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ABSTRACT

The Hanna Neumann conjecture (HNC) for a free group G predicts that x(U NV) <
X(U)x(V) for all finitely generated subgroups U and V', where X(H) = max{—x(H), 0}
denotes the reduced Euler characteristic of H. A strengthened version of the HNC
was proved independently by Friedman and Mineyev in 2011. Recently, Antolin and
Jaikin-Zapirain introduced the L?-Hall property and showed that if G is a hyperbolic
limit group that satisfies this property, then G satisfies the HNC. Antolin and Jaikin-
Zapirain established the L?-Hall property for free and surface groups, which Brown
and Kharlampovich extended to all limit groups. In this paper, we prove the L?-Hall
property for graphs of free groups with cyclic edge groups that are hyperbolic relative
to virtually abelian subgroups. We also give another proof of the L2-Hall property
for limit groups. As a corollary, we show that all these groups satisfy a strengthened
version of the HNC.

1. Introduction

A group G has the Howson property if, for all finitely generated subgroups U,V < G, the inter-
section U NV is finitely generated. The property is named after Albert G. Howson, who proved it
for free groups in [How54|. Shortly thereafter, Hanna Neumann [Neu57] quantified this property
by proving that

tk(UNV) — 1< 2k(U) — 1)(tk(V) — 1),

whenever U and V are finitely generated subgroups of a common free group, and she conjectured
that the factor of 2 on the right-hand side of the inequality could be dropped. This became known
as the Hanna Neumann conjecture (HNC), and was the beginning of a fruitful line of research
concerning these type of inequalities [Dic94, Tar96, Minl1]. As we shall see, such inequalities
are not limited to free groups.

Walter Neumann [Neu90| formulated a stronger version of the HNC, described in
Conjecture 1.1. Given a group G with a finite classifying space, we denote by X(G)=
max{—x(G), 0} the reduced Euler characteristic of G.
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THE HANNA NEUMANN CONJECTURE FOR GRAPHS OF FREE GROUPS

CONJECTURE 1.1 (The strengthened Hanna Neumann conjecture (SHNC)). Let U and V be

finitely generated subgroups of a free group G. Let T be a complete set of representatives for
the double (U, V')-cosets in G. Then

S XU AVY <XORV). (1.1)
teT

The statement of Conjecture 1.1 makes sense whenever G is a group such that all of its
finitely generated subgroups are of finite type (so that Y (H) is defined for all finitely generated
H < G). Conjecture 1.1 was resolved independently by Friedman [Fril5] and Mineyev [Minl2].
More recently, Jaikin-Zapirain [J-Z17] gave an alternative proof which also applies to free pro-
p groups G. Later on, groups of dimension 2 were shown to satisfy Conjecture 1.1, such as
Demushkin groups by Jaikin-Zapirain and Shusterman [J-ZS19] and surface groups by Antolin
and Jaikin-Zapirain [AJ-Z22]. An important aspect of the latter paper is that the authors intro-
duce the L?-Hall property as an intermediate step towards establishing Conjecture 1.1 for surface
groups. This opened up the possibility of showing that the SHNC holds for many more classes of
groups.

We briefly recall the L2-Hall property mentioned above before stating our results. Let U(G)
denote the algebra of affiliated operators of a group G. Then G is said to have the L?-Hall
property if for all finitely generated subgroups H < G there exists a finite-index subgroup G < G
containing H such that the kernel of the corestriction map

Hi(H;U(G)) — H1(G1;U(G))

has zero U (G)-dimension (see Definitions 3.2 and 3.5 for more details). This property is named
L?-Hall because of its similarity with the local retractions property which the M. Hall property
[Hal49] established for free groups: if F' is free and H is a finitely generated subgroup, then there
is a finite-index subgroup G < F' containing H and a retraction G — H. The local retractions
property was extended to surface groups by Scott [Sco78] and subsequently to all limit groups
by Wilton [Wil08g].

Antolin and Jaikin-Zapirain proved that free and surface groups have the L?-Hall prop-
erty [AJ-Z22, Theorem 4.4] and showed that if G is a hyperbolic limit group that has the
L2-Hall property, then Conjecture 1.1 holds for G' [AJ-Z22, Theorem 1.3]. Recently, Brown and
Kharlampovich [BK23, Corollary 28] proved that the L2-Hall property holds for limit groups
and hence that Conjecture 1.1 holds for hyperbolic limit groups G.

The main result of this paper establishes the L?-Hall property for toral relatively hyper-
bolic graphs of free groups with cyclic edge groups (and hence Conjecture 1.1 for these groups
(Corollary C)). This is a class of groups that contains not only free groups, surface groups, and
some limit groups, but also groups that do not fit into these classes, like the one-relator group
with presentation (a, b, c| a?b?c3) (see Remark 1.2).

THEOREM A (Theorem 4.9). Let G be a group splitting as a finite graph of finitely generated
free groups with cyclic edge groups. If G is hyperbolic relative to virtually abelian subgroups,
then G satisfies the L?-Hall property.

We can also prove the L2-Hall property for the class of limit groups. Perhaps the most
famous characterisation of this class is the one confirmed by Sela [Sel06] in his solution of
Tarski’s problem on classifying finitely generated groups with the same existential theory as a
free group. Kharlampovich and Miasnikov also made powerful advances in the structure theory
of limit groups, proving that limit groups are exactly the finitely generated subgroups of iter-
ated centraliser extension (ICE) groups [KM98]; this is the smallest class of groups containing
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all finitely generated free groups that is closed under extending centralisers (Definition 5.1).
Wilton [Wil08] used this hierarchy in his proof of the local retractions property for limit groups.
We build on the methods of Wilton to establish the L2-Hall property for limit groups in our next
result, giving an alternative proof of [BK23, Corollary 28]. The potential interest in revisiting
the L2-Hall property for limit groups is to give an inductive argument that could work for more
general finite abelian hierarchies (see Conjecture 1.3 below).

THEOREM B (Theorem 5.7). Limit groups satisfy the L?-Hall property.

Antolin and Jaikin-Zapirain’s proof that the L?-Hall property implies the SHNC for
hyperbolic limit groups also applies to toral relatively hyperbolic graphs of free groups with
cyclic edge groups and all limit groups. To see this, one needs to incorporate recent results
of Minasyan [Min23| and Minasyan and Mineh [MM22] on the Wilson—Zalesskii property and
double coset separability, which were not available to Antolin and Jaikin-Zapirain. We review
how all these ingredients fit together in §6. Thus, the following result is a consequence of
Theorems A and B.

COROLLARY C (Corollary 6.7). Suppose that G is either a limit group or that it splits as a

finite graph of free groups with cyclic edge groups that is hyperbolic relative to virtually abelian
subgroups. Then G satisfies the SHNC.

The proofs of Theorems A and B are inspired by Wise’s proof of subgroup separability in
graphs of free groups with cyclic edge group [Wis00] and by Wilton’s proof of the local retractions
property in limit groups [Wil08], respectively. In the proof of Theorem A, we make crucial use
of the following result at several points.

THEOREM D (Theorem 3.17). Let G be a finitely generated locally indicable group with

cd(G) =2 and bg)(G) = 0. Suppose that G has a finite-index subgroup that satisfies the L?-Hall

property. Then G satisfies the L?-Hall property.

We give one of the reasons why Theorem D (or, in fact, the stronger version that we prove
in Theorem 3.17) is needed in our proof of Theorem A. Wise showed in [Wis00, Theorem 4.18]
that subgroup separable (in particular, toral relatively hyperbolic) graphs of free groups with
cyclic edge groups have finite-index subgroups that are fundamental groups of clean graphs of
graphs with S* edge spaces (here ‘clean’ means that the edge maps are embeddings). In Wise’s
argument, it suffices to work with clean graphs of spaces because virtually subgroup separable
groups are, again, subgroup separable. However, in general, it is unclear whether the L?-Hall
property passes to finite-index overgroups. Thankfully, Theorem D implies that this is true in
our setting. Note that not all subgroup separable graphs of free groups with cyclic edge groups
are L2-Hall; for instance, Fb x Z is not L-Hall.

Remark 1.2. There are conjectures that relate the classes of groups of Theorems A and B. Wise
asked whether graphs of free groups with cyclic edge groups are virtually limit groups if and
only if they do not contain F» x Z (see [Wis18, Problem 1.5]). If this were true, then Theorem D,
together with the L2-Hall property for limit groups (as proved in [BK23] or Theorem B) would
imply Theorem A. This is the case for the hyperbolic one-relator group G = (a,b, c|a?bc3),
which is a non-limit group that falls under the assumptions of Theorem A, while it is also
virtually limit by [Wis18].

It is desirable to have a class of groups satisfying the SHNC containing both the graphs of
free groups under consideration and limit groups, as this would provide a unifying framework
for our results. We conclude this introduction by proposing such a class. Let Cy be the class of
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THE HANNA NEUMANN CONJECTURE FOR GRAPHS OF FREE GROUPS

groups containing only the trivial group. Inductively, we define C,41 to be the class of groups
G such that either G is virtually in C,, or G has the form Hxy4 (respectively, H x4 K), where H
(respectively, H and K) belong to C,, and A is a finitely generated free abelian group. We say
that G admits a finite abelian hierarchy if it lies in C, for some n.

CONJECTURE 1.3. Let G be a group that admits a finite abelian hierarchy. Suppose that G

is torsion-free and hyperbolic relative to virtually abelian subgroups. Then G is L?-Hall and
satisfies the SHNC.

The inductive proof of Theorem B already suggests that the argument could carry over into
Conjecture 1.3.

1.1 Organisation of the paper

In §2, we recall some standard notions that will appear throughout the paper, such as graphs
of groups (and spaces), group homology, and, in particular, L?-homology of groups. In §3, we
discuss the L?-Hall property and discuss both examples and non-examples. The main result of
this section is Corollary 3.20, which gives sufficient conditions to conclude that a group with an
L?-Hall subgroup of finite index is itself L?-Hall. This result is crucial in the proof of Theorem A,
which is given in §4. We prove Theorem B in §5 by adequately modifying Wilton’s argument
on the local retractions property for these groups. Finally, in §6, we review the arguments of
Antolin and Jaikin-Zapirain to explain how Corollary C follows from our results combined with
recent advances of Minasyan and Mineh on double coset separability.

2. Preliminaries

2.1 Graphs of groups and spaces

Graphs of groups were introduced as combinatorial objects in [Ser77]. In [SW79], Scott and Wall
introduced graphs of spaces in order to study graphs of groups topologically. Since we will use
both viewpoints in this paper, we take the time to introduce them here.

Throughout this subsection, I' denotes a directed graph, and Vert(I') and Edge(I") denote
the vertex and edge sets of I, respectively. For any edge e € Edge(T"), let o(e) € Vert(I') and
t(e) € Vert(T") denote the origin and terminus of e.

DEFINITION 2.1 (Graph of groups). A graph of groups G consists of the following data:

(1) a connected directed graph T', called the underlying graph of G;
(2) groups G, and G, for every vertex v € Vert(I') and edge e € Edge(T);
(3) monomorphisms e o: Ge — Goe) and @er: Ge — Gy for every edge e € Edge(y).

The groups G, and G, are called the vertex groups and edge groups of G. The monomorphisms
©eo and .+ are called the edge maps of G.

We now review two ways to look at the fundamental group of a graph of groups.

DEFINITION 2.2 (Based fundamental group). With the same notation as in Definition 2.1, let
vo € Vert(I') be a base vertex and for each e € Edge(y) introduce the formal symbol t.. Let P(G)
be the group freely generated by the vertex groups G, and the symbols t. subject to the relations
teper(g)to! = peo(g) for e € Edge(I') and g € G.. The fundamental group of the graph of groups
based at vy, denoted by 71(G, vp), is the subgroup of P(G) consisting of the elements that can
be represented as words gotggi - - - tg" gn, Where g; € Gy(c,), where
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€ Fiey ifeg;=1
€i::l:17 gi Heo) 1 ! gngnEva
gi € Fo(e,i) if g, =—1,

and where (e, ..., e,) forms a (not necessarily directed) loop.

An equivalent way to look at the fundamental group is explained in the following defini-
tion. This will be used when considering splittings of G over simpler subgraphs of groups as in
Proposition 3.9.

DEFINITION 2.3 (Fundamental group relative to a spanning tree). With the notation of
Definition 2.1, let T be a spanning tree of I'. The fundamental group of G relative to T', denoted
by m1(G,T), is the group freely generated by the groups G, for all v € Vert(I'), and the formal
symbols ¢, for all e € Edge(I'), subject to two types of relations: te¢eo(z)to! = ¢ger(z) for all
e € Edge(T") and z € G.; and t. =1 for all e € Edge(I") \ Edge(T"). The two definitions coincide
by [Ser77, Proposition 20, Chapitre I, §5].

A graph of groups is finite if its underlying graph is finite. If G is isomorphic to the funda-
mental group of a graph of groups, we say that G splits as a graph of groups. In this situation,
we will often abuse terminology and say that G is a graph of groups. If the vertex and edge
groups of a graph of groups G lie in classes C and D, respectively, then we will say that G (or
its fundamental group) is a graph of C groups with D edge groups. We will be mostly interested
in graphs of free groups with cyclic edge groups in this paper. A notable subclass which will
appear is the class of generalised Baumslag—Solitar groups, which are the groups that split as
finite graphs of Zs with Z edge groups.

DEFINITION 2.4. Let G = (G, G;T') be a graph of groups. A graph of groups H = (H,, He; T)
is a subgraph of groups of G if:

(1) there is an injection T < T" (via which we think of T as a subgraph of T');

(2) there are inclusions f,: H, — G, and f.: Ho — G, for all vertices and edges of T (via
which we think of every H, (respectively, H.) as a subgroup of G, (respectively, G.));

(3) He = Hye)NGe and He = Hy(ey N Ge for every e € Edge(T); and

(4) the diagrams

H, —— Ho(e) H, —— Ht(e)
\[fe \[ﬁm) and \[fe jft(e)
Ge ——> Go(e) Ge — Gt(e)

commute for all e € Edge(Y'), where the horizontal maps are the edge maps of the respective
graphs of groups.

LEMMA 2.5 [Bas93, Corollary 1.14]. If G is a graph of groups and H is a subgraph of groups,
then there is a canonical injective homomorphism 71 (H,v) — m1(G,v) for any vertex v in the
underlying graph of H.

Finally, note that if H is an arbitrary subgroup of a graph of groups G, then H inherits a
graph of groups structure, which comes from the action of H on the Bass—Serre tree associated
to G (see [Ser77, Théoreme 13, Chapitre I, §5]).

We will often switch between the graph of groups and graph of spaces viewpoint, the latter
of which we introduce now.
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THE HANNA NEUMANN CONJECTURE FOR GRAPHS OF FREE GROUPS

DEFINITION 2.6 (Graph of spaces). A graph of spaces X consists of the following data:

(1) a connected directed graph I', called the underlying graph of X;

(2) based connected CW complexes (X, ) and (X, x.) for every vertex v € Vert(I') and edge
e € Edge(T);

(3) based mi-injective continuous maps feo: Xe — Xo(e) and fer: Xe —> Xy, for every edge
e € Edge(y).

The spaces X, and X, are called the vertex spaces and the edge spaces of X. The maps f., and
fe, are called the edge maps. The geometric realisation of X is the quotient of the space

X:( | | Xv)l_l< | | Xe><[0,1}>,

veVert(I") ecEdge(T")

by the relations feo(x) ~ (z,0) and ¢, 1(z) ~ (z,1) for all z € X, and all e € Vert(E). The fun-
damental group of the topological space X’ based at x,,, denoted by 71 (X, x,,), is defined to be
m1(X, Ty, ). When no confusion arises, we will usually refer to the geometric realisation of X’ as
a graph of spaces.

There is a correspondence between graphs of spaces and graphs of groups. If G is a graph
of groups, then a graph of spaces X can be constructed as follows. For each v € Vert(I') and
e € Edge(T'), let X, = K(Gy, 1) and X, = K (G, 1), and let f., and fct be maps inducing ¢,
and ¢et. Then there is an isomorphism between (G, vg) and (X, z,,) (which depends on
the choices of vy and z,, up to conjugation). Similarly, given a graph of spaces, we can form a
graph of groups with vertex groups m (X, x,), edge groups 71 (X, z¢), and edge maps (fe,0)«
and (fet)s.

One of our main results concerns graphs of groups where all the vertex groups are free groups
and all the edge groups are infinite cyclic. Any such group will be referred to as a graph of free
groups with cyclic edge groups. Such groups are realised as the fundamental group of a graph of
graphs with S' edge spaces, by which we understand a graph of spaces where every vertex space
is a graph and every edge space is a copy of the circle S*.

The notion of a precovering will appear throughout §4 and 5, so we recall it here. It shows up
naturally when completing a compact subspace of a covering space to a finite-sheeted covering.

DEFINITION 2.7. A map between (the geometric realisations of) graphs of spaces X' — X is
a precovering if it is locally injective, all the maps X — X f(e) and X, — X f(v) are covering
maps, and all the diagrams

Xe — X Xe — X{
| o= |
Xpe) — Xf(o(e)) Xie) — Xse(e))

commute. The domain X’ is called a precover.

A precovering X' — X is a covering if and only if all the elevations of edge maps of X to
X' are edge maps of X’. The fact that covering maps induce injections on fundamental groups
also applies to precoverings.

LEMMA 2.8 [Wil08, Proposition 2.19]. A precovering X' — X induces an injection 71 (X') —
m1(X).
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We will also require subgraphs of spaces, which induce subgraphs of groups in the sense of
Definition 2.4.

DEFINITION 2.9. Let X = (X,, X¢; ') be a graph of spaces. A graph of spaces Y = (Y, Ye; 1) is
a subgraph of spaces of X if:

(1) there is an injection Y < I' (via which we think of T as a subgraph of I);

(2) there are mi-injective inclusions f,: Y, < X, and f.: Y, — X, for all edges and vertices of
T (via which we think of every Y,, (respectively, Y;) as a subspace of X, (respectively, X.));

(3) m(Ye) = m1(Yo(e)) Nm1(Xe) and 1 (Ye) = m1(Yy(e)) N 71 (Xe) for every edge e € Edge(T); and

(4) the diagrams

Yo —— Yoo Yo —— Yo
\[fe \[fo(e) and \[fe \[ft(e)
Xe — Xo(o) Xe — Xy(e)

commute for all e € Edge(Y), where the horizontal maps are edge maps in the corresponding
graphs of spaces.

We close by remarking that if X decomposes as a graph of spaces and Y — X is a covering
space, then Y inherits a graph of spaces structure where every vertex (respectively, edge) space
of Y covers some vertex (respectively, edge) space of X.

2.2 Homology of groups

Unless stated otherwise, all modules are assumed to be left modules. Let R be a ring. Given a
right R-module M and a left R-module N, we can define the abelian group Torf(M, N). By
definition, Torf (M, N)= M ®r N as an abelian group. In general, the functors Tor(M, —) are
the derived functors of M ®p —. More concretely, we choose a projective resolution P, — N —»
0 and define Tor (M, N) := H,,(M g P,).

Let S be another ring. If M is additionally an (S, R)-bimodule, then Tor(M, N) is naturally
a left S-module for all n. Similarly, if N is an (R, S)-bimodule, then Torf(M, N) is naturally
a right S-module. A standard tool we will use is the long exact sequence in Tor associated to
a short exact sequence of modules. Let 0 —> N1 —> Ny —> N3 — 0 be a short exact sequence
of R-modules and let M be an (S, R)-bimodule. Then there is a long exact sequence of left
S-modules of the form

o ol (M, Ny)

[» Tor (M, Ny) —— Torf{(M, N) —— Torf{(M, N3) —— -

A standard reference for this material is [Wei94, Chapters 2 and 3].

Let G be a group and let M be an R[G]-module. As in [Bro94, Chapter III, Section 2], the
n-dimensional homology of G with coefficients in M is given by

H,(G; M) := TorFICl(R, M),

where R denotes the trivial right R[G]-module. Chiswell’s Mayer—Vietoris exact sequence will
be a very useful tools when establishing the L?-Hall property for certain graphs of groups.
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THE HANNA NEUMANN CONJECTURE FOR GRAPHS OF FREE GROUPS

THEOREM 2.10 [Chi76, Theorem 2]. Let R be a ring, let G be a graph of groups with underlying
graph I and G =71(G), and let M be an R[G]-module. Then there is a long exact sequence

Hn+1(G; M) j

Given a field K and a group G, denote by I the augmentation ideal of the group ring K[G]
(in practice, this notation will present no ambiguity as the choice of coefficient field K will be
clear from the context). Given a subgroup H < G, we denote by I§ the left K[G]-submodule of
I generated by Iy. In addition, even if H is not normal in G, we will write K[G/H] to refer
to the left K[G]-module of left cosets of H in G. The following canonical isomorphisms will be
useful later.

LEMMA 2.11 [J-Z23, Lemma 2.1]. Let T'< H < G be subgroups. Then the following assertions
hold.

(1) The canonical map K[G) ® ) Iy — If; that sends a®b to a-b for all a € K|G] and
be Iy is an isomorphism of left K[G]-modules.

(2) The canonical map K[G) @) (In/1#) — 1§ /1% that sends a @ (b+ If) to ab+ I§ for
all a € K[G] and b € Iy is an isomorphism of left K[G|-modules.

(3) The kernel of the canonical map of K|G]|-modules K[G/T|— K|G/H]| is naturally
isomorphic to I$ /IS,

2.3 Hughes-free division rings and L?-Betti numbers

Let G be a locally indicable group and let K be a field. An embedding ¢: K[G] < D of the
group algebra K[G] into a division ring D is called Hughes-free if the following conditions hold.

(1) The image ¢(K[G]) generates D as a division ring.

(2) Let H <G be a finitely generated subgroup and let f: H — Z be an epimorphism with
kernel N, and let t € H map to a generator of Z under f. Let Dy denote the division
closure of @(K[N]). Then {¢(t'):i € Z} C D is linearly independent over Dy.

By a theorem of Hughes, if a Hughes-free embedding of K[G] exists, then it is unique up
to K[G]-isomorphism [Hug70]. Thus, if K[G] has a Hughes-free embedding, then we denote the
division ring by D[] and think of K[G] as a subset of D . We will call D) the Hughes-free
division ring of K[G]. Note that if H < G is any subgroup, then the division closure of K[H] in
Dk{q is isomorphic to the Hughes-free division ring D p]. The existence of Hughes-free division
rings has been established for many classes of locally indicable groups, and, in particular, for all
locally indicable groups when the ground field K has characteristic zero.

PROPOSITION 2.12. Let G be locally indicable. A Hughes-free embedding K |G| — D¢ exists if

(1) the field K is of characteristic zero, or
(2) G is residually (locally indicable and amenable) or virtually compact special.

Proof. It K is of characteristic zero, then the existence of D/ is a consequence of the reso-

lution of the Atiyah conjecture for locally indicable groups [J—ZL—A20, Corollary 1.4]. If K is
of arbitrary characteristic, then a Hughes-free embedding K[G] — D¢ exists for G residually
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(locally indicable and amenable) by [J-Z21, Corollary 1.3] and for G virtually compact special
by [FS-P23, Theorem 1.2]. O

The groups we will be working with in this paper are locally indicable and virtually compact
special, so we will always assume that any group algebra K[G] has a Hughes-free division ring

LEMMA 2.13. Let G be a finite graph of finitely generated free groups with cyclic edge groups.
If K is a field of characteristic zero, then a Hughes-free embedding K[G] < Dg|q) exists. If we
assume that G is subgroup separable, then a Hughes-free embedding K |G| < Dg|q) exists for
arbitrary K.

Proof. First note that G is locally indicable, a fact which follows easily from [How82,
Theorem 4.2]. Thus if K is of characteristic zero, then a Hughes-free embedding K[G]—
Di|q) exists by Proposition 2.12(1). If G is subgroup separable, then G is virtually com-
pact special [MM22, Corollary 2.3] and thus a Hughes-free embedding K [G] — Dk exists by
Proposition 2.12(2). O

Remark 2.14. Let G be a graph of free groups with cyclic edge groups. It is known that K[G]
embeds in a division ring by [FS-P23, Theorem 1.3], but it is not known whether the embedding
is Hughes-free. Jaikin-Zapirain conjectures that Hughes-free embeddings of K[G] exist for all
locally indicable groups G and all fields K [J-Z21, Conjecture 1].

Hughes-free division rings provide powerful homological invariants. Recall that modules over
a division ring are automatically free modules and that they have a well-defined dimension.
Thus, if M is a K[G]-module, we can define its Dy q-dimension by

dimDK[G] M .= dimDK[G] (DK[G] ®K[G’] M)
and more generally D/ -Betti numbers by
BRI (M) = dimp, o, TorK (D), M). (2.1)

We will not need these D g-Betti numbers of general K [G]-modules until §6. Note that
6§[G](M) =dimp,;, M. When K =C, we will write 5&2)(M) instead of Bf[G}(M). Setting K to

be the trivial K[G]-module, we obtain homological numerical invariants of the group G:
bK19(@) == BEIC(K) = dimp, ., Tork N (Dy (), K). (2.2)

We will refer to these as the Dyg-Betti numbers of G.

The properties listed in the following proposition will be used throughout the paper. We
emphasise point (1) below, which states that when K =C, the Diq-Betti numbers coincide
with the L?-Betti numbers of G.

PROPOSITION 2.15. Let G be a locally indicable group and let K be a field such that a Hughes-
free embedding K[G] < Dkjq) exists.

1) If K =C, then bf[G](G) = bg)(G) for all integers n > 0.

2) If G is non-trivial, then b “)(G) =0, otherwise b \“N(G) = 1.

3) If G is of finite type, then x(G) = Z;’io(—l)ibf{m (@).

4) Let H<G be a subgroup of finite index. Then Dy g @k K[G]=Dgiq as

(D(m), K[G])-bimodules. Consequently, bfl{[H}(H) =|G: H| -bf[G](G) for all n.

(
(
(
(
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(5) Let k>0 be an integer, let H be a subgroup of G and let N be a left K[H|-module. There
is an isomorphism of left Dyg-modules of the form

~ G
Torf ™ (D, N) = Tory (D, K[G] @y N).
In particular, if N = K is the trivial K[H]-module, then
b M H) = dimp,,, Torg Y (Dieiey, K[G/H)).
(6) Let k>0 be an integer, let H be a finite-index subgroup of G, and let M be a left K[G]-
module. There is an isomorphism of left D [gj-modules of the form
~ G
'Torfwfﬂ(Z)quﬂ,_Af)::'Torfﬁ ](Z)ng],ﬂf).
K[G] K@

(7) If G is free on m > 1 generators, then b; " (G)=m —1 and b, " (G) =0 for all n# 1. If

G is amenable, then pK(C] (G) =0 for all n.

Proof. Statement (1) follows from [J-ZL-A20, Theorem 1.1], while (2) can easily be proven
directly from the definitions. To prove (3), let

0— K[G]"* — K[G]""* — -+ — K[G]"" — K —0
be a resolution of the trivial K[G]-module K by finitely generated free K[G]-modules. By def-
inition, x(G) = Zgzo(—l)iri. After tensoring with Dgg) and omitting the rightmost term, we
obtain the chain complex

00— D%[G]

Td—1

K[G}—>-~-—>DT0

—D K[G]

— 0,

whose boundary maps we denote by 0;: D%[G] —>D;(fé] Since D is a division ring, the
rank-nullity theorem holds, and therefore there is a decomposition

DIt o ker 9 @ imd; = Tory (D, K) @ imdysy & imd;.

[G]

Since, by definition, biK[G](G) =dimp, Torf{[G] (Dk(a); K), we obtain

(@)=Y (-1 @),
i=0
Statement (4) is a direct consequence of [Gra20, Corollary 8.3] (for a detailed proof see [Fis24,
Lemma 6.3]). The isomorphism of (5) follows from a standard application of Shapiro’s lemma on
the second entry of the Tor functor. The second equation of (6) follows from setting the trivial
K[H]-module N = K and from noting that, as left K[G]-modules, K[G]®gy K= K[G/H].
Similarly, we apply Shapiro’s lemma to the first entry of Tor to obtain the isomorphism

TorkK[H] (DK[H]a M) = TOI'kK[G] (DK[H] ®K[H] K[G], M)

Now (6) follows from (4) and the previous isomorphism. Finally, for (7), the claim about free
groups can be proved easily using (2) and (3). The claim about amenable groups follows from
[HK21, Theorem 3.9(6)] (only the case K =Q is treated there, but the case with K arbitrary
has the same proof). O

3. L2-independence and the L?-Hall property

In this section, we discuss the L?-Hall property and the concept of L?-independent subgroups
in more detail. We then study various combinatorial situations (in terms of graphs of groups)
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that provide L?-independent subgroups (which we shall need in the proofs of Theorems A and
B) and show in Theorem 3.17 that the L?-Hall property passes to finite-index overgroups in our
setting (as anticipated in Theorem D).

Convention 3.1. In this section, K always denotes a field. Apart from in some isolated exam-
ples, all groups appearing are assumed to be locally indicable and we assume that their group
algebras over K have Hughes-free embeddings (recall that this is the case when char K =0 by
Proposition 2.12).

3.1 Definitions and basic properties

The notion of L?-independence and the L2-Hall property were introduced by Antolin and Jaikin-
Zapirain [AJ-Z22] in connection with proving that surface groups satisfy the SHNC. We recall
these definitions.

DEFINITION 3.2. Let H be a subgroup of G. Consider the natural surjection of left K [G]-modules
K[G/H] — K. This induces a natural map

Tor N Dy, K[G/H]) — Tort YDy, K).

We say that H is Dgg)-independent if the map is injective. When K = C, we will say that H is
L?-independent in G.

The injectivity of the above map depends on the choice of embedding of H into G. For exam-
ple, the embedding f: F(a,b,c) — G = F(x,y, z) defined by f(a) =22, f(b) =y, and f(c) =¢®
does not lead to an L?independent subgroup of G. For this reason, the following definition will
be useful later.

DEFINITION 3.3. Given a monomorphism f: H — G, we will say that f is Dy g-injective if
f(H) is Dg|g-independent in G (or L2-injective when K = C).

By [AJ-Z22, Proposition 4.2], H is Dg/g-independent in G if and only if the corestriction
map H1(H; Dg(g)) — Hi(G; Dg|q) is injective. So Definition 3.2 is the natural generalisation
of Antolin and Jaikin-Zapirain’s definition of L2-independence [AJ-Z22, Section 4] for other
division rings D). Working in this greater generality will uniformly include various cases of
interest while adding no technical difficulty.

The augmentation ideal corresponding to a subgroup captures a lot of structure of the sub-
group and, hence, the following proposition provides a useful reformulation of the notion of
Dk g)-independence.

PROPOSITION 3.4 [AJ-Z22, Corollary 4.3]. Let H < U < G be finitely generated subgroups and

suppose that bf[G}(G) =0. Then H is Dgjg-independent in U if and only if b{{m (I5/15)=0.

DEFINITION 3.5. We say that a group G is Dg(g-Hall or has the Dyg-Hall property if for
every finitely generated subgroup H < G there exists a finite-index subgroup G1 < G such that
H is Dg|g-independent in G;. If K =C, we say that G is L?-Hall or has the L?-Hall property.

Remark 3.6. Note that the L2-Hall property can be defined for all groups, while the Dxiar-
Hall property only makes sense for locally indicable groups for which a Hughes-free embedding
K[G] = Dg|q) exists. Indeed, if H < G and U(G) is the algebra of affiliated operators of G, then
we say that H is L?-independent in G if

dimy(q ker (H1(H; U(G)) — H1(G;U(G))) =0, (3.1)
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and that G has the L2-Hall property if every finitely generated subgroup of G is L?-independent
in a finite-index subgroup of G. These definitions agree with Definitions 3.2 and 3.5 by [AJ-Z22,
Lemma 4.1]. We mention this because we will discuss the L?-Hall property for some non-locally
indicable groups later in this section. On the other hand, an advantage of working with the
D )-Hall property is that the condition that Hi(H; D) — H1(G; Dig)) be injective is
somewhat less awkward than the condition in (3.1).

The following hereditary feature of the L?-Hall property will be useful later. Recall that a
ring homomorphism R — S is (right) faithfully flat if for every morphism M — N of (right)
R-modules, M — N is injective if and only if M ® p S — N ®pr S is injective. There is the
corresponding concept of left faithful flatness, which is defined analogously. If D; — D5 is a
morphism of division rings, then it is necessarily injective and (left and right) faithfully flat.
Indeed, consider a morphism of Dj-modules M — N. Since D; is a division ring, Dy = @&;D;
for some index set I. From the commutative diagram

M ®p, Dy —— N @p, D2

o o

OM— DN
it follows at once that M — N is injective if and only if M ®p, Do — N ®p, D3 is.

LEMMA 3.7. The Dy g-Hall property passes to subgroups.

Proof. Let G be a Dg-Hall group and let H <G be a subgroup. Let U < H be a finitely
generated subgroup. Then there is a subgroup Gy < G of finite index such that the horizontal
map in the diagram

Hyi(U; D)) Hi(Go; Dkiay))
\ /

Hy(GoN H; Dgay))

is injective. But then Hy(U;Dg(q,)) — H1(Go N H; Dk q,)) is injective. Since extensions of
division rings are faithfully flat, the commutative diagram

H1(U; Dia,)) » Hi(GoN H; Dka,))

[a) [~23

DK[GO]D ®  H1(U; Dgigonn) — DK[GO]D ®  Hi(GoNH; Diig,na))

K[GoNH] K[GoNH]
implies that H1(U; Dyig,nm)) — H1(Go N H; Dyjg,nm) is injective. Hence, H has the L?-Hall
property. O

We now collect various instances where we understand L2-independent subgraphs of groups.
The first such instance is the following lemma, which will be useful when establishing the L2-Hall
property for graphs of free groups with cyclic edge groups.

LEMMA 3.8. Let Y be a subgraph of groups of Z, and let Z :=m(Z). If

(1) the maps Y, — Z, are Dy |z -injective for all v € Vert(I'V),

(2) b1 (Z.) =0 for all e € Edge(T'Z), and
(3) the groups Y, and Z. are isomorphic for all e € Edge(I'Y)
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then the canonical injection m1(Y) — m1(Z2) is Dgz)-injective.

Proof. We view m1())) as a subgroup of Z via the canonical inclusion. The subgraph of groups
Y of Z induces a map of exact sequences.

0— & KY/V)] — @ K[Y/Y] K 0
ecEdge(I'Y) veVert(I'Y)

l l

0 —— b K(Z/Z.) — b KzZ/Zz,)] — K——0
ecEdge(I'?) veEdge(I'?)

Since Chiswell’s Mayer—Vietoris exact sequence is induced by applying a Tor functor to the short
exact sequences of the above form (see the proof of [Chi76, Theorem 2]), the long exact sequences
are automatically natural and thus we obtain maps between Chiswell’s exact sequences for )
and Z

& M) — b HY) — HmO) — D  HoYe)
ecEdge(I'Y) veVert(I'Y) J{ ve€Edge(T'Y)

I £ I

D Hi(Z) — D Hi(Z) — Hi(Z) — @ Ho(Z)
ecEdge(I'?) veVert(I'Z) ecEdge(I'Z)

where H;(—) stands for H;(—; Dk|z)) (for i =0, 1). By the four lemma, the map Hi(7r1())) —
H,(Z) is injective. O

The following technical proposition will be crucial to establishing the L?-Hall property for
limit groups in §5. We also consider it to be of potential interest for proving that relatively
hyperbolic groups with a finite abelian hierarchy have the L?-Hall property (Conjecture 1.3).

PRrROPOSITION 3.9. Let W be a subgraph of groups of Z that have the same underlying graph
I' and all of whose edge groups are infinite cyclic. Let G =m1(Z) and suppose that there is a
bipartite structure Vert(I') = Vert, U Vert, of I' so that no two different edges of Edge(I') have
the same endpoints. We assume, moreover, that the orientation on I' is such that o(e) € Vert,
and t(e) € Vert for all e € Edge(I"). We denote by z. a generator of the infinite cyclic group Z.
Let T be a spanning tree of I'. Fix a presentation of G (as described in Definition 2.3) and, for
every e € Edge(I") \ Edge(T’), denote by t. the formal letter associated to e. For all v € Vert,, we

consider finite subsets L’E,O) C L, C Z, such that

LANLOC | doelze) SWoU (L, \ L),

o(e)=v
Suppose that, for all v € Vert,, the natural map
W, * < 1T Z) — 7,
Ev
is injective and D q-injective. We fix a subset Edge(T') C Er C Edge(I") such that ¢eo(2e) €

Lo(e) \Egzl) for all e€Edge(I")\ Er. If we name L) =] ) £ and £® = {te:e€
Edge(I") \ Er}, then the natural map

vEVert
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m(W)*< 1T Z>—>w1(2) (3.2)

L£O | L®

is injective and D g)-injective (in the sense of Definition 3.3).

Proof. Recall from Lemma 2.5 that, given a subgraph of groups H of G, the canonical map
71(H) — 71(G) injective. We will consider several intermediate graphs of groups W < W) <
W@ <WE) KWW L Z to prove the claim. We will only specify their vertex and edge groups,
and the corresponding edge maps will be assumed to be the restrictions of the edge maps
of Z.

The graph of groups WU is defined as follows. For all v € Verty, WQSI) = Z,. For all v € Vert;
and e € Edge(T), WY =w, and WV =w.. By Lemma 3.8, the canonical map

(W) — m (W) (3.3)
is D K[G)-injective.

We split £, \ [,1(]0) as a disjoint union of 51(,1) and 51(,2), where [,1(,1) consists exactly of the
elements ¢, ¢(z¢) € L, such that e € E7. Consider another intermediate graph of groups wl
W2 £ Z defined as follows:

)

Wzgl) (HL“) Z) for v € Vert,;

— W1§2) = W51) for v € Verty;
- W(Q) =Z, for e€ Erp;
— W =w for e € Edge(T') < Er.

Letting B = {t.:e € By~ E(T), e o(2e) € Egl)}, the canonical map

)« ( 11 z) W) (34)

is an isomorphism, so 7 (W) — m (W®) is Dg[q)-injective.
We define W < W) < Z as follows:

— W =w® « (L[£<o) Z) for v € Verty;
— Wzg = W(Q) for v € Verty;

~— W =w? for e € By

— W =w? for e € Edge(I') \ Er.

It is immediate from the presentation of 71 (W(®)) that the canonical map
(Hz> —m (W) (3.5)
£©

is an isomorphism. Finally, we define W®) < WW < Z as follows:

— W =W & (]_[ﬁu) Z) for v € Verty;
— W(4) W(3) for v € Verty;
— W% = Z, for e € Edge(T).
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We observe that

m(W®) « < 1T Z) —m(WW) (3.6)

)

is an isomorphism. Observe that WW < Z admits the following description:

— Wi —w, « (I1z, Z) for v € Vert,;
— 154) = 7, for v € Verty;
— W =Z foree Edge(T).

By our assumption on (3.2) and by Lemma 3.8, the canonical map
(WD) — 11 (2) (3.7)

is D |g-injective. From the chain of injections and D ¢g-injections described in (3.3)—(3.7) we
conclude that the canonical map

m(W)*< 1T Z)—)ﬂ'l(Z)

L£O | L®

is injective and Dk g-injective. The proof is complete. O

3.2 Examples

We are already in a position to establish the Dg/g)-Hall property for some classes of groups.

Ezample 3.10 (Amenable groups). Let G be a group with the property that b{([G} (H)=0
for all subgroups H < G. Then G is trivially Dgg-Hall. Since amenable groups have van-
ishing L?-Betti numbers above degree zero and amenability passes to subgroups, this shows
that amenable groups are L2-Hall. If G is amenable and K[G] is a domain (which is the
case for us, since we are assuming Convention 3.1), then the same reasoning shows that G is
Dy -Hall.

There are also non-amenable groups which are L?-Hall for the reason discussed above. As
an example, let T be a Tarski monster of prime order p and let G =T x Z. Since all the proper
subgroups of T are isomorphic to Z/p, it follows that every finitely generated subgroup H of G
has b§2)(H ) =0 and therefore G is L?-Hall. However, T is non-amenable, and therefore so is G.
Note that G is not locally indicable (or even torsion-free) and therefore Dy does not exist.
However, it still makes sense to discuss the L?-Hall property for this group since L?-invariants
are defined for all groups.

Ezample 3.11 (Free groups). Let F' be a finitely generated free group and let H < F' be a finitely
generated subgroup. A classical theorem of Marshall Hall [Hal49] states that H is a free factor
in some finite-index subgroup F' < F. By Lemma 3.8, H is D pj-independent in I, showing
that F'is Dgp-Hall.

Fundamental groups of closed surfaces also satisfy a principle analogous to Hall’s theorem,
namely that finitely generated subgroups are virtual retracts, as proved by Scott [Sco78] using
hyperbolic geometry (see also [Wil07] for a more combinatorial proof). This directly implies
that surface groups are subgroup separable. Moreover, Antolin and Jaikin-Zapirain proved that
they are L2-Hall in [AJ-Z22, Theorem 4.4] using these virtual retractions combined with other
algebraic ideas (such as the theory of Demushkin groups and the cohomological goodness of
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surface groups). We now use Scott’s argument to give a more topological proof of the L2-Hall
property for surface groups.

PROPOSITION 3.12. Surface groups satisfy the Dy q)-Hall property.

Remark 3.13. The only surface that has a fundamental group with torsion is RP?, where G =
71 (RP?)227/2. In this case, we may define bé([G](G) =1 and bff[G](G) =0 for all n>1, which
is consistent with the index scaling formula in Proposition 2.15(4). In this sense, Z/2 also has

the Dg)-Hall property (and in fact so do all finite groups).

Proof of Proposition 3.12. We say that a compact connected subsurface X of a connected sur-
face S is incompressible if no component of the closure of the complement S\ X is a disc. If
m1(X)#1, then X is incompressible if and only if the induced map m(X)— m1(S5) is
injective.

Let G be the fundamental group of a closed connected surface ¥ with x(X) <0 (the case
when y(X) > 0 is trivial). Let H < G be a non-trivial finitely generated subgroup. Let ¥/ — X
be the covering space corresponding to H. Then ¥’ is a (possibly non-compact) surface with
fundamental group H. Let 3. be a compact core for Y, that is, X. C Y is a compact, connected,
incompressible subsurface such that the natural map m1(X.) — 71(X’) is an isomorphism. The
existence of X, is ensured by [Sco78, Lemma 1.5]. Scott also showed in [Sco78, Lemma 1.4 and
Theorem 3.3] that there is a commutative diagram

5
/N
Ye —— X

where 5 — ¥ is an intermediate finite-sheeted covering into which Y. projects homeomor-
phically. Since m(X.) =2 H # 1, the boundary 0X. is incompressible in .. Consequently, .
is an incompressible subsurface of Y and every connected component f]z of the closure of the
complement N Y. has the property that its boundary is incompressible. It follows that ¥ admits
a decomposition as a finite graph of spaces where the vertex spaces are {il, Y.}, various of which
are glued along some of their boundary components (so the edge spaces are circles and the edge
maps are 7q-injective). This produces a splitting for the fundamental group 7r1(§) where one ver-
tex is 71 (X¢), the other vertices are 71 (%;) and the edge groups are infinite cyclic. By Lemma 3.8,
the group H = m1(%,) is Dgjg)-independent in 7y (¥), and therefore G is D |q)-Hall. O

The ideas of Proposition 3.12, such as the construction of a compact core for a subgroup
H and the reconstruction of H from cyclic splittings, motivates the strategy that we follow in
Theorem 4.9 for more general graphs of free groups with cyclic edges. We can now explain the
simpler case when the edge groups are trivial (i.e. the case of free products), which generalises
the proof that free groups are Dg-Hall.

PROPOSITION 3.14. The class of finitely generated subgroup separable Dy g)-Hall groups is
closed under free products.

Proof. Let A and B be finitely generated subgroup separable groups with the Dy/g-Hall prop-
erty. Let X4 and Xp be classifying spaces for A and B respectively, and let X be the space
obtained from X4, Xp, and an edge I =0, 1] by gluing the point 0 € I to a basepoint in X4
and the point 1€ I to a basepoint in Xp. Then X is a classifying space for A« B, and has a
natural graph of spaces structure, where the underlying graph is an edge.
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Let H < Ax B be a finitely generated subgroup and let Y — X be the covering space cor-
responding to H. Let Z be a finite core for Y, that is, Z — Y induces a mi-isomorphism, the
underlying graph of Z is finite, and Z,, =Y, for all vertices v in the underlying graph of Z. Denote
the fundamental groups of the A-vertices (i.e. those vertex spaces in Z covering X4) by Xy4,,
where 71 (X 4,) = A; < A. Similarly, denote the B-vertices by Xp,, where m1(Xp,) = B; < B. For
each i (respectively, j), let AL < A (respectively, B;- < B) be a finite-index subgroup contain-
ing A; (respectively, B;) such that A; — A} (respectively, B; <—>B§) is Dgg-injective (recall
Definition 3.3).

Let X4, — X, be the covering map associated to A; < Al and let P; C X4, be the set of
points that are the endpoints of edges Z. By subgroup separability of A, we may find a finite-
index subgroup A} such that A; < A7 < A; and such that the induced covering map X, — X
is injective on P;. Note that A; is still Dgjg-injective in A7. A similar discussion applies to the
B-vertices, where we obtain new groups B;’ and spaces X v satisfying the analogous conditions.

Let Z be the following graph of spaces: it has the same underlying as Z, the vertex spaces
X4, (respectively, Bj) are replaced with X 4~ (respectively, X B;/), and there is an edge joining
the points x € X4y and y € Xpr if and only if they are the images of points 2’ and 3 under the
coverings X4, — Xar and Xp, — Xpy respectively, and 2/ and 3’ are joined by an edge in
Z. From the construction, the covering spaces of the vertices induce a map of graphs of spaces
Z — Z (which is an isomorphism on underlying graphs). Then 71(Z) < m1(Z) is D K[c)-injective
by Lemma 3.8.

The process of completing Z to a finite-sheeted cover Z of X is standard. This is detailed,
for instance, in [Wil07, Theorem 3.2]. For this, one adds various disjoint copies of the vertices
X4 and Xp to the precover Z until the resulting space satisfies Stallings’ principle (see [Wil07,
Proposition 3.1]). Then certain pairs of the hanging elevations of edge maps can be glued together
along additional trivial edge spaces to produce the finite-sheeted cover Z — X. As before, the
inclusion Z < Z induces a D K[c)-injection on fundamental groups, which proves the claim. [

It is natural to ask whether subgroup separability is needed in Proposition 3.14, but it is
unclear to the authors if, for instance, the free product of finitely generated and residually finite
L?-Hall groups is L?-Hall. For non-residually finite groups we make the following observation.

Remark 3.15. The L?-Hall property is not closed under free products in general. Let A be an
infinite, simple, amenable group (finitely generated examples of such groups exist by [JM13]).
Then A has the L2-Hall property but A * A does not. To see this, let F < A * A be a free subgroup
of rank d(F) > 2. Then bf)(F) >1= ng)(A % A) and hence F is not L?-independent in A * A.
Moreover, A is simple and therefore A * A has no non-trivial finite-index subgroups. We conclude
that A % A does not have the L2-Hall property.

We conclude with some non-examples.

Ezample 3.16. Fundamental groups of hyperbolic 3-manifolds and (non-abelian free)-by-cyclic

groups are examples of groups G with bqu](G) =0 that contain non-abelian free subgroups.

Consequently, they are not Dgg-Hall. For a similar reason, non-solvable generalised Baumslag-
Solitar groups are not Dy (g-Hall.

3.3 Passing to finite-index overgroups

In this subsection, we prove Theorem 3.17. This will be crucial when establishing the L?-Hall
property for graphs of free groups with cyclic edge groups. Theorem D from the introduction
will follow from Corollary 3.20 and Lemma 3.21.
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THEOREM 3.17. Let GG be a finitely generated and suppose that G| < G is a finite-index subgroup
and that H < G is a finitely generated subgroup such that bé([H}(H )=0. Then the following

assertions hold.

(1) If H is Dk g-independent in G, then H N Gy is D |g-independent in G1.

(2) If there exists a finite-index subgroup Ho < H such that Hy is Dgg)-independent in G1,
then there exists a finite-index subgroup Go < G containing H as a D|g)-independent
subgroup.

Statement (1) is essentially [AJ-Z22, Proposition 5.2], whose argument is followed to addi-
tionally prove statement (2). We first prove the following simple lemma.

LEMMA 3.18. Let G be a finitely generated group and suppose that H <T'< G are subgroups
such that |T: H| < oo. If H is D |g)-independent in G, then T is D |¢)-independent in G.

Proof. Consider the short exact sequence of K |[G]-modules

0—IS/1G — 16/15 — I5/IF — 0.
The induced long exact sequence in Torf([G}(
modules:

Torf[G] (Dkia, Ig/15) —>T0r{([G} (Drkicys I6/I%) —>T0ré<[G} (Dkicys If/I5).

Dxkays —) contains the following sequence of D K(G]

By Proposition 3.4 and the assumption that H is Dgjg-independent in G, it follows that the
leftmost term Tor{([G] (DK[G], Ig/ Ig) is zero. Moreover, since H is finite index in 7', it is not
hard to see that Ig /Ig is a finite-dimensional K-vector space, so Toré([G] (DK[G], IJQ / Ig) =0.
It follows directly from the short exact sequence above that Torf[G] (DK[G}, Ig/ Ig ) =0. This
implies, again by Proposition 3.4, that T" is Dg/gj-independent in G. 0

We are now ready to explain the proof of Theorem 3.17.

Proof of Theorem 3.17. Let Hy=HNG;. We begin by proving statement (1). By
Proposition 3.4, it is enough to show that

Tory N (D, Ien /TIG) = 0.
CLAIM 3.19. As subsets of K[G], we have the equality Igll =1, NIY.
Proof. Consider the following commutative diagram of natural maps.
K[Gi] —2— K|[G]
J’pgi J{pg
K[G\/H\] —— K[G/H]

The horizontal arrows ¢1 and o are injective. It is clear that Igll Clg, ﬂfg. For the reverse
inclusion, we will use the above diagram. If = € I, N I§, then x € K[G1] and z belongs to the
kernel of pg ot1. By the commutativity of the diagram and the injectivity of ¢o, the element x
must belong to the kernel of p%, which equals Igll by Lemma 2.11. O

Claim 3.19 implies that the natural map of K|[Gi]-modules IGl/Igl1 — I /IS is injec-

tive. Furthermore, since Ig, /Ifhl (respectively, I/IG) is the kernel of the augmentation
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K[G1/H ]| — K (respectively, K[|G/H] — K) by Lemma 2.11, there is an exact sequence of
K[G1]-modules of the form

0— Ig, /I — I/ If; — K[G/H]/K[G1/Hy] — 0.
Let T'C G be a set of representatives for the double (G, H)-cosets in G such that 1 € T'. Denote
by M; the K[G4]-module K[G1/(H' N G1)]. Then K|G/H] = ®yer My as K[G1]-modules. Let D =
Dk|a,)- Notice that Tor;([Gl] (D, M;) =0 for all t € T. The reason is that, by Proposition 2.15(5),
its D-dimension equals

by "N 1 Gy = () | H 0 G| =0, (3:8)

Note that, to obtain (3.8), we have also used the fact that H! NG} is finite index in H' = H,
as well as the multiplicativity of Dy -Betti numbers (Proposition 2.15(4)). By the additivity
of the D-dimension function, it follows from Proposition 2.15(5) and Equation 3.8 that the

K[Gi]-module N = K[G/H]/K[G1/Hi] = ®yer 1y M; has Tory “(D, N) =o0.
The long exact sequence in Tor gives us an exact sequence of D-modules of the form

e T @D, N 7

(3.9)

L Tory (D, I, /1§') —— Tor} (D, 16/1§) —— Torf (D, N).

We have already proved that Toré( [l (D, N) =0. So statement (1) will follow from diagram (3.9)

if we prove that Torchl] (D, 1/I§) =0. We know from Proposition 2.15(6) that

K[G, ~ K[G
Tor} (D, 16/1§) = Torf N (Dyein, 16/15).

Furthermore, the right-hand side vanishes by Proposition 3.4 and the assumption that H is
Dk g-independent in G. This completes the proof of statement (1).

We now prove (2). The subgroups Hy < H NG < G have the property that |[H NGy : Hy| <
oo and that Hy is Dgjgj-independent in G;. By Lemma 3.18, H NG is Dgg-independent in
G1. Let Go < G4 be a normal subgroup of finite index; since béqH] (H) =0, it follows from part
(1) that HN Gy is Dy g-independent in Gi. Thus, by replacing G1 by G2, we may assume that
Gy is normal in G and that H NGy is Dgg-independent in Gj.

We claim that H is Dgg-independent in Go = (G1, H) = G1 - H. For this, we first observe
that T'={1} is a set of representatives of the double (G1, H)-cosets in Gy. So the argument
given in (1) shows that the canonical map

Ie, [ IghG, — I, I5° (3.10)

is an isomorphism of K[Gi]-modules. Using that H NG is Dg(g-independent in G, we can
argue as before to deduce from (3.10) and Propositions 2.15(6) and 3.4 that

K G’0 0\ v K Gl 1
Tor, N Dy 16y /15°) = Tory ) (D, Ia /1556, ) = 0.
Thus, again by Proposition 3.4, H is D/g-independent in Gy O

The following result is a direct consequence of Theorem 3.17.

COROLLARY 3.20. Let GG be a finitely generated group and suppose that all finitely generated

subgroups H < G have the property that b;qH] (H) =0 and that there exist finite-index subgroups
Hy < H and Gy < G such that Hy is Dgg)-independent in G1. Then G is Dkg)-Hall.
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Corollary 3.20 offers a more flexible reformulation of the Dy g-Hall property which will be
used in Theorem 4.9 to establish the Dy/g-Hall property for various graphs of free groups and

cyclic edge groups. Moreover, the local condition on the vanishing of b;([H] (H)=0forall HLG
can be condensed for certain groups of cohomological dimension 2 using the following lemma.

LeEMMA 3.21. Let G be a group of cohomological dimension cdyx(G)=n with an[G](G) =0.
Then an[H] (H) =0 for every subgroup H < G.

Proof. Note that the natural map
DK[H} QK[H] F —>DK[G] OK[q) F (3.11)

is injective, where F' is a free left K[G]-module. To see this, it is enough to prove the claim
when F' = K|[G]. Let T be a right transversal for H in G. The Hughes-freeness of D) implies
that the map @®terDg ) -t — Dkq) induced by the inclusions Dy p) -t — Dg|q) is injective
[Gra20, Corollary 8.3]. The map of (3.11) when F' = K[G] equals the composition

D) @x(m) K[Gl = Drim) @k (@ K[H] ‘t> = @ Dk -t — Dilg)
teT teT
and is therefore injective, as desired.
The claim now follows easily. Let 0 — £, — - - - — Fy — K — 0 be a free resolution of
the trivial K[G]-module K. This resolution exists because G has a classifying space of dimension

at most n (we do not claim the modules F; to be finitely generated). If b ] (H)#0, then
there is a non-trivial element z in the kernel of Dy g @ (g Fn — Di) @ k() Fo—1. Then 2
is also a non-zero element of the kernel of Dgq) @ k(g Frn — Dr(¢) @K () Fn—1 and therefore

Xl (@) 0. O

While we only have a conjectural characterisation of which general graphs of free groups with
cyclic edge are L?-Hall, the case of an amalgam is entirely understood.

COROLLARY 3.22. If G is an amalgam of free groups over a cyclic subgroup, then G has the
L?-Hall property if and only if it does not contain a subgroup isomorphic to Fy x Z.

Proof. First note that I, x Z is not L?-Hall and so it cannot be a subgroup of an L2-Hall group
by Lemma 3.7. Conversely, assume that G does not contain a copy of Fy x Z. Then [Wisl8,
Theorem 1.2] implies that G has a finite-index subgroup that is a limit group. Limit groups are
L?-Hall by [BK23] and have vanishing second L?-Betti number by [BK17]. Thus, G is L?*-Hall
by Corollary 3.20. O

4. Graphs of free groups with cyclic edge groups

Remark 4.1. For this section and the next, we will focus on the L?-Hall property. Indeed, for
graphs of free groups with cyclic edge groups and for limit groups, the L?-Betti numbers and the
Dy )-Betti numbers coincide. For this reason, and for simplicity, this and the following sections
are written in terms of L?-homology.

Throughout this section, G will denote the fundamental group of a finite graph of free groups
with cyclic edge groups (G, G; ') and X will denote the geometric realisation of a corresponding
graph of spaces X = (X,, X¢;I') with S! edge spaces such that G = 1 (X). The attaching maps
X, — X, are always assumed to be immersions. We will prove the L?-Hall property for some
of these groups in Theorem 4.9. Our strategy is as follows.
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— We allow ourselves to work with clean graphs of groups by Theorem 4.7 below and
Theorem 3.17(2).

— Given a finitely generated subgroup H of GG, in order to craft G; < G of finite index and
an L2-injective map H — G, we will use the cyclic splitting of G and the L?-injectivity
criteria for graphs of groups developed in the previous section (such as Lemma 3.8). The
construction of G uses Wise’s argument on the subgroup separability of some graphs of
free groups with cyclic edge groups [Wis00].

— However, this geometric construction will not be directly applicable to H and G, but only to
further finite-index subgroup Hy < H and G < G, so we will also require Theorem 3.17(2)
to reach the same conclusion about H and G.

We now proceed with the construction. The following definition was introduced by Wise
[Wis00, Definition 4.16].

DEFINITION 4.2 (The weighted graph ®x associated to X). A weighted graph is a directed graph
whose edges have two integer labels (one on each endpoint). A weighted graph T" is balanced if
whenever o: S' — ®x is an oriented combinatorial loop (which means that S! is given a graph
structure by subdivision which makes o into a map of graphs), the product of the outgoing
weights divided by the product of the incoming weights on S! equals -1 (where the weights on
St are induced by o). Moreover, I is solvable if it can be oriented so that every vertex has at
most one outgoing edge and the weight of every incoming edge is £1.

We will associate to X = (X,, X¢;I') a weighted graph ®x that is defined as follows. Fix
an orientation for every simple closed combinatorial loop of all vertex spaces X, and fix an
orientation of S! (say counterclockwise, viewed as a subset of C). The set of edges of ®x equals
the set of edges of I'. We identify the endpoint v of e with the endpoint v" of €’ if and only if the
images of the attaching maps X, — X, and X, — X, are equal. Let n be the maximal integer
such that X, — X, represents an nth power of an element in 7 (X,). Then, if the attaching
map respects orientations, we put a weight of |n| on the end e of v; otherwise we put a weight
of —|n|.

DEFINITION 4.3. A connected weighted graph I" determines a graph of spaces Xt. as follows. For
each vertex (respectively, edge) of I" there is a vertex (respectively, edge) space homeomorphic to
S, all oriented counterclockwise. The edge spaces are attached to the vertex spaces by degree n
covers, where n is the weight on the corresponding end of the edge (we take n < 0 to mean that
the covering map is of degree |n| in the usual sense and it reverses orientations). We call 71 (Xr)
the generalised Baumslag—Solitar group associated to I and Xr the generalised Baumslag—Solitar
complex associated to I.

LEMMA 4.4. Let X be a graph of free groups with cyclic edge groups and let I' be a component
of the weighted graph I'. Let G be the generalised Baumslag—Solitar group associated to I'. Then
the natural map G — 71(X) is m-injective.

Proof. Fix normal forms for elements in G and 71(X). It is then not hard to see that elements
of G in normal form are sent to elements of 71(X) in normal form. O

Ezample 4.5. The Baumslag—Solitar group BS(m,n) is the fundamental group of a graph of
spaces of the form (S', S';T') where I is a single loop and the two attaching maps are degree m
and n covering maps S! — S'. In this case ®x is a loop with one vertex and one edge, where
the ends of the edge are labelled by m and n. Note that ®x is balanced if and only if m =+n
and it is solvable if and only if m ==+1 or n ==+£1.
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Many properties of graphs of free groups with cyclic edge groups can be characterised by the
properties of ®x. The following definition and result are due to Wise.

DEFINITION 4.6 (Clean graph of spaces). A graph of spaces is clean if every edge map is a
topological embedding.

THEOREM 4.7 [Wis00, Theorems 4.18 and 5.1]. Let G =71(X) be a finitely generated graph of
free groups with cyclic edge groups. The following assertions are equivalent.

(1) G is subgroup separable.

(2) ®x is balanced.

(3) The generalised Baumslag—Solitar groups associated to the components of ®x are all
subgroup separable.

(4) X has a finite clean cover.

We highlight the following recent result of Abgrall and Munro that confirms a conjecture of
Wise [Wis00, Conjecture 6.2] and gives an easily computable criterion for when a graph of free
groups with cyclic edge groups is residually finite.

THEOREM 4.8 [AM]. Let G =m1(X) be a finitely generated graph of free groups with cyclic
edge groups. The following assertions are equivalent.

(1) G is residually finite.

(2) Every component of ®x is balanced or solvable.

(3) The generalised Baumslag—Solitar groups associated to the components of ®x are all
residually finite.

The main goal of this section is to establish the following theorem.

THEOREM 4.9. Let G split as a finitely generated graph of free groups with cyclic edge groups
and let G = m1(X), where X is as above. If ®x is balanced and solvable, then G has the L?-Hall
property. Equivalently, if G is hyperbolic relative to virtually abelian subgroups, then G has the
L?-Hall property.

Remark 4.10. The condition that every component of ® x be solvable is necessary, since otherwise
G would contain a non-solvable Baumslag-Solitar subgroup. Such groups do not have the L?-
Hall property since they contain non-abelian free subgroups but have vanishing first L?-Betti
number. On the other hand, there are graphs of free groups with cyclic edge groups where @ x
is unbalanced yet G is still L2-Hall (e.g. BS(1,n) for n # +1).

Motivated by this remark, we make the following conjecture, which is formally similar to
Theorems 4.7 and 4.8.

CONJECTURE 4.11. Let G =71(X) be a finitely generated graph of free groups with cyclic edge
groups. The following assertions are equivalent.

(1) G has the L?-Hall property.

(2) Every component of ®x is solvable.

(3) The generalised Baumslag—Solitar groups associated to the components of ®x all have the
L?-Hall property.
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4.1 Proof of Theorem A

We prove Theorem 4.9 above (which is Theorem A from the introduction). We make a few
simplifying reductions that we hope will make the visualisation of the objects easier as well as
put us in the context of the proof of [Wis00, Theorem 5.2].

CrAamM 4.12. It is enough to consider the case where all the edge groups are infinite cyclic.

Proof. A balanced graph of free groups with cyclic edge groups is the free product of balanced
graphs of free groups all of whose edge groups are infinite cyclic (all of which are subgroup
separable by Theorem 4.7). By Proposition 3.14, it is enough to prove that each free factor is
L?-Hall, hence the claim. O

CramM 4.13. It is enough to prove Theorem 4.9 in the case where X is clean.

Proof. By [Wis00, Lemma 4.4 and Theorem 4.18], X has a clean finite-sheeted covering X, — X.
By Corollary 3.20, the L2-Hall property passes to finite-index overgroups, so it is enough to prove
Theorem 4.9 for m(X,). O

DEFINITION 4.14. Let X be a clean graph of free groups with cyclic edge groups. An immersed
Klein bottle in X is a subcomplex K C X that corresponds to a loop in ®x whose associated
generalised Baumslag—Solitar group is a Klein bottle group. Similarly, an immersed torus is a
subcomplex corresponding to a loop in ® x whose associated generalised Baumslag—Solitar group
is Z2.

Note that an immersed Klein bottle K is indeed the image of a Klein bottle surface .S under a
cellular immersion, where S is the generalised Baumslag—Solitar complex associated to the loop
corresponding to K. Similarly, if T is an immersed torus, then there exist a topological torus S
and a cellular immersion S — 7.

CrAM 4.15. It is enough to prove Theorem 4.9 in the case where X is clean and does not
contain any immersed Klein bottles.

Proof. By Claim 4.13, we may assume that X is clean. Let K, ..., K,, denote the immersed
Klein bottles in X. By subgroup separability of G =m(X), there is a finite-sheeted regular
cover p1: X1 — X where the components of p~!(K7) are all immersed tori. Assume now that
we have constructed some finite-sheeted regular cover p;: X; — X so that for each j <17 every
component of p;- 1(K ;) is an immersed torus. Let K be an immersed Klein bottle component of
pi_l(KiH). Again we may pass to a further finite-sheeted cover ¢;11: X;+1 — X; such that the
composition

pit1: Xip1 — X; — X

is regular and every component of q;rll(K ) is an immersed torus. But then every component of

p;rll(KiH) is an immersed torus by regularity of the cover. By Corollary 3.20, it is enough to
show that 71(X,,) has the L2-Hall property. O

Proof (of Theorem 4.9). By the claims above, we assume without loss of generality that G is the
fundamental group of a clean graph of spaces X = (X, X;I'), where the vertex spaces X, are
graphs and the edge spaces X, are circles. Moreover, we assume that X does not contain any
immersed Klein bottles.

Let H be a finitely generated subgroup of G. Following the proof of [Wis00, Theorem 5.2], we
will show that there is a finite-index subgroup H; < H that is L?-independent in a finite-index
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FIGURE 1 (colour online). A vertex space of Z. The thickened lines represent attaching maps of
non-compact edge spaces, each of which being homeomorphic to R.

subgroup G1 < G. By Theorem 3.17, this is enough to prove the theorem. We break up our proof
into steps in a similar way to the proof of [Wis00, Theorem 5.2].

Let Y — X be the covering space corresponding to H. Note that Y has a natural decompo-
sition into a clean graph of spaces (Y,, Ye; I'y), where each of the vertex spaces are graphs and
each of the edge spaces are homeomorphic to either S' or R.

Step 1 (The subcomplex). Denote the underlying graph of Y by I'(Y). Since H is finitely gen-
erated, there is a finite connected subgraph Y of I'(Y) such that the inclusion Yy < Y of the
restricted graph of spaces Yy is a mwj-isomorphism.

Step 2 (Pruning). For each vertex space Y, of Yy, let Z, be the smallest connected subgraph con-
taining the images of all the edge spaces of Yy and such that Z, — Y, induces a 71-isomorphism.
Let Z C Yy be the union of the spaces Z,, and the edge spaces Y, of Y,,. Note that Z is connected
and has a natural graph of spaces structure (Z,, Z. = Y; T) such that the inclusion Z < Y~ still
induces a mi-isomorphism. The resulting vertex spaces of Z, have a compact core with pairs of
infinite rays attached to them coming from the attaching maps of non-compact edge spaces in
Y (see Figure 1).

Step 3 (L2-independence of periphery closing). This is the main step of the proof. Let e be an
edge of T and let I = [0, 1] be the closed unit interval. If Z, = S!, then we call Z, x I a cylinder;
if Z, =R, then Z, x I is a strip. If two strips in Z have a non-compact intersection, then the
periodicity of the attaching maps implies that their intersection must in fact be homeomorphic
to R.

Note that Z acts on each of the strips by covering translations (where the covering refers to a
strip in Z covering a cylinder in X). As in [Wis00, Theorem 5.2, Step 3], choose n large enough
so that, for any edge e corresponding to a strip, all the vertices of Z, x I with valence at least
3 (the valence is counted in the vertex graphs adjacent to the strip) are a distance less than n
apart. Then quotient the strips of Z by the action of nZ to form a new complex A = Z/~. Now
A is a clean compact graph of graphs with S edge spaces. A typical vertex space is shown in
Figure 2.

We need to introduce a definition based on one given by Hsu and Wise [HW10, Definition
9.1]. Declare two strips to be equivalent if their intersection is a copy of R; this rule generates
an equivalence relation on the set of strips in Z. The periphery containing a strip S is the union
of the strips in the equivalence class of S.

Fix a periphery P. By the assumption that X contains no immersed Klein bottles, there is
a compact subset K C Z such that P~ K is homeomorphic to two disjoint copies of Rsg x €,
where € is some finite graph. The effect of quotienting by the action of nZ can then be rephrased
as follows. Choose K compact and sufficiently large so that K is a compact core for Z and all
the vertices in P ~\. K are of degree 2. We also require, for every strip S C P, that KNS be a
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FIGURE 2 (colour online). A vertex space of A. The vertex space is obtained from that in Figure 1
by quotienting the thickened lines by the action of nZ.

j A J U A\
: . )= -, ]

FIGURE 3 (colour online). Part of a periphery P is shown on the right. The distinctly shaded
region represents K N P, where K C Z is as above. The horizontal lines are contained in vertex
spaces of Z. Outside of K, the horizontal lines do not intersect since all the vertices there are
of degree 2. However, they may have a compact intersection inside K as shown in the figure. In
this figure, the graph Q =2 0R; =2 0Rs is a cycle with two finite trees hanging off it. On the left
is part of a copy of R x €. The whole diagram represents an immersion R x {2 — P, which is
an isomorphism outside of a compact set.

fundamental domain for the action of nZ on S. Denote by R; and Ry the copies of Rsg x 2
in P~ K. We then form the quotient of the complex Z \ (R; U Ry) by identifying the two
copies of OR; = JRy = Q (see Figure 3). Performing this process for each periphery yields the
complex A.

CLAIM 4.16. The injections OR; <— P are mi-injective.

Proof. First note that there is a cellular immersion R x £ — P, which is an isomorphism outside
of a compact set (see Figure 3). The immersion fits into the commutative diagram

RxQ) ——P

L

So—>T0

where the vertical maps are covering spaces, Sy is the graph of spaces of a generalised Baumslag—
Solitar group, and Tj is its image in X . Covering maps are m-injective and so is the map Sy — Tp
by Lemma 4.4. Hence, R x 0 — P is mi-injective. Since dR; — R x Q is a mj-isomorphism for
i=1,2, it follows that the maps OR; — P are mi-injective. Ul

CLAIM 4.17. The quotient map q: Z — A is m-injective and g.(m1(Z)) is L?-independent in
1 (A)
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Proof. Denote the peripheries of Z by Py, ..., P, and for each i =1,...,n let €; be the finite
graph such that there is an immersion R x €2; — P;. Since the peripheries are subgraphs of
spaces of Z, the groups 71(9;) = m1(0R;) embed in 7;(Z) by the previous claim. The quotient
map induces an inclusion

qx: 7T1(Z) — 71-1(Z)*Trl(Ql),...ﬂrl(ﬂn) =m (A)7

where 71(Z)%x, (y),....m (Q,) denotes the multiple HNN extension of 71(Z) over the subgroups
Wl(Qi).

The assumption that ®x is balanced and solvable implies that G does not contain any non-
abelian generalised Baumslag—Solitar subgroups. Hence, 71(€);) is either trivial or isomorphic to
7Z. To see this, note that every periphery P; covers a generalised Baumslag—Solitar subcomplex
V; C X, and therefore 71(V;) cannot contain a non-abelian free subgroup. So from the fact that
71(€;) < 71(V;) we deduce that m1(£2;) is either trivial or Z. The vertex group of a multiple HNN
extension along trivial or infinite-cyclic subgroups is L?-independent by Lemma 3.8. O

Step 4 (L?-independence of vertex completion). As remarked in the previous step, A is a clean
compact graph of graphs with S' edge spaces. Moreover, since the Z action on the strips was by
covering translations, it follows that there is a natural quotient map A — X whose restriction
to every vertex space of A is an immersion. By adding edges to the vertex spaces of A, we
can complete them to coverings of the corresponding vertex spaces of X. Denote the complex
obtained from A in this way by B and note that 7 (B) =7 (A)* F, where F' is a free group.
Then 71 (A) (and therefore H) is L?-independent in 71 (B).

Step 5 (Passing to finite-index and completing to a cover). In [Wis00, Theorem 5.2, Steps 5
and 6], Wise shows how to pass to a finite-sheeted cover By — B which can be completed to a
finite-sheeted cover X7 — X by attaching cylinders to Bj.

CLAIM 4.18. H Ny (By) is L?-independent in 71 (By).

Proof. Since m1(A) is a free factor of m1(B) =71 (A) x F, we have that m(A) N7(By) is a free
factor of 71(B;) by Kurosh’s theorem [Ser77, Théoreme 14, Chaptire I, §5]. So m1(A) N7 (B1)
is L?-independent in 71 (B1) and hence it suffices to prove that H N7y (By) is L?-independent in
7T1(A) ﬂﬂl(B).

The proof of Claim 4.17 shows that 71 (A) has a graph of groups decomposition with under-
lying graph a rose, where the unique vertex group is H and the edge groups are either trivial
or Z. Then m1(A) N7 (B1) also has a graph of groups decomposition with edge groups either
trivial or Z, and H N71(B1) is a vertex group in this decomposition. By Lemma 3.7, H N7y (By)
is L2?-independent in 71 (A) N7 (By). O

As mentioned above, Wise shows that we can attach cylinders to B; to obtain a finite-
sheeted covering X7 — X. Therefore 71(X7) is a multiple HNN extension of 71 (Bj) over cyclic
subgroups, so thatm(B;) (and thus H N7y (B) as well) is L2-independent in 71(X7). In sum-
mary, H Nm1(B1) has finite index in H and H N7y (B1) is L?-independent in 71(X7), which has
finite index in m1(X). We conclude that G has the L?-Hall property by Corollary 3.20. O

5. L2-Hall property for limit groups

Wilton [Wil08] proved that limit groups have the local retractions property (and hence that they
are subgroup separable) using Kharlampovich and Miasnikov’s [KM98] characterisation of limit
groups in terms of ICE groups (see Definition 5.1 below). Limit groups are exactly the finitely
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generated groups that arise as subgroups of ICE groups. Since the local retractions property
passes to subgroups, Wilton only needs to deal with ICE groups in [Wil08]. Analogously, we
certified that the L?-Hall property passes to subgroups in Lemma 3.7, so it also sufficient to
deal with ICE groups in order to prove Theorem B. Our argument is different from that of
[BK23] and we expect it to be flexible enough to include more general finite abelian hierarchies
of relatively hyperbolic groups as in Conjecture 1.3.

Just as we followed Wise’s argument on subgroup separability of balanced graphs of free
groups in the previous section, here we follow the ideas developed by Wilton [Wil07, Wil08] on
the subgroup separability of limit groups.

DEFINITION 5.1. Let G be a group and let Z < G be the centraliser of an element. The group
G xz (Z X Z) is an extension of G by a centraliser. A group is an ICE group if it can be obtained
from a finitely generated free group by a finite sequence of extensions by a centraliser.

If G is an ICE group, then it has a classifying space X that can be described as follows.
If G is finitely generated and free, then take X to be a bouquet of circles. Otherwise, write
G = H xz (Z x Z™) for simpler ICE group H. It is not hard to show that we may assume that Z
is infinite cyclic (see [Wil08, Remark 1.14]). Then take X to be the graph of Y and T"*! with
edge group S', where Y is the classifying space of H constructed by induction, and S* maps to
a loop representing the centralised element in H and to a coordinate circle in 7"*!. The spaces
obtained in this way will be called ICE spaces. We refer the reader to [Wil08, Section 1.6] for a
concise survey of this material. We emphasise the following important theorem of Kharlampovich
and Miasnikov, which gives a powerful characterisation of limit groups.

THEOREM 5.2 [KM98|. A finitely generated group G is a limit group if and only if it is a
subgroup of an ICE group.

DEFINITION 5.3. A collection of elements £ in a group G is independent if ¢ commutes with no
conjugate of h for all pairs of distinct elements g, h € L. We also say that a collection £ of loops
in a space X is independent if they represent an independent collection of elements of 71 (X) in
the previous sense.

5.1 From graphs of free groups to limit groups

Before going into details of the work of Wilton, we first revisit Wise’s argument from § 4 to explain
what are the main difficulties involved when dealing with ICE groups. We should remark that, in
the context of limit groups, the process of getting virtually clean covers is hidden in the inductive
argument and will not be mentioned again.

We denote by X a graph of spaces whose underlying graph has two vertices and one edge.
We have that the vertex spaces are either graphs, as in Wise’s setting, or an ICE space Y and a
torus 7™, which is the case of interest in this section. The edge space of X is homeomorphic to a
circle and the edge maps are assumed to be injective. Let H be a finitely generated subgroup of
7m1(X) and let Xz — X be the covering corresponding to H. Scott’s criterion [Wil08, Lemma
1.3] topologically reformulates the subgroup separability of 71 (X)) as the ability to complete the
precover Xpg of X to a finite-sheeted cover X — X so any prescribed finite subcomplex A of
Xy projects homeomorphically into X.

— The problem of ‘pruning’ in Wise’s argument corresponds to taking a core X’ of Xy that
contains €, the compact cores of the fundamental groups of each vertex space of Xy and all
the infinite-degree elevations of edge maps (i.e. the infinite strips). An important property
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of those elevations was that they escape any compact subset of the free splitting of the
vertex space they belong to (because they act freely on the vertex graph). This property is
called ‘properness’ (as introduced in [Wil08, Definition 2.12]) and is not satisfied by elliptic
loops. Hence, in this setting the pruning must be performed more carefully. Conveniently,
as a consequence of the 2-acylindricity of the Bass—Serre tree of an ICE group, non-elliptic
(i.e. hyperbolic) loops are proper [Wil08, Lemma 2.16].

— The second part of Wise’s argument, which involves closing up the infinite strips, is another
step towards obtaining a finite-sheeted precover from the precover X’ (since, after this,
the preimages of points in the edge spaces are finite). However, one still has to figure out
how to complete the precover so that preimages of points in the vertex spaces are finite as
well. This corresponds to the problem of extending finite-sheeted covers of the edge spaces
to finite-sheeted covers of the vertex spaces themselves. In this setting, this relies on a
primitive version of omnipotence of free groups. This way, one constructs the precover
W — X'. Slightly more general conditions are offered in [Wil07, Section 3.2] in terms
of homological assumptions on the edge spaces. However, for the case when Y is an ICE
space and the edge subspace is generic, this problem is resolved in [Wil08] by strengthening
the inductive hypothesis (incorporating the notion of tameness), so to have the required
control on the prescribed collection of infinite-degree elevations.

— Lastly, the finite intermediate precover W is shown to admit a finite-sheeted covering
W, — W that can be completed to a finite-sheeted covering X,, — X. This is done
similarly in Wilton’s argument when Y is an ICE space using the inductive hypothesis,
without passing to a deeper W,,.

The second point above explains Wilton’s observation [Wil08, Section 3] that the properties of
local retractions of subgroup separability are not strong enough to serve as an induction hypoth-
esis. We notice a similar problem. Following Scott’s philosophy, the L2-Hall property concerns
the ability to complete precovers of X to finite-sheeted covers preserving the L2-homology in
the process. The following example gives another reason for why this is not strong enough for
an inductive argument either.

Ezample 5.4. Consider G =m1(X2) =(a, b, c,d|[a,b] = [c,d]), which splits as F(a,b) *[q,5=[c,q)
F(c,d). We consider the L%-independent subgroups H < F(a,b) and K < F(c,d) given by H =
F(a?,b?) and K = F(c?,d?). It is clear that the induced map H * K — G is injective, although
it is not L2-injective for the obvious reason that ng) (HxK)=3>2= b(lz)(G).

Example 5.4 illustrates that subgraphs of groups that are L?-injective on vertex groups need
not be L?-injective overall, and so one needs some control of the non-trivial L?-classes that have
non-trivial support on multiple vertex spaces. Wilton’s notion of tameness [Wil08, Definition
3.1] and Example 5.4 motivate the following notion of L?-tameness that allows us to inductively
have such control.

DEFINITION 5.5. Consider a complex X, a covering X’ — X and a finite (possibly empty)
collection of independent (Definition 5.3) essential loops £ = {§;: C; — X }. The cover X’ is L?-
tame over L if the following holds. Let A C X’ be a finite subcomplex and let L' = {5}: C; —
X'} be a finite collection of pairwise non-isomorphic infinite-degree elevations, where each 5;- is
an elevation of some d; € £. Then, for all sufficiently large positive integers d, there exists an
intermediate finite-sheeted covering X’ — X — X that satisfies the following.
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1) Every (5} descends to an elevation ;5\] 6’; — X of degree d.

(1)

(2) The elevations 25\] are pairwise non-isomorphic.
(3) The subcomplex A injects into X.
(4)

~

4) The natural map 71(X’) — 71 (X) extends to an injective and L2-injective map

T (X') * <];,IZ> —s m(X),

defined as follows: if the copy of Z is labeled by (5} € L' then the element 1 € Z is mapped

to the class of the image of g; in ()?)

The subscripts ¢ and j in Definition 5.5 are different, indicating that there may be several
elevations 5;- in £’ for each §; in L.

Remark 5.6. The L2-tameness of all coverings X’ — X with finitely generated 71(X’) and
empty £ implies the L2-Hall property for 7 (X).

As anticipated, the idea is that the strengthened version described in Definition 5.5 (with
additional prescribed data relative to £) admits a proof by induction and avoids bad embeddings
like the one described in Example 5.4.

5.2 The proof of Theorem B

By the previous discussion, the following theorem implies Theorem B from the introduction, and
its proof will occupy the remainder of this section.

THEOREM 5.7. Let X be an ICE space, let H < m(X) be a finitely generated subgroup and
let Xy — X be the corresponding covering. Suppose that L is a (possibly empty) finite set of
independent loops each generating a maximal abelian subgroup of 71(X). Then Xy is L?-tame
over L.

Proof. We proceed by induction on the complexity of the ICE space. The base of the induction
is the case when X is a graph, which is essentially the classical M. Hall theorem (see [Wil08,
Corollary 1.8] for a precise proof). Now assume X is an ICE space that decomposes as a graph
of spaces with two vertices (a lower-complexity ICE space Y and a torus 7™) and one edge
space homeomorphic to S'. This naturally induces a graph of spaces structure for Xz, whose
underlying graph we denote by I'(X ). Each vertex space of this splitting is either a covering
space of Y or a covering space of the torus T".

Denote by {d;: D; — X} and {e;: E; — X} the hyperbolic and elliptic loops of L
respectively, relative to the splitting of X.

Step 1 (The precovers X’ and X”). Let A C Xy be a finite subcomplex and let {(5JH} and {e’}
denote fixed sets of infinite-degree elevations of hyperbolic and elliptic loops, respectively, in L.
We begin by taking a subcomplex X’ C X g that satisfies the following conditions.

(1) The subcomplex X’ is a core for H, that is, X’ is a subgraph of spaces with finite underlying
graph such that the induced map 71 (X’) — 71 (H) is an isomorphism.

(2) The subcomplex A is contained in X'.

(3) The image of each € is contained in X'.

(4) Each infinite-degree elevation (5JH : R — X restricts to a (possibly non-full) elevation
65+ Dy — X', where D; CR is a finite union of compact intervals.
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The subscripts ¢ and j are different, indicating that there may be several elevations 5JH for
each ¢;, and likewise for ;. We will keep completing the precover X’ further to get some more
intermediate precovers X' C X" C X C Xy of X.

From [Wil08, Lemma 2.24], we can enlarge X’ to X” C Xy so that X" still enjoys properties
(1)—(4) listed above while additionally satisfying that the corresponding elevations d7: DY —
X" are disparate (in the sense of [Wil08, Definition 2.2]). In particular, the induced map

T (X") — 7 (Xg) (5.1)
is an isomorphism.

Step 2 (The precover X). We shall not need the definition of disparity but, instead, we will
explain how this condition is used to extend the precover X" further. Recall that each DY is the
union of finitely many compact intervals and that D;-/ fits in the following commutative diagram.

X/l 63,', D/l
J

5~

XH%DZ'

L]

X 2 p,

For all sufficiently large positive integers d, there exists D; 22 S! such that D;-’ — D; factors
through an embedding DY < D; and a d-sheeted covering map D; — D;. By [Wil08, Lemma
2.23], we can extend X" to a precover X such that each 67 extends to a full elevation 6j:Dj— X
and the diagram

1"

X// 53’ D//
J

X D; =, 5!
J’ J’ J{deg d
X < D; > S

commutes. By possibly enlarging A, we can assume that the images of the Ej are contained in A.

In the construction of [Wil08, Lemma 2.23], one first enlarges X” to X" by adding some
simply connected vertex spaces of Xy to obtain X” < X" — Xy. In particular, the induced
map 71 (X"”) — 71 (X") is an isomorphism. Then one considers a collection of pairs (gka o ft)
of edge maps gbﬁ 0! Ro — X and qka’t: Ry — Xy which are elevations of the incident and
terminal edge maps of some edge space S,i of X. Furthermore, these pairs (qka o gkat) will have
the property that these are not edge maps of X"’ (such elevations are usually called hanging
elevations of the precover X", as in [Wil08, Remark 2.18]). For each k, we denote by R, and Ry
the domains of qka o, and qkat, respectively (which are the universal covers of S,i) We fix a deck
transformation 7: ’Ro — Rt so that the natural diagram

R, u Ry
Sk
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commutes. Then X is constructed from X"’ by adding the edge space R, with incident and
terminal edge maps given by ¢£ o and (ka’t o7 for each k.

We denote by I' the underlying graph of the splitting of X. Notice that the underlying graph
of X” may be smaller. We set Ep C Edge(T") to be the edges of T'(X"). We enlarge the splitting
of X" by adding trivial vertex groups and just assume that its underlying graph is also I'. So
we view 71 (X") as the fundamental group of a graph of groups W whose underlying graph is T.
We denote by T a spanning tree of the underlying graph T'(X") of X"’. By construction, T is
also a spanning tree of I'.

Step 3 (The finite-sheeted precover X). By [Wil08, Proposition 3.4], there exists an intermediate
finite-sheeted precovering X — X—X satisfying the following properties for all sufficiently
large positive integers d.

(1) The underlying graph of XisT

(2) The subcomplex A projects homeomorph1cally into X.

(3) Each ¢ descends to a full elevation &j: E — X with E — E; being a covering of
degree d.

Since A injects into X , we already know that Sj descends to a full elevation gj Ej — X. We
want to apply Proposition 3.9 and prove that the natural map

LX) <HZ> — m(X)

is injective and L?-injective. Before this, we need to introduce more notation. There is a natural
bipartite structure of I' given by the bipartite structure of the splittings of ICE groups. More
precisely, Vert(I") is split into disjoint sets Vert, and Vert, so that, for all e € Edge(T"):

— o(e) € Vert,, and Xc')’(e) is a covering of Y'; and
— t(e) € Vert; and Xt”(e) is a covering of the torus T™.

We denote by Z the graph of groups corresponding to 71 (X ) whose underlying graph is I'. At
the end of Step 2, we defined the graphs of groups W and Z, the spanning tree T'CI', and
the subset of edges Edge(T) C E C Edge(T'). Denote by £(® the collection of elements of 7 (X)
that are represented by the images of the elliptic loops {&;}. For each v € Vert,, we define L,
to be the subset of Z, that contains L&O) and the elements ¢q ¢ (2¢) such that ¢, (2e) ¢ W,. By
construction, it is not hard to see that, up to a homotopy of X , we have that:

(a) the subset of m( 51(10);

(b) the subset of m(

) represented by the images of 62 is exactly |

X vEVert,
X

) represented by the images of §; is
{tc:e € Edge(I') \ Ex},

where we view 7 (X) as in Definition 2.3 (relative to the spanning tree T).

Before applying Proposition 3.9, we observe that we can ensure that X satisfies an additional
property, on top of the three listed above. Our inductive hypothesis implies that the complex
X, is L?-tame relative to £, for each v € Vert,. Henceforth, with the same construction as in
[Wil08, Proposition 3.4], and by adequately replacing the notion of tameness by our notion of
L?-tameness, we could have ensured that the finite-sheeted precover X satisfies the following
additional property.
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(4) For each v € Vert,, the natural map

71 (X ) * <HZ> — i (Xy)

L,

is injective and L-injective.

By applying Proposition 3.9 to the subgraph of groups W < Z introduced above (and keeping
in mind remarks (a) and (b) above), the induced map

T (X") * < ]Z[ Z) —s m(X) (5.2)

is injective and L2-injective.

Step 4 (The finite-sheeted cover X *). Finally, X can be extended to a finite-sheeted covering
Xt —X by adding additional vertex spaces glued along cylinders by [Wil08, Proposition 3.7].
Hence, 71 (X) is the vertex group of a cyclic splitting of 71 (X ) and, by Lemma 3.8, the injective
map

m(X) — i (XT) (5.3)

is L2-injective. R
We have gathered all the ingredients to prove that the finite-sheeted cover X T satisfies the
fourth point of the L?-tame property, namely that the induced map

m(Xg) * (H Z> —m(XT)
L

is injective and L?-injective. This is a direct consequence of the fact that the maps described in
Equations (5.1)(5.3) are injective and L2-injective. O

6. The strengthened Hanna Neumann conjecture

The purpose of this section is to explain how to obtain the SHNC for all the groups of Corollary C,
that is, limit groups and finite graphs of free groups with cyclic edge groups that are hyperbolic
relative to virtually abelian subgroups. The results that we state here are well known. In [AJ-Z22,
Sections 8-12], Antolin and Jaikin-Zapirain explain how the L2-Hall property implies the SHNC
for the class of hyperbolic limit groups. Here we review their argument implementing recent
work of Minasyan [Min23] and Minasyan and Mineh [MM?22] that will show that the L2?-Hall
property implies the SHNC for the groups of Corollary 6.7. This proves that Corollary C follows
from Theorems A and B.

We retain the following convention. If G is a graph of free groups with cyclic edge groups,
then X = (X,, X¢;T') will denote a corresponding graph of graphs with S! edge spaces such that
G =m X. However, in this subsection, G is not always assumed to be a graph of free groups.

Before describing under what circumstances the D (g-Hall property implies the SHNC, we
record other properties that will be important for this. Recall that a group G is said to have the
Wilson—Zalesskii property if G is residually finite and

UnNnv=UnV,

for all finitely generated subgroups of GG, where the closures are taken in the profinite completion
G of G.
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PROPOSITION 6.1. Let G =m1(X) be a finite graph of free groups with cyclic edge groups such
that ®x is balanced and solvable (in the sense of Definition 4.2). Then G is:

(1) hyperbolic relative to virtually abelian subgroups;

(2) locally relatively quasiconvex;

(3) virtually compact special;

(4) double coset separable and therefore has the Wilson—Zalesskii property;
(5)

5) L2-Hall.

These conclusions also hold if G is a limit group.

Proof. Let G =m1(X) be a graph of free groups with cyclic edge groups such that ® x is balanced
and solvable. By the main result of Richer’s master’s thesis [Ric06, Main Theorem 1.2.5], G is
hyperbolic relative to the generalised Baumslag—Solitar subgroups associated to the components
of ®x (see [Ric06, Section 2.2] for this version of the statement). Since ®x is balanced and
solvable, all the edge weights are +1 and each component of ® x has first Betti number at most
1. Therefore, the associated generalised Baumslag—Solitar subgroups are all virtually isomorphic
to Z or Z2. Hence, (1) follows. Now (2) follows from (1) and [BW13, Corollary D].

Property (3) can be collected either from (1) (together the main results of [HW10, Rey23]) or
from [MM22, Corollary 2.3]. Minasyan and Mineh proved that both limit groups and subgroup
separable graphs of free groups with cyclic edge groups are double coset separable [MM22,
Theorem 2.2]. Minasyan proved that double coset separability implies the Wilson—Zalesskii
property [Min23, Corollary 1.2]. This implies (4). Finally, (5) is exactly Theorem 4.9.

On the other hand, when G is a limit group, (1) and (2) follow from [Dah03b, Theorem 0.3
and Proposition 4.6]; (3) is proved in [HW10]; (4) was explained in the previous paragraph; and
the L2-Hall property of (5) is a consequence of [BK23, Corollary 28] or of Theorem 5.7. O

For the SHNC to hold for a class of groups, we must first ensure that the sum over the
double cosets is finite. By [AJ-Z22, Theorem 9.4], this is the case for limit groups. We restate
this theorem in enough generality so as to include graphs of free groups with cyclic edge groups
such that ®x is balanced and solvable. We also include a sketch of the proof, since it is essentially
identical to that of Antolin and Jaikin-Zapirain.

THEOREM 6.2 [AJ-Z22, Theorem 9.4]. Let G be a torsion-free group that is hyperbolic relative
to a family of virtually abelian subgroups and suppose that G is locally relatively quasiconvex.
If U,V <G are finitely generated subgroups and T is a complete set of (U, V')-double coset
representatives, then there are only finitely many t € T such that U NV is not virtually abelian.
In particular, the sum Y, x(U NV") is finite.

Proof (sketch). First, note that torsion-free abelian groups are of finite type. Since G is locally
relatively quasiconvex, it follows that every finitely generated subgroup U of G is hyperbolic
relative to subgroups of finite type, and therefore U is of finite type by [Dah03a, Theorem 0.1].
Moreover, the intersection of relatively quasiconvex subgroups is relatively quasiconvex, so it
follows that (U NV?) is defined and finite for all ¢ € T". Hence, to prove the claim it suffices to
show that X(U NV*) =0 for all but finitely many t € T

By [AJ-Z22, Proposition 1.3], there are only finitely many ¢ € T such that U N V* contains a
loxodromic element. Since G is torsion-free, this implies that U N V! is contained in a parabolic
subgroup of G for all but finitely many ¢ € T. Therefore U NV? is virtually abelian and, in
particular, (U NV?!) =0 for all but finitely many ¢t € T O
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For the remainder of the section, assume that the groups appearing are locally indicable
and that their group algebras admit Hughes-free embeddings. The next important step in their
argument is to reformulate the SHNC in terms of D (g-Betti numbers of pairs of modules. First
of all, recall the Dg(g)-Betti numbers of K[G]-modules introduced in Equation 2.1. Let M and
N be two left K[G]-modules. Form the K[G] module M ®x N, where the G-action on simple
tensors is given by the diagonal action g - (m ®n):= (gm) ® (gn). The nth D -Betti number
of the pair (M, N) is defined to be

BEIE (M, N) == K (M @ N).

The next result is proved for limit groups in [AJ-Z22, Proposition 2.8]. It also holds for the
graphs of free groups with cyclic edge groups that we consider, with essentially the same proof.

PROPOSITION 6.3 [AJ-Z22, Proposition 8.2]. Let G be hyperbolic relative to virtually abelian
subgroups and locally relatively quasiconvex, and suppose that all finitely generated subgroups of
G are of finite type. Finally, assume that bK[U] (U)=x(U) for every finitely generated subgroup
U < G. Then for any pair of finitely generated subgroups U,V < G, we have

sk Kigvy = Y xUnVY. (6.1)
teU\G/V

In particular, the SHNC for G is equivalent to having
Ak le/) klGv) <oy,

Proof. Let U,V <G be finitely generated subgroups and let 7" be a complete set of double
(U, V')-coset representatives. We always have the decomposition

K[G/Ulek K[G/V]=EP KIG/(UNV"),
teT

so using the fact that the Tor{([G] functor commutes with direct sums and taking Dgg-
dimensions yields

s kGl Kla/v) =Y s K6/ U nVY).

teT

Finally, (6.1) follows from the equation above and the fact that

s le /v =60 = %),
for any finitely generated subgroup U < G by (2.1) and Proposition 2.15(5). O

Remark 6.4. We claim that limit groups and finitely generated graphs of free groups with cyclic
edge groups that are hyperbolic relative to virtually abelian subgroups satisfy the hypotheses
of Proposition 6.3. Both classes of groups are hyperbolic relative to virtually abelian subgroups
and locally relatively quasiconvex by Proposition 6.1. Finitely generated subgroups of graphs
of free groups with cyclic edge groups or limit groups are of finite type, a fact which can be
deduced from Proposition 6.1(2), and using the fact that the peripheral subgroups are of finite
type in each case.

Let G be a non-trivial graph of free groups with cyclic edge groups. Then an[G](G) vanishes
for n# 1 by Chiswell’s long exact sequence (Theorem 2.10). Since subgroups of graphs of free
groups with cyclic edge are again graphs of free groups with cyclic edge groups, it follows that

xU)= an[U](U) for any finitely generated subgroup of a graph of free groups with cyclic edge
groups G.
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Now suppose that G is a limit group. Then bﬁ{ [G](G) is only non-zero for n =1, which can
be seen in several ways. For example, one can combine [BK17, Corollary B] with the fact that

bf[G](G) <bn(G; K) (see [J-Z21, Corollary 1.6], where the result is stated for K =C, but the
proof is identical for any field K). It is also possible to derive this fact from the result that
limit groups are free-by-(torsion-free nilpotent) [Koc10]. Since all finitely generated subgroups
of limit groups are limit groups (this is immediate from the characterisation of Theorem 5.2),
this implies that limit groups satisfy the hypotheses of Proposition 6.3.

The last key result from the paper by Antolin and Jaikin-Zapirain is stated for hyperbolic
limit groups. The proof in the general setting is nearly identical; we reproduce it here for the sake
of completeness and in order to elucidate the differences in the relatively hyperbolic context.

PROPOSITION 6.5 [AJ-Z22, Proposition 11.1]. Let G be a locally indicable group that is hyper-
bolic relative to virtually abelian subgroups. Additionally, assume G that is double coset
separable, Dy (g-Hall, and has the Wilson-Zalesskii property. Let U,V < G be finitely gener-

ated subgroups. Then there exists a normal finite-index subgroup H < G such that BK[G]( N) =0,
where N is the kernel of the map

[+ K|G/U] @k K|G/V] — K[G/U] @k K[G/VH].

Proof. By Theorem 6.2, there are only finitely many double cosets UtV such that U NV is not
virtually abelian. Let Hy < G be a finite-index subgroup separating these double cosets UtV

For each t such that UtV is not virtually abelian, let A; < G be a finite-index normal subgroup
such that U N V* is Dg¢j-independent in (U N'V*)A;. By [AJ-Z22, Corollary 10.4] (which holds
for groups with the Wilson—Zalesskii property), there is a finite-index normal subgroup Hy < G
such that U N (HV)' < (UNV') A Set H=HyN(), A¢, where ¢ runs over the double coset
representatives such that UtV is not virtually abelian.

Let T be a set of (U, V H)-double coset representatives containing 1, which extends to 7", a
set of (U, V')-double coset representatives. Since Hy separates the non-virtually abelian (U, V)-
double cosets, it follows that if z € 7"\ T then UzV is virtually abelian. Let 7: 7" — T be a
set-theoretic map with the property that Un(t)VH = UtV H for all t € T'. In general we have
the K[G]-module decomposition

K[G/U] ek K[G/V]= D K[GI(U &tV).
teT
However, in order to analyse the kernel of f more easily, it is useful to modify the complement
of ®1er K[G](U ®tV) in K|G/U] @k K[G/V] and obtain the following decomposition:
K[G/U)ok K[G/VIZEP KGIUetV)e P KIGIU (tV —a(t)V)).
teT teT/\T

Let I; denote the kernel of the map K[G](U ®tV) — K[G](U ® tVH). Then the kernel of f
has the decomposition

ker f2P Lo P KIGU (tV —a(t)V)).

teT teT'\T

By exactly the same proof as in [AJ-Z22, Proposition 11.1], 51 ( ¢+) =0 for each t € T. On the
other hand, we have isomorphisms

K[GI(U® (tV — n(t)V)) = K[G)(U & (tV — n(t)V)) = K[G/(U N V1))
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So it suffices to compute BlK ] (K[G/A]) where A is a virtually abelian group, which is equal to
bE1(4) =0 by (2.1) and Proposition 2.15(5). 0

With all of this in place, the proof that the L2-Hall property implies the SHNC proceeds
exactly as in Section 12.1 of [AJ-Z22], where the following lemma is shown.

LEMMA 6.6 [AJ-Z22, Section 12.1]. Let G be a torsion-free virtually compact special group such
that bf[c}(G) =0 for all n#1, and let U,V <G be finitely generated subgroups. If there is a
finite-index normal subgroup H < G such that

K[G] KI[G]
1

(M)=0=p, "(K[G/U],N),
where

M =ker(K[G/U] — K[G/UH]) and N =ker(K[G/V]— K[G/VH]),
then 81K (G /U), K[G/V]) <P @)k (v).

The details of the argument are rather technical and rely on the theory of acceptable modules
over twisted group rings, which is developed in [AJ-Z22, Section 6]. All the results of [AJ-Z22,
Section 6] hold for all virtually compact special groups, except for [AJ-Z22, Proposition 6.4],
which is stated only for limit groups. However, the only properties of limit groups that are used
in the proof are that they are virtually compact special and that their L?-Betti numbers vanish
in all dimension other than 1. We are now ready to conclude that the SHNC holds for graphs of
free groups with cyclic edge groups that are hyperbolic relative to virtually abelian subgroups
limit groups.

COROLLARY 6.7. Let G =m1(X) be a graph of free groups with cyclic edge groups such that
® x is balanced and solvable (equivalently, such that G is hyperbolic relative to virtually abelian
subgroups) or let G be a limit group. Then G satisfies the SHNC.

Proof. By Propositions 6.1 and 6.5, for any pair of finitely generated subgroups U, V < G, there
is a normal finite-index subgroup H < G such that BF) (L) =0, where L is the kernel of
Q[G/U] @0 QIG/V] — Q[G/U] ®q Q[G/V H].
Since L=Q[G/U]®g N, where N =ker(Q[G/V]— Q[|G/V H]), it follows immediately that
H@iaon =o.

We may also choose H deep enough so that U is L%-independent in UH. Let M be the
kernel of Q[G/U] — Q[V/UH]. By [AJ-722, Proposition 4.22], this implies that S2“ (A1) = 0.
By Proposition 6.3 and Lemma 6.6, we conclude that G satisfies the SHNC. O
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