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We consider the Kakinuma model for the motion of interfacial gravity waves. The
Kakinuma model is a system of Euler-Lagrange equations for an approximate
Lagrangian, which is obtained by approximating the velocity potentials in the
Lagrangian of the full model. Structures of the Kakinuma model and the
well-posedness of its initial value problem were analysed in the companion paper
[14]. In this present paper, we show that the Kakinuma model is a higher order
shallow water approximation to the full model for interfacial gravity waves with an
error of order O(5fN+2 + (53N+2) in the sense of consistency, where §; and do are
shallowness parameters, which are the ratios of the mean depths of the upper and
the lower layers to the typical horizontal wavelength, respectively, and N is, roughly
speaking, the size of the Kakinuma model and can be taken an arbitrarily large
number. Moreover, under a hypothesis of the existence of the solution to the full
model with a uniform bound, a rigorous justification of the Kakinuma model is
proved by giving an error estimate between the solution to the Kakinuma model and
that of the full model. An error estimate between the Hamiltonian of the Kakinuma
model and that of the full model is also provided.
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1. Introduction

We will consider the motion of the interfacial gravity waves at the interface between
two layers of immiscible fluids in (n + 1)-dimensional Euclidean space. Let ¢ be the
time, ® = (z1,...,2,) the horizontal spatial coordinates and z the vertical spa-
tial coordinate. We assume that the layers are infinite in the horizontal directions,
bounded from above by a flat rigid-lid, and from below by a time-independent
variable topography. The interface, the rigid-lid and the bottom are represented
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2 V. Duchéne and T. Iguchi

as z =((x,t), z=hy and z = —hg + b(x), respectively, where ¢ = ((x,t) is the
elevation of the interface, hy and ho are mean depths of the upper and lower lay-
ers and b = b(x) represents the bottom topography. See figure 1. We assume that
the fluids in the upper and the lower layers are both incompressible and inviscid
fluids with constant densities p; and po, respectively, and that the flows are both
irrotational. Then, the motion of the fluids is described by the velocity potentials
Dy (x, z,t) and Py(x, z,t) and the pressures P (x, z,t) and Py(x, z,t) in the upper
and the lower layers. We recall the governing equations, referred as the full model
for interfacial gravity waves, in § 2 below. Generalizing the work of Luke [31], these
equations can be obtained as the Euler-Lagrange equations associated with the
Lagrangian density .2 (®1, ®2, () given by the vertical integral of the pressure in
both water regions. Building on this variational structure, Kakinuma [23-25] pro-
posed and studied numerically the model obtained as the Euler—-Lagrange equations
for an approximated Lagrangian density, £ (®7"", @5 (), where

N,
" (z, 2,t) = ZZe,i(Z;Be(ﬁc))@,i(%t) (1.1)
=0

for £=1,2, and {Z;,;} and {Z5,} are appropriate function systems in the ver-
tical coordinate z and may depend on hy (x) and ﬁg(w), respectively, which are
the depths of the upper and the lower layers in the rest state, whereas ¢, =
(be.0sPe1y---sden,)T, £ =1,2, are unknown variables. This yields a coupled sys-
tem of equations for ¢, ¢, and ¢, depending on the function systems {Z; ;} and
{Z5,;}, which we named Kakinuma model. Note that in our setting of the problem
we have hy(x) = h; and hy(x) = hy — b(x). In this work, we study the Kakinuma
model obtained when the approximate velocity potentials are defined by

Q?pp(wa Z?t) = ZZJ\LO(_Z + h1)2i¢17i<w7t)a

. (1.2)
B3P (@, 2, 1) 1= 4 (2 + by — (@) d20(a, 1),
where N, N* and pg, p1,...,pN+ are non-negative integers satisfying 0 = pg < p1 <
-+ < pn~. Specifically, we show that the Kakinuma model obtained through the
approximated potentials (1.2) with

(H1) N* =N and p; =2i (i =0,1,...,N) in the case of the flat bottom b(x) = 0,
(H2) N*=2N and p;=1i (i=0,1,...,2N) in the case with general bottom
topographies,

provides a higher order shallow water approximation to the full model for interfacial
gravity waves in the strongly non-linear regime. The choice of the function systems
as well as N, N* and pg, p1,...,pn= is discussed and motivated later on.

Comparison with surface gravity waves. The Kakinuma model is an extension to
interfacial gravity waves of the so-called Isobe-Kakinuma model for surface grav-
ity waves, that is, water waves, in which Luke’s Lagrangian density “%1,uke(®, (),
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Figure 1. Internal gravity waves.

where ¢ is the surface elevation and ® is the velocity potential of the water, is
approximated by a density Z*PP (¢, () = L uke(P?PP, (), where

N

VP (m,2,1) = Y Zi(zb(x))di(w, 1) (1.3)

=0

The Isobe-Kakinuma model was first proposed by Isobe [21, 22] and then applied
by Kakinuma to simulate numerically the water waves. Recently, this model was
analysed from a mathematical point of view when the function system {Z;} is
a set of polynomials in z: Z;(z;b(x)) = (2 + h — b(x))P" with integers p; satisfy-
ing 0 =pg < p1 < -+ < pn. The initial value problem was analysed by Murakami
and Iguchi [35] in a special case and by Nemoto and Iguchi [36] in the general
case. The hypersurface ¢ = 0 in the space-time R™ x R is characteristic for the
Isobe-Kakinuma model in the sense that the operator acting on time derivatives of
the unknowns has a non-trivial kernel. As a consequence, one needs to impose some
compatibility conditions on the initial data for the existence of the solution. Under
these compatibility conditions, the non-cavitation condition, and a Rayleigh—Taylor
type condition —0, P*PP > ¢g > 0 on the water surface, where P?PP is an approxi-
mate pressure in the Isobe-Kakinuma model calculated from Bernoulli’s equation,
they showed the well-posedness of the initial value problem in Sobolev spaces locally
in time. Moreover, Iguchi [18, 19] showed that under the choice of the function
system

(z + h)? in the case of the flat bottom,

. 1.4
(z+h—0b(x))" in the case of a variable bottom, (1.4)

Zi(z;b(x)) = {

the Isobe-Kakinuma model is a higher order shallow water approximation for the
water wave problem in the strongly non-linear regime. Furthermore, Duchéne and
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4 V. Duchéne and T. Iguchi

Iguchi [13] showed that the Isobe-Kakinuma model also enjoys a Hamiltonian struc-
ture analogous to the one exhibited by Zakharov [43] on the full water wave problem
and that the Hamiltonian of the Isobe-Kakinuma model is a higher order shallow
water approximation to the one of the full water wave problem.

Our aim in the present paper and the companion paper [14] is to extend these
results on surface gravity waves to the framework of interfacial gravity waves. With
respect to surface gravity waves, our interfacial gravity waves framework brings
two additional difficulties. The first one is that, due to the rigid-lid assumption,
the full system for interfacial gravity waves described in § 2 features only one evo-
lution equation for the two velocity potentials, and a constraint associated with
the fixed fluid domain. From a physical perspective, the unknown velocity poten-
tial at the interface may be interpreted as a Lagrange multiplier associated with
the constraint. A second important difference between water waves and interfacial
gravity waves is that the latter suffer from Kelvin—Helmholtz instabilities. As a con-
sequence, the initial value problem of the full model for interfacial gravity waves
is ill-posed in Sobolev spaces; see Iguchi et al. [20], Kamotski and Lebeau [26].
This raises the question of the validity of any model for interfacial gravity waves.
A partial answer is offered by the work of Lannes [28], which proves the existence
and uniqueness of solutions over large time intervals in the presence of interfacial
tension. While interfacial tension effects are not expected to be the relevant regu-
larization mechanism for the propagation of waves between, for instance, fresh and
salted water, the key observation is that physical systems allow the propagation of
waves with large amplitude and long wavelengths provided that some mechanism
tames Kelvin—Helmholtz instabilities acting on the high-frequency component of the
flow. This description is consistent with the fact that the initial value problem of
the bi-layer shallow water system for the propagation of interfacial gravity waves in
the hydrostatic framework is well-posed in Sobolev spaces under some hyperbolicity
condition describing the absence of low-frequency Kelvin—-Helmholtz instabilities,
as proved by Bresch and Renardy [5]. Let us mention however that such a property
is not automatic for higher order shallow water models. Specifically, we note that
the Miyata—Choi-Camassa model derived by Miyata [34] and Choi and Camassa
[8] and which can be regarded as a two-layer generalization of the Green—Naghdi
equations for water waves turns out to overestimate Kelvin—Helmholtz estimates
with respect to the full model; see Lannes and Ming [30].

In [14], we analysed the initial value problem of the Kakinuma model when the
approximated velocity potentials are defined by (1.2). We found that the Kakinuma
model has a stability regime which can be expressed as

app app P1p2 app app|2

0. (P, 1) orHaon + pathion Vo3 VOIPPIZ > ¢o >0 (1.5)
on the interface, where Hy := hy — ¢ and Hs := ho + ( — b are the depths of the
upper and the lower layers, Py** and PyP" are approximate pressures of the fluids in
the upper and the lower layers, oy and o are positive constants depending only on
N and on pg, p1, - - -, PN, respectively. This is a generalization of the aforementioned
Rayleigh—Taylor type condition for the Isobe-Kakinuma model. It is worth noticing
that, consistently with the expectation that the Kakinuma model is a higher order
model for the full system for interfacial gravity waves and that the latter suffers
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A mathematical analysis of the Kakinuma model 5

from Kelvin—Helmholtz instabilities, the constants oy and ao converge to 0 as N and
N* go to infinity so that the stability condition becomes more and more stringent
as N and N* grow. When N = N* = 0, the Kakinuma model coincides with the
aforementioned bi-layer shallow water system, and the stability regime coincides
with the hyperbolic domain exhibited in [5]. Moreover, when the motion of the
fluids together with the motion of the interface is in the rest state, the above
stability condition is reduced to the well-known stable stratification condition

(p2 —p1)g > 0. (1.6)

In [14], we showed that under the stability condition (1.5), the non-cavitation
assumptions

Hi>c¢9g >0, Hy>cy>0, (17)

and intrinsic compatibility conditions on the initial data, the initial value problem
for the Kakinuma model is well-posed in Sobolev spaces locally in time. We also
showed in [14] that the Kakinuma model enjoys a Hamiltonian structure analogous
to the one exhibited by Benjamin and Bridges [3] on the full model for interfacial
gravity waves.

Comparison with other higher order models. The Isobe-Kakinuma and the Kak-
inuma models belong to higher order models for the water waves and for the full
interfacial gravity waves, respectively. By this we mean a family of systems of
equations parametrized by nonnegative integers describing the order of the system
within the family, that is N for the Isobe-Kakinuma model, and whose solutions
are expected to approach solutions to the full system as the order increases. Sev-
eral such models have been introduced in the literature, mostly in the water waves
framework, and we will restrict the discussion to water waves in this paragraph.

Based on a Taylor expansion of the Dirichlet-to-Neumann operator at stake in
the water waves system with respect to the shape of the domain, Dommermuth and
Yue [10], West et al. [41] and Craig and Sulem [9] have proposed the so-called high
order spectral (HOS) models. While these models have been successfully employed
in efficient numerical schemes (see recent accounts by Wilkening and Vasan [42],
Nicholls [37] and Guyenne [16]), the equations feature Fourier multipliers which
prevent their direct use in situations involving non-trivial geometries such as hori-
zontal boundaries. Moreover, the rigorous justification of HOS models is challenged
by well-posedness issues; see the discussion in Ambrose et al. [1], and Duchéne and
Melinand [15].

A second class of higher order models originate from formal shallow water expan-
sions put forward by Boussinesq [4] and Rayleigh [39]. A systematic derivation
procedure has been described by Friedrichs in the appendix to [40]. Recently, these
higher order shallow water models have been described and discussed by Matsuno in
[32, 33] and Choi in [6, 7]. The derivation procedure displays formula for approx-
imate velocity potentials under form (1.3)—(1.4) (in particular, only even powers
appear in the flat bottom case), with the important difference that the functions
¢; (i=0,...,N) are prescribed through explicit recursion relations. An important
consequence of this derivation is that the resulting systems of equations involve
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only standard differential operators. However, the order of the differential opera-
tors at stake augments with the order of the system, which renders such models
impractical for numerical simulations.

By contrast, the Isobe-Kakinuma model features only differential operators of
order at most two acting on the variables ¢; (i = 0,..., N) which are unknowns of
the system. Notice that the size of the system augments with its order, V. However,
the degrees of freedom do not augment with the order since, as mentioned above,
some compatibility conditions must be satisfied. In fact all quantities are uniquely
determined by two scalar functions which represent the canonical variables in the
Hamiltonian formulation of the water waves system. Let us mention that function
systems different from (1.4) have been considered by Athanassoulis and Belibassakis
[2], Klopman et al. [27] and Papoutsellis and Athanassoulis [38] (see also references
therein). While the systems obtained in these works have a similar nature, they are
all different. We let the reader refer to Duchéne [11, chapter D] for an extended
discussion and comparison of these models.

The choice of the function systems in (1.4) is motivated by the aforementioned
Friedrichs expansion and is essential in the analysis of Iguchi [18, 19] proving that
the Isobe-Kakinuma model is a higher order shallow water approximation for the
water wave problem in the strongly non-linear regime. We note that one may modify
(1.4) by putting all odd and even terms (z + h)® for i = 0, 1,... in the case of the flat
bottom. However, in that case, one needs to use the terms up to order 2N to keep the
same precision of the approximation. Therefore, such a choice increases the number
of unkonwns and equations by IV so that it is undesirable for practical application.
In other words, one can save memories in numerical simulations by using only
even terms in the case of the flat bottom. On the contrary, if we put only odd
terms (z +h — b(x))? for i = 0,1,2,... in the case of a non-flat bottom, then the
corresponding Isobe-Kakinuma model does not give any good approximation even
if we take N a sufficiently large number, because the corresponding approximate
velocity potential ®?PP cannot approximate the boundary condition on the bottom
so well due to the lack of odd order terms (z + h — b(x))**?! for i =0,1,2,....

Following this discussion, the choice of the function systems (1.2) with (H1) or
(H2) in our interfacial waves framework is very natural. In particular, the rigid-
lid is assumed to be flat so that we do not need to use odd order terms (—z +
hy)#*1 for i = 0,1,2,..., in the approximate velocity potential ®{*" to obtain a
good approximation, because ®{"P can approximate the boundary condition on the
rigid-lid without such terms.

Description of the results. In the present paper, we show that the Kakinuma model
obtained through the approximated potentials (1.2) with

(H1) N* =N and p; =2i (i =0,1,...,N) in the case of the flat bottom b(x) = 0,

(H2) N*=2N and p;=1 (i=0,1,...,2N) in the case with general bottom
topographies,

provides a higher order shallow water approximation to the full model for interfacial
gravity waves in the strongly non-linear regime. Our results apply to the dimension-
less Kakinuma model obtained after suitable rescaling. The system of equations then
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A mathematical analysis of the Kakinuma model 7

depend on the positive dimensionless parameters d; and d, which are shallowness
parameters related to the upper and the lower layers, respectively, that is, d, = %
(¢ =1,2) with the typical horizontal wavelength A. The shallow water regime is
described through the smallness of the parameters §; and do. What is more, our
results are uniform with respect to parameters satisfying either ps < p1 < po, or
p1 < p2 and he < hy. We notice that the rigid-lid framework is expected to be
invalid in the regime p; < py and h; < he which is excluded in this paper; see
Duchéne [12].

Our first result extends the result of [14] on the well-posedness of the initial
value problem by showing that solutions to the dimensionless Kakinuma model are
defined on a time interval which does not vanish for arbitrarily small values of §;
and ds.

THEOREM 1.1 Long-time well-posedness. Under the (dimensionless) stability con-
dition (1.5), the (dimensionless) non-cavitation assumptions (1.7) and intrinsic
compatibility conditions on the initial data, the initial value problem for the Kak-
inuma model is well-posed in Sobolev spaces on a time interval which is independent
of 61 € (0,1] and d5 € (0,1].

While the non-cavitation assumption and the stability condition are automati-
cally satisfied for small initial data and small bottom topography b, an arrangement
of non-trivial initial data satisfying the compatibility conditions with suitable
bounds is a non-trivial issue, and demands a specific analysis.

PROPOSITION 1.2. Initial data satisfying the compatibility conditions and meces-
sary bounds in theorem 1.1 are uniquely determined (up to an additive constant)
by sufficiently regular initial data for the canonical variables of the Hamiltonian
structure.

Then, we show that under the special choice of the indices pg, p1,...,pN+ as in
(H1) or (H2), the dimensionless Kakinuma model is consistent with the full model
for interfacial gravity waves with an error of order O(67V 2 4 53V +2),

THEOREM 1.3 Consistency. Assume (H1) or (H2). The solutions to the dimen-
sionless Kakinuma model constructed in theorem 1.1 produce functions that satisfy
approzimately the dimensionless full interfacial gravity waves system up to error
terms of size O(51N T2 4 53V T2).

Conwversely, solutions to the dimensionless full interfacial gravity waves system
satisfying suitable uniform bounds produce through proposition 1.2 functions that

satisfy approximately the dimensionless Kakinuma model up to error terms of size
0(6411N+2 +6;1N+2)

In the last result, we assume the existence of a solution to the full model with a
uniform bound since for general initial data in Sobolev spaces, one cannot expect
to construct a solution to the initial value problem, due to the ill-posedness of the
problem discussed previously. The same issue arises for the full justification of the
Kakinuma model.
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8 V. Duchéne and T. Iguchi

THEOREM 1.4 Full justification. Assuming the existence of a solution to the dimen-
sionless full interfacial gravity waves system with a uniform bound and satisfying
initially the (dimensionless) stability condition (1.5) and (dimensionless) non-
cavitation assumptions (1.7), then the Kakinuma model with (H1) or (H2) and
appropriate initial data produces an approximate solution with the error estimate

(@, t) — V(1) S 6N 4 6N

on some time interval independent of §; € (0,1] and &2 € (0,1], where ¢¥ and
(™W are solutions to the dimensionless Kakinuma model and to the full model,
respectively.

In our last main result, we show that the Hamiltonian structure of the Kakinuma
model is a shallow water approximation of the Hamiltonian structure of the full
interfacial gravity waves model.

THEOREM 1.5 Hamiltonians. Assume (H1) or (H2). Under appropriate assump-
tions on the canonical variables (¢, ¢), we have

(K, p) — ANV D) S OV + 5N,

where A% and ™ are the Hamiltonians of the dimensionless Kakinuma model
and of the dimensionless full interfacial gravity waves model, respectively.

REMARK 1.6. The precise statements of our main results are displayed in § 3.
Specifically, theorem 1.1 corresponds to theorem 3.1, proposition 1.2 corresponds
to proposition 3.4, theorem 1.3 corresponds to theorems 3.5 and 3.6 (see also remark
3.8), theorem 1.4 corresponds to theorem 3.9, and theorem 1.5 corresponds to
theorem 3.10.

Structures of the Kakinuma model. In order to obtain our main results, we exploit
several structures of the Kakinuma model. The Kakinuma model can be written
compactly as

11 (H1)0iC + Li(Hy )y = 0,
12(H2)0iC — La(H2,b)p5 = 0,
p1 {li(Hy) - 0y + 5 (Jur]* + w?)}
—p2 {la(H2) - 0ipy + 5 (|uzl® + w3) } + (p1 — p2)g¢ = 0,

(1.8)

where we denote ¢1 = (¢170, ¢1,1, ey ¢1,N)Ta ¢2 = ((,25270, Q§271, ceey ¢27N*)T’ put
I(Hy) = (1,H, HE, ..., H¥N)T 15(Hy) == (1, HY  HY?, ..., HE¥ )T and the lin-
ear operators Ly, and functions uw, and wy for £ =1,2 are defined (after non-
dimensionalization) in § 3. Here we recognize the fact that the hypersurface ¢t = 0
in the space-time R"™ x R is characteristic for the Kakinuma model, since the
system of evolution equations is overdetermined for the variable {, and underdeter-
mined for the variables ¢, and ¢,. As a consequence, solutions to the Kakinuma
model must satisfy some compatibility conditions. Introducing linear operators £, ;
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(i=0,...,N) acting on ¢, = (p1,0,...,01.5)" and Lo, (i =0,...,N*) acting on
Po = (302,0a .. '74102,N*)T by

Lyo(H)ey = Y500 Luoj (Hi )1 5,
Lyi(Hr )y = Y0 (L (Hy)pry — HY Ly oj(Hi)er ;) fori=1,2,...,N,
L0(Ha,b)py 1= Y1 Lo o (Ha, b)pa ;.
Lo,i(Hz, b)py = SN (Lo ij(Ha, b)pa,
—HY' Ly oj(H2,b)pa,;) fori=1,2,...,N*,

the necessary conditions can be written simply as
L1,(H1)py =0 fori=1,2,... N,
Lo (Hz,b)py =0 fori=1,2,...,N*, (1.9)
L10(H1)$y + L20(Hz2,b)¢y = 0.

The first two vectorial identities are analogous to the compatibility conditions
of the Isobe-Kakinuma model for water waves, while the last identity is specific
to the bi-layer framework and is related to the continuity of the normal component
of the velocity at the interface.

A first key ingredient of the analysis is the fact that for sufficiently regular func-
tions ¢, b and ¢; (respectively ¢s), there exists a unique solution ¢, (respectively
¢-) to the problems

ll(Hl)'¢1 :¢1, El,i(Hl)qsl :O fOI‘i:LQ,...,N, (1 10)
lQ(HQ)'¢2 :¢2, £2,7;(H2,b)(¢)2 :0 fori: 1,2,...,N*
satisfying suitable elliptic estimates. What is more, the well-defined linear operators

AN(Q): d1 = Lao(HY) by,
ASN(CLb): do v Lo0(Ha, D)o,

are found to approximate the corresponding Dirichlet-to-Neumann maps A;(¢) and
A5((,b) defined by

A1(Q)¢y i= (0.1 + V1 - V()|
Ao((,b) g2 == (0.®2 — VO3 - VO

z=((,t)’

2=((@.t)’

where &1 and &5 are the unique solutions to Laplace’s equations

A(I)l + 03@1 =0 in Ql(t), A(I)Q + 63@2 =0 in Qg(t),
D = ¢y on I'(t), and Dy = g on I(t),
8Z<I>1 =0 on 21, V‘I)Q 'Vb—azq)g =0 on 22,
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10 V. Duchéne and T. Iguchi

where we denote the upper layer, the lower layer, the interface, the rigid-lid and
the bottom at time ¢ by Q(¢), Qa2(t), T'(¢), 1 and Xo, respectively. Specifically,
it is proved that, under the special choice of the indices pg,p1,...,pn+ in (H1) or
(H2) and after suitable rescaling, the difference between the dimensionless oper-
ators is of size O(07" 2 + 83" 2). This analysis, which follows directly from the
corresponding analysis for surface waves developed in [19] and scaling arguments,
provides the key argument in the proof of the consistency result described in
theorem 1.3.

In order to study the Kakinuma model, we also need to analyse the full elliptic
system

Li,(H1 )¢, = fr; fori=1,2,... N,
Loi(Hy,b)py = fa; fori=1,2,... N*,

L1,0(H1)py + L20(H2,0)py =V - f3, —li(H1) - ¢y +12(H2) - ¢y = fu,

(1.11)
for sufficiently regular functions ¢, b and f, = (fi1,..-fin)T, fo= (fa1,--,
fo.n)Y, f3, f2. The ellipticity of the problem relies on the coercivity of the cor-
responding operators Li(H;) and Lo(Hsz). The solvability of (1.11) is essential in
several directions. Firstly, it provides an alternative consistency result, where solu-
tions to the full interfacial gravity waves system produce approximate solutions to
the Kakinuma model but satisfying exactly and not approximately the necessary
conditions (1.9). In turn, this provides a crucial ingredient to the full justification
of the Kakinuma model described in theorem 1.4. Furthermore, the arrangement
of initial data satisfying the compatibility conditions as stated in proposition 1.2
amounts to solving (1.11) with f; =0, f, =0, f3 =0 and f; = ¢. Similarly, our
result on the Hamiltonians .2#¥ and /™ described in theorem 1.5 relies on a com-
parison of solutions to (1.11) with f; =0, f, =0, f5 = 0 and f4, = ¢ and solutions

to
AD; + 028, = 0 i (),
Ady + 920, =0 in Q(t),
0,91 =0 on X,
Vo&y - Vb— 0,09 =0 on o,
(V- VC — 9.8)) — (Vs - VC — 0.82) =0 on I(t),
p2®2 —p1P1 =9 on I'(t),

thus extending to the interfacial gravity waves framework the analysis in
[13]. Finally, the solvability of (1.11) allows to determine and control time
derivatives 0;¢p; and 0:;¢, of sufficiently regular solutions to the Kakinuma
model (1.8) by using the equations obtained when differentiating with respect
to time the compatibility conditions (1.9) combined with the last equation
of (1.8). This is a crucial ingredient for the analysis of the initial value
problem.
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A mathematical analysis of the Kakinuma model 11

Another crucial ingredient for the analysis of the initial value problem concerns
uniform energy estimates on the linearized Kakinuma system. To this end, we write
the linearized system under the form

(0 +u- VU + U = F, (1.12)

where U := (C, (}51, ¢2)T is the deviation from the reference state U := ((, ¢y, ¢5) 7,
u is a suitable velocity which is a convex combination of u; and us whose weights
depend on py, H; as well as oy (£ = 1,2) the positive constants mentioned previ-
ously, F represents lower order terms and <7 := < (U) is a skew-symmetric matrix
and 4 ;= 74 (U) is a linear operator symmetric in L2. The energy function
associated to (1.12) is given by (&*°dU,U) 2, and we prove that

(0, U) e = EU) = |IC122 + . pell[Vel22 + [ dol22)

=1,2

under the non-cavitation assumption (1.7) and the stability condition (1.5). Because
the structure of (1.12) is not standard, the control of the energy function is obtained
by testing (1.12) with the time derivatives, 9,U. This, together with suitable prod-
uct and commutator estimates in Sobolev spaces, provides the a priori control
of the energy function for solutions to the Kakinuma model and their derivatives,
and we show that this control is uniform in the shallow water regime after suitable
rescaling. Since the construction and uniqueness of a solution was obtained in the
companion paper [14], the uniform estimates provide the proof of the long-time
well-posedness of the initial value problem for the Kakinuma model result stated in
theorem 1.1. Furthermore, using the aforementioned consistency result, we prove
that the difference between solutions to the full interfacial gravity waves system
and corresponding solutions to the Kakinuma model satisfy an identity analogous
to (1.12), and hence infer a control of the energy function of the difference and
its derivatives, which yields the full justification of the Kakinuma model stated in
theorem 1.4.

Outline. The contents of this paper are as follows. In § 2 we first recall the basic
equations governing the interfacial gravity waves and write down the Kakinuma
model that we are going to analyse in this paper, and then rewrite them in a non-
dimensional form by introducing several non-dimensional parameters. Hamiltonians
of the full model and of the Kakinuma model in the non-dimensional variables are
also provided. In § 3 we first introduce some differential operators, which enable
us to write the Kakinuma model simply in form (1.8), and then we present the
precise statements of our main results in this paper. In § 4 we first recall results in
the framework of surface waves related to the consistency of the Isobe-Kakinuma
model, and then prove theorems 3.5 and 3.6 concerning the consistency of the
Kakinuma model by a simple scaling argument. In § 5 we first derive an elliptic
estimate related to the compatibility conditions for the Kakinuma model, which
explains how to prepare the initial data, as stated in proposition 3.4. Then we give
uniform a priori bounds on regular solutions to the Kakinuma model, especially,
a priori bounds of time derivatives. In § 6 we provide uniform energy estimates
for the solution to the Kakinuma model and prove theorem 3.1, which ensures the
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12 V. Duchéne and T. Iguchi
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‘ Elliptic problem (1.10) ’ | Linearized problem (1.12) }
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Consistency Well-posedness
Theorems 3.5 and 3.6 i Theorem 3.1
.................... Section 5 SeCtiOn 7

Elliptic problem (1.11) - -------- ...... > Consistency

: : Remark 3.8
Construction of initial data | - - s Full justification
Proposition 3.4 Theorem 3.9 :

“4 Control of time derivatives | 5

Hamiltonians
Theorem 3.10

Figure 2. Articulation of the proofs.

existence of the solution to the initial value problem for the Kakinuma model on a
time interval independent of parameters, especially, J; and o, under the stability
condition, the non-cavitation assumptions and intrinsic compatibility conditions on
the initial data, together with a uniform bound of the solution. In § 7 we first give
a supplementary estimate on an approximation of the Dirichlet-to-Neumann map,
and then revisit the consistency of the Kakinuma model. We prove proposition 7.6,
which is another version of the consistency given in theorem 3.6, where we adopt
a different construction of an approximate solution to the Kakinuma model from
the solution to the full model. Then, by making use of the well-posedness of the
initial value problem for the Kakinuma model, we prove theorem 3.9 which provides
a conditional rigorous justification of the Kakinuma model, that is, assuming the
existence of a solution to the full model with a uniform bound, we derive an error
estimate between a corresponding solution to the Kakinuma model and that of the
full model. Finally, in § 8 we prove theorem 3.10 which gives an error estimate
between the Hamiltonian of the Kakinuma model and that of the full model. For
the convenience of the reader, the structure of the paper and proofs dependencies
are sketched in figure 2.

Notation. We denote by W™? the LP Sobolev space of order m on R" and
H™ =Wm™2, We put H™ = {¢; V¢ € H™'}. The norm of a Banach space
B is denoted by ||-||z. The L2-inner product is denoted by (-,-)z2. We put
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A mathematical analysis of the Kakinuma model 13
0y = %, 0j =0y, = % and 0, = %. [P, Q] = PQ — QP denotes the commutator
and [P;u,v] = P(uv) — (Pu)v — u(Pv) denotes the symmetric commutator. For a
matrix A we denote by AT the transpose of A. O denotes a zero matrix. For a vec-
tor ¢ = (¢o, P1,--.,dn)" we denote the last N components by ¢’ = (¢1,...,6x)".
f < g means that there exists a non-essential positive constant C' such that f < Cyg
holds. f ~ g means that f < g and g < f hold.

2. The basic equations and the Kakinuma model

2.1. Equations with physical variables

We first recall the equations governing potential flows for two layers of immis-
cible, incompressible, homogeneous and inviscid fluids, and then write down the
Kakinuma model at stake in this work. In the following, we denote the upper layer,
the lower layer, the interface, the rigid-lid and the bottom at time t by Q4 (¢), Q2(¢),
['(t), X1 and X5, respectively. The velocity potentials @4 (x, z,t) and ®s(x, 2,t) in
the upper and lower layers, respectively, satisfy Laplace’s equations

AD; +0°®; =0 in Q(t), (2.1)
ADy + 02Dy =0 in (), (2.2)

where A =97 + .-+ 02 is the Laplacian with respect to the horizontal space

variables © = (1, ...,z,). Bernoulli’s laws of each layers have the form
1
P1 (81/@1 + §(|V(I)1‘2 + (82®1)2> + gz) + P1 =0 in Ql(t), (23)
1
P2 <8t<1>2 + §(|V(I)2‘2 + (6Z¢‘2)2) + gz) + P, =0 in Qg(t), (24)
where V = (01, ...,0,), the positive constant g is the acceleration due to grav-

ity, and Pj(x,z,t) and Py(x,z,t) are pressures in the upper and lower layers,
respectively. The dynamical boundary condition on the interface is given by

P1 = P2 on F(t) (25)

The kinematic boundary conditions on the interface, the rigid-lid and the bottom
are given by

W+ VP, -V(—0.21, =0 on TI(t), (2.6)
¢+ VP -V(—9,P5=0 on TI(t), (2.7)
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14 V. Duchéne and T. Iguchi
8Z<I>1 =0 on 21, (28)
V(I)Q -Vb— 82(:[)2 =0 on 22. (29)

These are the basic equations for interfacial gravity waves. It follows from
Bernoulli’s laws (2.3)—(2.4) and the dynamical boundary condition (2.5) that

1
P1 <5t‘1)1 + 5(\V@1|2 + (azq)l)2)>

o (at¢>2+§<|vq>2|2+<az¢2>2>)=<p2—p1>g< on T().  (210)

We will always assume the stable stratification condition (p2 — p1)g > 0. As in the
case of surface water waves, the basic equations have a variational structure and
the corresponding Luke’s Lagrangian is given, up to terms which do not contribute
to the variation of the Lagrangian, by the vertical integral of the pressure in the
water regions. After using Bernoulli’s laws (2.3)—(2.4) we can find the Lagrangian
density

hy 1
2@ = [ (0014 GV + @01 ) a
¢

¢ 1 1
[ (at% + Y va,e 4 <az<1>2>2>) dz = 20 = pr)gc?.
—ho+b 2 2
(2.11)

In fact, one checks readily that (2.1)-(2.2) and (2.6)-(2.10) are Euler-Lagrange
equations associated with the action function

t1
I (@1,92,() ::/t - L (P, Py, () da dt.

We proceed to the Kakinuma model. Let N and N* be non-negative integers. In
view of the analysis for the Isobe-Kakinuma model for surface water waves, we
approximate the velocity potentials ®; and ®5 in the Lagrangian by

P (w, 2,1) = Tig(—2 + h) on,i(, 1), (212)
N* . .
PP (x,2,t) = D, L o (2 + ha — b(x))P dai(, 1),
where pg, p1, ..., PN+ are non-negative integers satisfying 0 = pg < p1 < -+ < py~.

Plugging (2.12) into the Lagrangian density (2.11), we obtain an approximate
Lagrangian density

gapp(d)l’ ¢27 C) = g(q)éltpp7 (I’;pp7 C)a
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A mathematical analysis of the Kakinuma model 15

where ¢, := (¢1,0,01,1,...,¢1,8)T and @y := (¢2,0,02,1,...,¢2.n+)". The corre-
sponding Fuler-Lagrange equation is the Kakinuma model, which has the form

i N 2(i+7 +1 i i+ 1
H12 0¢¢ — ijo {V . (WH (+4) V(bl,]) B 2(7,i]3) Hl( "= 1 ’j} =0
for i=0,1,...,N,
; N* i+py+1 i+p;
H§@<+§;ﬂ{V~QHm+gg A T LA )

—L_HYTPiIVh . Ve,
Di erj ’J

iPj it+p;—1 _
o Hy T (14 [V )¢2J} 0
for i=0,1,...,N*,
N . N , 2
P1 {Zj—O lejatﬁbl,j +9¢+ % (’Ej—o Hf]vﬁbl,j +

—p2 {Z;V:*o HY 0y + g¢

(Z;V:o 2J'H12j_1¢1,j)2) }

1 N* Pj pj—1 2 N* pj—1 2 _
+3 [ [2j20(Hy' Voo ; —piHy' ™ ¢2;Vh)| + (3520 piHy' ™ ¢2, =0,
(2.13)
where H; and H are depths of the upper and the lower layers, that is,

Hi(t,z) :==hy — ((z,t), Ha(x,t):=he + ((x,t) — b(x).

In (2.13), we used the notational convention 0/0 = 0. More precisely, this convention
was used so as to dictate po/(po + po) = 0 and pop1/(po +p1 — 1) = 0 in the case
p1 = 1. We recall also that pg = 0 is always assumed.

2.2. The dimensionless equations

In order to rigorously validate the Kakinuma model (2.13) as a higher order shal-
low water approximation of the full model for interfacial gravity waves (2.1)—(2.9),
we first introduce non-dimensional parameters and then non-dimensionalize the
equations, through a convenient rescaling of variables. Let A be a typical horizontal
wavelength. Following Lannes [28], we introduce a non-dimensional parameter § by

0:= h with h:= %,
A Blhg +82h1

where p and p, are relative densities. We also need to use relative depths h; and
h, of the layers. These non-dimensional parameters are defined by

pe he
= , hy=— (£=1,2),
Be p1+ p2 £ ( )
which satisfy the relations
P P
=1, 2 4+=2=1 2.14
Py + Py , h, + hy ( )
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16 V. Duchéne and T. Iguchi

Note also that min{hi, ha} < h < max{hy, ho}. It follows from the second relation

in (2.14) that
1<min{h1,h2} <2 (2.15)

Here, we note that the standard shallowness parameters 01 := % and ds := %

relative to the upper and the lower layers, respectively, are related to the above
parameters by d, = h,6 for £ = 1,2. In many results of this paper, we restrict our
consideration to the parameter regime

hit+hyt S (2.16)

To understand this restriction, it is convenient to use non-dimensional parameters
v = % and 0 := Z—; In terms of these parameters, ﬁ;l (¢ = 1,2) can be represented
as

h*l_’y—i_l -1 _ 7_1+1
oy _’Y+97 282 _7,14»071'

Therefore, the only cases that (2.16) excludes are the case 7,0 < 1 and the
case 7,60 > 1. Since we shall also assume the stable stratification condition (ps —
p1)g > 0, we can describe the two regimes considered in this paper as

(1) v= 1, ie. P1 = P2,
(ii) y< land 0 2 1, i.e. p1 < py and he < hy.

Introducing csw := 1/(p, — p,)gh the speed of infinitely long and small interfacial

gravity waves, we rescale the independent and the dependent variables by

A

Csw

x=\&, z2=h: t= &, ¢=hC, b=hb, ®y=Aswd ((=1,2).

Plugging these into the full model (2.1)—(2.2) and (2.6)—(2.10) and dropping the
tilde sign in the notation we obtain

Ad; + 672020, =0 in Q(t),
Ady + 6202Py =0 in Qu(t),
0C+ VP -V(—56720,9,=0 on T(t),
¢+ Vs -V — 720,05 = 0 on TI(t),
0,91 =0 on X,

Vo, - Vb — 5_282(1)2 =0 on Yo,
Py (0:®1 + 3|VP1]? + 3072(0.91)?)
—p, (0:Pa + 5|V Pa|? + 5672(0.92)*) —C =0 on T(t),
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A mathematical analysis of the Kakinuma model 17

where in this scaling the upper layer Q1 (¢), the lower layer Qa(t), the interface T'(¢),
the rigid-lid ¥; and the bottom X5 are written as

Q) = {X = (z,2) e R"; ((z,1) < 2 < Iy},

Qo(t) = {X = (x,2) e R"M; —hy + b(zx) < 2 < {(x,1)},
L(t) ={X = (z,2) e R""; 2 = ((z,1)},

¥ ={X = (w, )ER"H;z—h}

Sy ={X = (z,2) e R"™; 2 = —hy + b(2)}.

Denoting

do(x,t) = Dy, ((x,),t) (£=1,2)

and using the chain rule, the above system can be written in a more compact and
closed form as

atc + Al(Ca 5) hl)gﬁl - Oa
atC - AQ(Ca b, 67 h2>¢2 = 0

A1(C.0hy 2.17
£y (at(bl + 3[Von | — 502 1+2S(§|1V§V\2C Vér)* ) (2.17)
—P, ((9t¢2 + %|V¢2|2 152 (A2 (G, 51—}:-6)2(7?272( V$2)? ) =0,

where A;(¢,0,hy) and A2((,b,d,hy) are the Dirichlet-to-Neumann maps for
Laplace’s equations. More precisely, these are defined by

Al(C7 6a ﬁ1)¢1 = (_6_28,2(1)1 + Vq)l : VC)‘
Ao(C,b, 8, hy) o i= (020,02 — VO3 - V()|

z=((x,t)’
z=((x,t)’

where ®; and ®5 are unique solutions to the boundary value problems

Ad; + (5_285@1 =0 in Ql<t), Ady + (5_285@2 =0 in Qg(t),
(Dl = d)l on F(t), and (DQ = d)g on F(t),
0.9, =0 on i, Vo, - Vb — 57282(1)2 =0 on .

As for the Kakinuma model, we introduce additionally the rescaled variables

AC sW ~ Acsw ~
@1, = e P14, P24 = T b,
2

where we recall that pg,p1,...,pn+ are non-negative integers satisfying
0=po <p <--+ < pn~ appearing in the approximation (2.12). Plugging these and
the previous scaling into the Kakinuma model (2.13) and dropping the tilde sign in
the notation we obtain the Kakinuma model in the non-dimensional form, which is
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18 V. Duchéne and T. Iguchi

written as

i N (@ 1
4ij z+) 1
Mf) FH T (B 6) %u} =0
for ¢1=0,1,...,N,
B0+ 1 S [ (e B, — 2 157
i itPj
B Hy T hy 1Vb Vs, ;
iPj itpj—1 - — _
P HE T () 7 + b Q\Vb\%,j} =0
for i=0,1,... N*,

2 2
Py {Z;V_OH jat¢1’a ( §=0 ‘ +(hy0)~? (Z] 02JH2j 1¢1,j) )}
* . * . PR— . 2
Py {Zj’v—o HY 0,005 + 3 (‘Zj‘v—o(ng Vo —piHY ™ 62 ihs lvb)‘

. - 2
) (St "0n) ) - ¢ =0,

(2.18)
where we used the notational convention 0/0 = 0, and

Hy(x,t) :=1—h;'¢(x,t), Ha(x,t):=1+hy'¢(z,t) — hy 'b(x). (2.19)
We impose the initial conditions to the Kakinuma model of the form

(€, b1, d2) = (C0); (151 0) s P 0)) at t=0. (2.20)

2.3. Hamiltonian structures

Benjamin and Bridges [3] found that the full model for interfacial gravity waves
can be written in Hamilton’s canonical form

5%IW &%pIW
¢ = 5o o = — 5
where the canonical variable ¢ is defined by
6= p o —p, b (2.21)

and the Hamiltonian #'W is the total energy & written in terms of the canonical
variables ((, ¢). Specifically, & is the sum of the kinetic energies of the fluids in the
upper and the lower layers and the potential energy due to the gravity defined as

1
&= Z //Qe(t) 5L (IV@e(z, 2, t)> + 6~ (5z¢e(w,z,t))2) de dz

=12
1 2
+ §C(zc,t) dax

= 3 20, (Ae(QbeD) du(t)) 2 + SIC

0=1,2
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A mathematical analysis of the Kakinuma model 19

Here and in what follows, we denote simply A;(¢) = A1((,0,hy) and A5(¢) =
As((,b,6,hy). Tt follows from the kinematic boundary conditions on the interface
that A1({)d1 + A2({)p2 = 0, so that ¢ and ¢2 can be written in terms of the
canonical variables (¢, ¢) as

{¢1 = —(p, A2(Q) + p,A1(€) M A2(() 9,
$2 = (p, A2(C) + p, A1(€)) T AL(O) ¢

Therefore, the Hamiltonian #™W (¢, ¢) of the full model for interfacial gravity waves
is given explicitly by

AV 0) = 5 (2, A2(0) + 2 M (O) MO8, As(QD)re + 5ICIE (222)

As was shown in the companion paper [14], the Kakinuma model (2.18) also
enjoys a Hamiltonian structure analogous to that of the full model for interfacial
gravity waves. The canonical variables are the elevation of the interface ¢ and ¢
defined by

p(a,t) = p, 03" (z,((z,1),t) — p, T (@, ((, 1), 1)
v

_p2ZH2 €T, t (2521 x, t Plel x, t qblz(fﬁ t) (223)

where ®7PP (¢ =1,2) are non-dimensional versions of the approximate velocity
potentials, which are defined by

{fbip"(w, 2t) = N (1 — hy ') ¥ (. 1),
PP (x, 2,1) = Zi\:o(l +hy (2 = b(@)))Pido (1 1),

and Hy (¢ =1,2) are depths of the upper and lower layers defined by (2.19). We
note that if the canonical variables (¢, ¢) are given, then the Kakinuma model (2.18)

determines ¢y = (61,0, ¢1.1,---,$1.5)" and ¢y = (¢20,b2,1,- .., da,n+)T, which are
unique up to an additive constant of the form (C817C32) to (¢1,0, P2,0). For details,

we refer to [14, § 8.1] and lemma 5.1 in § 5. Then, the Hamiltonian /% ((, ¢) of
the Kakinuma model is given by

(2.24)

Z // (IVQPP (m, 2, t)[* + 6 2(0.9;" (x, 2,1))?) dedz

=1,2

+ /n 5((a:,t)%loc. (2.25)

3. Statements of the main results

Before stating the main results in this paper, let us introduce some notations
which allow in particular to rewrite (2.18) in a compact form. We introduce
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20 V. Duchéne and T. Iguchi

second order differential operators L ;; = L1 ;(H1,6,hy) (4,7 =0,1,...,N) and
L2,ij = L2,ij(H27b7 67@2) (Zaj = 0) 17 DR aN*) by

1 it
Liijp1j = —V - <..H12( +J)+1V¢Lj>

200 +j)+1
" #Hi(w)*l@lé)_gwl,ja (3.1)
L2,ij¥72,j = -V - (pl,ﬂl)jHHgierj+lv‘p2,j > erj HPHrp] 0o ghg IVb)
- p1—|—p] — L HY PRI Ib - Vi,
o R (1) B VO, (3.2)

where we use the notational convention 0/0 = 0. Notice that we have (Lg;;)* =
Ly j; for £ = 1,2, where (Lg,;)* is the adjoint operator of Ly ;; in L?(R™). We put
¢1 = (¢170’ (;51,1, e (}SLN)T, ¢2 = (¢2,0) ¢2,17 DR ¢2,N* )T and

I(Hy) = (1,H} HE, ..., H¥}N)T,
1) (Hy) == (0, 2H1,.. ONH2N )T,
V(HL) = (0.2,..., 2N (2N — 1)HIN )T
P1 P2 PN*\T (3.3)
l2(Hz) = (1 HQ ,H2 L. HDNOT
l5(Hy) == (0, lepl LpN-HENOT
l//(HQ) (0, p1(p1 — 1)Hp1 2, oo, DN+ (PN — l)HgN*)T,

and define u, and wy for £ = 1, 2, which represent approximately the horizontal and
the vertical components of the velocity field on the interface from the water region

Qg(t), b
uy = (1(Hr) @ V)" by, o= BUL) gL
Uy (lQ(HQ) ® V)T¢2 _ (l’Q(HQ) . ¢2)h2—1Vb, wy = ZIQ(HZ) Py .

Then, denoting L := (L1,i5)o<ij<n and Lo := (La;;)o<ij<n+ we can write the
Kakinuma model (2.18) more compactly as

11 (H1)0( + hy Li(Hy,6,hy )y =0,
12(H2)0,¢ — hyL2(Haz,b, 57ﬁ2)¢2 = 0,
gl{l1(H1)'3t¢1+%(|U1|2 )Pwi) }

—p, {12(Ha) - 0105 + (|u2|2 (ﬁ25) *w3)} — ¢ =0.

(3.5)

By eliminating ;¢ from the first two vectorial identities in (3.5), we obtain
N + N* + 1 scalar relations which are necessary conditions for the existence of
solutions to the Kakinuma model, as stated below. Introducing linear operators
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A mathematical analysis of the Kakinuma model 21

Ly :=L1,(H1,8,hy) (i=0,...,N) acting on ¢; = (¢1,0,-..,p1.8)" and Lo, :=
L ;(H2,b,8,hy) (i=0,...,N*) acting on ¢, = (2.0, ..,p2.n+)T by

Ly0py = Z;-V:o Lioje1,5,

Ly ip = Z;'Vzo(Ll,ij@l,j — leiLl,ojapLj) for i=1,2,...,N,
Loops = Z;V;o Lojp2,5,

Loipy = YN o(Lajpa; — HY Logjipn;) for i=1,2,...,N*,

the necessary conditions can be written simply as

Ll,i(Hlaéaﬁl)(ﬁl =0 for i= 1,2,.. '7N7
Loi(Ha,b,8,hy)y =0 for i=1,2,... N, (3.7)
hyL10(Hy,0,hy)@y + hoLoo(Ha, b, 6, hy)dy = 0.

Hereafter, these necessary conditions will be referred to as the compatibility
conditions. Notice that under these compatibility conditions we have for £ = 1,2

Lo, =1Ly oy, (3.8)

where Iy = l;(H;) and similar simplifications of notations will be used in the fol-
lowing without any comments. In connection with the stability condition (1.5), we
introduce a function

a:=1+p hy {U{(Hy) - (0 +uyr - V)y — (b 6) 2wil{(Hy) - d,}

+£2h§1{l,2(H2) (O uz - V) + ((hyd) 2wy — hy'Vb- ug) 15(Hs) - ¢y},
(3.9)

which corresponds to — (0. (Py"" — Py™P))|p() in the stability condition.

Our first main result in this paper is the existence of the solution to the
initial value problem (2.18)—(2.20) for the Kakinuma model on a time interval
independent of parameters, especially, the shallowness parameters J; = h;0 and
02 = hyd together with a uniform bound of the solution. For simplicity, we denote
Hyo) := Hyli=0, wp(0) := we|i=o for £ = 1,2 and ag) := als=o, which can be written
in terms of the initial data according to the initial condition (2.20). Although the
function a includes the terms (9;¢y)|i—o for £ = 1,2, where ¢} = (¢1.1,...,p1.n)"
and ¢4 = (¢2.1,...,¢2.n+)T, and the hypersurface ¢ = 0 is characteristic for the
Kakinuma model, we can uniquely determine them in terms of the initial data. For
details, we refer to remark 5.3.

THEOREM 3.1. Let co, Mo, h,,;, be positive constants and m an integer such
that m > § + 1. There exist a time T'>0 and a constant M >0 such that
for any positive parameters B1’Bz’h1’h276 satisfying the mnatural restrictions
(2.14), hyd,hy0 < 1, as well as the condition h,;, < hy,hy, if the initial data

min
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22 V. Duchéne and T. Iguchi
(C(0)> P1(0): P2(0)) and the bottom topography b satisfy

@3 + Cem 2 p,he (IVSecoy 13 + (hed) =2t I3 ) < Mo,

(3.10)
Byt (Ibllwmioe + (Bad) [bllwmt2.00) < Mo,
the non-cavitation assumption
Hyy(x) = co, Hyy(x) =>co for xecR", (3.11)
the stability condition
a0 (®) - £ hoHao) (w)affgpzillHl(O) (x)ay [w10)(@) = wa0) @)
>c¢y for xeR", (3.12)

with positive constants ay and a defined by (3.16), and the compatibility conditions
El,i(Hl(O)vévhl)ﬁbl(o) =0 for i=1,2,...,N,
L2,i(Ha(0y, b, 0, ho) oy =0 for i=1,2,... N, (3.13)
hy L1,0(Hi(0), 0, h) 10y + hoL2,0(Ha(0), b, 6, hy) Pa) = 0,

then the initial value problem (2.18)—(2.20) has a unique solution (C, ¢y, ) on the
time interval [0,T] satisfying

(,V¢1)0,V¢270 € C([O,T],Hm) N Cl([O,T];Hmfl),
¢y, ¢ € C([0,T); H™) n CH([0,T]; H™),

where we recall the notation ¢ = (p11,¢12,...,¢1.8)" and ¢y = (¢p2.1,¢2.2, .- -,
¢2.n+)T. Moreover, the solution satisfies the uniform bound

ICOFem + > phe (VD () Frm + (he8) >[5 (1)1 Frm) < M (3.14)
=12

fort €[0,T] together with

p,P.
a(SLH t) - glﬁgHz(mat)a;"rngﬁlH1(w,t)uc1 |U1 (w, t) - U2($, t)|2 = 00/2, (3.15)
Hl(:B,t)}CO/Q, HQ(m,t)>CO/2 fO’/‘ x e R" te [O,T}

REMARK 3.2. The constants oy and as are defined by

det Ag 0 ~ T
Ay = 7~77 A = 0 1 -1 A 5 3.16
U Qe A, M0 ( 00) (3.16)

for £ = 1,2, where 1 := (1,...,1)T and the matrices A; g and As o are defined by

Ao = (7 L )
Lo 2G40+ ) o e

Az = (71
) pitpj+1 0<i,j<N*

Hence, a1 and as are positive constants depending only on N and the non-negative
integers 0 = py < p1 < ... < pn~, respectively, and go to 0 as N, N* — oco.
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A mathematical analysis of the Kakinuma model 23

REMARK 3.3. Tt is easy to check that the non-cavitation assumption (3.11) and
the stability condition (3.12) are automatically satisfied for small initial data
(€0, D10y ¢2(0)) and small bottom topography b, whereas an arrangement of non-
trivial initial data satisfying the compatibility conditions (3.13) together with the
uniform bound (3.10) is a non-trivial issue. To this end, we use the canonical variable
¢ defined by (2.23), which can be written as

¢ = p,la(Ha) - ¢y — p,Li(Hr) - ¢y (3.17)

Given the initial data (o), ¢(0y) for the canonical variables (¢, #), and the bottom
topography b, the necessary conditions (3.7) and the above relation (3.17) determine
the initial data (¢ (), Po(p)) for the Kakinuma model (2.18)(2.20) satisfying the
compatibility conditions (3.13) and the uniform bound (3.10), which is unique up
to an additive constant of the form (CBchﬁl) to (01,0(0), $2,0(0))- In fact, we have
the following proposition, which is a simple corollary of lemma 5.1 given in § 5.

PROPOSITION 3.4. Let co, My be positive constants and m an integer such that
m > 5 + 1. There exists a positive constant C' such that for any positive parameters
Pys Py by g, 6 satisfying the natural restrictions (2.14) and hy0,hy6 < 1, if the ini-
tial data ({(0), ¢(0)) € H™ X H™ of the canonical variables, the bottom topography
b€ W™ and initial depths Hy (o) := 1 — hi "((o) and Hog) := 1+ hy ' (o) — hy 'b
satisfy

By ¢yl + ha MGyl + by HIbllwm.= < Mo,
Hyo)(z) = co, Hae)(x) Z2co for xR,

then there exist initial data (¢1(0),¢2(0)) satisfying the compatibility conditions
(3.13) as well as ¢y = p,la(Ha(0)) - P20y — p,l1(Hi(0)) - H1(0)- Moreover, we have

Z Pl (||V¢fz(o)||%1wl + (@5)_2||¢2(0)||§1m71) < ClVeo)llFm-s-
0=1,2

The next theorem shows that the Kakinuma model (2.18) is consistent with the
full model for interfacial gravity waves (2.17) at order O((h;8)*N*2 + (hyd)*N+2)
under the special choice of the indices pg,p1,...,pn+ as

(H1) N* =N and p; =2i (:=0,1,...,N) in the case of the flat bottom b(x) = 0,

(H2) N*=2N and p;=i¢ (i=0,1,...,2N) in the case with general bottom
topographies.

THEOREM 3.5. Let ¢, M be positive constants and m an integer such that m >
4(N +1) andm > 5 + 1. We assume (H1) or (H2). There exists a positive constant
C such that for any positive parameters p., p,,hy, hy, 0 satisfying hyd, hyd < 1 and
for any solution (C, ¢y, o) to the Kakinuma model (2.18) on a time interval [0, T
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24 V. Duchéne and T. Iguchi
with a bottom topography b € W™+ satisfying

{hflﬂC(t)HHm + 15 G + b [Pl < M, .

Hl(mvt) z & H2(wat) zc fOT S ant € [OaT]a

if we define ¢g :=ly(Hy) - ¢y for £ = 1,2, then ((, ¢1,P2) satisfy approzimately the
full model for interfacial gravity waves as

0iC + A1(C, 0, hy ) p1 = v,

8t< - A2(<a b7 57 h2)¢2 = To,

AL (CB.h))d1—VET1)?
Py (3t¢1 + 5[V |? — 192 C ﬁfgffvcv‘f Vé1) )

A2 (¢,b,6,h, V(-Va)?
—p, (0162 + 3| Vo |? — Jor Relebihanat ReVon ) _ ¢ — o,

Here, the errors (vq,ta,to) satisfy

{Ilte(t)lle—4<N+1>

||‘t0(t) ||HW1—4(N+1)

Chy(hed) N2V oe(t)llrm-s (£=1,2),
C Y omr,2 0, (e0) N2V o (1) [7n

NN

fort € [0,T7].

Particularly, we see that under the special choice of indices (H1) or (H2), the
solutions to the Kakinuma model (2.18)—(2.20) constructed in theorem 3.1 satisfy
approximately the full model for interfacial gravity waves (2.17) with the choice
b¢ = l(Hy) - ¢, (¢ =1,2) and that the error is of order O((h;8)*N 12 4 (hy0)*NV+2).

Conversely, the next theorem shows that the full model for interfacial gravity
waves is consistent with the Kakinuma model at order O((h;d)*N+2 + (hy6)*V+2)
under the special choice of indices (H1) or (H2).

THEOREM 3.6. Let ¢, M be positive constants and m an integer such that m >
4(N 4 1) andm > § + 1. We assume (H1) or (H2). There exists a positive constant
C' such that for any positive parameters Blvﬁg’ﬁl’ﬁ% 0 satisfying h,d,hyéd < 1 and
for any solution (¢, 1, ¢=2) to the full model for interfacial gravity waves (2.17) on
a time interval [0, T with a bottom topography b € W™T1:2° satisfying (3.18), if
we define Hy and Hy as in (2.19) and ¢, and ¢y as the unique solutions to the
problems

{ll(H1)~¢>1=¢17 Lyi(Hy,6,hy)py =0 for i=1,2,...,N, (3.19)

lg(HQ) . ¢)2 = (Z)Q, EQ,Z'(H27 b, 5,@2)(152 = O fO’I“ i = 1, 2, . ,ZV*7
then (¢, ¢y, @) satisfy approximately the Kakinuma model as
b (H)hy "0 + L (Hy, 0, by )¢y = ¥,
U2(H2)hy '8¢ — La(Ha,b, 6, hy)py = o,

oy A1 (HY) - 0upy 4§ (jur? + (ha0) 2wt }
—p, {l2(H2) - 00y + 5 (Jual® + (h0) *w)} — ¢ =T,
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A mathematical analysis of the Kakinuma model 25

Here, the errors (¥1,%2,%) satisfy

(hed) NP2V ee (@) grm-r (£=1,2),

¢ (3.20)
C 32 2y (hed) N2V e (8)| 51

[Ee(t) | frm-acvn) <
<

[0 (&) zrom—scav+0)
fort €[0,T).

REMARK 3.7. The unique existence of the solutions ¢; and ¢, to the prob-
lems (3.19) is guaranteed by lemma 4.4 below under an additional assumption
@1(+,t), Pa(-,t) € H™. Lemma 4.4 is essentially a simple corollary of [19, lemma 3.4].

REMARK 3.8. In order to define the approximate solution (¢, ¢) to the Kakinuma
model (2.18) from the solution ({, ¢1, ¢2) to the full model, we can use, in place of
(3.19), the following system of equations

L1:(H1,0,hy)py =0 for i=1,2,...,N,
Loi(Hy,b,8,hy)py =0 for i=1,2,...,N*,
hl‘cl,o(H1757hl)¢l JFQQL:Q,O(H% b7 57@2)¢2 = 0,
pyla(H2) - ¢y — p Li(H1) - @y = ¢,

(3.21)

where ¢ = quﬁg — qubl is the canonical variable for the full model for interfacial
gravity waves. The above system is nothing but the compatibility conditions (3.7)
together with the definition (3.17) of the canonical variable for the Kakinuma model.
The existence of the approximate solution (¢, ¢5) is guaranteed by lemma 5.1
given in § 5. Then, we have similar error estimates to (3.20). For details, we refer
to proposition 7.6.

The above theorems 3.5 and 3.6 concern essentially the approximation of the
equations. To give a rigorous justification of the Kakinuma model (2.18) as a higher
order shallow water approximation to the full model for interfacial gravity waves
(2.17), one needs to give an error estimate between solutions to the Kakinuma model
and that to the full model. However, we cannot expect to construct general solutions
to the initial value problem for the full model for interfacial gravity waves because
the initial value problem is ill-posed. Nevertheless, if we assume the existence of a
solution to the full model with a uniform bound with respect to the shallowness
parameters 9 = h;6 and 9 = h,y0, then we can give an error estimate with respect
to a solution to the Kakinuma model by making use of the well-posedness of the
initial value problem for the Kakinuma model as we can see in the following theorem.

THEOREM 3.9. Let ¢, M, h,;, be positive constants and m an integer such that
m > 5 +4(N +1). We assume (H1) or (H2). Then, there exist a time T > 0 and
a constant C > 0 such that the following holds true. Let 12 hl, hs, 0 be positive
parameters satisfying the natural restrictions (2. 14) hi6, h, 5 < 1, and the condition
Boin < hy, by, and let b € W2 sych that hy ' ||b||Wm+2 o < M Suppose that the
full model for interfacial gravity waves (2.17) possesses a solution ((*W, oIV, ¢tW) €
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26 V. Duchéne and T. Iguchi

C([0, T™W]; H™ 1 x H™L x H™FL) satisfying a uniform bound

IS O Fpmer + e 2 2Dl VO )lFm < M,
HW(z,t)>¢, HW(z,t)>c for xeR" te[0,T™V],

where we denote HIW :=1— h7'¢™ and HW := 1+ hy '¢™ — hy'b. Let ooy =
("™"Wli—o and ¢y == (Engéw—glqﬁllw)\tzo be the initial data for the canonical
variables, and let (¢y(0), P20)) be the initial data to the Kakinuma model con-
structed from (o), ¢(0)) by proposition 3.4. Assume moreover that the initial data
(C(0)> P1(0)s P2(0)) satisfy the stability condition (3.12), let (CK, @, ) be the solu-
tion to the initial value problem for the Kakinuma model (2.18)—(2.20) on the
time interval [0, T] whose unique existence is guaranteed by theorem 3.1, and put
oK =1(Hy) - or for € =1,2. Then, we have the error bound

IS5(E) = VOl m-sovsn + D /Rl VR () = VO ()] grm—can+s)
0=1,2

< O((hy0)™F2 + (18) "N *2)
for 0 <t < min{T, T"V}.

The next theorem is the final main result in this paper and states the consistency
of the Hamiltonian % (¢, ¢) of the Kakinuma model with respect to the Hamilto-
nian W (¢, ¢) of the full model for interfacial gravity waves. We recall that these
Hamiltonians are defined in (2.25) and (2.22), respectively.

THEOREM 3.10. Let ¢, M, h,;, be positive constants and m an integer such that
m > % +1 and m > 4(N +1). We assume (H1) or (H2). There exists a positive
constant C' such that for any positive parameters Bl’BQ’hl’hz’ 0 satisfying the nat-
ural restrictions (2.14), hyd,hy0 < 1, and the condition h,,;, < hy,hy, and for any
((,0) € H™ x HAAHD gnd b € WmHLeo satisfying

By IGlzr + g HICH e + by Bllwmre < M,
Hi(x)>c¢, Hs(x)>=c for xR,

with Hy and Ho defined by (2.19), we have

AR(C8) — A (0] < CITl srans [T 22 (g8 V2 + (1g8) N +2).

4. Consistency of the Kakinuma model; proof of theorems 3.5 and 3.6

In this section, we show that under the special choice of the indices pg,p1,- -
PN+ as

Ml

(H1) N* =N and p; =2i (i =0,1,...,N) in the case of the flat bottom b(x) = 0,

(H2) N*=2N and p;=1i (i=0,1,...,2N) in the case with general bottom
topographies,
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the Kakinuma model (2.18)is a higher order model to the full model for interfacial
gravity waves (2.17) in the limit §; = hyd — 0, d2 = hyd — 0, in the sense of con-
sistency. Specifically, we prove theorems 3.5 and 3.6. Our proof relies essentially on
results obtained in the framework of surface waves in [19], which are recalled in
§4.1. The extension to the framework of interfacial waves and the completion of
the proof are provided in § 4.2.

4.1. Results in the framework of surface waves

In this subsection, we consider the case of surface waves where the water surface
and the bottom of the water are represented as z = ((x) and z = —1 + b(x), respec-
tively. Here, the time ¢ is fixed arbitrarily, so that we omit the dependence of ¢ in
notations. Let H(x) = 1 4 {(x) — b(x) be the water depth. For a non-negative inte-
ger N, let N* and pg, p1,...,pn+= be non-negative integers satisfying the condition
(H1) or (H2). Put

U(H):=(1,HP,... HN)T (4.1)
and define L;; = L;;(H,b,60) (i,j =0,1,...,N*) by

1 . Pj .
Li-so- = _V - ( Hp1+pﬂ+1Vg0- _ J leerJ(p-Vb)
s pi+p;+1 O pitp; !
Pi I DiPj . _
— ———HPtPiVh -V, + — L — HPHPi (572 4 |Vb[*)p;,  (4.2)
pi +pj T pitp -1 !

where we use the notational convention 0/0 = 0. Introduce linear operators £; =
Li(H,b,6) (i=0,1,...,N*) acting on ¢ = (¢p,...,pn<)" by

{5090 = Z;vzo Lojepj,

N* , ) i (4.3)
Lip =3 o(Lijp; — HP' Lojp;) for i=1,2,... N*.

The following lemma has been proved in [19, lemmas 3.2 and 3.4].

LEMMA 4.1. Let ¢, M be positive constants and m an integer such that m > 5 + 1.
There exists a positive constant C' such that if ( € H™, be W™ and H =1+
¢ — b satisfy

(4.4)

[l zzm + [[bllwm. < M,
H(x)>c for xeR",

then for any k = £0,...,£(m — 1), any § € (0,1] and any ¢ € H**1 there exists a
unique solution ¢ = (¢o, d1,...,on+) = (¢o, @') € H 1 x (HFH)N™ to the prob-
lem

{ﬁi(H,b,a)(ﬁ—O for i=1,2,...,N* (45)

l(H) ¢ =¢

Moreover, the solution satisfies |V | gr + 61| | e < C[VA| g -
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As a corollary of this lemma, under the assumptions of lemma 4.1
AMN(¢,b,8): ¢+ Lo(H, b, ),

where ¢ is the unique solution to (4.5), is defined as a bounded linear operator from
H*1 to H*! for any k= +0,...,+(m —1). A key result is that the operator
AW )(C ,b,0) provides good approximations in the shallow water regime ¢ < 1 to
the corresponding Dirichlet-to-Neumann map A((, b, §), which is defined by

A(¢,b,0)p = (6720.@ — V(- V) \Z:C, (4.6)
where @ is the unique solution to the boundary value problem
AD +672020 =0 in —1+bx)<z<((x),
b= on z=((x), (4.7)

Vb-V® —6720,2=0 on z=—1+b(x).
More precisely, we have the following lemma.

LEMMA 4.2. Let ¢, M be positive constants and m, j integers such that m > 5 +1,
m>=2(+1)andl <j<2N+ 1. We assume (H1) or (H2). There exists a positive
constant C such that if ( € H™, b€ WL and H = 1+ ( — b satisfy

{nanm + [l < M,

H(x)>c for xR, (4.8)

then for any ¢ € H*20+D with 0 <k <m —2(j + 1) and any § € (0,1] we have
1AM (C,0,0)6 = A(C,b,8)ll e < CO™ [V grasasr.

Proof. We observe that the bound on t; := AN)(¢,b,8)¢ — A(C,b,8)¢ in the case
j=2N+1and k =m —4(N + 1) is given in [19, theorem 2.2] and proved in [19,
§ 8.1 and 8.2]. The proof is also valid in the case 1 < j<2N +1 and 0 < k <
m—2(j+1). O

The above estimate allows us to obtain the desired consistency result on the
equations describing the conservation of mass. We need a similar estimate for the
contributions of Bernoulli’s equation. To this end, we denote

2 (A(C,b,0)p + V(- V)?
1+ 02[V(2

B(6:¢,b,8) = 5IVoP - 36 (4.9)

and

BM(¢;¢,b,6) == = (Jul* + 6 2w?) — wA™N((,b,0) (4.10)

N =

with
{u = ((H)@ V) ¢ — (I'(H) - $)Vb,
w:=1(H)- ¢,

where I'(H) := (0,pr HP*~ %, ... pn-HPY* )T and ¢ := (¢, ¢1,...,0n+)T is the
solution to (4.5), whose unique existence is guaranteed by lemma 4.1. Then, the
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A mathematical analysis of the Kakinuma model 29

following lemma shows that BW )(¢;C ,b,0) is a higher order approximation to
B(¢;¢,b,0) in the shallow water regime § < 1.

LEMMA 4.3. Let ¢, M be positive constants and m an integer such that
m = 4(N +1) and m > 5 + 1. We assume (H1) or (H2). There exists a positive
constant C' such that if € H™, b € W™T1> and H = 1+ ¢ — b satisfy (4.8), then
for any ¢ € H™ and any § € (0, 1] we have

1B (6:¢.,5.8) = B3, 0,0) |l gm-scviny < CF N2V 7.
Proof. Notice first that differentiating ¢ = I(H) - ¢ we have V¢ = u + wV{, so that
B™M(65¢,6,6) = 5 IV + 62w (1 + 02|V¢[2) —w (V¢ Vo + AN, b,8)0)
(IVeI* + 672w (1 + 6%|V([?)) — w (A(C, b, 6)6 + V(- Vo)

+w ( (C,b,é)¢—A<N>(<,b,5)¢).

1\3\>—~ L\D\H

If we introduce a residual t by
v = (0720,9%P — V(- VO*PP)|,_¢ — (20,8 — V(- V).,

where @ is the solution to the boundary value problem (4.7) and ®?PP is an
approximate velocity potential defined by

N*

PP(x,2) = Y (241 - b)) ¢i(w),

=0

then we have v= 62w — V(- -u—A((,b,6)¢ =52w(l+6%|V(|?) - V(- -V —
A(¢,b,0)¢. Therefore, we obtain

t2

T Y (AGb.6)6 — AN (¢, b,0)8)

1
The desired estimate for the second term readily follows from lemmas 4.1 and
4.2. As for the first term, in view of m > § we can use a calculus inequality
€% (| e S Nell2 w2 for k€ {0,1,...,m}. Particularly, we have |[t?|| gm-av+1) S
[ €], —2(n+1)- The last term can be evaluated by estimates in [19, § 8.1 and 8.2]. O

2. Results in the framework of interfacial waves

In this section, we prove theorems 3.5 and 3.6. To this end, we first rewrite the
Kakinuma model (2.18) using a formulation which allows a direct comparison with
the full model for interfacial gravity waves (2.17), thanks to the following lemma.

LEMMA 4.4. Let ¢, M be positive constants and m an integer such that m > 5 + 1.
There exists a positive constant C such that for any positive parameters hy, hq,d sat-
isfying hy6,hy0 <1, if (€ H™, be W™, H; =1—h;"'C and Hy =1+ hy*¢ —
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30 V. Duchéne and T. Iguchi

hy Yy satisfy

hit m+hyt m + hy |b]|ym.ee < M,
{1 ¢l + ha "SIl Em + Ay [|bllw (4.11)

Hy(x) > ¢, Hy(w)>c for xeR",

then for any k=10,+1,..., i(m —1) and any ¢1, 05 € Hk+1 there exists a unique
solution y = (610, 81) € HH x (H1)N, ¢, = (90, 64) € HEH x (HEH)N
to the problem

{ll(Hl) ¢y =1, Li1;(Hy,0,h)¢p, =0 for i=1,2,....N, (412)

lQ(HQ)'¢2:¢27 E27i(H27b,5,h2)¢2:0 fOT’ Z:1,2,,N*

Moreover, the solution satisfies ||[V,|gr + (hed) 7 |@oll ar < C||V el g for
(=1,2.

Proof. Notice that we have identities
Ly (Hy,0,hy) = Lij(Hy,0,h,0), Loij(H2,b,8,hy) = Lij(Ha, hy ‘b, hyd)
with suitable choices of indices {p; }. Hence, lemma 4.1 gives the desired result. O

As a corollary of this lemma, under the assumptions of lemma 4.4

A(lN)(Ca 53 hl) : (,251 = El,O(Hlahla 6)¢17
AéN) (Cv ba 63 EQ) : d)Q = £2,O(H27 b7h27 6)¢2;

where (¢, @,) is the unique solution to (4.12), are defined as bounded linear oper-
ators from H*¥t! to H*~! for any k = +0,...,+(m — 1). Using these definitions
and noting the relations (3.8) and ly(Hy) - Orpp = O0:(Le(Hy) - ¢y) — wmglatg, we
can transform the Kakinuma model (2.18) equivalently as

0+ h A (G0, ) = 0,
¢ — oA™Y (G, b, 6, hy) g = 0,
p {00+ 4 (Jun? + () 2w) + i A (¢ 6By}
—p, {0100 + 4 (Jual? + (o) 03) = w2A§Y (b6 o)} — ¢ =0,
(4.13)

where we recall that wy, us, w; and wy are uniquely determined from ¢; and ¢o
by (3.4), wherein ¢; and ¢, are defined as the solutions to (4.12).
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A mathematical analysis of the Kakinuma model 31

We further introduce notations, which are contributions of Bernoulli’s equation
and interfacial versions of B and B®W) defined by (4.9) and (4.10). We denote

A1(¢,8,h, )1 —V - V1)
B1(¢1;C767ﬁ1)::%‘v¢1|2 152( «, 1+3;q25|v<|2< ¢)a

2
Ba(62:C.b,6,hy) := §|Vsa|? — Jo2 R2leRqaprarncoal

and

{B§N’<¢1;<,5,h1> = 1 (Jwa]? + () ~*w3) +wi A (¢, 8, by )i,
BN (95 ¢, b, 6, hy) = & (Jua? + (ho8)~2w2) — waASN) (¢, 6,8, o) o

Then, the full model for interfacial gravity waves (2.17) and the Kakinuma model
(4.13) can be written simply as

atC + A1(<7 57 hl)gbl = 03
8t< - A2(<7b7 57&2)¢2 = O)
B]_ (6t¢1 + B1(¢15 Ca 53 ﬁl)) - BQ (at¢2 + B2(¢27 <7b7 67&2)) - C = 07

and

G + Iy AN)@ ,hy)é1 =0,
¢ — ho A (C,0,0, hy) g = 0,
oy (0061 + BV (015¢,8,11)) = p, (92 + BEY (623 ¢,6,6,h5) ) = ¢ =0,

respectively. The following lemmas show that ﬁlAgN), QQAgN), BiN) and BéN) are
higher order approximations in the shallow water regime 6; = h;0 < 1 and dy =
hyd < 1to Ay, Ay, By and By, respectively.

LEMMA 4.5. Let ¢, M be positive constants and m, j integers such that m > 5 +1,
m>=2(j+1)andl <j < 2N + 1. We assume (H1) or (H2). There ezists a positive
constant C such that for any positive parameters hy, hy, 6 satisfying h,0,hy0 < 1,
if¢e H™, be Wmthee Hy =1 —h{'C and Hy =1+ hy "¢ — hy b satisfy

{h“ucnm by ¢l + by by < M, (4.14)

Hi(x)>2c¢, Ha(x)>=c for xR,
then for any ¢y, ¢o € H¥20TD with 0 < k <m — 2(j + 1) we have

{”hlAgN)(Ca 5a ﬁl)(bl - Al(ga 57h1)¢1”H’C < C(hl (h15)2j||v¢1HHk+2j+1a
1B ASN) (€0, 6, ho) o — Ma(C, b, 8, o) ol rx < Chog(hy6)2 ||V o] oo
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32 V. Duchéne and T. Iguchi
Proof. By simple scaling arguments, we have
Al (C, 57 ﬁl) = ﬁlA(_hl_lgv 07 hlé)v
A2(§7 b7 57 QQ) = hQA(ﬁ2_1<7h2_1ba QQ(S)?

B (4.15)
AP (G0 1) = AP (<0, 0, 1),
A (€08, h) = A (¢, iy b, By,
Therefore, the results follow from lemma 4.2. O

LEMMA 4.6. Let ¢, M be positive constants and m an integer such that
m = 4(N +1) and m > 5 + 1. We assume (H1) or (H2). There exists a positive
constant C' such that for any positive parameters hy, hy,d satisfying h,0,hy0 < 1,
if¢Ce H™, be Wntheo H) =1 —hi'C and Hy = 14 hy ' ¢ — hy 'b satisfy (4.14),
then for any ¢1, ps € H™ we have

{ IBSY (615, 0, hy) = Ba(615C, 8, oyl sy < Cl[Vn 2 (B )4V F2,

1B (69; €, b, 6, ha) = Ba(623 b, 6, ho)l| prm-scveny < ClIV |2, (pd) N +2.
Proof. By simple scaling arguments, we have

Bi(613¢,6,hy) = B(¢1;—h; '¢,0,h,0),
Ba(¢2;¢,b,6,hy) = B(gha; by *C, hy 'b, hyd),
B{™(61;¢,8,,) = BN (¢13—hy "¢, 0, hy0),
BN (69:¢,b,6,h,) = BN (o hy ', by b, o).

Therefore, the results follow from lemma 4.3. O

We can now prove theorems 3.5 and 3.6. In view of (3.8) the errors (t1,ta,1tg)
and (t1,Ta,Tp) can be written explicitly as

v = A1(G, 0 ) — iy AP (C.6,h),

t2 = hy S (C,b, 6, )6 — Aa(C,b,6, hy) o,

v = 3o, (Bu(61:¢,6,00) — B (615¢,8,1))
~30, (Ba(62:¢.b,6,hy) = BEY (625,b,6, b))

¥, = —hi 'L (Hy)v, ¥ =—hy ' la(He)ta, T = —10.

Therefore, the theorems are simple corollaries of the above lemmas 4.5 and 4.6.

5. Elliptic estimates and time derivatives

In this section, we derive useful uniform a priori bounds on regular solutions to the
Kakinuma model (2.18). Firstly, due to the fact that the hypersurface ¢ = 0 in the
space-time R™ x R is characteristic for the Kakinuma model, we need the following
key elliptic estimate in order to be able to estimate time derivatives of the solution.
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A mathematical analysis of the Kakinuma model 33

Let us recall that the operators £ ; for i =0,1,...,N and £Ly; fori =0,1,...,N*
are defined by (3.6), and the vectors I;(H;) and ls(Hs) are defined by (3.3). We
recall the convention that for a vector ¢ = (¢o, ¢1,...,¢n)" we denote the last N

components by ¢’ = (¢1,...,6x)"T.

LEMMA 5.1. Let ¢, M be positive constants and m an integer such that m >
5 + 1. There exists a positive const(mt C such that for any positive pamme-

ters pl,pQ,hl,hQ,é satisfying hy0,hod <1, if C€ H™, be W™, Hy =1—hy C
and Hy =1+ hy'¢ —hy'b satisfy (4.11), then for any fi = (fix,-.-, fin)T
(H")N, f2 (foas-s fone)T € (HON, fy € (HY)" and fy € H with ke
{0,1,...,m — 1}, there exists a solution (ypq,®sy) to

£17i<H1,(5,ﬁ1)(‘01 = fLi f07“ 1= 1,2, .. .,]V7

ﬁg@(Hg,b, 5,@2)502 = fQ,i fO’f‘ = 1,2, .. .,N*, (51)

hyL1,0(H16, hy )y + hyL20(Ha, 0,6, hy)py =V - f3, —p Li(H1) -y

+p,la(Hz) - 5 = fu,

satisfying

S7 o,k (V@2 + ()2l ]2
(=12

<O D plymin {[1F 13-, (1e8)?I| FellZ }

=12

Py Py ﬁl hy
+ min £l 7e + min IV fall7pe | -
{hl h’2 } sl Bl 82 r

Moreover, the solution is unique up to an additive constant of the form (CBTC&)
to (1,0, 02,0)-

Proof. The existence and uniqueness up to an additive constant of the solution has
been given in the companion paper [14, lemma 6.4]. We focus here on the derivation
of uniform estimates. By direct rescaling within the proof of [14, lemma 6.1], we
infer that

(Lepe, 2o) 2 ~ IVeullie + (he8) "2 ll0l|72
for £ = 1,2. We note the identities
Lipy =ULiop; + (0, L1104, L1ner) T,
Loy =1L 00y + (0, Lo1ps, .., Lonepa) T,

so that for the solution (¢4, 5) to (5.1) we have

> pheLepn o) = D phi(Looenle o)+ Y phe(Fr 0L
=12 =1,2 =12

=1 + I,. (52)
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34 V. Duchéne and T. Iguchi

Therefore, it is sufficient to evaluate I1 and I>. As for the term Is we have

|(F5: e 2| < min{[|£7l -2 [l [ Fellz el 2}
< min{[| £l -1, (Red)1Foll 22} (IVepellzz + (Red) " lephl2)-

As for the term Iy, we note the trivial identities

Z Bgﬁz(ﬁf,O‘Pea le-po)re
1=1,2

_ ) (Laowr + hoLoowy pyli - 1)z + (BaLo oo, pyla - o — pi by - 1) L2
(1 L1091 + hoLa oo, pola - o)1z + (b L1001, p b1 - 1 — pyla - pa)re

Therefore, the term I; in (5.2) can be expressed in two ways as

I = 81(V “F3. b 1) + by (Lo0py, fa)re
P(V - F3lo o)z — by (L0901, f4) 12

By the linearity of (5.1) it is sufficient to evaluate it in the case f; = 0 and in the
case f; = 0, separately. In the case f; = 0, we evaluate it as

(L] < minfp ([ F31l22 IV - @)z, p, 1 F 31l L2 1V (22 - o) [ 22}

—mm{,/ AN AT NURCN PRV S AP/ mnw}
. 14 14
§mm{\/h1,q/hz} 1ollze S keI pelze + lghlz2)-
= = =12

In the case f; = 0, we evaluate it as

(L] S minfhy [V [[2 IV fallz, e (IV el e + o ll2) IV fall 2}

. h
— min {, / pleszllle 2,0V |2,
]

by HVJC4||L2\/02112(||VS"1||L2 + |902||L2)}

mln{,/l A }IIVf4L2 > eIVl + illz2)-
=12

From the above estimates, we deduce immediately the desired inequality for & = 0.
In order to obtain the desired inequality on derivatives, we let k€ {1,2,...,
m — 1} and 8 be a multi-index such that 1 < |8| < k. Applying the differential
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A mathematical analysis of the Kakinuma model 35

operator 9” to (5.1), we have

L4100, =0°f1i+ frip for i=1,2,... N,

L2000y =0fs;+ foip for i=1,2,...,N*,

hy£1,00%@) + ho L2000 =V - (°f3+ hifs15+hofz05),
—p b P, +82l2 -0Pp, =0 f4 +pfarp +£2f47275’

where

frip = —[0°% L1:(Hy,8,hy)p, for i=1,2,..., N,
foip = —[0°,Loi(Ha,b,6,hy)]py for i=1,2,... N*,
V- f3,1,5 = _[aﬁ’ El,O(Hla(s?ﬁl)](Plv

V. f3,2,ﬂ = _[8g"c270(H27b7 5, hy)]ps,

faap =07 L(H)] - 1,

fapp = —[0°,12(Ha)] - s

We pU.t fl,ﬁ = (Oa fl,l,,@a ceey fl,N,,@). and f2,ﬂ = (07 f?,l,ﬁ7 teey fZ,N*,ﬁ)' Then, with
a suitable decomposition f, 5 = f?}gh + ﬁog for £ =1,2, we see that

high ow
1F28 - + (hed) I FEE N2 + 1 50,60 22
IV faellzz S V@l e + (2ed) Il s

for £ =1,2. Therefore, in view of the linearity of (5.1), the desired inequality for
k > 1 follows by induction on k. O

From the above elliptic estimates, we deduce the following bounds on time
derivatives of regular solutions to the Kakinuma model (2.18). We introduce a
mathematical energy E,,(t) for a solution (¢, ¢y, ¢,) to the Kakinuma model by

En(t) = 161 Frm + Y 2o (IV S0 + (1e8) 21000 31),  (5.3)

0=1,2

where ¢y = (¢1,1,...,01,8)" and ¢y = (d21,..., P2 n+) .

LEMMA 5.2. Let ¢, My, h,;, be positive constants and m an integer such that
m > 5 + 1. There exists a positive constant Cy such that for any positive parame-
ters p . py by hoy 0 satisfying the natural restrictions (2.14), hy6,hy6 < 1, and the
condition h,,;, < hy,hy, if a regular solution (¢, ¢y, ¢s) to the Kakinuma model

(2.18) with bottom topography b € Wm0 satisfy

Epn(t) + b3 [bllwmsr. < My,
Hyi(xz,t) > ¢, Hy(xz,t)=2c for e R",0<t<T,
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36 V. Duchéne and T. Iguchi
then we have
10 3m—1 + D, 21V OB ()31 + (he8) 2|00 (E)[|3m—1)
=12

07O -

+ ) 2,V Do) Frm—2 + (Be0) 21075 (E) | Fym—2) < CLEm () (5.4)
=1,2

foro<t<T.

Proof. First, we recall that the Kakinuma model (2.18) can be written compactly
as (3.5). It follows from the first component of the first two equations in (3.5) that
0;¢ can be written in two ways as 0,( = —h, L1 0¢, = hyL2 o¢5, so that

10| Fm—1 = min{B7|| L1001 37m—1, B3| L2,00s || 37m—1}
S min{b3 ||V [|rm, b3 (IV@ollFrm + 95 ]1Fm )}

< min hl hy E,, <2E,,,
pl [)2

where we used (2.15).
As for the estimate of (01, Or¢p,), we differentiate the compatibility conditions
(3.7) with respect to time and use the last equation in (3.5). Then, we have

£1,i6t¢>1 = f177; for 1= 1,2,...,N,
Eg,iatqf)Q = f27i for = 1, 2, ceey N*, (55)
hy L1001y + hoL200ipy =V - fg, —p Ly Orpy + pyla - Orpy = fa,

where
f i = —[6t,£1i(H1,(5 h )}d)l for = 1,2,...,N,
f22 = [@,EQ Z(Hg,b 5 h2)]¢2 for = 1,2,...,]\/“"7 (5 6)
F3 = (u2 — u1)0i(, '
fo=5p, (Jur? + (2y6)2wi) — 3p, (Jual® + (—ed) ?w3) — C.
Therefore, by lemma 5.1 we have
> 21V byl s + (he8) 2 [0s | 7m—1)
(=12
Ly Py 2 2 5.7
Z Pl 8)2(| £ ll7m—1 + min Ry, hy I Fsllgrm—r + [ fallzm, (5.7)
£=1,2

where f1 = (fi1,.--, fin)T, fo = (fo1,---, fan)T, and we used (2.15). We pro-
ceed to evaluate the right-hand side. By writing down the operators L, ; explicitly,
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we see that the operators do not include any derivatives of H,. Therefore, we can
write fg; as

1o} 1o}
i = ((8H1ﬁ1,i) ¢1> R0, foi=— <(8H2£2,i) ¢2> hy 0.

We note also that the differential operators aiH@EM have a similar structure as Ly ;.
Therefore,

282 (| FiollFrm— S 2o (hed)? IV DellFrm + (Bed) ™ 1@l Frm—) g el Frm—s
< E? for (=1,2,

where, here and henceforth, we utilize fully our restriction Q;l, hy 1< 1. In view of
the definition (3.4) of wy, us,w; and we, we see easily that

S pbellleel o + () 2lewel3m) < B (5.8)
0=1,2

We evaluate the term on f; as
P pz} 2 2y 2
min ¢ 5=, 2= ([ follzm-1r S ) - [[wediCllm—
ﬁwg it 5 2 g el

S D pohellwel -1 g 0| Fm

0=1,2
< B
Similarly, we have
£l Fe S D o) (lwel From + (hy8) ™2 [fwellFm)? + 1€
=12
S > b p (el Fm + (hy6) 72 flwell 3 )} + (IC] 7
=12
S En + Em

Plugging in (5.7) the above estimates, we obtain the desired estimate for
(011, Orpy).

Finally, the estimate of 97¢ can be obtained by differentiating 8;¢ = —h, L1 0p; =
ho Lo 0o with respect to time. Then, the estimate of (02¢,, 97¢,) can be obtained
by differentiating (5.5) with respect to time once more and applying lemma 5.1. O

REMARK 5.3. In view of the above arguments, we see easily that for the Kak-
inuma model (2.18), (9i¢py,0¢¢hy)|t—0 can be determined from the initial data
(€0 D10y (],’)2(0)) and the bottom topography b, although the hypersurface t = 0 is
characteristic for the model. They are unique up to an additive constant of the form
(CB27 CBI) to (0¢¢1.0, Orh2.0) |1—0-. Particularly, (9,9, dr¢3)|i—o and hence al;—¢ with
the function a given in (3.9) can be uniquely determined from the data.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 21:31:30, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2024.30


https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2024.30
https://www.cambridge.org/core

38 V. Duchéne and T. Iguchi

6. Uniform energy estimates; proof of theorem 3.1
In this section, we provide uniform energy estimates for solutions to the Kakinuma

model. Consequently, we prove theorem 3.1. We recall that the Kakinuma model
(2.18) can be written compactly as

1y (H1)0:C + hyLi(Hy1,0,hy)9q =0,
lQ(HQ)atC - QZLQ(H27 b7 67 bZ)(bQ = 07

- (6.1)
Py {Li(Hy) - 00y + 5 (Jur|* + (hy6) 2wi) }
—p, {1a(Hz) - 0ipy + 5 (|ual® + (hod) *w3) } — (=0,
where we recall that Hl =1- ﬁ1_1C7 H2 =1 +ﬁ2_1<. - h;lb; ¢1 = (¢1,0, ¢1,17 R
d1.N)T, by = (62,0, 2.1, d2,n+) Ty and Uy, Uy, Ly, Lo, wi, ug, wy, wy are defined

in § 3.

6.1. Analysis of linearized equations

Before deriving linearized equations to the Kakinuma model (6.1), we introduce
some more notations. For £ = 1, 2, the coefficient matrices of the principal part and
the singular part with respect to the small parameter d, = h,d of the operator Ly
are denoted by A;(Hy) and Cy(Hy), respectively, that is,

- 1 2(i+4)+1
Ai(Hy) = (WHl )o<m<N’ (6.2)
o 1 pitp;+1 |
Ao(Hy) = (Ghryn H )o<m<N* ’
and
Ci(Hy) == (2(i+jj)—1H1 >0<i»j<N7 (6.3)
iPj itpi—1 |
We put also
— (_Pi_ pgPitr;
By(Hy) := (pﬂrpj Ha J)o@',jéN* ’
32(H2) = BQ(HQ) — BQ(HQ)T, (64)

Cy(Ho, hy 'b) := |hy "Vb|2Co(Hy) + hy ' (Ab)By(Hs).

In the above expressions, we used the notational convention 0/0 = 0. Then, the
operators L and Lo can also be written as

Ligp, = —A1A¢, — Ui(ur - VHy) + (hy6)2C1 4, ) i
Loy = —AsA¢py — ly(uz - VHy) + (hy0) "2Cagpy + Ba(hy ' Vb V), + Cogpy.

(6.5)
For ¢ = 1,2, we decompose the operator Ly as Ly = L}" 4+ LY, where
L) (He)py = — Zal(Ae(He)3z<,0g) + (ﬁed)dCé(Hf)‘Pe- (6.6)

=1
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A mathematical analysis of the Kakinuma model 39

We now linearize the Kakinuma model (6.1) around an arbitrary flow (¢, @1, ¢5)
and denote the variation by ((, ¢y, ¢p,). After neglecting lower order terms, the
linearized equations have the form

Iy (Hy)(0r +uy - V)éf +QIL11”(H1,6,@1)¢1 = fla
Uo(H2) (0 + uz - V)C = ho Ly (Ha, 0, ho)y = fo, o (6.7)
pLi(Hy) - (O +ur - V)oy — pla(Ha) - (0 +ui - V), — al = fo,

where the function a is defined by (3.9). In order to derive a good symmetric
structure of the equations, following the companion paper [14] we introduce

Pyl Hion p,ho Horo
91 = 5 92 = 5 (68)
phoHoag + p,hy Hion phoHoa + p,hy Hion
where
det Ag 0 ~ T
ap = ——=>=, Apo:=(0 1% —1 Ayg), Apo:= A1 6.9
iy T 2,0 ( z,o) 2,0 (1) (6.9)

for £=1,2 and 1:=(1,...,1)T. Then, we have 0; + 6y = 1. We recall that «a;
and g are positive constants depending only on N and the non-negative integers
0=po <p1 <...<pn=,respectively, and go to 0 as N, N* — oo. We also introduce

u = 02“1 + 01’&2, Vi=U2— UL,

Then, we have u; = u — 61v and us = u + Oyv. Plugging these into the linearized
equations (6.7), we can write them in a matrix form as

(0 +u- VU + U = F, (6.10)

where

(4N L .

U:= (.ﬁl ; F = Bl(«]_cl —(V(91l1®’l)))< ’

(o3 P, (f2 = (V- (02l ®v))¢
and
o (O -, i pls
.l @) O —-pla O 0)’

p, 01 (v-V)  pbhly(v-V)
ot = | (v V) (p, 011 ) p LY @)
(v-V)*(p,0hl2-) O P ho Ly

Here, (v-V)* denotes the adjoint operator of v-V in L2, that is, (v-V)*f =
—V - (fv). We note that & is a skew-symmetric matrix and «7"°¢ is symmetric
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40 V. Duchéne and T. Iguchi

in L2. Therefore, the corresponding energy function is given by (%mOdU , U) 2
We put

EW) = [<13:+ Y pheIVeelFe + (oed) Il bel32)- (6.11)

=12

The following lemma shows that (™°40,U) 2 ~ &(U) under the non-cavitation
assumption and the stability condition, stated respectively as (3.11) and (3.12) in
theorem 3.1.

LEMMA 6.1. Let ¢, M, h,;, be positive constants. There exists a positive constant C

such that for any positive parameters Py Py hy,hsy, 0 satisfying the condition h
hy,hy, iof Hi, Hy,u1,us and the functzon a satisfy

Zmin \

et (IHeloe + \fo elluell i ) + llall = < A,

PP
a(x) — glﬁsz(w)a;:;2Q1H1(w)a1 [ug () —ui(x)* > ¢, (6.12)

Hy(x) >¢, Hs(x)>=c for xeR",
then for any U = (C, ¢y, o)™ € L2 x (HY x (HY)N) x (H' x (HY)N") we have
CTrEWU) < (U, U) 1 < CEU).

Proof. This lemma can be shown along with the proof of [14, lemma 7.4]. For the
sake of completeness, we sketch the proof. We first note that

(JMOInOdU, U)L2 — (aé'7 é)Lz + Z {BZEZ(L?r(bb ¢Z)L2 + 285(9£l8 . (’U . V)d)& é)LZ’}

=12

= (a’é-v é)L2
+ 2 {che <Z(Azal¢e76z¢e)m + (heé)_g(céﬁbzaﬁbz)ﬂ)

=12 =1

+2p, (000 - (1 © V)", C)Lz} 7

where we used the identity a- (v-V)p =v-(a® V)Tep. On the other hand, we
can put

(ae(He) qo(Ho)™ — qp(He) Qu(He)) = (0 Lo(He)™ —L(He) Au(Hy)) ™'

for £ =1,2. Then, we see that q,(H;) = Hyap and that Q¢(Hy) is non-negative.
Moreover, the identity

Ag(He)py - pp = qe(He)(Le(Hy) - 04) + Qu(Ho) Ae(Hy)p, - A(Hp)py  (6.13)
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A mathematical analysis of the Kakinuma model 41

holds for any ¢,. Therefore,

D (Adigy, i)z = > {(aele - iy, L - ipy) 2 + (QuAwDipy, ArDrpy) 2}

=1 =1

= (Heou(le @ V) ¢y, (le @ V) Ty 2

+ ) (QrAdidy, Acdigpy) 12,

=1

so that

("0, U) 2 = (a€, Q)2 + Y {p,he(Hocu(le @ V) by, (1 @ V) by) 12
0=1,2

+2p,(000 - (Le @ V) by, ()12}
+ . ok {Z(Qez‘lea@w‘lea@eh? + (he5)_2(C€¢ev¢e)L2}
=12 =1

= Il -+ IQ‘

We proceed to evaluate I.

B> [ Jal+ 3 (pheHiad(lo V) df - 2p,0000ll 0 V)11 { de

0=1,2
¢ ¢
_ / 2, | Vel @ @)l | | o bl @ V)T | g,
C el 29yl | fohlts V)

where the matrix 2y is given by

a  =\/py/habifol = /p,/hoblv]

=4/ Py /11 01v] Hion 0—/py/habalv] O Haao

Ao =

Here, we see that

PPy
QlﬁgHw@ + BZE1H1061

det Ao = HiHoaq g <a — |’U|2> > 03051042 > 0,

so that 2y is positive definite by Sylvester’s criterion. Moreover, tr2fy <
max{1,a;,as} M <1 and the minimal eigenvalue of the matrix 2y is bounded
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42 V. Duchéne and T. Iguchi
from below by 4 det o/ (trAg)? > 1. Therefore, we obtain

112/ C + Z héHgOzd le@V) ¢[|2 de.

(=1,2

As for Iy, it is easy to see that (Cyy, by ~ ||¢;H%2 for ¢ =1,2. Summariz-
ing the above estimates and using the decomposition (6.13) again, we obtain
(AU, )1z 2 6(0),

In order to obtain the estimate of (27U, U) 2 from above, it is sufficient to
show that each element of the matrix 2y is uniformly bounded. Since 61 + 0, = 1,
we have

p, /b1 v| <hity/p hyluil 4+ \/p, /By 01| usl,

P,/ hab2]v| <\ /p, [hobalur| + b5t [ p,holusl.

Here, we see that

[hyb | = - [T Velaltelo e ok usl
Py BP0 =0 N Hoan phoHaas + p,hy Hicn Pyla|t2

HlOél
< — holu
~N 2h2 HQCV p2 2| 2|
g— 1.
M
2hmin caa;M

Similarly, we have ,/p,/hofh|ui| < 1. Therefore, we obtain (AU, U) 2 <
EU).

In the following lemma we provide uniform energy estimates for regular solutions
to the linearized Kakinuma model (6.7).

PROPOSITION 6.2. Let ¢, M, M, h,,;, be positive constants. There exist positive
constants C = C(e, M, hyy,) and Cy = Ci(e, M, My, h,;,,) such that for any pos-
itive parameters Bl,gz,ﬁl,ﬁg,é satisfying the natural restrictions (2.14) and the

condition h < by, hy, if Hy, Ho,uy,us and the function a satisfy (6.12) and

Zmin

>~ (10 Hellw + IV Hell o + p, b0l + I Vuellf))
=12

+ |0all~ + [[Val Lo < My,
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A mathematical analysis of the Kakinuma model 43

then for any regular solution U = (C, d)l,(ﬁQ)T to the linearized Kakinuma model
(6.7) we have

E(U(t)) SCGC”@(U(O)HCH/O 1T {Ilfo( Wer (10 () -2+ 11C(7) 22)

+ > 2 IF (@)= + IIC(T)IILz)II(at@(T),V@(T))IILz}dT-

0=1,2

Proof. We deduce from (6.10) that

(%modU’ U)L2

&~

([0r, YU, U) 2 + 2(40,U,U) 12

([0r, "0, U) 2 +2((0; + - VU, U ) 12 = 2((w - VU, U 12

([0, Z°NU,U) > — 2((w - VYU, U ) 12 + 2((0; + u - VU, F)
=11+ I+ I3,

where we used the fact that /"¢ is a symmetric operator in L? and that .7 is a
skew-symmetric matrix. As for I, we have

I = ((8a)¢, ) re

+ > {Péhe (Z (02A0) D1y, 1) 2 + (he8) "2 ((0:Ce)bys dy)1 )

{=1,2

20, (00,07 (v - D)} <'>L2} |

Here, as in the proof of lemma 6.1 we have  /p, /h,0,(|v| + [Oyv]) < 1for £ =1,2.In

view of the relations 9,60; = —0;05 = 9192(Hf18tH1 — H{latHg), we have |00y <
0105 for ¢ =1,2. Therefore, we obtain |I;| < &(U). As for I, by integration by
parts we have

I = (V- (au))¢,{)re

-3 p/u{Z{ (A, (Orw) - D))z + ((w- V) A)Oraby, Oushy) 12 |

=12 —
+(he®) 2 (((w- V)*Co) by, d)é)L?}

+2 Z pg{ § eﬁle (v- V)‘bz)L? + (C [w .V,le;r(v ) V)}‘M)Lz

(=1,2
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44 V. Duchéne and T. Iguchi
By using (2.14), we see that

L py o Bl

0 2 ————— = , o ™ = .
pho +pyhy By piho +phy By

Therefore, we have |u| < Oz|ui| + 01|uz| S 1. In view of |VO,| < 0105 for £ =1,2,
we have also |Vu| <1 and \/pe/h,0;|Vo| S 1 for £ =1,2. Hence, we obtain |I5] <

&(U). Finally, as for I3, we have
I3 - 2(8t<7 fO)L2 - 2(C7 A (ufO))LQ
+2 ) p, (04w V), Fr — (V- (Bele 0 )))2

=1,2

S ol (10l + 1C1e2) + D7 p,(IF el + 1N )l (Oedbe, Vo)l -

0=1,2

Summarizing the above estimates we obtain
d modrr 7 . . . .
PG WU, 02 S EWU) + |l foll (10 -1 +1I¢] 22)

+ > o IFellee + 11221 (Dee, Veby) | 2.

0=1,2

This together with lemma 6.1 and Gronwall’s inequality gives the desired estimate.
O

6.2. Energy estimates

In this subsection, we will complete the proof of theorem 3.1. The existence
and the uniqueness of the solution to the initial value problem for the Kakinuma
model (6.1) has already been established in the companion paper [14], so that it is
sufficient to derive the uniform bound (3.14) of the solution for some time interval
[0,7] independent of parameters. The following lemma can be shown in the same
way as the proof of [19, lemma 4.2].

LEMMA 6.3. Let ¢, M be positive constants and m an integer such that m > 5 + 1.
There exists a positive constant C such that for any positive parameters hy, hq,d sat-
isfying hy0,hyd < 1,if¢ € H™ 1 be W™ Hy =1—h;'Cand Hy =14 hy ¢ —
@glb satisfy

B HICH am=1 4 b 1€ =1 + by [bllwrmee < M,
Hy(x)>c, Hi(z)>=c for xeR",

and if ¢, and @4 satisfy

Lyi(H1,0,h)py = f1i for i=1,2,...,N,
Lo i(Hz,b,6,ho)py = fo; for i=1,2,...,N*,

then for any k =0,+£1,...,+(m — 1) we have

(hed) 2t e < CUIV@ellaress + | 0ol e + | Follme) (€ =1,2).
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A mathematical analysis of the Kakinuma model 45

The next lemma gives an energy estimate of the solution to the Kakinuma
model (6.1) under appropriate assumptions on the solution. We recall that the
mathematical energy function E,,(t) is defined by (5.3).

LEMMA 6.4. Let ¢, M, M, h,;, be positive constants. There exist two pos-

itive constants C = C(c, M, h,,;,) and Cy = Ci(e, M, M, h,;,) such that for
any positive parameters Bl,BQ,Ql,QQ,é satisfying the natural restrictions (2.14),
hy6,hy0 < 1, and the condition h,;, < hy,he, if a reqular solution ((,pq,Ps)
to the Kakinuma model (6.1) with a bottom topography b satisfies (6.12),
by b (|b]lwmst.ce + (Bod)||bl|wms2. ) < My, and Ep,(t) < M,y for some time interval
[0,T], then we have E,(t) < Ce*E,,(0) for0 <t < T.

Proof. Let 3 be a multi-index such that 1 < |3| < m. Applying 9° to the Kakinuma
model (6.1), after a tedious but straightforward calculation, we obtain

Li(Hy)(0r + wy - V)P + hy LY (H1,6,h,)0% ) = £ 5,

Ly(H2) (0 + uz - V)9PC — hy LY (Ha, 6, hy)0° g = f 5,

o Li(Hy) - (0 + w1 - V)P by — plo(Ha) - (0; + ug - V)0 ¢y — ad’C = fo 5,
where LP and LE" are defined by (6.6), the function @ by (3.9), and o40

Fi5 = =107 L (H)]0:C+hy {[0°, Ar(H1)]Ag, — (L (H1) @ Li(Hy))(VHy - V)0 by
+[0°,11(H1) ® u1]VH — (hy8)?[0°, C1(H1)] 9, } (6.15)

Fopi=—10"12(H2)]0:C—hy {[0°, A2 (H2)| Ay — (1o(H2) ® Lo (H2))(VHs - V)9 b,
+ (07, 12(Ha) ® ug]V Hy — (hy0)~20”, Ca(Ha) ¢y

~La(Hy) (g - 0 (1 "V6) =07 (Bao(Ha) (b Vb - V)b +Cal(Ha, "), ) |
(6.16)

fop = =p, { (07 L (HY)] = (L) (07 H)) " iy
+ 3[0% ur, wg] + §(hy0) (07w, wi]
- (07, 1 (H))] = G (H)(@°H)) @ V)
—(hy8) 2wy (107,13 (H)) = (H) (07 Hy)) " ¢y + 5 (H) - 079, ) }
0, { (107, 15 (1)) — Uy (H2) (0° ) — Ly(H)(07 (b)) " Duchy
+ 307 ua, o] + §(ho8)"*[0%; wo, wo)]
Ty - (([0% 1a(Ha)) — 1y(H2) (97 Ha) — Uy(H2) (0% (15 ') © V) ¢,
—uy - 07, hy Vb @ ¢yl5(Ho)
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46 V. Duchéne and T. Iquchi
— (us - hy 'Vb)@y - (9°15(Hs) — U5 (H2)(8” Hz) — 15(H2) (9% (hy b))
+ (hy) " *ws (([85,l’2(H2)] — U (H2) (0P Hy) — 1 (H) (97 (15 'D))) " b,
+15(Hs) - 9%¢,) } . (6.17)

Here, [07%;u,v] = 0°(uv) — (0%u)v — u(0Pv) is the symmetric commutator. For
vector valued functions, it is defined by [0%;u,v] = 9% (u-v) — (0°u) v —u-
(0Pv).

On the other hand, by lemma 5.2 we have estimate (5.4) for time derivatives of
the solution. Particularly, we have

Z Béhg (HatUZ”QHMﬂ + (hﬁ)”ll@wzlﬁm—l + ||at¢/£||%{m + H8t2¢2||%lmfl) 5 Em.
=12
(6.18)
Note that we have also estimate (5.8) for the velocities (us, we) (¢ = 1,2). Moreover,
it follows from lemma 6.3 that Bzhg(h£6)74||¢2”§_[m_l S By, for £=1,2. In view
of the definition (3.9) of the function a, it is not difficult to check the estimate
la —1|3m + |0sal|3jm—1 S Enm. Therefore, by the Sobolev imbedding theorem we
see that all the assumptions in proposition 6.2 are satisfied, so that for the solution

U= (¢ ¢, ¢2)T we have

t
E0°U(t)) < Ceg(0°U(0)) + Cy / =7 Z25(7) dr,
0

where

F5 = | fosllm (10:0°Cll -+ + 107l 2)
+ 3 p,(IFesllee +1107¢11L2)1(0:0° by, VO )| 2.

=12
In view of estimates (5.4), (5.8) and (6.18) together with
(107, te(He)] = U (H) (9 He) Ml S Ntz

for ¢ = 1,2, we obtain .#3 < E,,. We note that the multi-index 3 is assumed to sat-
isfy 1 < |B| < m. As for the case 8 = 0, in view of L& U (t)) < En(t) we infer the

inequality &(U (t)) < &(U(0)) + Cy fot E,,(7)d7. Summarizing the above estimates
we obtain

t
En(t) < CeC B (0) + Oy / CHI B, (1) dr
0

with constants C' = C(¢, M, h,;,) and Cy = C1(¢, M, My, h,,;,). Therefore, Gron-
wall’s inequality gives the desired estimate. (|

Now, we are ready to prove theorem 3.1. Suppose that the initial data
(C(0)> P1(0)s P2(0)) and the bottom topography b satisfy (3.10)-(3.13). Let Cp be
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A mathematical analysis of the Kakinuma model 47
a positive constant such that
> (HHyo)llLoe + p,lullwe)lli<) + llagllLe < Co.
£=1,2

Such a constant C exists as a constant depending on ¢, My, h,,;,, and m. We will

show that the solution ({, ¢y, ¢,) satisfies (3.14), (3.15) and

min

> (He®) oo + p,hellwe(t)][F) + la(t)]| L < 2Co (6.19)
0=1,2

for 0 <t < T with a constant M and a time 7" which will be determined below.
We note that (3.14) is equivalent to E,,(t) < M. To this end, we assume that the
solution satisfies (3.14), (3.15), and (6.19) for 0 < ¢ < T'. In the following, the con-
stant depending on cg, Co, h,;,, m but not on M is denoted by C' and the constant
depending also on M by C;. These constants may change from line to line. Then,
it follows from lemma 6.4 that E,,(t) < Ce1* M, for 0 < t < T. Therefore, if we
chose M = 2C' My and if T is so small that 7' < C} ' log 2, then (3.14) holds in fact
for 0 <t < T. It remains to show (3.15) and (6.19). As before, we can check

Socts (10H Ol + [0, Orus ]l 1<) + Bua(t) | < Cr,

Py P. 2
19e (o(t) = 5y o (1) — w2 (®)) 1= < .

Therefore, if T is so small that T < (2C1)"Leo and T < ((2C3/% + 1)C1)~1Cy, then
the lower bound (3.15) and the upper bound (6.19) hold in fact for 0 < ¢t < 7. This
completes the proof of theorem 3.1.

7. Approximation of solutions; proof of theorem 3.9

In this section, we prove theorem 3.9, which gives a rigorous justification of the
Kakinuma model (2.18) as a higher order shallow water approximation to the full
model for interfacial gravity waves (2.17) under the hypothesis of the existence of
the solution to the full model with uniform bounds.

7.1. Supplementary estimate for the Dirichlet-to-Neumann map

In this subsection, we give a supplementary estimate to lemma 4.2 for the
Dirichlet-to-Neumann map A(¢, b, 0) defined by (4.6) appearing in the framework of
surface waves. We recall the map AN (¢, b,6): ¢ — Lo(H,b,8)¢, where Lo(H, b, )
is defined by (4.3) and ¢ is the unique solution to (4.5). In this section, we omit
the dependence of t in notations.

LEMMA 7.1. Let ¢, M be positive constants and m, j integers such that m > 5 + 1,
m>=2(+1) andl < j <2N + 1. We assume (H1) or (H2). There exists a positive
constant C such that if ( € H™, b € W™HL>° and H = 1+ ¢ — b satisfy (4.8), then
for any ¢ € HF 2D with 0 < k <m —2(j + 1) and any § € (0,1] we have

1(=A) 72 (AMN(C,b,8)¢ — A(C, b, 8)B) || e < CO V|| rosasin.
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48 V. Duchéne and T. Iguchi

Proof. This lemma can be proved in a similar way to the proof of lemma 4.2 with
a slight modification. For the completeness, we sketch the proof. By the duality
(H*)* = H=* and the symmetry of the operator (fA)’%, it is sufficient to show
the estimate

(A = AN, ) 2| S 6%Vl grsvassn [ Ve -+
for any ¢ € H*20+1) and any ¢ € H'=*. We decompose it as

(A=A, 2 = (A = APYFD)g ) 2 - (ACTHD — A 9p) 12
=: Il + IQ
and evaluate the two components of the right-hand side separately.

We recall the definitions (4.1) of the (N*+ 1) vector-valued function I(H)
and (4.3) of the operator £;(H,b,d), which acts on (N* + 1) vector-valued func-

tions. These depend on N, so that we denote them by l(N)(H) and LZ(»N) (H,b,9),
respectively, in the following argument. Let ® be the solution to the boundary

value problem (4.7) and let ¢ = (¢o, &1,...,0N+), ¢ = (¢~)O,¢~>1, .. .,¢~$2N*+2), and
¥ = (Yo, Y1, ..., Pan+4+2) be the solutions to the problems

LM (H b, 0)¢=0 for i=12,.. N,

LONT(H b, 5)G=0 for i=1,2,...,2N" +2,
1VD(H) - ¢ = ¢,
and

LT (H b 6)yp =0 for i=1,2,... 2N*+2,
l(2N+2)(H) TEY)

respectively. Put

Harp (g, 2) 1= S22, — b(z))Pigi(x
{@ (@.2) = T 2=+ 1= b)) (@), -

Uz, z) = SN Pz + 1 - b)),

and @' := & — $?PP. We note that PPP is a higher order approximation of
the velocity potential ® and that it satisfies the boundary value problem (4.7)
approximately in the sense that

APPP 4 572920%PP = R in —1+bx) <z<((x),
Fop = ¢ on 2 =((x),
Vb - VOPP — 529,02 =1 on z=—14 b(x),

where the residual R can be written in the form

2N*+2

R(@,2) = Y (z+1—b(@)ri(x).

i=0
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A mathematical analysis of the Kakinuma model 49

Estimates for the residuals (rg,71,...,72n++2) and rp were given in [19, lemmas
6.4 and 6.9]. In fact, we have ||(ro, 71, ..., ran+v2) || zx + 7B |lar S 02|V grvaii
for —-m<k<m-—-2({ +1)and 0 <j<2N +1.

Now, with a slight modification from the strategy in [19], we use the identity

I :/L;VX@”S-L;VX\I/dX,
Q

where  we denote Q:={X = (x,2);-1+blx) <z<((x)}, I;:=diag(l,
L6 Y and Vx := (V,0,) = (01, ...,0,,0.). Indeed, we have on one hand

(Ap, )2 :/[5VX<I)-15VX\I/dX
Q

as a consequence of (4.7), U(x,{(x)) = ¢(x) and Green’s identity, and on the other

hand
2N* 42
N 3 ) N ~
(ACYED G ) o = (LEV D 1PN ) o = 3 (HP LD ) e
=0
2N* 42 B R
= Z (Lijdj, i) e :/I(SVX‘I’app'LsVX\I’dX,
i,5=0 Q2

where the last identity follows from expressions (4.2) and (7.1).

To evaluate Iy, it is convenient to transform the water region €2 into a simple
flat domain Qg = R™ x (—1,0) by using a diffeomorphism which simply stretches
the wvertical direction ©O(x,z) = (z,0(x,2)): Qy — Q, where 0(x,z) =((x)
(z+1) + (1 — b(x))z. Put &' = &™5 0 © and ¥ = W 0 O. Then, the above integral
is transformed into

I = | PIVx®®.I;VxUdX,
Qo

T
B 00\ (00N ' L (/00N "\

Therefore, under the restriction |k| < m — 1 and using hypothesis (4.8), we have

where

L] S TPV x| 2oy | T IV X ¥ 20,
where J = (1 — A)z. Moreover, ™ satisfies the boundary value problem

Vx - I;PI;Vx®® = —R in Q,
Pres =0 on z=0,
e, ~L;’PL;VX<i>reS =—rg on z=-—1,

where R = Ro© = Zfivo*ﬁ(z + 1)PiHPir;and e, = (0,...,0,1)T. By applying the
standard theory of elliptic partial differential equations to the above problem, for
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0<k<m—1 we have

[T 15V x @ 12620y S 0 T* Rl £2(00) + 75 mrv)
So(ll(ros s - - raneg2) | e + [I7Bl H1)-
2N 42

Moreover, in view of U = Yoico (24 1)PiHPiap; and by lemma 4.1, we have

1T 1V x Wl r20g) S IV -+ 8l
S IVl
for |[k| < m — 1. Summarizing the above estimates we have |I1| < 6% ||V || grrr2i11

IV -+ for 0O<kE<m—2(j+1)and 0 < j < 2N + 1.
As for the term I, the evaluation is exactly the same as in [19]. In fact, the

identities
2N* 42 B N*
L= Y (Libj i) — Y (Lojdj,¥) 1
i,j=0 j=0
N* 2N*42 2N* 42 ~
=3 > ((Lij = HP Loj)pj i)re — > ((Lij — HP' Loj)éj,¥i) 12
§=0i=N*+1 i, j=N*+1

were shown in [19, equation (7.7)], where ¢ := (@0, ¥1,...,on+) was defined by
wi=¢; —¢; for it =0,1,..., N*. Now, we decompose j = j; + jo such that 1 <
j1 < N+1and 0 < jo < N. Then, by [19, lemmas 5.2, 5.4, 6.2 and 6.7] we see that

12| S {llpllmrszinss + 1(Enesrs -, Gonege) [ rsznsa

+ 072 (llepll prras—

(DN 415 -5 Panes2) | rrain =) HI (N 41, - - - Y2 42) |- ks -1
< 822V || pravacirram |V r-n

if max{|kl|, |k +2j1 — 2|, |k + 2j1 + 1|, |k + 2(j1 + j2)|} < m —1 and max{|kl|, |k +
1|, |k + 251 — 1|} < m. These conditions are satisfied under the restriction —m +
1<k<m—2(j+1).

To summarize, we obtain as desired [((A —AM)@, 1)) 2| < 6% ||V | rrsais
IVY|| - for 0 <k <m —2(j+1)and 1 < 7 < 2N + 1. The proof is complete. [

This lemma and the scaling relations (4.15) imply immediately the following
lemma.

LEMMA 7.2. Let ¢, M be positive constants and m, j integers such that m > 5 + 1,
m>=2(j+1) and1 < j < 2N + 1. We assume (H1) or (H2). There exists a positive
constant C' such that for any positive parameters hy, h,,d satisfying h,0,hy0 < 1,
ifCe H™, be Wthoo H) =1 —hy*¢ and Hy = 1 + hy "¢ — hy b satisfy (4.14),
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A mathematical analysis of the Kakinuma model 51

then for any ¢y, ¢o € HFF2GTD with 0 < k <m — 2(j + 1) we have

1(=A) =3 (h A (C, 6, By )by — AL (G, 6, hy)pn) | s < Chy (hy6)2 || Vb || risason
1(=A) 73 (hyASN(C,b, 6, hy)da — Na(C, b, 6, hy)do) |1
< Chy(hy0)2 |V o | grisasn.

We recall also the estimate for the Dirichlet-to-Neumann map A((, b, ) itself.
The following lemma is now standard. For sharper estimates, we refer to Iguchi
[17] and Lannes [29].

LEMMA 7.3. Let ¢, M be positive constants m an integer such that m > 5 + 2. There
ezists a positive constant C such that if ¢ € H™, b€ W™ and H=1+(—b
satisfy (4.4), then for any ¢ € H**! with |k| <m — 1 and any 6 € (0,1] we have
IA(C, 0, 0) @l e—1 < OV v

This lemma and the scaling relations (4.15) imply immediately the following
lemma.

LEMMA 7.4. Let ¢, M be positive constants and m an integer such that m > 5 + 2.
There exists a positive constant C such that for any positive parameters hy, ho, 9 sat-
isfying hy0,hyd <1, if C€ H™, be W™, Hy =1—h;'C and Hy =1+ hy '¢ —
hy 'b satisfy (4.11), then for any ¢y, ¢s € H*L with |k| < m — 1 we have

[A1(C, 6, hy) |l mrr—r < Chy ||Vl g,
HAQ(Caba 6;@2)¢2“ka1 < C’QQHVQZ)?”H’c

7.2. Consistency of the Kakinuma model revisited

As we mentioned in remark 3.8, the approximate solution to the Kakinuma model
(2.18) made from the solution (¢, ¢1, ¢2) to the full model can be constructed as a
solution to (3.21), that is,

L1i(Hy,8,hy)p, =0 for i=1,2,... N,
Loi(Hz,b,8,hy)py =0 for i=1,2,...,N*,

~ - 7.2
ﬁlﬁl,O(Hlaéaﬁl)(bl +h2£2,0(H2a ba 5)@2)¢2 = 03 ( )
pyla(H2) - @y — p Li(H1) - @y = pyd2 — p,é1,

in place of (3.19), that is,
ll(Hl)'¢1:¢17 ‘Cl,i(Hlvévhl)(bl:O for i:1727"'aNa (73)
l2<H2)-¢2:¢2, Egﬁi(Hg,b,57h2)¢2:0 fOI‘ iZl,Q,...,N*. '

To show this fact, we need to guarantee that the difference between these two
solutions is of order O((hy8)*N*2 + (hy8)*¥+2). The following lemma gives such an
estimate.
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LEMMA 7.5. Let ¢, M be positive constants and m an integer such that m > 3 + 1
and m > 4(N +1). We assume (H1) or (H2). There exists a positive constant C
such that for any positive pammeters Py Pys s hos 6 satz’sfying hi6,hed <1, ifC €
H™ beWmtheo [ =1—h'C and Hy =1+ hy'¢ — hy b satisfy (4.14), then
for any ¢1, 2 € H’“+4(N+1) with 0 < k < m — 4(N + 1) satisfying the compatibility
condition A1(¢, 0, hy)p1 + Aa(C,b,0, hy)po = 0 the solution (¢y, p,) to (7.3) and the
solution (¢, @s) to (7.2) satisfy

S7 0,11V (= b2 + (120) 21y — Dl2p + (1)~ Iy — Dl Zp-1)

(=1,2

C Z P hl hl 4N+2)”V¢Z”Hk+4N+3
(=1,2

Proof. For simplicity, we write £y, = L4 ;(H1,0,hy), L1 =11 (H;), and so on. We

recall that A(N) 1 — L10¢; and A( ). 2 — Lo g, Notice that gi)e ¢, for
(=1,2 satisfy

Lii(py—¢))=0 for i=1,2,...,N,

Loi(by—py) =0 for i=1,2,...,N*,

By L10(dy — d1) + hoLoo(y — 5) = (A1 — Iy AT )1 + (Az — By AT ),
pyla (fy — By) — Pl (61— ¢1) =0.

Since the right-hand side of the third equation can be written as V - f5 with
Fa==V(=8) 1 (0 = 2 AT)or = (A2 = A8 )5)

by lemmas 5.1 and 7.2 we obtain

> 2 helIV(be — G0l + (hed) by — D130

(=1,2
Py
Smin{ &, 2 }Ilfgllm
P 1
<3 FE(=A)E (A — B A )02
h
oy
1=1,2
S D 2 hu(e8) NIV kan s
1=1,2

Moreover, it follows from lemma 6.3 that
_ ~1/
(he0) 2l — Sl s S 1V (g — S arv + (1e0) by — B4 v
for £ = 1,2. This completes the proof. (|

The following proposition gives another version of theorem 3.6 for the consistency
of the Kakinuma model.
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PROPOSITION 7.6. Let ¢, M be positive constants and m an integer such that m >
4N 44 and m > 5 + 2. We assume (H1) or (H2). There exists a positive constant
C' such that for any positwe parameters p , p,,hy, hy, 0 satisfying h 0, hyd < 1, and
for any solution (¢, d1,¢2) to the full model for interfacial gravity waves (2. 17) on
a_time interval [0,T] satisfying (3.18), if we define Hy and Hy as in (2.19) and
(@1, ) as a solution to (7.2), then (C, dy, dy) satisfy approzimately the Kakinuma
model as

Ui (H1)hy '0uC + Li(H1, 0,y )y = v,
lo(H2)hy '0:¢ — Lao(Ha,b,6,hy) g = 1o,

~ . ) (7.4)
Py {ll(Hl) < Oppy + % ("“1|2 + (Qﬁ)”w%)}

—p, {IQ(Hz) Oy + 5 () + (@25)—%3)} (=1,

where Wy, U, W1, We are defined by (3.4) with (¢pq, ¢y) replaced by (&)1, &2), and the
errors (t1,%2,ty) satisfy

S o120 LT O iy < C Dy o p, e (Bed) NIV g (8)][3, -1
[0 (®)] rm-acvn < C ((hy6)*N 2 + (hy0)*™NF2) (hy ' + hy')

> e=1.2 el Ve 7 m 1

(7.5)
fort € [0,T].

Proof. Let ¢, and ¢, be the unique solutions to (7.3), and (¥1, ¥2,ty) the errors in
theorem 3.6. Then, the errors (r1, ta,tp) in the proposition can be written as

T =T — Ll(Hlvavhl)(&ﬁ - é1),

ty = ¥ + Lo(Ha, b, 6, hy)(hy — ¢2),

T =T +£1{hf1(3t4)(ﬂ31 —wy) — 3 (W +w) - (@1 —uy)
+(hy8) 7 (w1 + wy)( wy))}
—p,{hy (8:C) (2 —wz) 3 (g + uy) - (G — uy)
+(hy0) "2 (w2 + wo) (W — w2))}

Therefore, we have

[t — %ol me S IV(De — o)l meer + by — Byl e + (hed) "Ny — Dol e

for —m <k <m—1and ¢ =1,2. Applying this estimate with k =m — (4N + 5)
and the estimate in lemma 7.5 with & =m —4(N + 1) and using the result in
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theorem 3.6, we obtain the first estimate in (7.5). Since m — 2 > %, we have

o = Foll e S D p Al zrm—2 + llwell grm—2) e — wel e
0=1,2

+ (g 110G rrm—2 + (hy8) 2 ([l @ell 2+ |well srm-2)) || — wel| par}

for |k| < m — 2. Here, it follows from lemmas 4.4, 5.1 and 7.5 that

> o luelllwelFpo—s + (1e8) = well 1)

(=12

S 21V + (he8) 21
/=12

S 2Vl
1=1,2

2} ho(|@el2pm—1 + (Bgd) ™2 Do) 2m-1)

_ ~1
S Y 2 (VD i1 + (1) [ Bill7m—1)

(=1,2

h, h
< min {pl pQ} ||V(p2 Bld’l)H?{m—l

-1 2

SO ol Vel Fim s,

(=12
and
2 e(l@e — well 3 + (hed) 2o — well3)

1=1,2

<57 p, IV (e — ¢ 12 + (1208) 2 by — S0 l1%0)
=12

S P, hy(hy 5)2(4N+2)HV¢ZHHH4N+3
/=12

for 0 < k < m —4(N + 1). Moreover, it follows from lemma 7.4 that [|0:(||gm-2 =
||A[¢g||Hm—2 S hy||IVoe|lgm—1 for £ =1,2. Summarizing the above estimates and
using the result in theorem 3.6, we easily obtain the second estimate in (7.5). The
proof is complete. O

7.3. Completion of the proof of theorem 3.9

Now we are ready to prove theorem 3.9. Let (¢'W, ¢!V, ¢IW) be the solution
to the full model for interfacial gravity waves (2.17) with uniform bound stated
in the theorem, and define ¢™ := BQQSIQW - Bl¢llw, which is a canonical variable
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of the full model. We first ensure a uniform bound on the time derivative of
the canonical variables (¢(*W, ¢'W). It follows from the first and the second equa-
tions in (2.17) that 9,¢*W = —AIWoIW = AIWHIW ‘where AIW = A, (¢™W, 6, hy) and
AW = Ay(¢™W, b, 8, hy). Similar notations will be used in the following without any
comment. Therefore, by lemma 7.4 we have

[0e¢™ 3rm -1 = min{ ATV ST (13m0, [ASY S5 [13m 1 }
< min{h7(|VOIY |[7m, b3l VORY |7 }

h
<mm{1 ;} S 2V 3

£y =12
<2 p ol VO |[7m,
=12
where we used (2.15). It follows from the third equation in (2.17) that
0™ = p, 015" — p 0"
1 AIW¢IW _ VCIW . v¢IW 2
781 |V¢11W|2—52( 1 1 > e 1 )
L+ 62|VEW|
_ lp VeV |2 — 52 (AV Y + VCW . VeV)2N W
952 2 14 62|V¢IW|2 :

Here, we note that in view of the conditions h,d, hyd < 1 and hy', byt < 1 we have
0 < 1. Therefore, by lemma 7.4 we have

18e6™ [[grm—1 S NC™ ([ 1

+ > 2 VSN (s + BNV I + VS (7))

(=1,2

SIS arm=r + Y p,hel VO™ 3.
=1,2
Hence, we obtain [|0:¢™ || gm—1 + |0:0™ || gm—1 < 1.
Let (c])iw, a)IQW) be the solution to (7.2) with (¢, #) = (¢*W, ¢™). Then, propo-
sition 7.6 states that (¢(™W, ¢, ,&)IQW) satisfy approximately the Kakinuma model

as (7.4) and the errors (v, ta,tg) satisfy (7.5). Moreover, it follows from lemma 5.1
that

h, h
Z Pl ||V¢e [ + (Bed)~ 2||¢e ||Hm)<m1n{1 =

{=1,2

}IIWIWI%m

£ By

Z P@heHvéf’ HH

£=1,2
which yields

- TW —2 ~ W/
> 2@ 7 + (hed) 2107 [ Frm + (hed) e [N7m—1) S 1,
=12
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where @V, @, !V, WiV are defined by (3.4) with (¢, ¢,) replaced by
((Eﬁllw7 é;w), and we used lemma 6.3. We proceed to evaluate (8t<§siw,at{béw). To

this end, we derive equations for these time derivatives by differentiating (7.2) with
respect to t. The procedure is almost the same as in the proof of lemma 5.2. The
only difference is the last equation in (5.5), especially, the expression of fy. In this
case, fy has the form

fo= 00" + p, oV hi 10 — pwy hy t0,CY,

so that || fa||gm-1 S 1. Therefore, we obtain

~TW _ ~TW
> o, heIVOrdy 3z + (Be) 2(|0sby [[Frm—2) S 1.
=1,2

Let (CK,¢¥,¢§<) be the solution to the initial value problem for the Kakinuma
model (2.18)—(2.20) stated in the theorem, whose unique existence is guaranteed by
theorem 3.1 and proposition 3.4. Note also that the solution satisfies the uniform
bound (3.14) together with the stability and non-cavitation conditions (3.15). It
follows from lemma 6.3 that Beﬁz(ﬁg(;)"lﬂcﬁ?’\\?{m_l <1 for £ = 1,2. Moreover, the
time derivatives (9,¢, 9,9}, 9, P ) satisfy (5.4) and (ul, wk) (¢ = 1,2), which are
defined by (3.4) with (¢, ¢,) replaced by (¢X, @), satisfy (5.8). Putting

res 5 TW
o= (Ko (W gl =K g, (1=1,2),

we will show that (¢", @1, ¢5™) can be estimated by the errors (v1, ta,tp). To this
end, we are going to evaluate

B () = 1Ol + Y o eIV ()3 + (hed) >[5 (8) 17
(=12

for an appropriate integer k by making use of energy estimates similar to the ones
obtained in § 5 and 6 for the proof of the well-posedness of the initial value problem
for the Kakinuma model (2.18)—(2.20). Here, we note that E;*3(0) = 0.

As in the case of the energy estimate for the Kakinuma model, we first need
to evaluate times derivatives (9;¢"%, 0,91, 01p5™) in terms of E}*. By taking
difference between the first components of the first two equations in (3.5) and
(7.4), 0;¢™ can be written in two ways as

res ~ W
0, (" = —ﬁ1{£¥,0 1+ (ﬁﬁo - 511\,)(\;)¢1 + 10}
res ~Iw
= ﬁ2{£§<,0 o+ (£§0 - E%)d)z + 120},

where L1 = L10(H{,0,h,), H* =1 — hy'¢¥ and similar simplifications are used,
and ty,o is the Oth component of the error v, for £ = 1,2. Therefore, we have

10:C™ -1 < he{ IV L™ i + |05 ||

, ~IW ~IW
TN (Ve ([ + by

I
[rrm) + [[ecollme-1}
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for £ =1,2 and |k| < m. Hence, by the technique used in the proof of lemma 5.2
we obtain

1031 S D 2l IV 12 + 107 I3

£=1,2

res ~IW7/
112 IV B 3 + 1y 13m)

SES+ Y phyleelli-s
0=1,2

for |k| < m. We proceed to evaluate (8t 15 89,05). We recall that (8,¢%,d,¢5)
satisfy (5.5) with (C, @y, @) = (¥, ,¢2 ) and note that, differentiating the first
three equations of (7.2) with respect to ¢ and using the last equation in (7.4),

(D) 0y ) also satisfy (5.5) with (¢, b1, by) = (C™V, ¢y @y ) and fy added
with the error term —tg. By taking the difference between these equations, we have
therefore

,C at rcs: 1reis fOl" i:1727~"7N7
Ezvyat o = o for i=1,2,.. N7,

h L:lv(\)/atqbres + h2£ atqbres —V- fges’ _p 3t¢res + B2l12 8t¢res _ fics7

£y
where
res = 1 — AW + (2 - £K )oY for i=1,2,...,N,
s = K - AV + (EIW — LX)y for i=1,2,...,N*,
55 =f3 f3 by ((afy — a'y) @ V)T 0,97
+ Qz{«az 0~ az W) @ V)To¢5 — ((bho — bg,}g) - 0y )hy ' Vb},
Fi = 15 = Y o — p, (07 = 1) - 0,0 + g2(l£W —13) - 0

Here, f15, [ X, fK (respectively fl,, 2 f3 , W) are those in

(56) with (C, b1, 2) = (¥, 81, 81 (vespectively (€, b1, 6,) = (CIW, b1 by ),
ayy=aro(H}) and b270 = by o(HY), where aso(Hy) and bgo(Hs) are the Oth
columns of the matrixes A¢(Hy) and Ba(Hz) defined by (6.2) and (6.4), respec-
tively, and so on. Note the relations £1 g¢p; = —V - ((a1,0 @ V)T ¢,) and Lo g0y =
V- ((a2,0 ® V) Ty — (b2 - P3)hs ' Vb). Therefore, by lemma 5.1 we have, for

Y 2y (1Y@ 3 + (28) 2110 [[31-1)

=12
v P
< S o b5 e 1+mm{ }f‘eSIHm
1=1,2 -
hy h .
+mm{ , 2}||ff>||%fk.
Py Py
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We will evaluate each term in the right-hand side. For 1 < k < m — 1, we see that

1F s S hg  1C e (I K L + ()25 Vg 19K o
+ IV L azs + (P268) 215 s )y 19, |
+ IV Nlarm + (28) 2N be larm g 10 i
+ by 1 e (VO g || =1 + (Re8) 72| 0eby || srm—1)

for{=1,2,
1F5 s S (el — @™ e |06 s + 1™ | 1006 g
(=1,2
res K K7
I (VO @K s + 04D | 1)}
and
5 IwW IW
£ e < D7 o, Ll o+ g™ o) el — g™ || e

(=12

+ ()72 (g e + 10" | o) g — @™ || e
+h21||Cres||Hk||5‘t¢ff'||Hm—1} N e + [lvoll -

Moreover, for any 0 < k < m we have also

> ok (g = @™ 13 + (hed) 2 (lwit — @V [70) < B (7.6)
=12

Summarizing the above estimates and using @1‘1,@2‘1 <1 we obtain, for 1 <k <
m—1,

10:C™ 3+ Y b (VO 351 + () 210 1371
0=1,2

SES+ > phelleellze + Ivoll 3w (7.7)
0=1,2

We need also to evaluate p,hy(h,6)~ Y\ i'||2,5 1 for £=1,2 in terms of Ei*. In
view of

LY = LWl = (LW — LK)l = B3 for i=1,2,...,N,
LYWL = LW oy = (LW — LK )py = b for i=1,2,...,N*,

Lemma 6.3 yields (h0) ~*[|¢}™ || gu-1 < |V e e + ||¢re“||m + 1R -1 and

we have [[hy™|| g1 S (IIWS?IIHM + ||¢e Nem + (he6) 21l | rm—1) 1" || g for
1 < k < m. Therefore, for 1 < k < m we obtain

Y 2 hu(hed) M IGF s S B (7.8)

0=1,2

Now, by deriving equations for spatial derivatives of (¢**%, ¢1*°, ¢5°) and applying

the energy estimate obtained in § 6.1 we will evaluate £;°°. Let 3 be a multi-index
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such that 1 < |5] < k. Applymg 07 to the Kakinuma model (3.5) for (¢¥, ¢1 ,¢2)
and to (7.4) for (CIW7¢1 ,&)2 ) and taking the difference between the resulting
equations, we obtain
U0 + uf - V)0 + by LT P 0P @ = £1°%5,
Ly (0 + ul - V)¢ — hy Ly " 00 = £37,
I (0 + ufs - V)0 G — p 5 - (0 + ul - V)P ™ — aR05 ¢ = fi5,

where

Fi5 = £ = B - e+ by (L - 15906,
+ (1Y@ + @l - V)~ 1K@+ ulk - V) ) 07V,
55 = £ — Fop — 1o0Pvs — by (LYY — LEP)99 g,
+(BY @+ @Y V) 1@+ ul V) 05V,
fres R fg(ﬁ o f‘IW o aﬁto o (dIW o aK)aﬁcIW
+p, ( @, + @V - V) — 158, + uk . )) A
P, (léw(at +ay" - V) =13 (0 + uk - V)) DBy

Here, fﬁ% fgﬁ and féfﬁ are those in (6.15)—(6.17) with (¢, ¢;, d) = (C¥, d)i(, d);{),
and so on. As we saw, all the assumptions in proposition 6.2 are satisfied, so that
we have

~

t
EO°U™(1)) S /0 T (7)dr,

where U™ := (™, ¢}, 5°)T, & is defined in (6.11), and

F5 = || £255 L (107 L prier + (17 z15)
+ 37 0, (155 e 4 1C ) IV OB s + V5 gv)-
(=1,2

In view of ||(¢'"W, ¢¥)||gm < 1, straightforward calculations yield

15

S 0™ m—s + [[ag™ ||z )1 C75 |
W7

+ho(IVe N+ e e+ () 2l g )1

res res/ res/

+he(IVd Nl +llde e + (hed) 2lldg [le)

107 s + llag™ — i | e + Byllee] e
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60 V. Duchéne and T. Iguchi
for £=1,2and 5 <k <m—1. As for f3°;, we note the relation

{(0°.151 - l;<H§><@;laﬁ<K>) (197~ B 7)) ) 0y
- /01 (107, Ly(sH™ + (1 — $)H¥)]
U (sH™ 4 (1= $)HS)h5 "9 (s¢™ + (1= )¢} (3" ¢™) oy
FU(sH™Y + (1= 5)BS) {[07, 55 = (0983 ')} 0y ds.

Therefore, straightforward calculations yield
~IW7

1ssslln S 2 0, {UIVOBe s + 100y llrn2) €™

1=1,2
~TW ~IW ~IW7
+ (@ mn + llwg ) (Ve [z + N0 )¢l me

_ ~IW7/
+ (hed) 2 [lwg e [larm €75 |
res res/

+ |V, |mn—r + |0eby | rn—1

res res/ res/

+ a1V e + ¢ Mie) + (ed) 2 llwf rm |y

_ - IW . _
- (el g+ (@Y (e + 19 (o + 1 N 18 — ke

W7/

(8e8) 2 (e + 1Y o + e i I = e }

+ lIvollmes

for § <k <m—2. In view of the above estimates and (7.6)-(7.8) we obtain
TS B+ Ry with Ry = (o3 + D=1 Beﬁgﬂteﬂék. We note that the
multi-index § is assumed to satisfy 1 < || < k. As for the case =0, we have
LEFs(t) S Ep(t), hence EF(t) < fo E;5(t)dr. Summarizing the above esti-
mates we obtain E;*(t) < fo Eres (1) + Ri(7))dr for § <k <m—2. Putting
k=m—4(N +1) and applymg Gronwall’s inequality and (7.5) in proposition 7.6
we obtain E7* v (1) S (hy6)*NF2 4+ (hy6)*N 2 for 0 < t < min{T, T™W}.

It remains to evaluate ¢pV — oK for £ =1,2. Let (¢}, 5" ) be the solution
0 (3.19) with (¢, ¢1,¢2) = (¢, 61", 95V). Then, we have ¢ — o} = 17" - ¢} +
(IR gbzw +1,V- (ézw — ¢p"V), so that for any 0 <k <m —1

_ ~IW
IVoy = Vor llue S IV llmw + ||¢>“*’||Hk +h I e llpe am
IW/ IW/

+ HV(@ V) e+ 1l by

Therefore, the previous result together with lemma 7.5 implies

> el VO = VO sy S (1a0)* N2 4 (8) V42,
(=1,2

(2

This completes the proof of theorem 3.9.
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8. Approximation of Hamiltonians; proof of theorem 3.10

As was shown in the companion paper [14, theorem 8.4], the Kakinuma model
(2.18) enjoys a Hamiltonian structure analogous to the one exhibited on the full
model for interfacial gravity waves by Benjamin and Bridges in [3]. In this section,
we will prove theorem 3.10, which states that the Hamiltonian S#%((, ¢) of the
Kakinuma model defined in (2.25) approximates the Hamiltonian s#™W (¢, ¢) of
the full model defined in (2.22) with an error of order O((h;8)*V*2 + (hyd)*N+2).

8.1. Preliminary elliptic estimates

We consider the following transmission problem

VX'I(?VX(I)@:() in Qg (€:1,2),

'I’L~I§VX(I>g:O on Eg (fil 2),
(8.1)
n‘IgVX@Q_n'I(?VX@l =rg on I,

82<I>2 P =9 on I,

where the rigid-lid ¥ of the upper layer £2;, the bottom Y5 of the lower layer (25 and
the interface I' are defined by z = hy, 2 = —hy + b(x) and z = ((x), respectively,
Is :==diag(1,...,1,67 1), Vx = (V,0,)T = (01, ...,0,,0,) and n is an upward nor-
mal vector, specifically, n =e, on X1, n = (-=Vb,1)T on ¥y and n = (-¢,1)T
on I'.

LEMMA 8.1. Let ¢, M be positive constants. There exists a positive constant C
such that for any positive parameters 81782,h1,h2,6 satisfying hyd, hyd < 1, if
CbeWhe Hy =1—h;*¢ and Hy =14 hy ' ¢ — hy 'b satisfy

By Cllwee + g ([Cllwee + By (bl < M,
Hi@)>e¢, Hy(@)>c for acR,
then for any (rs, ) satisfying Vo € H~ 2 and (—A)_%rs € H? there exists a solu-

tion (®1, Do) to transmission problem (8.1). The solution is unique up to an additive
constant of the form (8267810) and satisfies

> IV x iz,

(=12

<C <||((£1A2,0 +BzAl,O)_lAl,OAZ,O)%(bH%? + p,2,l1(p, A2 o +£2A1,0)_%7"S||%2) )
(8.2)

where A1 g =A1(0,0,hy) and Ao = A2(0,0,0,hy) are Dirichlet-to-Neumann
maps in the case ((x) =b(x) =0. Particularly, if we further impose ¢ € H',
(=A)~2rg € H', the natural restrictions (2.14), and h,, < hy,hy with a positive
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constant h then we have

mins

P _1
>~ 25V x®elza, < CIVElZ: +C min {hﬁn((—A) : +he5)7‘s||2L2} 7
1=1,2 B

(8.3)
where the constant C' depends also on h;,.

Proof. The existence and the uniqueness of the solution is standard, so that we focus
on deriving the uniform estimate of the solution. To this end, it is convenient to
transform the water regions € and € into simple domains €4 o = R™ x (0, k) and
Qo0 =R" x (—hy,0) by using diffeomorphisms Oy(z, z) = (x,0(x, 2)): Qo —
Qp (£ =1,2), respectively, where 0y (x,z) = (1 — hy *¢(x))z + ((x) and y(x, 2) =
(14 hy ' (¢(x) — b(x)))z 4 ¢(x). Put &y = ®,00, (£ =1,2). Then, transmission
problem (8.1) is transformed into

VX . L;’PgLsVX‘i)z =0 in Qg,o (f = 1,2),
e, IyPIsV x Py =0 on Yo (£=1,2),
e, I;PIsVx®y —e, - I;P1 IsVx® =75 on T,
Py P2 —p1®1 =0 on T,
where ¥ o, 229 and I'g are represented as z = h;, 2 = —h, and z = 0, respectively,

and

T
90\ (00 (00N 1,

We note that ||I5VX¢'€||L2(Q£) >~ HL;VX(i)g”Lz(Q[)O) (EZ 1,2). Let (‘Ifl,‘l’g) be a
solution to the transmission problem

Vx~I§VX\I/g=0 in QZ,O (321,2),
e, IZVxU,=0 on X0 ((=1,2),
e, ~I§VX\I/2 —e, ~I§VX\I/1 =rg on I,
p¥2 =¥ =¢ on T'g,

and put @ = &, — ¥, (¢ = 1,2). Then, we can decompose
5V x BIS[2 — IV @5 - (I — Py)IsV x By = V1 - {(IsPeLsVx By — 12V xTy)}

for £ =1,2 and p, 21 = p, P57 on z=0. Therefore, denoting the unit outward
normal vector to 8(2[ o by N@ (E = 1,2) we have

> b, <|L;VX<I>§°S|2 IV B (1 — Pg)L;VXi)g) ax
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A mathematical analysis of the Kakinuma model 63
-y /ngl (@5 {(e. - IPo LV x Bz — e - VW)
(=1,
—(e. - IsP IV x®, — e, - ngxqfl)}} |, da
=0,
so that we obtain

o[ ey -
T Q0

> Eé/ IsVx @5 (I —Pp) sV x P dX.
1=1,2

=12 Qe,0
Similarly, in view of the decomposition
IsV x @3 - PoIsV x @3 — IsNV x O - (I — Po) sV x ¥y
= Vx® {(IsPI;Vx Py — I3V xV,)}
for £ = 1,2, we obtain
Z &/ IsV x B - Pyl V x BL = Z Bg/ IsVx® - (I —P)IsVx U, dX.
0=1,2 Qe,0 (=1,2 Q0

It follows from these two identities that

> 2 Vx 2 i 0,
(=1,2

Smind > p IsVx@elliz0,0) > 20TV x Vel 2,0 ¢
=12 =12

which yields the equivalence
> M5V Pellieia, ) = 3 1 IsVxelliza, -
(=12 =12

Therefore, it is sufficient to evaluate the right-hand side of the above equation. In
other words, the evaluation is reduced to the simple case ((x) = b(x) = 0.
Putting ¢y = Uyl,—0 (¢ = 1,2), we see that

Z sV x Vel 220, ) = Z p,(Aeotoe, o) 2
£=1,2 =12
and that
A1 o1 + Agotp2 =13,
P2 — p 1 = ¢.
Particularly, we have

W1 1 (—N200+p 7“5)
= A A =2 .
(%) (0, A20 + £y A10) ( Ao +prs
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64 V. Duchéne and T. Iguchi
Therefore,

> 2 VX ¥eliz, ) =

{<<p1A20+p2A1 0) A1 0A20) 302, if rs =0,
=1,2

B1B2||(B1A270+£2A1;0) 2TSHLQ 1f¢_0

Hence, by the linearity of the problem we obtain (8.2).

Finally, in order to show (8.3) it is sufficient to evaluate the symbols of the
Fourier multipliers (,0 Ao + Py A1) tA10A20 and P p2(p1A2 0+ p2A1 0)~ Lt We
recall that the symbol of the Dlrlchlet to-Neumann map A g is given by (A, 0)

57 1¢| tanh(h,5|€|) for £ =1,2. In view of 0 < tanh & < € for € > 0, we have

. A A
a((p,A2,0 + pyA10) " A1 oA20) < min {G(plo) U(pzo)}
o1 22

h,: h
<mind 2122 §jep?
Bl Py

< 20eP,

where we used (2.15). In view of tanh & ~ (1 + £)71¢ for € > 0 and relation (2.14),
we have

0,0y (14 Ry 0[€)(1 + hyd[€])

U(B1BQ(B1A270 + BgAl,O)il) =

hihy (14 0[€))[EP
P 1+h5|£| P 1+h5|£|}
< min 1 =2 - ' =27Isl
{hl” G NGE

<mm{1(|§| Y+h 6)2 p2

71

161!+ 10}
where we used 1 < hy, h,. These estimates imply (8.3). The proof is complete. [

8.2. Completion of the proof of theorem 3.10

Now we are ready to prove theorem 3.10. We recall the definitions (3.3) of 1, (H;),
l2(H>) and (3.6) of the operators £ ;(Hz1, 6, hy) and Lo ;(H2,b, d, hy). These depend
on N, so that we denote them by lgN)(Hl), léN)(HQ) and Eg)(Hl, 0,hqy) and

L‘é{j) (Hz,b,0, hy), respectively, in the following argument. For given (¢, ¢), let ®
be the solution to transmission problem (8.1) with rg =0 and let (¢, ¢,) and
(¢4, ¢5) be the solutions to the problems

LV (Hy 6, hy)¢y =0 for i=1,2,...,N,

LY (Ha b, 8,hy)py =0 for i=1,2,...,N*,
ﬁlﬁgﬁ)(Hla57ﬁ1)¢1 Jrﬁzﬁgi\(g)(Hm b, 6, hy)py = 0,
P8 (Hy) - @y — p 11V (Hy) - ) = &
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and

LN (Hy,6,1y)dy =0 for i=1,2,...,2N +2,
LN (Hy b, 6,hy)py =0 for i=1,2,... 2N +2,
ﬁ1“'1’5?(])\/v+2) (Hla(Sa hl)él +b2£g?év+2)(H27ba 6’ ﬁ2)(~ﬁ2 = 07

p SN (Hy) -y — p 1PN (HY) - ¢y = 0,

respectively, and define (®3P, ®3PP) and (B5PP, ®PP) by (2.24) and

{é?pp(“’v 2) = (1 - byt 2)¥01(x),
[2.5e2] @57 (2, 2) = Y700 A1+ hy (2 — b(=)))P doyi(),

respectively. Then, by the definitions of the Hamiltonian functionals ™V (¢, ¢)
and J7X(¢, ¢) given in § 2.3, we have

2V (C0) - ARG ) = S b, / (1Y x®? — I,V 5 ®3PP[2) dX

0=1,2 Q
- Z B@/ (|I5V x| — |15VX§>2‘I’P‘2) ax
£0=1,2 Q

+ 3 g, [ (@ — 984X
=12 Sk

=: Il + 12.

We will evaluate I; and I, separately. ~
In order to evaluate Iy, we put ®}* = &, — ®;"" (¢ = 1,2), so that

|I| = Z&/ IV x®5 - IV x (B + OFPP) dX
=12 7Sk

< Z 25V x5 20 (15 V x Bell L2,y + 115V x P57 (| L2 (@) ) -
=12

It follows from lemma 8.1 that 3, , p, sV x Pel|7:(o,) S V@7 We see also
that

Fa 2N+2) 7 7
Z B@”I(SVX‘IVPPHQB(QZ) = Z Bgﬁe(Lg " )¢e’¢e)L2
/=12 1=1,2

~ ~1
SN o bV + (hed) 2B |32)
(=12

SVl
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where we used lemma 5.1 and (2.15). In order to evaluate ||I5V x ®}||12(q,), we
first notice that (P, PL) satisfy

Vx - IZVx®)™ =R, in Q ((=1,2),
n - I§VX<I>‘ies =0 on X,

n - I3Vx®L™ = hyrp on Yo,

thbg‘% — Blfl)ﬁes =0 on T,

AL o] + Ao[@5].—] = s,

where
Ry=—-Vx - IZVx®PP (=1,2),
rp = —hy ' (=Vb, )T - IZ(Vx ;) .=, 0,
rs = Yo o (A = A0 [E)P =],
Here, we note that R, (¢ = 1,2) can be written in the form
Ru(x,2) = 3750 (1 = by '2) iy (@),
{Rz(m’ 2) = X P+ by (2 — b(@))Pira ().

Estimates for the residuals (’I"L()7 T1,15--- ,’I"172N+2), (T270, 72,05 - ,7‘2721\/*4’_2), and re
were given in [19, lemmas 6.4 and 6.9] and their proofs. In fact, we have

||(7"1,0, rl,l7 e ,7"1,2N+2)||L2 5 H(;1,2N+2HH2
< (B8 N2 Vb | prans
and
[(r2,0,72,1, -, 228 12) 22 + 7Bl S |\($2,2N*+1,</32,2N*+2)||H2
< (ha0) N 2|V y | rawsa + [ byl av+2)-

We decompose ®55 = &4°" + &% where (@}, ®5™!) is a unique solution to
the problem

Vx - IBVx®™' =R, in Q ({=12),

9

n-IZVx®™' =0 on i,
n-BVx®™ = hyrp on 3o,
oyt =0 on T (£=1,2),

so that (®1°%? ®5%?) satisfy

Vx - IZVx®* =0 in Q (£=1,2),
n-Vx®5? =0 on ¥, (£=1,2), (8.4)
n-IZVx®y™? —n - 2Vx®™* =rg on T, '
82@568’2 o qu)lies,Z —0 on T,
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where we used the relations A;[®°7|,_¢] = —n - [?Vx ®*? and Ag[®5>?|.—¢] =
n- I(?VX(IDEGS’2 on I'. It is easy to see that

115V x 1122000 S (h10)? [ RalF2 )
< by (h0)?(|(r1.0,7115 - - s 7128 +2) || 22
< by (By )N |V by || Fanvs

and that

15V x 5™ 220y S ho(190)* (13 V| Ral|22 gy + 7511 22)
5 ﬁ2(ﬁ25)2(H(7'2,0, 72,15 ar2,2N*+2)||L2 + ||7’B||%2)
< g (hy8)2 AN (|| by | gran+s + [| ol gran+s)-

Therefore, by lemma 5.1 together with (2.15) we have

Y 2V xS a0, S (1 8) N F2 4 (8 N 2) | V|| ransa
{=1,2

On the other hand, it follows from lemmas 8.1, 4.5, 7.2 and 5.1 that
res, p 1
> 2 VX a0, S uin, P2 + sl

1,2
{=1,2

+ g8) (R AN TP — A [BFPP|._ ]2
< ST 0, (B8 NGB ) [Zpans

>

N

~ ~/
P2, (hg8)* NI (|[V by Fan s + | PellFran+s)

~
I
—
o

< (1 8)*™2 + (hyd) 22|V Fran -

I=

Summarizing the above estimates, we obtain [I1| < ((hy0)*V 2 + (hy90)*N12)|| Ve

[rran+a [V L2
We proceed to evaluate I, which can be written as

=" o, (LN b ) — D p (LY by ) 12

=1,2 =12

= Ig’l + I2)2.
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In view of (3.8), we see that
Ly = pl (E(2N+2)¢1,l(2N+2) . (}I)LQ +BQQ2(E(2?(§V+2)(;52,[§2N+2) . (}2)”)

(h2£(2N+2 b0, p p, (2N+2) By — 1l§2N+2)'$1)L2
= (L5 5, 0) 12

= (1oL50 20,15 by = p, 11 - 1)1

—ph (£(2N+2 1N o) +th2(gg?év+2)¢27l§1v> C o) 12
N 2N42 N* 2N* 42

=phy > > (Liijbrgdri)ee + pyhe d Y (Loijdo dai)re
i=0 j=0 =0 j=0
N 2N42 N* 2N* 42

=p, Z Z (L1jit1.is 15) 12 + pyho Z Z (La,jith2,i> $2.5) 125
i=0 j=0 =0 j=0

where we used inj = Ly j;. Similarly, we see also that

Ip = py I (£55) é0, 1) 1) + p2@2<£m¢2,l<m ¢2)r2
= (ho LS o, p 15" - by — p 1) - )2
= (h2£2 0 ¢27¢) 2
(hz 2,0 ¢2u02 (2N+2) ¢2 (2N+2 &’1)

=ph (Lg]\é ?1, l(2N+2) o )L2 + pth( 2,0 ¢27l22N+2) “ o) 12
2N+2 IN*+2

=phy Y (HY L b1, d1j)re +pyhy Y (HY LS s, 62 5)10.

Jj=0 Jj=0

Here, it follows from (3.8) that Hf‘jﬁgl)\é)d)l = ZZN:O Ly ji¢p1,; and Hg-jﬁé{\(’))qbl =

Zﬁ\:o Ly jipa,; hold only for j =0,1,...,N and for 7 =0,1,...,N*, respectively.
Therefore, we have

N* N*
I2 2 — Plh1 Z Z Ll,]z¢1 2 ¢17J)L2 + Pth Z Z LQ,]’L¢2 () ¢2,])
=0 j=0 1=0 5=0
N 2N+2 ) ~
+p1y Z Z (H Ly oi1.i: d1,7) 12
i=0 j=N+1
N* 2N*+2 B
0 Y > (HY Logitei, d2,5) 1
i=0 j=N*+1
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so that

N 2N+42

Iy =p Z Z ((L1ji — HY L 03) 1.4, 61.5) 12

i=0 j=N+1
N* 2N*+2

+ pyhy Z Z ((Laji — HY Looi) 2,6, $2,5) 12
i=0 j=N*41
N 2N42

=p, M Z Z ((L1ji — HY L1,03) (61, — 61,0), b1,5) 12

i=0 j=N+1
N* 2N*+2

+ pyhy Z Z ((La,ji — Hy Lo,0i) (62,0 — $2,4), $2.5) 12

i=0 j=N*+1
2N+2 2N+2

- Z Z ((L1ji — HY Ly 03) 1,6, 61.5) 12

i=N+1j=N+1
2N*+2 2N*42

— Pyl Z Z ((La,j; — Hy Lo o;)$2,i, $2.5) 12-

i=N*4+1j=N*+1

Hence, denoting by ¢y = (41,0, 1,1,

)T and @y = (920,021, P2,8+) "
with @y ; = ¢g; — ¢e,i We obtain

1Ll S pha(IVell7z + () 72 100132)
(=12

+ Blﬁ1”(¢~51,N+1a G142y s D1 ant2) |20
+ pyholl(P2.net1, o N2, - Baane12) T
+p, (h0) " [(Prvs1s Prnvtas - Prave2)]|2s

+ BQQQ(ﬁ25)72||(€52,N*+17 Bo N 425+ - -y P2oN12)| 22

Here, we note that (¢4, ¢,) satisfy

Eg)gol =ry,; for i=0,1,...,N

cey 5

‘C;],\i])"p2 =ry,; for ¢=0,1,...,N¥,

ﬁlﬁgj,\(f))‘Pl +ﬁ2£g{\6)‘P2 =V (hyr31 + hyrs2),

N N
Bgl(z ). Po — Bllg ). P1 = PyTa1 Tt PyTa2;
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where
Tl,i = — Z?Z;il(Llyij — HQiLLOj)Q‘{)l,j fOI‘ 7= 0, 1, e ,N,
24 = — Z?i_\];/til(LQ,” — HpiLQ,Oj)QEQ,j for i= 0, ]., ey ]\7*7
Vierg: = Z?E\fﬂ Ligj¢j, V- rss= E?Z;ril Lo0j$2.5,
ra1 = Z?fﬂ?i HY¢yj, rap=-— §£N+-21-1 HY §a ;.
We put 7y = (0,71,1,...,71,n5) T and rh = (0,791,...,72 x) 1. Then, with a suitable

decomposition ry = r?igh + (hed) 727 for £ = 1,2, and using the linearity of (5.1),
we see by lemma 5.1 that

Y 2 huIVellie + (hed) 2 @flI7e)

1=1,2

S bl I+ (hed) 2 rE 132 + Irselle + Iracllzn)
1=1,2

S ey ||(d~)1,N+1> &1,N+2, .. ,d~>1,2N+2)||§11
+ Q2ﬁ2||(¢;2,1v*+1, (EQ,N*+27 o boaneae)| i

+ 0,1 (118) 2 (rv41, drvgzs - branga) 72
+ p,ho(hed) " |[(Ga,n- 41, D242, -, D228+ 42) |72

Moreover, it follows from [19, lemmas 5.2 and 5.4] that
11341, 01842, ran )l S (0> F27F [V | ravan

~ ~ ~ -~ ~ ~
(b2, N=41, P2, N 425 - - - D22ne42) e S (ho8) N 2R (V|| grawvr + ||| ran+1),

for k = 0,2, and hence also for £ = 1 by interpolation, so that

~ ~/
1] S D phe(hed) ™ P2Vl Franr + Bl Fran1)
=12

(hy0)* N2 + (hy0) M) [Vl 3an-en

S (
S (g 8) 2 4 (hpd) ™M) [ V|| gran+2]| V| 12,

where we used lemma 5.1 with (2.15), and interpolation. This completes the proof
of theorem 3.10.
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