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Abstract

We present Digital Collections Explorer, a web-based, open-source exploratory search platform
that leverages Contrastive Language-Image Pre-training for enhanced visual discovery of
digital collections. Our Digital Collections Explorer can be installed locally and configured
to run on a visual collection of interest on disk in just a few steps. Building upon recent
advances in multimodal search techniques, our interface enables natural language queries and
reverse image searches over digital collections with visual features. This article describes the
system’s architecture, implementation and application to various cultural heritage collections,
demonstrating its potential for democratizing access to digital archives, especially those with
impoverished metadata. We present case studies with maps, photographs and PDFs extracted
from web archives in order to demonstrate the flexibility of the Digital Collections Explorer, as
well as its ease of use. We demonstrate that the Digital Collections Explorer scales to hundreds
of thousands of images on a MacBook Pro with an M4 chip. Lastly, we host a public demo of
Digital Collections Explorer.

Plain language summary

In the computational humanities, researchers are experimenting with the application of mul-
timodal models to digital cultural heritage collections in order to improve discoverability
and semantic analysis. However, it is difficult for end-users to make use of these multimodal
advances, as they are in need of open-source packages and interfaces for producing embeddings
and interacting with these collections, respectively. In this article, we introduce our Digital
Collections Explorer, an easy-to-install exploratory search platform that can be run locally to 1)
produce multimodal embeddings for a digital collection and 2) spin up a local exploratory
interface for searching the digital collection in a multimodal fashion. To demonstrate the
extensibility of the Digital Collections Explorer, we show case studies across photojournalism
collections, digitized maps and PDFs extracted from web archives and demonstrate that the
Digital Collections Explorer can scale to hundreds of thousands of images. Lastly, we include
a tutorial enumerating how to build an exploratory, multimodal search interface for a digital
collection. A demo of an example collection made searchable with Digital Collections Explorer
can be found at: https://www.digital-collections-explorer.com. Our code can be found at:
https://doi.org/10.5281/zenodo.15744570.

Introduction

Despite the significant advances in providing access to both digitized and born-digital collec-
tions over the past three decades, digital collections – particularly those with visual features –
face significant challenges surrounding discoverability. While manually-curated metadata for
photographs, maps and other visual culture are incredibly valuable when searching a collection,
this approach simply does not scale to millions of items. The digitized Chronicling America
newspaper collection now has over 20 million individual pages digitized, and born-digital
collections are even larger, with petabytes of data comprising billions of items. As a result,
collections often lack basic descriptive metadata – and without basic metadata facets, it is
fundamentally difficult to search collections.

Researchers in the computational humanities and cultural heritage have long been interested
in automated approaches to metadata augmentation, as evidenced by the long history of optical
character recognition (OCR) for the text transcription of digitized documents (Cordell 2020).
The advent of multimodal models such as Contrastive Language-Image Pre-training (CLIP)
(Radford et al. 2021) that capture visual and textual information jointly have shown great
promise for addressing this challenge for collections ranging from maps (Mahowald and Lee
2024) to newspapers (Smits et al. 2025). While this research has demonstrated the ability to
search over collections with little to no associated metadata, this research must still be translated
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Figure 1. An overview of the Digital Collections Explorer, showing the central components: 1) the developer input, 2) the embedding process, 3) user input, 4) the web front-end

interface, and 5) the API server.

into practice. Stewards of these collections are in need of
democratized solutions for making their collections discoverable
using these approaches – in particular, ones that are accessible to
non-experts with access to only standard, staff-issued hardware
(e.g., a MacBook).

In this article, we introduce our Digital Collections Explorer,
which can be run locally on a laptop with only a few steps in order
to spin up a multimodal search interface for a digital collection
with hundreds of thousands of items. With the Digital Collections
Explorer, end-users can interactively search large-scale collections
using multiple input modalities, including both natural language
inputs (e.g., “redacted documents”) and visual inputs (i.e., reverse
image search1 or image-to-image search). Our inspiration for and
implementation of the Digital Collections Explorer is based on
extended collaborations with stewards of collections who have
articulated precisely these needs.

The Digital Collections Explorer is designed to be easy to use
for non-experts and extensible to a wide range of collections with
visual features, from visual culture to documents with visual lay-
outs and other semantic features encoded visually. In Figure 1, we
show an overview of how the Digital Collections Explorer works.
To spin up the Digital Collections Explorer, the developer inputs a
digital collection (red, top-left). This initiates the embedding pro-
cess (gray, bottom-left), which generates CLIP embeddings for all

1Here, we adopt the canonical definition of “reverse image search”: using an
example image to search for similar images, without any keywords provided.

of the items in the collection.2 Based on our case studies presented
in this article, this step can scale to hundreds of thousands of
items on a personal laptop. Once the embedding pre-processing
is finished, the developer can spin up the viewing interface (blue,
top-right), which:

1. takes a user’s searches as input (red, top-right);
2. communicates with the API server (violet, bottom-right) to

embed the search query and identify the top results using the
CLIP embeddings;

3. renders the front-end interface and displays the results to the
user (blue, top-right).

Our Digital Collections Explorer is designed to be run end-to-end
locally, meaning that the embedding pipeline utilizes a locally-
installed model (without transferring a digital collection to any
external API), and the viewer can be spun up on a local machine as
well, without being made publicly visible. In this regard, the Digital
Collections Explorer can be applied even to digital collections
with sensitivities surrounding privacy and access. Users interact
with the system through a React-based front-end, which supports

2Embeddings are low-dimensional vectors (in this case, 512-dimensional
vectors) that capture meaningful semantic associations. In the case of CLIP,
both text and images can be embedded by the model into the same embedding
space, and embeddings with similar cosine distance are more likely to share
semantic similarities. For example, images of stop signs and the phrase “stop
sign” will all have CLIP embeddings that are close to one another in the CLIP
embedding space.
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natural language queries, reverse image search and multimodal
inputs. The back-end, implemented in FastAPI, handles search
requests by comparing query embeddings with precomputed
image embeddings.

To aid those interested in using our software, we provide a
tutorial for running the Digital Collections Explorer with the
goal of facilitating use by researchers and practitioners in the
computational humanities, as well as in galleries, libraries, archives
and museums (GLAMs). Our intent is for the Digital Collections
Explorer to be of use to a range of audiences, including individual
researchers, curators, photo editors and even artists, such as
photographers – all of whom share the challenge of searching visual
collections that may not have much metadata. We demonstrate the
extensibility of our Digital Collections Explorer with four different
collections: two photojournalism collections provided to us by
collaborators due to the collections’ lack of descriptive metadata
(and thus persistent difficulties searching them); a collection
of 562,842 images of maps held by the Library of Congress;
and a collection of a thousand born-digital PDFs produced by
the federal government. In doing so, we demonstrate how the
Digital Collections Explorer can facilitate searching even in the
limit of no metadata. Lastly, to demonstrate the functionality
of the Digital Collections Explorer, we host a public demo at
https://www.digital-collections-explorer.com for searching these
500,000+ images of maps from the Library of Congress.

Contributions

This article presents several contributions:

1. We introduce our Digital Collections Explorer, a cultural her-
itage viewer for visual culture exploration. The system provides
institutions with a robust foundation for digital collection
management and discovery, while addressing key challenges in
user interaction. Significantly, our Digital Collections Explorer
can be spun up locally, meaning that both the machine learning
embedding pipeline and the viewer can be spun up without
making any data visible to the public or to any machine
learning APIs.

2. Our Digital Collections Explorer implements a metadata-
agnostic approach, enabling semantic search and exploration
capabilities even for collections lacking traditional metadata
structures. By leveraging CLIP embeddings, this approach
significantly expands the accessibility of previously hard-to-
search archival materials.

3. Our research contributes to the open-source community
through a comprehensive implementation, available via a public
repository, as well as our tutorial for applying our Digital Col-
lections Explorer to other collections of interest. The codebase
is publicly available at https://doi.org/10.5281/zenodo.15744570
and is available with a CC-BY-4.0 license.

4. We demonstrate the Digital Collections Explorer’s adaptability
across diverse collection types, including photographs, maps
and born-digital documents.

5. We host a public demo of Digital Collections Explorer on
an example collection of 562,842 digitized map images from
the Library of Congress at: https://www.digital-collections-
explorer.com.

Related work

In this section, we contextualize our work in relation to exist-
ing projects and literature surrounding the collections as data,

multimodal cultural heritage and open-source viewers for digital
cultural heritage.

Collections as data and responsible AI

We build on extensive work over the past decade to develop
“Collections as Data” approaches (Padilla 2018; Padilla et al. 2019).
“Collections as Data” principles emphasize “computational use of
digitized and born digital collections,” “lower[ing] barriers to use,”
“shared documentation help[ing] others find a path to doing the
work,” and “valu[ing] interoperability” (Padilla et al. 2019), all of
which are principles that we bring with our Digital Collections
Explorer.

We also draw from the related area of work surrounding respon-
sible uses of AI for GLAMs (Lee 2023; Padilla 2020; Potter 2023).
In particular, we have drawn from this literature during our devel-
opment process and have chosen to emphasize the development of
tooling that uses AI in order to improve access and democratize
its application, while also ensuring that privacy and stewardship
are emphasized through the adoption of open models and local
interfaces.

Multimodal AI models

Our Digital Collections Explorer builds upon a rich body of
research in multimodal search and digital cultural heritage. Recent
advancements in multimodal machine learning have yielded the
development of open models, such as CLIP (Radford et al. 2021)
and more recently, LlaVa (Liu et al. 2024) and Molmo (Deitke et al.
2025). As one example, the open-source model Molmo was pre-
trained on a dataset of 712,000 images with 1.3 million captions
(Deitke et al. 2025). Similarly, CLIP (the model we adopt in this
article) has been pre-trained on publicly-available image-caption
pairs derived from webpages and machine learning datasets, such
as the YFCC100M dataset (Radford et al. 2021; Thomee et al. 2016).
Created by OpenAI, CLIP was first released in 2021 and is publicly
available via GitHub and HuggingFace (in this article, we have
utilized HuggingFace for access).

Multimodal cultural heritage

CLIP, along with other multimodal models, has enabled seman-
tic alignment between text and image embeddings, facilitating a
wealth of searches across language and vision. Prior work has
explored the application of these models to cultural heritage col-
lections (Barancová, Wevers, and van Noord 2023; Mahowald and
Lee 2024; Smits and Kestemont 2021; Smits and Wevers 2023;
Smits et al. 2025) and has demonstrated promising possibilities for
improving the discoverability of large-scale visual collections, espe-
cially those with little descriptive metadata. However, challenges
remain in democratizing these approaches and integrating them
into user-friendly systems for viewing. Our Digital Collections
Explorer addresses this challenge by prioritizing extensibility for
non-experts. In the tradition of open machine learning models that
can be run locally – without sharing information with proprietary
AI companies – our Digital Collections Explorer is designed to use
open multimodal models, ensuring that digital collections can be
stewarded properly.

Open-source viewers for digital collections

Researchers and practitioners in digital cultural heritage have
long contributed to the creation of open-source image viewing
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Figure 2. The directory layout of the Digital Collections Explorer codebase, showing the high-level organization intodata,src/frontendandsrc/backend, which correspond

to distinct functional layers of the system.

software for digital collections, enabling non-experts to spin
up interfaces for viewing. Viewers, such as CollectionBuilder
(Becker, Williamson, and Wikle 2020) and Omeka (Cohen
2008), provide faceted viewing options and have been heavily
utilized within the digital humanities, computational humanities
and library communities. Viewers, such as PixPlot (Duhaime
2020), CollectionScope (Natural History Science Visualization
Group 2021) and artexplorer.ai (van der Weide and Lockhorst
2024), support visual and multimodal semantic search in a more
exploratory fashion via cluster-based search. Other innovative
viewers include the Vikus Viewer (Glinka, Pietsch, and Dörk 2018).
Our Digital Collections Explorer builds on this movement in order
to provide new modes of open-source viewing. Our solution is
designed with both extensibility and scale in mind, providing
semantic viewing capabilities over hundreds of thousands of items
seamlessly.

Digital collections explorer: An overview

In this section, we include an overview of our system architecture,
including the embedding generation pipeline, front-end and back-
end components, as well as a tutorial describing how to spin up
a local instance of the Digital Collections Explorer, along with a
public demo.

System architecture

The Digital Collections Explorer is designed as a modular sys-
tem, ensuring maintainability, scalability and ease of reuse. The
overall structure of the codebase is illustrated in Figure 2, con-
sisting of three central branches: data, src/frontend and
src/backend.

Embedding generation pipeline
The system uses a local implementation of CLIP to generate
embeddings of visual collections. This ensures privacy because
no data is sent to external servers, making the system suitable for
sensitive collections. Likewise, it ensures efficiency, as embeddings

are generated locally, reducing dependency on external APIs and
ensuring consistent performance. By default, the system loads the
publicly available pre-trained model:3

openai/clip-vit-base-patch32

The generation pipeline is managed through a set of clearly
defined directories within the data folder, as illustrated in Fig-
ure 2, which is systematically organized as follows:

• raw: This directory serves as the initial input location for the
user’s original collection files in their native format (e.g., JPGs,
PNGs, TIFFs or PDFs).

• processed: Before embedding, certain files require pre-
processing. For instance, PDFs are converted into a series of
images during pre-processing, and these intermediate files are
stored here.

• thumbnails: To ensure a smooth user experience in the
gallery view, the system automatically generates low-resolution
thumbnails for each item, which are stored in this directory for
rapid loading.

• embeddings: The final output of the pipeline, the computed
tensor embeddings, is saved as.pt files in this directory. Instead
of generating embeddings with Digital Collections Explorer,
users may skip the pipeline and place their pre-computed
embeddings here for the system to use directly.4

3The model card for clip-vit-base-patch32 can be found at:
https://huggingface.co/openai/clip-vit-base-patch32 (in this context, a model
card is a form of documentation for AI models popularized by Mitchell et al.
(2019), utilized to document various dimensions of the model’s training, uses,
evaluation and beyond).

4To use pre-computed embeddings, three conditions must be met:
1) An embeddings.pt file containing a single PyTorch tensor of shape
[N, D], where N is the total number of items and D is the embedding
dimension.

2) An item_ids.pt file containing a Python list of N unique string identi-
fiers.

3) The dimensionality of the custom embeddings must precisely match the
output dimension of the model specified in the config.json.
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Figure 3. The component-based front-end architecture of the Digital Collections

Explorer. The parent (App.jsx) component acts as a stateful controller, mediating

between the reusable UI and an abstracted layer (api.js).

The model choice is fully configurable: users can swap in any
Hugging Face transformers-compatible model by editing a single
line in the project’s config.json. As described in the tutorial
later in this section, once a digital collection is placed in the
raw directory, the embedding pipeline can be run with a single
command.

Front-end
The user-facing interface is built using React, providing an intuitive
and responsive experience. As shown in Figure 3, the architecture
is centered around the App.jsx component, which serves as the
primary container and state manager. This architecture enables
several key features for the end-user, including:

• Search interaction, supported by the SearchBar.jsx and
ImageUpload.jsx components. These components provide
interfaces for natural language queries and reverse image search,
respectively. An example of the landing page, as shown in Fig-
ure 4, demonstrates both text and image search functionalities.

• A gallery view for browsing collections, which is rendered by the
SearchResult.jsx component. This component renders
a grid of thumbnails based on the search results, as shown in
Figure 5 for the query “arctic ocean.”

• Detailed image inspection, provided by the Lightbox.jsx
component. As demonstrated in Figure 6, this feature presents a
high-resolution version of a selected item in a modal overlay.

For greater modularity and ease of reuse, the front-end is
structured as independent React applications for each collection
type (photographs, maps and documents). Each application
is self-contained, allowing developers to isolate and utilize
a single front-end implementation for their specific needs.
Additionally, this approach allows for collection-specific cus-
tomization within a consistent structure; for example, while all
collection types share common API call logic, the frontend/
documents/src/components folder consists of a
PDFViewer.jsx component tailored to its specific PDF content.

All communication with the back-end is handled by a dedi-
cated service layer, api.js. When a user initiates a search query,
the corresponding UI component notifies App.jsx, which then
invokes the necessary function from the api.js service. This
service manages the asynchronous API request and returns the
data to App.jsx, which updates its state, triggering a re-render
of the interface to display the results.

Back-end
The API server is implemented using FastAPI, a high-performance
Python web framework. As depicted in Figure 2, the back-end logic
within src/backend is divided into two core sub-directories:
api and services. The api directory defines the public-
facing endpoints that the front-end communicates with, while
the services directory contains the core logic, such as the CLIP
model inference and embedding management. This separation
of concerns ensures maintainability. The front-end interacts
primarily with two main endpoints: /api/search/text for
natural language queries and /api/search/image for reverse
image search. Both endpoints accept parameters for pagination,
such as limit and offset, allowing for efficient loading of
large result sets. Upon receiving a request, the back-end processes
the query and returns a ranked list of relevant items. Each item
in the response payload includes a unique identifier, its similarity
score, and any associated metadata, providing the front-end with
all necessary information for rendering.

To implement the embedding functionality, our system lever-
ages the Transformers library by Wolf et al. (2019). This library
provides a robust and efficient implementation of the CLIP model.
By building upon this widely adopted open-source tool, we ensure

Figure 4. Examples of the landing page for the photographs collection interface, which presents an end-user with two options for searching: text search via natural language (Figure

4a) and image search (Figure 4b).
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Figure 5. An example of the historical maps gallery view rendered by the SearchResult.jsx component in response to a user query “arctic ocean.” The component’s

responsibility is to render a grid with thumbnails of the maps.

Figure 6. The lightbox view, built into the maps collection interface, enables detailed inspection of a historical map. This modal interface provides tools for zooming and panning,

allowing for a detailed examination of a map’s features.

that our system is not only reliable but also easily extensible,
allowing for future integration of other pre-trained models from
the Hugging Face ecosystem.

The core of our back-end is the retrieval engine, which imple-
ments the procedure detailed by Mahowald and Lee (2024). For

any given query (either text or image), the system computes a
CLIP embedding and retrieves the nearest neighbors from the
pre-computed embeddings of the collection, ranked by cosine
distance. Our principal contribution resides in the implementa-
tion of this methodology, transitioning it from its initial Jupyter
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Table 1. Embedding generation times with a 2024 MacBook Pro M4 Chip with 10-Core CPU, 10-Core GPU and 16-GB

Unified Memory (∗=reported by Mahowald and Lee (2024) using similar hardware).

Collection Items Embedding time

Library of Congress Maps 562,842 map images Under 24 hours∗

San Francisco Chronicle Photo Collection 129,386 photographs 1 hour 27 minutes 32 seconds

Library of Congress .gov PDF dataset 1,000 PDFs (12,287 pages) 8 minutes 57 seconds

Chris Morris Photo Collection 1,025 photographs 4 minutes 5 seconds

Note: We report failures on 75 images from the San Francisco Chronicle Photo Collection (0.058%) and 17 Library of Congress PDFs (1.7%).

Notebook prototype in Mahowald and Lee (2024) to a production-
ready system. This was accomplished through the design of a
FastAPI application, wherein the retrieval process is delivered via
a high-performance, non-blocking API endpoint. The FastAPI’s
asynchronous capabilities were crucial in this engineering effort,
providing the necessary throughput to support scalable queries
across hundreds of thousands of items with minimal latency.

Software engineering practices
The implementation of the Digital Collections Explorer adheres
to established software engineering practices that prioritize main-
tainability and extensibility. The back-end is organized according
to a layered architecture that separates HTTP routing, service
logic and data modeling according to the principle of separa-
tion of concerns. Each FastAPI route is intentionally minimal. It
handles only request validation and response formatting, while
the core logic is implemented in separate service modules, such
as clip_service.py and embedding_service.py. This
design follows the service layer pattern and single responsibility
principle, allowing each component to serve a distinct purpose.

Working with the digital collections explorer: A tutorial

Whether one is utilizing historical photographs, historic maps or
born-digital documents, the Digital Collections Explorer offers a
streamlined setup process and scalability for customization with
a wide range of digital collections. This section demonstrates how
researchers can easily and efficiently set up the system to meet their
specific collection requirements. Though the Digital Collections
Explorer requires knowledge of the command line, we have made
every effort to minimize the number of commands required to
utilize our codebase.

System setup
The system initialization process is designed to be straightfor-
ward by assigning the specific collection type as an argument. The
following examples demonstrate the setup process for different
collection types:

Photographs npm run setup -- --type=
photographs

Configures a gallery interface with grid and masonry
layouts,5 optimized for large-scale image browsing.

5A masonry layout is one in which each image is proportionally adjusted to
the same width, and images are sorted in columns of even width.

Maps npm run setup -- --type=maps

Implements an OpenSeadragon viewer for high-
resolution zoomable maps with smooth pan and
zoom capabilities.

Documents npm run setup -- --type=
documents

Provides a temporal navigation interface with a docu-
ment viewer optimized for PDFs extracted from web
archives.

Each setup command automatically configures the appropriate
front-end components and back-end services optimized for the
specific collection type.

We note that the Digital Collections Explorer can also be
utilized to explore collections of mixed types. In this case, we
recommend that the most appropriate setting be chosen (for
example, a collection of mostly photographs with some maps is
compatible with the “photographs” setting). Sometimes, a different
category might be the best choice: for a collection of very high-
resolution photographs, the “maps” setting might be most appro-
priate in order to take advantage of the OpenSeadragon viewer.

Data preparation and embedding generation
For a given digital collection, we begin by placing the collection
in the data/raw/ directory; however, this location can be
configured in theconfig.json. The system recursively retrieves
images from subdirectories, so any existing directory structure
is acceptable, so long as all of the images exist nested within
data/raw/. The system supports common image formats,
including JPG, PNG, TIFF or PDFs (PDFs are split at the page level
and converted to images as part of running this pre-processing
pipeline). Embeddings are generated by running:
python -m src.models.clip.generate_

embeddings

This command processes all images in the data/raw direc-
tory and creates embeddings in the data/embeddings direc-
tory. We report embedding generation times for multiple collection
examples in the next section of the article on case studies. For
instance, as shown in Table 1, the San Francisco Chronicle Photo
Collection, comprising 129,386 photographs, was processed in 1
hour and 28 minutes on a single MacBook Pro.

Starting the server
After embedding generation, the back-end server is launched to
provide API endpoints for search and exploration by running the
following command:
python -m src.backend.main

The API server will then start at http://localhost:8000.
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Front-end customization and build process
To enable front-end customization, we have active development
with hot reloading. Once the back-end server is up, starting the
front-end development server can be accomplished with:

cd src/frontend /[ photographs|maps|
documents]npm run dev

These commands start a temporary development server at
http://localhost:5173 with hot-reloading enabled. The port number
is configurable and used only for local development. In production,
the front-end assets are served by the back-end, allowing multiple
collections to be deployed under the same instance. For production
deployment, front-end assets must be built using the following
command:

npm run frontend -build

Then restart the back-end server to serve the updated front-
end assets. The build process is only required when deploying to
production environments (such as cloud servers) or when gen-
erating optimized JavaScript bundles for enhanced performance.
For local development and testing purposes, running the front-end
development server is sufficient.

Publicly hosting a digital collections explorer
It is straightforward to host a web application of Digital Collections
Explorer for public access on cloud services such as Amazon
Web Services (AWS). Although manual setup can be done by
following the tutorial above, we strongly recommend this con-
tainerized approach due to its significant advantages in ensuring
environmental consistency, simplifying dependency management
and enhancing security. As a result, we provide a Dockerfile
that serves as the cornerstone for both deployment and scientific
reproducibility. This Dockerfile encapsulates the application stack
– the Python back-end, the compiled JavaScript front-end and all
package dependencies. By doing so, it creates a portable image of
the entire system. The general deployment process involves:

1. Build the Docker Image. The image should be tailored to a spe-
cific collection type by passing the –build-arg flag during
the build process:

docker build --build -arg COLLECTION\_TYPE
=<type > -t <image -tag > .

2. (Optional) Push to a Container Registry. For distribution, the
newly created image can be pushed to a container registry, such
as Docker Hub or AWS ECR:

docker push <image -tag >

This step is not required if the image is built directly on the target
machine.

3. Run the Container. Finally, the application is launched by run-
ning the container from the Docker image.

docker run -p 8000:8000 -v ./data:/app/
data <image -tag >

Public demo

For those who would like to experiment with an instantiation
of Digital Collections Explorer, we host a public demo at:
https://www.digital-collections-explorer.com. This demo sup-
ports searching over 562,842 map images from the Library of

Congress – one of our case study collections described in detail
in the next section.

To create this live, interactive demonstration of this system, we
deployed Digital Collections Explorer on an AWS EC2 instance
using the following process. First, we built a Docker image on a
MacBook Pro M4 and pushed it to our public Docker Hub reposi-
tory: https://hub.docker.com/repository/docker/hinxcode/digital-
collections-explorer. Following this, we provisioned an AWS EC2
c6gd.large instance ($0.08/hour), pulled the image, and launched
the application by running “docker run.”

For this specific deployment, we diverged from the standard
setup in two key ways. First, instead of using the embed-
ding generation pipeline, we directly used the pre-computed
embeddings provided by Mahowald and Lee (2024). Second, to
augment the pre-computed embeddings with essential metadata,
we developed a Library of Congress data preprocessing script.
Our Python script, create_loc_assets.py,6 processes
the original image identifiers and performs a record lookup
against merged_files.csv to generate two key assets: 1)
a new index file, item_ids.pt, which replaces the original
identifiers with stable keys while preserving their sequence and 2)
a metadata.json file that maps each key to its corresponding
metadata, including a direct link to the item’s entry in the
Library of Congress. These output files are then placed within the
/data/embeddings directory, adhering to the file structure
outlined previously. We note that our approach is not meant to
replace traditional forms of metadata, given their immense value
in exploratory search. Rather, the Digital Collections Explorer
is an additional layer of discoverability that can be utilized to
draw new insights across collections by using CLIP as a way of
identifying similarity. In cases of photographs or other visual
materials that do not have much associated metadata, or any at all
– such as photo morgues or unprocessed collections – the Digital
Collections Explorer can provide a base level of discoverability. In
the case of our demo, the metadata is not embedded with CLIP.
Rather, we retain the connection to each map’s Library of Congress
metadata for each search result so end-users can learn more from
an authoritative source.

Discussion: Case studies

As detailed in Figure 1, the Digital Collections Explorer employs a
three-stage pipeline for collection exploration: 1) Data Preparation,
2) Embedding Generation, and 3) Search and Exploration. In this
section, we describe our case studies with photographs, maps and
born-digital documents using the Digital Collections Explorer.

Data preparation

Collections are ingested into the system by placing images in
a designated directory. For this study, we used four datasets to
demonstrate the system’s capabilities:

1. A collection of 1,025 photographs of Russia provided by the
photojournalist Christopher Morris. Morris shared this subset
of photographs with us directly via a hard drive for the purposes
of experimenting with new ways of searching his photographs.

2. A large-scale collection of 129,386 photographs from the San
Francisco Chronicle.

6The script for Library of Congress maps preprocessing is included in the
project repository at: scripts/create_loc_assets.py.
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Table 2. Total processing times (including parsing, thumbnails generation and embeddings generation) with a 2024

MacBook Pro M4 Chip with 10-Core CPU, 10-Core GPU and 16-GB Unified Memory.

Collection Items Total processing time

San Francisco Chronicle Photo Collection 129,386 photographs 3 hours 20 minutes 19 seconds

Library of Congress .gov PDF dataset 1,000 PDFs (12,287 pages) 28 minutes 24 seconds

Chris Morris Photo Collection 1,025 photographs 10 minutes 41 seconds

Note: Here, we omit the Library of Congress maps because we used the embeddings from Mahowald and Lee (2024).

3. The Library of Congress dataset of 1,000 random .gov PDFs
extracted from the Library of Congress web archives, amounting
to 12,287 pages of PDFs in total (the value of searching these
PDFs visually has been described by Lee and Owens (2021)).

4. 562,842 images of maps held by the Library of Congress,
retrieved using the Library of Congress API by Mahowald and
Lee (2024).

Embedding generation

In Table 1, we report the times to generate embeddings for the
collections with a 2024 MacBook Pro M4 Chip with 10-Core
CPU, 10-Core GPU and 16 GB; in Table 2, we report the total
processing times (including parsing, thumbnails generation and
embeddings generation) with the same machine. As reported, the
Digital Collections Explorer can scale to hundreds of thousands of
images in a tractable fashion. We note that these times do not scale
precisely linearly for multiple reasons, including file size (and thus
re-sizing during embedding generation) and different required
pre-processing steps (such as PDF parsing).

Search and exploration

Here, we present example search results using two of our case
studies: the Library of Congress maps and .gov PDFs, both of which
are public domain collections (we have withheld screenshots of our
other case studies due to copyright considerations).

In Figure 7, we present two natural language searches against
the 1,000 .gov PDF dataset from the Library of Congress. Here,
searches for “redacted document” and “multicolor graphs” result
in ranking the PDF pages according to relevance to the search
performed. As evidenced by these examples, we are able to query
the visual features of the documents, rather than just their textual
content.

In Figure 8, we present searches against the 562,842 map images
from the Library of Congress API. Figure 8a shows a natural
language search of “tattered and worn map”; we note that these
results match the results from Figure 5a in Mahowald and Lee
(2024), thereby confirming our ranking logic. This time, however,
the searches can be performed in a production-ready user inter-
face, rather than in Jupyter notebooks. Figure 8b shows a reverse
image search returning relevant results. Any user can reproduce
these searches in Figure 8 and try others using our demo at:
https://www.digital-collections-explorer.com.

We note that some searches work better than others. For exam-
ple, the Digital Collections Explorer supports searching over visual
content in the .gov PDFs – figures, images, etc. – but does not
support semantically searching the text. For a more thorough
investigation of the strengths and weaknesses in the search meth-
ods we employ, we refer the reader to Mahowald and Lee (2024). In
particular, this article includes a detailed analysis of specific search

examples for the Library of Congress maps, including searches with
higher and lower accuracy. We note that searches for abstract visual
features tend to perform better than searches for specific locations
or landmarks.

Maintenance and development

We recognize that maintaining digital infrastructure is just as
important as initial development. One central component of
maintenance is computing costs. Our current demo of the Digital
Collections Explorer for over half a million map images is currently
hosted on an Amazon EC2 instance for only $0.08 an hour, or
$1.84 daily. Given this low cost, we believe that other users of the
Digital Collections Explorer should be able to spin up versions
on their own collections without having computing costs as the
primary barrier to sustainability (a challenge that the authors
understand first-hand from having worked on projects with
significant monthly computing bills).

Regarding active maintenance of our codebase, we plan to
make updates according to the directions we articulate in the
next section. Moreover, we plan to perform routine testing of new
multimodal models and hope to incorporate them over time so
that the Digital Collections Explorer remains maximally useful. We
recognize that the landscape of AI models is changing extremely
rapidly, and our goal is to prioritize keeping the Digital Collections
Explorer modular enough as to enable us to periodically swap
in new model options and allow end-users to test how different
models impact search results over a given collection.

Conclusion and future work

In this article, we have introduced our Digital Collections Explorer.
With this open-source platform, researchers and practitioners can
spin up a search interface on top of a digital collection of interest
for enhanced visual discovery using both textual and visual inputs.
Our work builds on the emerging body of research demonstrating
the value of multimodal search and analysis for digital collections
held by libraries, archives and museums. Our Digital Collections
Explorer extends this work by providing tooling to non-experts,
enabling them to explore a digital collection in a multimodal
fashion in just a few steps on a staff-issued laptop, such as a current-
generation MacBook Pro. Our platform is designed to scale to
hundreds of thousands of images in this context. We have released
the Digital Collections Explorer as open-source software under a
CC-BY-4.0 license.

In order to preserve the privacy of digital collections, all steps
of the Digital Collections Explorer can be run locally, from pre-
processing to viewing, meaning that no data is transferred via
proprietary APIs or publicly-visible endpoints. The Digital Collec-
tions Explorer is intended to be particularly useful as a method for
exploring collections with little-to-no descriptive metadata.
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Figure 7. Search results for two different natural language queries across the 1,000 Library of Congress .gov PDFs demonstrating the effectiveness of semantic retrieval: (a) “redacted

documents” and (b) “multicolor graphs.” The filenames shown refer to the PDF filenames (given by the hash in the Library of Congress web archives).
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Figure 8. Searches against the 562,842 map images from the Library of Congress API. (a) shows a natural language search of “tattered and worn map” and (b) shows a reverse

image search with a panoramic map of 1888 Bridgerton, Maine, from the Library of Congress’s collections (http://hdl.loc.gov/loc.gmd/g3734b.pm002434). These results can be

reproduced in our demo: https://www.digital-collections-explorer.com.
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Throughout this article, we have introduced the system
architecture, walked through a tutorial of how to use the Digital
Collections Explorer, and presented case studies across maps,
photojournalism collections and born-digital PDFs extracted
from web archives. All of our code is available at: https://doi.org/
10.5281/zenodo.15744570, and our publicly-available demo is
available at: https://www.digital-collections-explorer.com.

Our current version of the Digital Collections Explorer is
informed by our collaborations with stakeholders, including photo
editors, photographers and curators whose collections comprise
our four case studies. The Digital Collections Explorer was inspired
by shared challenges articulated by all stakeholders about the
current limitations of searching their visual collections, which
lack metadata. Our current version has served as an exploratory
mechanism for re-interpreting their collections. Their feedback
has inspired a number of different directions of future work.

First, we plan to provide support for additional input modal-
ities, such as audio or video. Second, we plan to incorporate
different multimodal models into our system beyond the one
default CLIP model – including models finetuned for cultural
heritage collections. Third, we plan to experiment with models
that are better-suited for searching text representations. Fourth,
we hope to experiment with new modes of presenting metadata, as
well as integrating external metadata sources and knowledge bases
to enhance search capabilities. Fifth, on the basis of our continued
collaboration with stakeholders, we will continue to work to scale
up the Digital Collections Explorer to support viewing millions
of images – a challenge that will require articulating hardware
requirements and pre-processing runtime expectations. Along
these lines, we will also plan to incorporate more options for GPU
utilization in the embedding pipeline. Sixth, we hope to include
ways of using the Digital Collections Explorer that do not require
knowledge of the command line.

Lastly, we will collect input and feedback from researchers
and practitioners, which will inform future updates to the Digital
Collections Explorer. We believe that user studies with curators and
end-users would be extremely valuable in clarifying many of the
future directions of work articulated above. In doing so, we also
hope to clarify the ways in which the Digital Collections Explorer
might be utilized in forms of humanistic analysis that go beyond
search and discovery – for example, drawing quantitative insights
into frequencies of visual features, or systematically identifying
patterns across a collection. By conducting studies with humanists
who work with digital collections of visual culture, we will further
elucidate this direction. We welcome contributions from the com-
putational humanities and digital cultural heritage communities
via submitting pull requests to our GitHub repository.
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