly relevant for health research and the development of prevention and intervention strategies, as it suggests that both the social and the physical

environment should be considered together.

Discussion

Our health is influenced by the world around us – spanning built, socioeconomic, chemical, physiological, and psychosocial dimensions. These interconnected domains collectively impact our well-being [48,49,51]. A central challenge in environmental health science is determining how to assess this multifaceted interplay - not only at the population level, but in ways that capture individual differences in both health and environmental experience. While traditional environmental health research focused on identifying and reducing environmental hazards [50], recent shifts have incorporated beneficial exposures such as access to green space, clean air, or supportive social environments, especially at the local level.

This study introduces *StreetMind*, a modular, multimodal citizen science platform designed to capture cohort- and community-level information while enabling fine-grained insight into the relationship between daily behavior, health and the environmental exposure. By integrating subjective experiences with objective data through a psycho-socio-geographical approach, *StreetMind* aligns with recent efforts in environmental psychology and geographic information science (GIScience) to better understand human-environment interactions [52,53]. Compared to existing GPS-based or mobile sensing platforms, StreetMind offers several key advances. Traditional mobile sensing studies have focused on passively capturing location, accelerometry, and app usage data to infer behaviors and mental states [54,55]. While these methods provide continuous and objective data streams, they often lack contextual specificity and do not account for subjective perception. *StreetMind* fills this gap

by combining passive sensing with self-initiated emotional, cognitive, and environmental annotations. It also incorporates participatory design and feedback mechanisms rooted in citizen science principles, making it not only a data collection tool but also a platform for user reflection, empowerment, and engagement.

Our findings underscore *StreetMind*'s value for capturing real-world complexity in mental health. For example, participants' reported affective states often remained consistent between regular and special days, even when environmental and social contexts shifted significantly (e.g., more time in nature or with family). This suggests that context matters in nuanced, non-linear ways and can differentially influence well-being across individuals and situations.

Moreover, the analysis of correlation networks between subjective experiences and environmental perceptions expands prior findings on mood-mapping and person-place interactions [56,57], offering a network-based understanding of emotional co-regulation across space and time. These emotional networks, particularly when linked to specific geographic "hotspots" and activity routes, provide a multi-dimensional view of how individuals perceive and navigate their environments. This insight is critical for identifying "mental landscapes" that reflect personal preferences, triggers, and stressors, which could be highly relevant for developing personalized intervention strategies that target specific contexts and emotional patterns.

One of *StreetMind*'s unique contributions is thus the ability to contrast and integrate subjective perceptions of environments - such as perceived safety, beauty, or noise - with objective environmental features such as green space proximity, urban density, or traffic volume. While objective environmental indicators provide standardized metrics and are crucial for policy and infrastructure design, subjective perceptions often better predict psychological outcomes like stress, mood, and social connectedness [53,57]. Our findings underscore that these two domains - subjective and objective - may have independent,

additive, or even interactive effects on health outcomes. For example, even when living near

a park, individuals who perceive the area as unsafe or unpleasant may not experience its

mental health benefits. Conversely, a person might find psychological relief in an objectively

less green space due to personal attachment or positive memories. These insights support the

argument for multilevel models that integrate both perspectives, enabling more nuanced

prediction of mental and social health. This dual-perspective approach underscores the

necessity of multilevel models that integrate physical and psychological features of

environments. It also emphasizes the relevance of *StreetMind* in advancing precision mental

health strategies by illuminating how context-specific experiences shape emotional well-

being.

In addressing common challenges in longitudinal experience sampling, StreetMind captures

both typical and atypical daily events. For instance, while some behavioral outliers may

initially appear as noise, they may carry significant health-relevant insights, particularly when

seen in relation to individual variability. The platform enables the capture of episodic events

and daily fluctuations that might otherwise be missed by coarse sampling or retrospective

reporting.

StreetMind also contributes to understanding health-related social dynamics. Features such as

mobility tracking and social context tagging offer potential to detect deviations from

behavioral baselines that may signal symptom onset or relapse, particularly in psychiatric

populations. These data open new opportunities for early intervention strategies rooted in

behavioral signatures. While internal (mind) and external (environment) structures typically

change slowly in health, private, and public spaces, they can also rapidly shift due to

significant internal and external 'emergency' events [58]. StreetMind supports detecting both

short-term and long-term fluctuations in these health-environment interactions, helping

characterize self-perceived "health spaces" and their relationship to specific environmental areas and features.

Moreover, StreetMind supports detailed mapping of person-place interaction over time. Through the integration of geospatial, affective, and behavioral data, it facilitates the identification of personal "health spaces" and their alignment with built or natural environments. Such personalized environmental fingerprints resemble emerging concepts in network neuroscience [59] and link well with studies that associate architectural form and mobility with brain function [59,60]. The data from the StreetMind platform will enable deeper analysis by incorporating the observed personal networks and interactions alongside the logged daily experiences of users, thereby providing maps of mental health. Theoretically, it considers cognitive processes like attention and memory, which are serving as primary mechanisms in learning processes, all key for mental health and integration of environmental exposures. It furthermore goes into the understanding of triggers of symptomrelated behaviors and relapse. For example, individuals with alcohol use disorder often choose abstinence due to the harmful consequences of excessive drinking; however, encountering situations previously linked to alcohol use can prompt a relapse, and highlighting individual and multidimensional contexts and their sensitivity to personal factors [61–64].

Expanding beyond psychological data, *StreetMind* is designed for integrative analysis alongside physiological, molecular, cognitive, and behavioral datasets. This multimodal approach can deepen our understanding of the interplay between external exposures and internal psychological and biological states, contributing to the development of predictive models in mental health research. *StreetMind* also complements wearable technologies by identifying location-specific patterns of activity and supporting context-aware feedback on physical health and well-being [65]. Ultimately, *StreetMind*'s adaptability ensures that it can

be scaled and refined to meet the needs of various populations, advancing personalized and

community-centered health strategies. This also relates to the promotion of a tailored

community engagement and stakeholder [66] fostering trust, facilitating exchanges and

change in behavior, reflecting viewpoints of those most impacted by health decision.

The modular architecture of StreetMind allows adaptation across a range of cohorts, use

cases, and study designs—from prevention and early intervention to public health

monitoring. Its real-time, context-sensitive data streams can inform timely behavioral

feedback and early risk detection strategies, supporting scalable, personalized public health

interventions. The inclusion of publicly visible spots, real-time updates, and interactive user

features also fosters dialogue between citizens and researchers, enabling data-driven insights

that reflect lived experience.

In the context of climate change and health, StreetMind provides a unique opportunity to

generate bottom-up indicators of environmental resilience. It allows for the evaluation of

emotional and behavioral adaptation in response to changing environmental conditions,

potentially informing policy on climate-sensitive health systems [67-69]. For example,

longitudinal shifts in safety perception between urban and rural environments during periods

of societal instability could be tracked and related to changing needs for community

infrastructure or services.

Local associations, regional actors and decision-makers need information about the realities

of living in their region. StreetMind is designed for long-term use by the community and

multiple cohorts. As spots can be updated and new users can rate existing spots and add their

own, we will also be able to track the temporal development of an environmental area such as

a city and the behaviors of individuals along these developments. StreetMind allows to assess

the opinion and perception of citizens of their region, together with their health and related

factors, and can thereby facilitate a dialogue between citizens, scientists, and decision makers

to enhance informed policies and to evaluate them on an ongoing basis.

Some, but not all, outlook potentials relate to feedback-informed community preventions.

StreetMind has the potential to serve as a tool for psychological prevention strategies to

assess, model, and predict severity and treatment including real-time data of a client's

maladaptive behaviors and mobility patterns, mood, contextual information (geo-positioning,

environmental exposures), or social interactions [70].

StreetMind's capacity to support both individual- and community-level profiling makes it

highly relevant for urban planning, health equity initiatives, and real-time environmental

evaluation. As areas evolve and user input accumulates, it becomes possible to monitor the

dynamic development of urban spaces and their social-emotional resonance over time. It

further informs feedback loops, including predictive and normative modelling, between

individuals, for example also between clinicians and patients in precision psychotherapy [66],

to optimize behavioral efficacy.

Statistical Approaches and Study Designs for StreetMind Data

The StreetMind platform produces complex, high-dimensional, and temporally structured

data. To leverage its full analytical potential, tailored statistical and computational strategies

are required. These include: Multilevel and mixed-effects models to account for repeated

measures nested within individuals and to explore within- and between-person variability;

Time-series analyses for capturing dynamic changes in emotion, behavior, or environmental

context across hours or days; Network analyses to model co-occurrence of emotions,

environmental perceptions, and health outcomes across spatial and temporal dimensions;

Spatial statistics (e.g., spatial autocorrelation, kernel density estimation) to detect and

interpret geographic patterns in subjective and objective experiences; Machine learning

approaches to identify non-linear patterns or predictors of mental health from integrated

sensor, survey, and map-based data.

In terms of study designs, StreetMind supports: Cross-sectional snapshots for mapping real-

time experiences in urban versus rural environments; Longitudinal cohort studies for

detecting changes in environmental exposures and their impact over time; N-of-1 and

idiographic studies, allowing personalized assessments and micro-intervention trials;

Community-based participatory research (CBPR) designs, particularly valuable for citizen

science and stakeholder engagement. These approaches enable StreetMind to contribute to

both population-level inference and individual-level precision health strategies.

Limitations and Ethical Considerations

While *StreetMind* provides valuable tools for integrating subjective and objective experiences

across geography, technology, and mental health, certain limitations must be considered. One

key issue is the potential for digital exclusion. Individuals from older age groups, those with

physical or cognitive impairments, or with limited technological literacy may face barriers in

using the app effectively. Similarly, access to smartphones or consistent internet connectivity

is not universal and may limit representativeness in lower socioeconomic or rural

populations.

Cultural variability also poses a challenge, particularly with regard to data sharing norms and

privacy expectations. What is perceived as acceptable app-based self-disclosure in one

sociocultural context may be viewed as intrusive in another. Thus, app adoption and

engagement may vary significantly across populations and regions.

To address these concerns, StreetMind is designed to support inclusive adaptation strategies.

These include adjustable app features (e.g., simplified interfaces, font scaling, audio-assisted

inputs), platform availability in multiple languages, and granular privacy controls to ensure

users maintain agency over their shared data. Additionally, ongoing user co-design sessions

and accessibility audits are planned to guide further development. These steps aim to ensure that *StreetMind* serves as a socially responsive and ethically grounded tool for diverse users.

Conclusions and contributions

In summary, advancements in digital technologies allow for detailed assessments with increased temporal, spatial and individual granularity to capture daily life behaviors. StreetMind leverages the progress in digital technologies and citizen science for detailed assessments with increased temporal, spatial and individual granularity to capture daily life behaviors at the intersection of health and environment. By combining behavioral traces with psychological characteristics and both active and passive environmental information, it provides insights into if, why, and how individual's behaviors, feelings, and thoughts are influenced by various, situational and social, factors. By combining high-resolution geodata with survey data, it enables research on environmental stressors [71,72] to inform data-driven health polies and interventions. It can also be used to advance urban planning and transport design models to predict activity patterns linked to mental health outcomes. StreetMind's flexibly design allows for scalable use in various research settings and studies (first cohorts see e.g., https://www.streetmind.eu/blog), fostering a network of user-contributed insights on their communities and surroundings, emotions, thoughts, and behaviors. This communitymodel can foster a, real-time exchange of information and engagement, and well-being hotspots offering valuable insights for researchers and stakeholders and the public.

Funding Statement

Funded by the European Union. Complementary funding was received by UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee (10131373 and 10038599). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union, the European Health and Digital Executive Agency (HADEA) or UKRI. Neither the European Union nor HADEA nor

UKRI can be held responsible for them.

Conflicts of Interest Statement

All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Authors Contributions

Platform idea has been developed by F.N., in collaboration with S.S. and M.R.. The design has been implemented P.H. (SPOTTERON). Material preparation, data collection and analysis were performed by F.N., N.H., S.S. and S.L.. The first draft of the manuscript was written by F.N. and N.H., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Availability of Data and Materials

Data are made visible in the app and website, e.g. through the integrated map structure, if participants have agreed to share their entries. Raw data will only be shared with investigators whose proposed use of the data is provided in a methodologically sound proposal and data will only be shared to achieve aims in the approved proposal.

Use of StreetMind in projects and initiatives

Proposals should be directed to the corresponding author F.N.; to establish a respective pipeline within *StreetMind*, a data sharing and transfer agreement as well as ethic approval are needed.

References

- World mental health report: Transforming mental health for all [Internet]. [cited 2025
 Jul 30]. Available from: https://www.who.int/publications/i/item/9789240049338
- 2. Capaldi CA, Dopko RL, Zelenski JM. The relationship between nature connectedness and happiness: a meta-analysis. Frontiers in Psychology. 2014 Sep 8;5:976.
- 3. Zijlema WL, Wolf K, Emeny R, Ladwig KH, Peters A, Kongsgård H, et al. The association of air pollution and depressed mood in 70,928 individuals from four European cohorts. Int J Hyg Environ Health. 2016 Mar;219(2):212–9.
- 4. Goldblatt R, Holz N, Tate G, Sherman K, Ghebremicael S, Bhuyan SS, et al. "Urban-Satellite" estimates in the ABCD Study: Linking Neuroimaging and Mental Health to Satellite Imagery Measurements of Macro Environmental Factors. medRxiv. 2024 Feb 1;2023.11.06.23298044.
- 5. Helbich M, Klein N, Roberts H, Hagedoorn P, Groenewegen PP. More green space is related to less antidepressant prescription rates in the Netherlands: A Bayesian geoadditive quantile regression approach. Environ Res. 2018 Oct;166:290–7.
- 6. Explorer | Resilience Insights Delivery Experience [Internet]. UrbanFootprint. [cited 2025 Jul 30]. Available from: https://urbanfootprint.com/platform/explorer/
- 7. OpenStreetMap [Internet]. OpenStreetMap. [cited 2025 Jul 30]. Available from: https://www.openstreetmap.org/

- 8. Torous J, Bucci S, Bell IH, Kessing LV, Faurholt-Jepsen M, Whelan P, et al. The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality. World Psychiatry. 2021 Oct;20(3):318–35.
- Dzhambov AM, Lercher P. Road Traffic Noise Exposure and Depression/Anxiety: An Updated Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2019 Oct 27;16(21):4134.
- 10. Dzhambov AM, Browning MHEM, Markevych I, Hartig T, Lercher P. Analytical approaches to testing pathways linking greenspace to health: A scoping review of the empirical literature. Environmental Research. 2020 Jul 1;186:109613.
- 11. Dzhambov AM, Markevych I, Tilov B, Arabadzhiev Z, Stoyanov D, Gatseva P, et al. Pathways linking residential noise and air pollution to mental ill-health in young adults. Environ Res. 2018 Oct;166:458–65.
- Rautio N, Filatova S, Lehtiniemi H, Miettunen J. Living environment and its relationship to depressive mood: A systematic review. Int J Soc Psychiatry. 2018 Feb;64(1):92–103.
- 13. Münzel T, Sørensen M, Lelieveld J, Hahad O, Al-Kindi S, Nieuwenhuijsen M, et al. Heart healthy cities: genetics loads the gun but the environment pulls the trigger. Eur Heart J. 2021 Jul 1;42(25):2422–38.
- 14. Braithwaite I, Zhang S, Kirkbride JB, Osborn DPJ, Hayes JF. Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis. Environ Health Perspect. 2019 Dec;127(12):126002.

- 15. Fan SJ, Heinrich J, Bloom MS, Zhao TY, Shi TX, Feng WR, et al. Ambient air pollution and depression: A systematic review with meta-analysis up to 2019. Sci Total Environ. 2020 Jan 20;701:134721.
- 16. Hegewald J, Schubert M, Freiberg A, Romero Starke K, Augustin F, Riedel-Heller SG, et al. Traffic Noise and Mental Health: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2020 Aug 25;17(17):6175.
- 17. Comprehensive Mental Health Action Plan 2013-2030 [Internet]. [cited 2025 Jul 30]. Available from: https://www.who.int/publications/i/item/9789240031029
- 18. Aspinall P, Mavros P, Coyne R, Roe J. The urban brain: analysing outdoor physical activity with mobile EEG. Br J Sports Med. 2015 Feb;49(4):272–6.
- 19. Chaix B, Méline J, Duncan S, Merrien C, Karusisi N, Perchoux C, et al. GPS tracking in neighborhood and health studies: a step forward for environmental exposure assessment, a step backward for causal inference? Health Place. 2013 May;21:46–51.
- 20. Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T, Rosenberg KV, et al. Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. BioScience. 2009 Dec 1;59(11):977–84.
- Irwin A. Citizen science: a study of people, expertise, and sustainable development
 [Internet]. 1995 [cited 2025 Jul 30]. Available from: https://philpapers.org/rec/IRWCSA
- 22. Wiggins A, Crowston K. From Conservation to Crowdsourcing: A Typology of Citizen Science. In: 2011 44th Hawaii International Conference on System Sciences [Internet].
 2011 [cited 2025 Jul 30]. p. 1–10. Available from: https://ieeexplore.ieee.org/document/5718708

- 23. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 2007 Oct 10;298(14):1685–7.
- 24. Héritier H, Vienneau D, Frei P, Eze IC, Brink M, Probst-Hensch N, et al. The association between road traffic noise exposure, annoyance and health-related quality of life (HRQOL). Int J Environ Res Public Health. 2014 Dec 5;11(12):12652–67.
- 25. Blanes-Vidal V. Air pollution from biodegradable wastes and non-specific health symptoms among residents: direct or annoyance-mediated associations? Chemosphere. 2015 Feb;120:371–7.
- 26. Holz NE, Berhe O, Sacu S, Schwarz E, Tesarz J, Heim CM, et al. Early Social Adversity, Altered Brain Functional Connectivity, and Mental Health. Biol Psychiatry. 2023 Mar 1;93(5):430–41.
- Lazarus, R., & Folkman, S. (1984). Stress, Appraisal, and Coping. New York Springer.
 References Scientific Research Publishing [Internet]. [cited 2025 Jul 30]. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1927117
- 28. Berman MG, Jonides J, Kaplan S. The cognitive benefits of interacting with nature. Psychol Sci. 2008 Dec;19(12):1207–12.
- 29. Kaplan S. Meditation, restoration, and the management of mental fatigue. Environment and Behavior. 2001;33(4):480–506.
- 30. Ulrich RS, Simons RF, Losito BD, Fiorito E, Miles MA, Zelson M. Stress recovery during exposure to natural and urban environments. Journal of Environmental Psychology. 1991 Sep 1;11(3):201–30.

- 31. Kellert SR, Wilson EO. The Biophilia Hypothesis [Internet]. 1995 [cited 2025 Jul 30]. Available from: https://philpapers.org/rec/KELTBH
- 32. Berrigan D, McKinnon RA. Built environment and health. Prev Med. 2008 Sep;47(3):239–40.
- 33. Cleland C, Reis RS, Ferreira Hino AA, Hunter R, Fermino RC, Koller de Paiva H, et al. Built environment correlates of physical activity and sedentary behaviour in older adults: A comparative review between high and low-middle income countries. Health Place. 2019 May;57:277–304.
- 34. Stefansdottir H, Næss P, Ihlebæk CM. Built environment, non-motorized travel and overall physical activity. Travel Behaviour and Society. 2019 Jul 1;16:201–13.
- 35. Bolger N, Davis A, Rafaeli E. Diary methods: capturing life as it is lived. Annu Rev Psychol. 2003;54:579–616.
- 36. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annu Rev Clin Psychol. 2008;4:1–32.
- 37. Stone AA, Shiffman S. Ecological Momentary Assessment (Ema) in Behavioral Medicine. Annals of Behavioral Medicine. 1994 Jan 1;16(3):199–202.
- 38. Trull TJ, Ebner-Priemer U. Ambulatory Assessment [Internet]. Rochester, NY: Social Science Research Network; 2013 [cited 2025 Jul 30]. Available from: https://papers.ssrn.com/abstract=2242314
- 39. Rainham D, McDowell I, Krewski D, Sawada M. Conceptualizing the healthscape:

 Contributions of time geography, location technologies and spatial ecology to place and health research. Social Science & Medicine. 2010 Mar 1;70(5):668–76.

- 40. US EPA O. Better Footprint [Internet]. US EPA. 2016 [cited 2025 Jul 30]. Available from: https://19january2021snapshot.epa.gov/smartway/better-footprint
- 41. Schoner J, Chapman J, Fox EH, Iroz-Elardo N, Brookes A, MacLeod KE, et al.

 Bringing health into transportation and land use scenario planning: Creating a National

 Public Health Assessment Model (N-PHAM). J Transp Health. 2018 Sep;10:401–18.
- 42. US EPA O. EnviroAtlas [Internet]. 2015 [cited 2025 Jul 30]. Available from: https://www.epa.gov/enviroatlas
- 43. Vohland K, Lnad-Zandstra A, Ceccaroni L, Lemmens R, Perello J, Ponti M, et al. The Science of Citizen Science. Vohland K, Land-Zandstra A, Ceccaroni L, Lemmens R, Perelló J, Ponti M, et al., editors. Cham: Springer International Publishing; 2021. 395–400 p.
- 44. Rodriguez-Villa E, Torous J. Regulating digital health technologies with transparency: the case for dynamic and multi-stakeholder evaluation. BMC Medicine. 2019 Dec 3;17(1):226.
- 45. Birbeck GL, Wiysonge CS, Mills EJ, Frenk JJ, Zhou XN, Jha P. Global health: the importance of evidence-based medicine. BMC Medicine. 2013 Oct 16;11(1):223.
- 46. Jacka FN, Reavley NJ. Prevention of mental disorders: evidence, challenges and opportunities. BMC Med. 2014 May 9;12:75.
- 47. Huckvale K, Wang CJ, Majeed A, Car J. Digital health at fifteen: more human (more needed). BMC Med. 2019 Mar 18;17(1):62.

- 48. Martin CL, Ghastine L, Lodge EK, Dhingra R, Ward-Caviness CK. Understanding Health Inequalities Through the Lens of Social Epigenetics. Annu Rev Public Health. 2022 Apr 5;43:235–54.
- 49. Brownson RC, Haire-Joshu D, Luke DA. Shaping the context of health: a review of environmental and policy approaches in the prevention of chronic diseases. Annu Rev Public Health. 2006;27:341–70.
- 50. Tiwari J, Tarale P, Sivanesan S, Bafana A. Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds. Environ Sci Pollut Res Int. 2019 Oct;26(28):28650–67.
- Kumar P, Druckman A, Gallagher J, Gatersleben B, Allison S, Eisenman TS, et al. The nexus between air pollution, green infrastructure and human health. Environ Int. 2019 Dec;133(Pt A):105181.
- 52. Kwan MP. How GIS can help address the uncertain geographic context problem in social science research. Annals of GIS. 2012 Dec 1;18(4):245–55.
- 53. van den Bosch M, Ode Sang Å. Urban natural environments as nature-based solutions for improved public health - A systematic review of reviews. Environ Res. 2017 Oct;158:373–84.
- 54. Harari GM, Lane ND, Wang R, Crosier BS, Campbell AT, Gosling SD. Using Smartphones to Collect Behavioral Data in Psychological Science: Opportunities, Practical Considerations, and Challenges. Perspect Psychol Sci. 2016 Nov;11(6):838– 54.

- 55. Wang R, Chen F, Chen Z, Li T, Harari G, Tignor S, et al. StudentLife. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing [Internet]. 2014 [cited 2025 Jul 30]. p. 3–14. (ACM Conferences). Available from: https://dl.acm.org/doi/10.1145/2632048.2632054
- 56. Happiness is greater in natural environments. Global Environmental Change. 2013 Oct 1;23(5):992–1000.
- 57. Mitchell RJ, Richardson EA, Shortt NK, Pearce JR. Neighborhood Environments and Socioeconomic Inequalities in Mental Well-Being. Am J Prev Med. 2015 Jul;49(1):80–4.
- 58. Xu J, Liu X, Li Q, Goldblatt R, Qin W, Liu F, et al. Global urbanicity is associated with brain and behaviour in young people. Nat Hum Behav. 2022 Feb;6(2):279–93.
- 59. Xia CH, Barnett I, Tapera TM, Adebimpe A, Baker JT, Bassett DS, et al. Mobile footprinting: linking individual distinctiveness in mobility patterns to mood, sleep, and brain functional connectivity. Neuropsychopharmacol. 2022 Aug;47(9):1662–71.
- 60. Javadi AH, Emo B, Howard LR, Zisch FE, Yu Y, Knight R, et al. Hippocampal and prefrontal processing of network topology to simulate the future. Nat Commun. 2017 Mar 21;8(1):14652.
- 61. Trela CJ, Hayes AW, Bartholow BD, Sher KJ, Heath AC, Piasecki TM. Moderation of alcohol craving reactivity to drinking-related contexts by individual differences in alcohol sensitivity: An ecological investigation. Exp Clin Psychopharmacol. 2018

 Aug;26(4):354–65.

- 62. Kramer T, Groh G, Stüben N, Soyka M. Analysis of addiction craving onset through natural language processing of the online forum Reddit. PLoS ONE [Internet]. 2024 May [cited 2025 Jul 30];19(5 May). Available from: http://www.scopus.com/inward/record.url?scp=85193752964&partnerID=8YFLogxK
- 63. Zironi I, Burattini C, Aicardi G, Janak PH. Context is a trigger for relapse to alcohol. Behav Brain Res. 2006 Feb 15;167(1):150–5.
- 64. Nees F, Diener C, Smolka MN, Flor H. The role of context in the processing of alcohol-relevant cues. Addict Biol. 2012 Mar;17(2):441–51.
- 65. Ferguson T, Olds T, Curtis R, Blake H, Crozier AJ, Dankiw K, et al. Effectiveness of wearable activity trackers to increase physical activity and improve health: a systematic review of systematic reviews and meta-analyses. Lancet Digit Health. 2022

 Aug;4(8):e615–26.
- 66. Webb CA, Cohen ZD. Progress towards clinically informative data-driven decision support tools in psychotherapy. The Lancet Digital Health. 2021;3(4):e207–8.
- 67. Nature Human Behaviour [Internet]. Nature. 2025 [cited 2025 Jul 30]. Available from: https://www.nature.com/nathumbehav/
- 68. 2021 WHO Health and Climate Change Global Survey Report. 1st ed. Geneva: World Health Organization; 2021. 1 p.
- 69. Campbell-Lendrum D, Neville T, Schweizer C, Neira M. Climate change and health: three grand challenges. Nat Med. 2023 Jul;29(7):1631–8.
- 70. Delgadillo J, de Jong K, Lucock M, Lutz W, Rubel J, Gilbody S, et al. Feedback-informed treatment versus usual psychological treatment for depression and anxiety: a

multisite, open-label, cluster randomised controlled trial. The Lancet Psychiatry. 2018 Jul;5(7):564–72.

- 71. Deguen S, Padilla M, Padilla C, Kihal-Talantikite W. Do Individual and Neighborhood Characteristics Influence Perceived Air Quality? Int J Environ Res Public Health. 2017 Dec 12;14(12):1559.
- 72. Honold J, Beyer R, Lakes T, van der Meer E. Multiple environmental burdens and neighborhood-related health of city residents. Journal of Environmental Psychology. 2012 Dec 1;32(4):305–17.

Figure 1. *StreetMind* app visualization, functions, and flowchart. Registration components and core features: a) Introduction slides, b) User role and user code, c) General app components. Modules: d) Information on spots and routes (where and how are individuals moving through and behaving in their environment and how they think and feel about it), e) Daily specificities on health-related states and behaviours, f) Geo-recording, updating and adding of special circumstances and events, g) flowchart illustrating the modular structure and data flow in *StreetMind*.

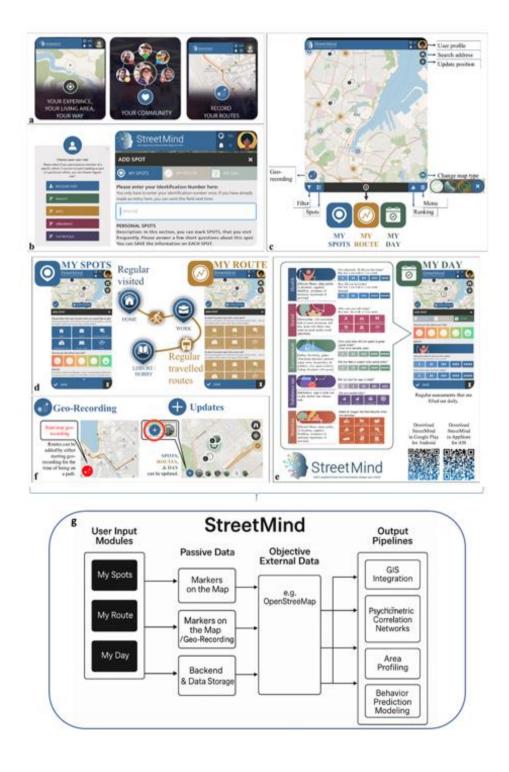


Figure 2. *StreetMind* citizen science related features: a) Advanced graphical solutions (here: different map types for spots, routes and ratings as examples), b) Interactive and motivational tools (here: examples of social (rankings, chats, followers), performance-related (rankings), environment-related (pictures) and rating-related (timelines of entries) aspects).

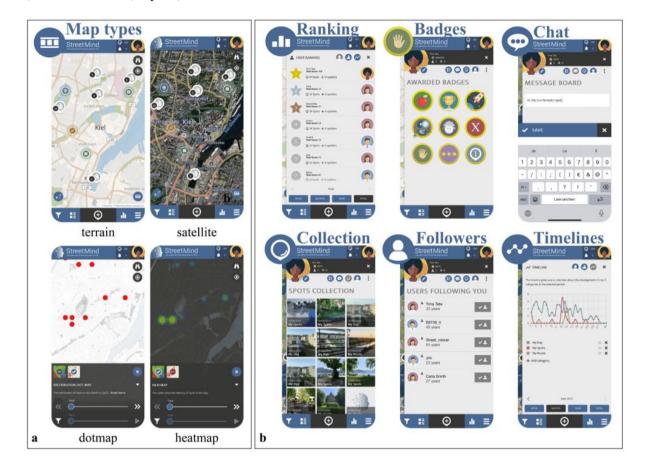


Figure 3. Overview of variation between individuals in the rating data across items *My Spots, My Routes* and *MyDay* module from *StreetMind*.

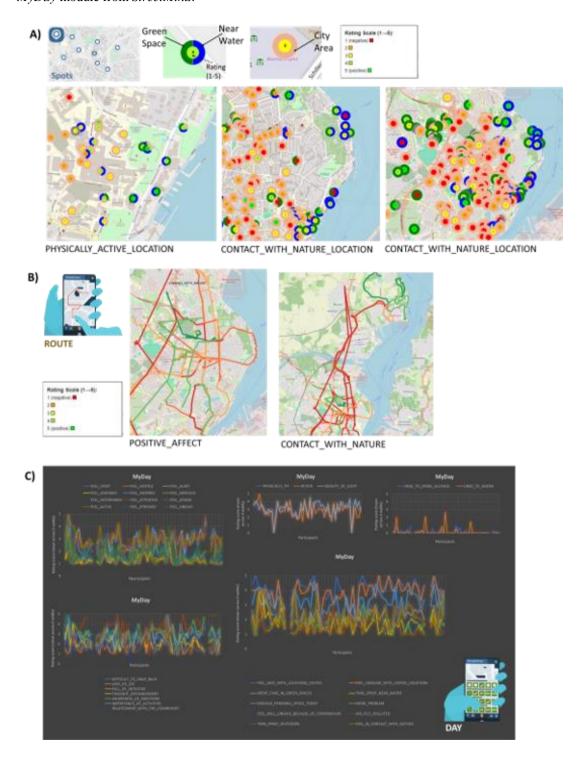


Figure 4. *StreetMind* exemplified application models for a)-f) fine-grained subjective information and variations of individual affect and perceptions of and behaviors in the environment (here: mood ratings depending on regular or specific days, information on environmental exposure during regular or specific days, mood- and environmental-related networks, internal and external co-determinants with respect to specific characteristics of regular and special days), g) fine-grained subjective information and variations of specific local areas (here: environmental feature-related networks for city and regions areas).

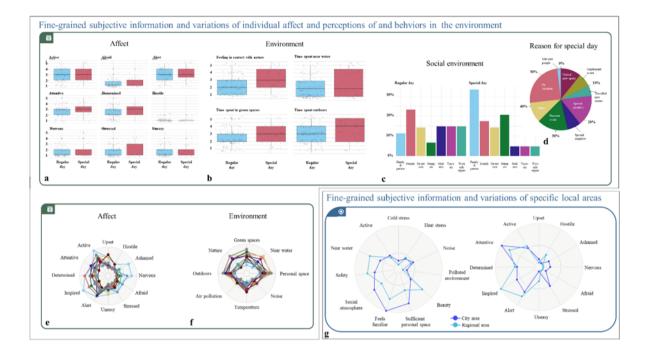


Figure 5. *StreetMind* exemplified application models for a) "hotspots" of subjectively described environments and the link to their objective markers, (here: heat maps of location-specific densities and area and spot characteristics), b) subjectively informed health-environmental networks of spots and routes, (here: examples of networks of behavioral pathways as an interaction between routes, spots, transportations and individual ratings, c) spatial (here: based on distance measures) and emotional connections (here: based on ratings).

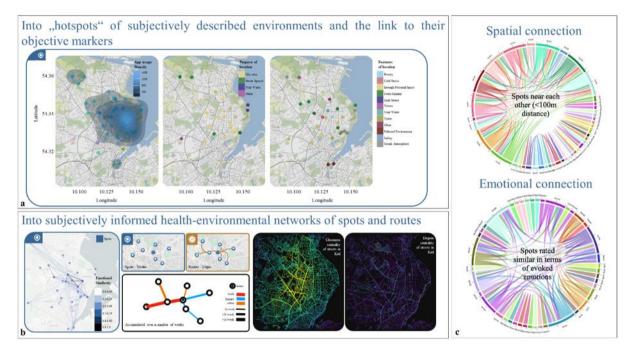


Figure 6. *StreetMind* exemplified application models for a) interactions between subjective daily feelings, b) interactions between these feelings and feelings and perceptions within the environment.

