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Regular Dilations on Kreı̆n Spaces
Dan Popovici
Abstract. For bounded operators on Kreı̆n spaces, isometric or unitary dilations always exist. We
prove that any minimal isometric or unitary dilation has a precise geometrical structure. Moreover,
a bounded operator T has a unique minimal unitary dilation if and only if T and T∗ have unique
minimal isometric dilation if and only if T is either contractive or expansive and T∗ is either
contractive or expansive. Passing to the bi-dimensional case, a minimal unitary extension (in short,
m.u.e.) U = (U1 , U2) is obtained for a pair V = (V1 , V2) of commuting bounded isometries on a
Kreı̆n space. There is a link with the one-dimensional case: if U is an m.u.e. for V , then U1U2
is an m.u.e. for V1V2 . Also, if (V1V2)∗ is either contractive or expansive, then V has a unique
minimal unitary extension. A minimal regular isometric dilation is obtained for a commuting pair
T = (T1 , T2) of bounded operators on a Kreı̆n space such that T1 , T2 are contractions and T is a
bidisc contraction or T1 , T2 are expansions and T is a bidisc expansion. The existence of a minimal
unitary extension is used to provide a minimal regular unitary dilation for T. Discussions about
uniqueness and geometric structure conclude the article.

1 Introduction

One of the most fruitful directions of research in order to develop a suitable spectral
theory for nonselfadjoint operators was opened by the theorem of Sz.-Nagy [56] on the
existence of a unitary dilation for every contraction operator on a Hilbert space. The
matrix construction for such dilations, proposed by Schäffer in [52], was the starting
point to obtain their precise geometrical structure (cf. [29, 58, 61]).

The problem of finding isometric or unitary dilations for families of commuting
contractions was proposed by Sz.-Nagy and solved in the case when the family in
discussion is double commuting (cf. [57, 60]). Ando [2] proved that every pair of
commuting contractions has isometric dilation. Unfortunately, Ando’s result cannot
be extended for arbitrary families of more than two contractions, according to the
example given by Parrot [46].

Later developments show that the problem of finding a unitary dilation for a family
T = (Tω)ω∈Ω of commuting contractions on a Hilbert space H can be reduced, by the
Naimark theorem [45], to the possibility of extending the function

Z
Ω
+ ∋ n ↦ T n ∈ B(H)
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2 D. Popovici

to a positive definite one on Z
Ω . It was the idea of Brehmer [9] to consider the regular

extension

Z
Ω ∋ n ↦ (T n−)∗T n+ ∈ B(H)

and to obtain the so-called regular unitary dilations. Their systematic study was
completed and simplified later by Sz.-Nagy [59] and Halperin [30, 31]. In the
multi-variable case, even supposing that the existence is assured, minimal isometric
or unitary dilations are, in general, not unique. However, the minimality condition
ensures the uniqueness of a regular isometric or unitary dilation. Regular dilation
results have been used to provide models for commuting multi-operators [13, 47,
49, 63], in connection with intertwining liftings [26], von Neumann inequalities
[6], [25], operator moment problems [50], Markov processes [41], completely
contractive representations of product systems of correspondences [55], or in the
context of right LCK semigroups [37].

The large class of applications involving dilation theory, for example, in operator
interpolation problems, optimization, control, and systems theory (excellent refer-
ences are given by the survey of Shalit [53] or by the books of Foiaş–Frazho [22],
Foiaş–Frazho–Gohberg–Kaashoek [23] and Rosenblum–Rovnyak [51]), but also in
prediction theory [35] motivate our work.

It is natural to assume that such a theory on spaces with indefinite metric (in par-
ticular on Krĕın or Pontryagin spaces) will provide at least a similar set of applications.
We should mention in this context that operators on Krĕın have been used recently,
for example, in machine learning [39, 40] or frame theory [17, 34, 38].

The following section (Section 2) is devoted to some preliminary facts concerning
Krĕın spaces, their Krĕın subspaces, and bounded operators on such objects. Basic
facts on the theory of Krĕın spaces and operators on them are given in [3, 8, 32, 36];
to see also the excellent monograph [27].

One variable dilation theory on Krĕın spaces is the subject of Section 3. The
indefinite case started with the theorem of Davis [14] proving that every bounded
operator on a Hilbert space H has a unitary dilation on a Krĕın space K containing
H as a regular subspace. The result holds true even if we suppose that H is a
(more general) Krĕın space, as showed by Dijskma–Langer–de Snoo [16] using
Carathéodory-type representations for holomorphic operator functions, or by
Constantinescu–Gheondea [10] following a Schäffer-type matrix construction.
Geometric structure results are obtained for any minimal isometric or unitary
dilation (Theorem 3.1). In such a generality, a minimal isometric dilation of a
bounded operator T is unique (up to a unitary equivalence) if and only if T is either
contractive or expansive [28]. We prove that T has a unique minimal unitary dilation
if and only if T and T∗ have unique minimal isometric dilations.

The main result of Section 4, the existence of a minimal unitary extension for
every commuting pair of bounded isometries on a Krĕın space, is based on a matrix
construction similar to the one given by the author in [48, Theorem 3.3.1]. The Hilbert
space case was obtained by Itô [33] (cf. also Brehmer [9] and Douglas [18]). The
problem of finding conditions for the uniqueness of a minimal unitary extension
reduces to the unidimensional case by the observation in [7] (on Hilbert spaces), and
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Regular Dilations on Kreı̆n Spaces 3

extended here, that U1U2 is a minimal unitary extension for V1V2 if U = (U1 , U2) is a
minimal unitary extension for V = (V1 , V2).

Two-variable dilation theory on Krĕın spaces has also been considered earlier.
The first result in this generalized context has been obtained by Azizov, Barsukov,
and Dijksma in [4]. We should also remark that, in the Hilbert space case, Ando’s
theorem [2] was proved to be equivalent with the commutant lifting theorem given by
Sz.-Nagy and Foiaş [62]. In the indefinite case, several versions of this last mentioned
theorem have been obtained by Alpay [1], Baidiuk and Hassi [5], Constantinescu and
Gheondea [10, 11], Dritschel [19], Dritschel and Rovnyak [21], or Dijksma, Dritschel,
Marcantognini, and de Snoo [15]. Some of these proofs could lead to different Ando-
type dilations. An excellent survey on this topic is presented in the paper [20] of
Dritschel. There are attempts to a several (more than two) variable dilation theory
on Krĕın spaces (see, e.g., [42]). The theory of unitary extensions for pairs of Krĕın
space isometries has been initiated in the paper of Marcantognini and Moran [43].

The last section contains structure results for the minimal (regular) isometric
dilation provided that such a dilation exists. The geometric structure given by The-
orem 5.3 is the indefinite correspondent of some Hilbert space results appeared in
[54] (for double commuting contractions) or, more generally, in [24] (for commuting
contractive pairs having regular dilation). The most important result of the article
is the existence of a minimal regular isometric dilation for every commuting pair
T = (T1 , T2) of bounded operators on a Krĕın space such that T1 , T2 are contractions
and T is a bidisc contraction or T1 , T2 are expansions and T is a bidisc expansion
(Theorem 5.6). If the conditions above are satisfied, a minimal regular isometric
dilation is unique up to a unitary equivalence (Theorem 5.8). The unitary extension
(obtained in Section 4) for a regular isometric dilation provides a regular unitary
dilation (Corollary 5.7).

We remark that similar results also hold true for finite families of more than two
commuting operators. These topics will be treated elsewhere.

2 Preliminaries on Kreı̆n spaces

2.1 Kreı̆n spaces, regular subspaces, and operators

A Kreı̆n space is a complex linear spaceK equipped with a Hermitian sesquilinear form
⟨⋅, ⋅⟩K and having a decomposition

K = K+ ⊕K− ,(2.1)

where (K±,±⟨⋅, ⋅⟩K) are Hilbert spaces (“⊕” denotes an orthogonal direct sum).
Decomposition (2.1) is said to be a fundamental decomposition of the Krĕın space K

and, in general, it is not unique. It induces on K a Hilbert space structure: if P± are
the orthogonal projections onto K± and J = P+ − P− (called a fundamental symmetry
or signature operator) then K becomes a Hilbert space (denoted KJ) when equipped
with the inner product

KJ ×KJ ∋ (x , y) ↦ [x , y]J ∶= ⟨Jx , y⟩K ∈ C.

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:17:52, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


4 D. Popovici

The strong topology of this Hilbert space is independent of the choice of a
fundamental decomposition and is usually called the Mackey topology of K. All
topological notions on a Krĕın space are to be understood with respect to this strong
topology.

The cardinal numbers

κ±(K) = dimal g(K±)

are the positive (respectively, negative) indices of K and are also independent of the
choice of a fundamental decomposition. The rank of indefiniteness of K is κ(K) =
minκ±(K).

A subspace H of a Krĕın space K is a closed linear manifold of K. It is positive
(respectively, negative) if

⟨h, h⟩K ≥ 0 (respectively, ⟨h, h⟩K ≤ 0),

for every h ∈ K. A positive (respectively, negative) subspace is said to be maximal
positive (respectively, maximal negative) if it is not contained in a larger positive
(respectively, negative) subspace. It is called uniformly positive (respectively, uniformly
negative) if, for a certain δJ > 0,

⟨h, h⟩K ≥ δJ∥h∥2
J (respectively, ⟨h, h⟩K ≤ −δJ∥h∥2

J ), h ∈ H.

Similarly, one defines maximal uniformly positive (respectively, maximal uniformly
negative) subspaces.

The orthogonal subspace of H is H� = {k ∈ K ∣ ⟨h, k⟩ = 0, h ∈ H}. For each pair
(M,N) of subspaces in K, we use the notation M�N if M ⊂N�, and M⊕N if
the sum M +N is closed, orthogonal, and direct. H is said to be regular (or ortho-
complemented) if K = H⊕H� .

Proposition 2.1 The following conditions are equivalent:
(i) H is regular.
(ii) H is a Kreı̆n space in the inner product inherited from K.
(iii) There exists a fundamental symmetry J on K such that JH ⊂ H (hence JH = H).

Condition (ii) justifies the use of the term Kreı̆n subspace for any regular subspace.
If T ∶D(T) ⊂ K1 → K2 is a densely defined linear operator between Krĕın spaces

K1 and K2, then its Kreı̆n adjoint T∗ ∶D(T∗) ⊂ K2 → K1 is uniquely determined by
the relation

⟨x , T∗y⟩K1 = ⟨Tx , y⟩K2 , x ∈D(T), y ∈D(T∗).

The Krĕın adjoint T∗ and the Hilbert adjoint T× computed relative to fundamental
symmetries J1 (on K1) and J2 (on K2) are related by T∗ = J1T×J2 . If T belongs
to B(K1 ,K2) (the set of all bounded linear operators between K1 and K2), then
T∗ ∈ B(K2 ,K1). Note that any fundamental symmetry J on a Krĕın space K belongs
to B(K) and J∗ = J× = J−1 = J .

A linear operator V ∶D(V) ⊂ K1 → K2 is isometric if ⟨V x , Vy⟩K2 = ⟨x , y⟩K1 , x ,
y ∈ K1 . An isometric operator U between Krĕın spaces K1 and K2 is said to be unitary
if D(U) = K1 and R(U) = K2 .
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An everywhere defined isometry is bounded if and only if its range is closed. Then,
the range is a regular subspace. We deduce that any unitary operator is continuous.
However, a densely defined Krĕın space isometry may fail to have a continuous
extension.

Two subspaces M1 (of K1) and M2 (of K2) are said to be isometrically isomorphic if
there exists a boundedly invertible isometric operator U ∶M1 →M2 . In this situation,
M1 is regular if and only if M2 is regular. Note that two regular subspaces are
isometrically isomorphic if and only if they have the same positive (respectively,
negative) indices. Let us finally remark that definite Krĕın spaces (their rank of
indefiniteness is null) K can be characterized by the fact that every unitary operator U
on K is power bounded (supn∥U n∥ < ∞).

2.2 Hardy-type Kreı̆n spaces and operator extensions

If M1 ,M2 , . . . ,Mn is a finite family of mutually orthogonal regular subspaces of a
Krĕın space K, then the subspace M1 ⊕M2 ⊕ ⋅ ⋅ ⋅ ⊕Mn is clearly regular. The result
remains no longer true if the family is infinite. For a finite or infinite family {Kn}n≥0
of Krĕın spaces we can, however, compute their external orthogonal direct sum as
the set ⊕n≥0 Kn of all sequences k = {kn}n≥0 with ∑n≥0∥kn∥2

n < ∞ (here, for each n,
the norm ∥⋅∥n is computed relative to a given fundamental decomposition of Kn).
It becomes a Krĕın space relative to the indefinite inner product ⟨{hn}n , {kn}n⟩ ∶=
∑n≥0⟨hn , kn⟩Kn , {hn}n , {kn}n ∈ ⊕n≥0 Kn . If K is a Krĕın space, then the external
orthogonal direct sum of a family of identical copies of K can be obviously identified
with the Hardy-type Krĕın space H2

K(T), of functions on the torus

z ↦ f (z) = ∑
n≥0

zn kn , with ∑
n≥0

∥kn∥2 < ∞.

If our family is doubly indexed, we obtain similarly H2
K(T2).

The following set of bounded operators will be frequently used in our construc-
tions.

Let K,K1 ,K2 be given Krĕın spaces:
• the multiplication by the independent variable z on the Hardy-type space H2

K(T) ∶

(Tz f )(z) ∶= z f (z), z ∈ T, f ∈ H2
K(T),

has the adjoint T∗z given by

(T∗z f )(z) ∶= z̄( f (z) − f (0)), z ∈ T, f ∈ H2
K(T);

• the pair (Tz1 , Tz2) of multiplications by coordinate functions z1 and z2 on H2
K(T2)

– defined similarly;
• any T ∈ B(K) can be extended to a bounded operator [T] on H2

K(T) by

([T] f )(z) ∶= T( f (z)), z ∈ T, f ∈ H2
K(T);

• any T ∈ B(K1 ,K2) can be extended to [T]0 ∈ B(K1 , H2
K2
(T)) by

([T]0k1)(z) ∶= z0Tk1 , z ∈ T, k1 ∈ K1;
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6 D. Popovici

its adjoint is given by

[T]∗0 f = T∗( f (0)), f ∈ H2
K2
(T);

• finally, any T ∈ B(K1 ,K2) can be extended to a bounded operator [T]i ∈
B(H2

K1
(T), H2

K2
(T2)) by

([T]i f )(z1 , z2) ∶= T( f (z i)), z i ∈ T, f ∈ H2
K1
(T), i = 1, 2.

Moreover,

([T]∗i f )(z) = T∗( f (ze i)), z ∈ T, f ∈ H2
K2
(T2), i = 1, 2

(here e1 ∶= (1, 0) and e2 ∶= (0, 1)).
Their joint properties are mentioned in the following.

Proposition 2.2 Let K,K1 ,K2 ,K′1 ,K′2 be given Kreı̆n spaces. Then,
(i) the map

B(K) ∋ T ↦ [T] ∈ B(H2
K(T))

is a ∗-algebra homomorphism;
(ii) the map

B(K1 ,K2) ∋ T ↦ [T]0 ∈ B(K1 , H2
K2
(T))

is linear; moreover, for T ∈ B(K1 ,K2), [S]0T = [ST]0 (when S ∈ B(K2 ,K′2)),
[S]∗0[T]0 = S∗T (when S ∈ B(K′1 ,K2)), and

[S]0[T]∗0 f = ST∗( f (0))z0 , f ∈ H2
K2
(T)

(when S ∈ B(K1 ,K′2));
(iii) the map

B(K1 ,K2) ∋ T ↦ [T]i ∈ B(H2
K1
(T), H2

K2
(T2))

is linear; moreover, for T ∈ B(K1 ,K2), [S]∗i [T]i = [S∗T] (when S ∈ B(K1 ,K2))
and

([S]i[T]∗i f )(z1 , z2) = ST∗( f (z i e i)), z i ∈ T, f ∈ H2
K2
(T2), i = 1, 2

(when S ∈ B(K1 ,K′2));
(iv) let T ∈ B(K1 ,K2). Then,

– [T]Tz = Tz[T] and Tz[T]∗ = [T]∗Tz (when K1 = K2);
– [T]∗0 Tz = 0;
– [T]i Tz = Tz i [T]i , Tz[T]∗i = [T]∗i Tz i and [T]∗i Tz3−i = 0, i = 1, 2;

(v) let T ∈ B(K1 ,K2) and S ∈ B(K′1 ,K′2). Then,
– [S][T]0 = [ST]0 (when K′1 = K′2 = K2);
– [S]i[T] = [ST]i , i = 1, 2 (when K1 = K2 = K′1);
– [S]∗1 [T]2 = [S]∗2 [T]1 = [S∗]0[T∗]∗0 (when K′2 = K2);
– [S]1[T]0 = [S]2[T]0 (when K′1 = K2);
– [T]i[S]0k1 = z0

1 z0
2 TSk1 , k1 ∈ K1 , i = 1, 2 (when K1 = K′2).
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3 Isometric and unitary dilations for bounded operators

It is well known that any bounded self-adjoint operator A on a Krĕın space A can be
factorized into the form

A = BB∗ ,

for a certain operator B ∈ B(B,A) with zero kernel on a Krĕın space B.
By a defect operator for T ∈ B(K1 ,K2), K1 and K2 Krĕın spaces, we mean an

operator DT ∈ B(DT ,K1)with zero kernel on a Krĕın spaceDT (called its defect space)
such that

I − T∗T = DT D∗T .(3.1)

Let T ∈ B(H), H Krĕın space. An isometric (respectively, unitary) dilation of T
is a bounded isometric (respectively, unitary) operator U on a Krĕın space K ⊃ H

satisfying

⟨T n h, h′⟩H = ⟨U n h, h′⟩K , h, h′ ∈ H, n ∈ Z+.(3.2)

An isometric (respectively, unitary) dilation U ∈ B(K) of T ∈ B(H) is said to be
minimal if K = ⋁n≥0 U nH (respectively, K = ⋁∞n=−∞U nH).

For bounded operators T ∈ B(H), minimal isometric (respectively, unitary) dila-
tions always exist [10, 16]. A Schäffer-like matrix construction is still possible in these
generalized settings [10].

Define K+ = H⊕ H2
DT

(T). Then, an isometric dilation V of T on K+ is given by
the representation

V = ( T 0
[D∗T]0 Tz

) .(3.3)

A minimal unitary dilation U of T on the Krĕın space K = H2
DT∗

(T) ⊕H⊕ H2
DT

(T)
can be built in terms of a Julia operator or elementary rotation (to see [11, 12]) for T,
i.e., a unitary operator of the form

( T DT∗

D∗T L ) ∈ B(H⊕DT∗ ,H⊕DT).

More precisely,

U =
⎛
⎜
⎝

T∗z 0 0
[D∗T∗]∗0 T 0

[L]0[IDT∗
]∗0 [D∗T]0 Tz

⎞
⎟
⎠

.(3.4)

As regarding the geometry of minimal dilations, we could mention the following
theorem.

Theorem 3.1 Let V ∈ B(K+) (respectively, U ∈ B(K)) be any minimal isometric
(respectively, unitary) dilation of T ∈ B(H).

(a) (i) L = (V − T)H is wandering for V (i.e., V nL�V mL, n, m ≥ 0, n ≠ m), regular,
and isometrically isomorphic with DT ;
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8 D. Popovici

(ii) M+(L) = ⋁n≥0 V nL is regular and

K+ = H⊕ M+(L);(3.5)

(b) (i) L = (U − T)H and L∗ = (U∗ − T∗)H are wandering for U, regular, and iso-
metrically isomorphic, respectively, with DT and DT∗ ;

(ii) M+(L) = ⋁n≥0 U nL and M−(L∗) = ⋁n≤0 U nL∗ are regular and

K = M−(L∗) ⊕H⊕ M+(L).(3.6)

Proof All the orthogonality properties involved here can be easily checked following
the definition of an isometric or unitary dilation and, therefore, we shall omit the
details.

Observe firstly that a successive application of the formula

V h = Th + (V − T)h, h ∈ H

will lead to

V n h = T n h +
n−1
∑
k=0

V k(V − T)T n−k−1h, h ∈ H, n ∈ N.(3.7)

Hence, (3.5) holds. Consequently, M+(L) is regular and, since M+(L) = L⊕
V M+(L), L is also regular. Moreover,

⟨(V − T)h, (V − T)h′⟩K+ = ⟨h, h′⟩H − ⟨Th, Th′⟩H
= ⟨(I − T∗T)h, h′⟩H
= ⟨D∗T h, D∗T h′⟩DT , h, h′ ∈ H

shows that the map

L ∋ (V − T)h ↦ D∗T h ∈DT

is well defined (DT is a Krĕın space), isometric, densely defined, and with dense range.
It is also injective (since L is regular) and, therefore, κ±(L) = κ±(DT). Deduce that
L and DT are isometrically isomorphic and the proof of (a) is complete.

To obtain (3.6), we apply (3.7) for (U , T) and then for (U∗, T∗) instead of (V , T).
Since M−(L∗) and M+(L) are regular we show, as before, that L and L∗ are regular.
A similar argument as for the minimal isometric dilation allows us to conclude that L
and L∗ are isometrically isomorphic, respectively, with DT and DT∗ . ∎

Corollary 3.2 Let U ∈ B(K) be any minimal unitary dilation of T ∈ B(H). Then,

K+ = ⋁
n≥0

U n
H

is a regular subspace of K, invariant to U, and V+ = U ∣K+ is a minimal isometric dilation
of T .

Similarly,

K− = ⋁
n≤0

U n
H
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Regular Dilations on Kreı̆n Spaces 9

is a regular subspace of K, invariant to U∗, and V− = U∗∣K− is a minimal isometric
dilation of T∗ .

Remark 3.3 ● Proposition 2.1 gives another condition, usually used as an axiom in
the isometric or unitary dilations definition: if U ∈ B(K) is any minimal isometric
or unitary dilation of T ∈ B(H), then H is a regular subspace of K. Theorem above
indicates the structure of its orthogonal complement. Therefore, (3.2) can be re-
written as

T n = PHU n ∣H , n ≥ 0,

where PH is the orthogonal projection onto H. Another consequence of (3.2) is

T∗n = PHU∗n ∣H , n ≥ 0.

● Let V ∈ B(K+) be a minimal isometric dilation of T ∈ B(H). Then, for any
h, h′ ∈ H and n ≥ 0,

⟨V∗h − T∗h, h′⟩ = ⟨h, V h′⟩ − ⟨h, Th′⟩ = 0

and

⟨V∗h − T∗h, V n(V − T)h′⟩ = ⟨h, V n+2h′⟩ − ⟨h, V n+1Th′⟩
− ⟨T∗h, V n+1h′⟩ + ⟨T∗h, V n Th′⟩ = 0.

By the geometrical structure of K+ given by (3.5), we deduce that H is invariant to V∗
and V∗∣H = T∗ .

● Let U ∈ B(K) be a minimal unitary dilation of T ∈ B(H). It is clear that M+(L)
is invariant to U and M−(L∗) to U∗. Since M+(L) and M−(L) are regular, U ∣M+(L)
and U ∣M−(L∗) are unilateral shifts (according to the definition in [44]).

An operator T ∈ B(H,K), H,K Krĕın spaces, is a contraction (respectively,
expansion) if

⟨Th, Th⟩K ≤ ⟨h, h⟩H (respectively, ⟨Th, Th⟩K ≥ ⟨h, h⟩H), h ∈ H

or, equivalently,

I − T∗T ≥ 0 (respectively, I − T∗T ≤ 0).

Contractions (respectively, expansions) can be characterized by the fact that their
defect spaces are Hilbert (respectively, anti-Hilbert) spaces.

Let U ∈ B(K), U ′ ∈ B(K′) be two minimal unitary dilations of T ∈ B(H) and
V = U ∣K+ , V ′ = U ′∣K′+ , where K+ = ⋁n≥0 U nH, K′+ = ⋁n≥0 U ′nH the corresponding
minimal isometric dilations (according to Corollary 3.2). V ∈ B(K+) and V ′ ∈ B(K′+)
are unitarily equivalent if there exists a unitary operator Φ ∶ K+ → K′+ which inter-
twines V and V ′ (i.e., ΦV = V ′Φ) and Φ∣H = IH. If, moreover, Φ can be extended to
a unitary operator on K onto K′ which intertwines U and U ′, then U ∈ B(K) and
U ′ ∈ B(K′) are said to be unitarily equivalent.

A result by Gheondea and Popescu shows that minimal isometric dilations are, in
general, not unique (up to a unitary equivalence).
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10 D. Popovici

Theorem 3.4 [28] A bounded operator T on a Kreı̆n space H has a unique minimal
isometric dilation if and only if T is either contractive or expansive.

The same kind of conditions holds for minimal unitary dilations.

Theorem 3.5 T ∈ B(H) has a unique minimal unitary dilation if and only if T is either
contractive or expansive and T∗ is either contractive or expansive.

Proof Assume that, for example, T is contractive and T∗ is expansive. Then, DT
(and hence also H2

DT
(T)) is a Hilbert space and DT∗ (and hence also H2

DT∗
(T)) is an

anti-Hilbert space.
Let U be the minimal unitary dilation of T given by (3.4) and acting on the Krĕın

space K = H2
DT∗

(T) ⊕H⊕ H2
DT

(T). If U ′ ∈ B(K′) is any other minimal unitary
dilation of T then, according to (3.6), K′ has an orthogonal decomposition of the form
K′ = M−(L′∗) ⊕H⊕ M+(L′), with L′ = (U ′ − T)H and L′∗ = (U ′∗ − T∗)H.

Since, for arbitrary finite sequences {hn}n , {gn}n of vectors in H, we have

⟨∑
n≥0

U ′n(U ′ − T)hn , ∑
m≥0

U ′m(U ′ − T)gm⟩K′

= ∑
n≥0

⟨(U ′ − T)hn , (U ′ − T)gn⟩K′

= ∑
n≥0

⟨(I − T∗T)hn , gn⟩H

= ⟨∑
n≥0

zn D∗T hn , ∑
m≥0

zm D∗T gm⟩H2
DT
(T) ,

the mapping

M+(L′) ∋ ∑
n≥0

U ′n(U ′ − T)hn
Φ+$→ ∑

n≥0
zn D∗T hn ∈ H2

DT
(T)

is well defined, and the linear operator Φ+ is isometric, densely defined, and
with dense range. It can be uniquely extended to a unitary operator Φ+ ∈
B(M+(L′), H2

DT
(T)) (since H2

DT
(T)) is a Hilbert space). Similarly, we can define

a unitary operator Φ− ∈ B(M−(L′∗), H2
DT∗

(T)).
Then, Φ = Φ− ⊕ IH ⊕ Φ+ ∈ B(K′ ,K) is unitary, Φ∣H = IH and ΦU ′ = UΦ.

Moreover, ΦK′+ = K+ and, therefore, U and U ′ are unitarily equivalent.
Conversely, suppose that, for example, T is neither contractive nor expansive or,

equivalently, the Krĕın space DT is indefinite. If Z ∈ B(DT) is a unitary operator with
∥Zn∥ n%→∞, then the matrix

U ′ =
⎛
⎜
⎝

T∗z 0 0
[D∗T∗]∗0 T 0

[L]0[IDT∗
]∗0 [D∗T]0 Tz[Z]

⎞
⎟
⎠

defines a minimal unitary dilation of T on K = H2
DT∗

(T) ⊕H⊕ H2
DT

(T). If
T would have a unique minimal unitary dilation, then U ′ and the minimal
unitary dilation U on K given by (3.4) would be unitarily equivalent via a unitary
operator Φ ∈ B(K) which leaves invariant H2

DT
(T). We get a contradiction since
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limn→∞∥(Φ∗∣H2
DT (T)

TzΦ∣H2
DT (T)

)n∥ = limn→∞∥Φ∗∣H2
DT (T)

T n
z Φ∣H2

DT (T)
∥ < ∞, while

limn→∞∥(Tz[Z])n∥ = limn→∞∥Zn∥ = ∞. ∎
Corollary 3.6 T has a unique minimal unitary dilation if and only if T and T∗ have
unique minimal isometric dilations.

4 Commuting isometric pairs and their unitary extensions

Using dilation theory, we can easily deduce that every bounded isometry V on a
Krĕın space H has a unitary extension U on a Krĕın space K containing H as a regular
subspace which is minimal in the sense that

K = ⋁
n∈Z

U n
H.

We just have to take the minimal isometric dilation of V∗ given by (3.3) and observe
that it is a unitary operator U∗ on K = H⊕ H2

ker V∗(T). More precisely, the linear
operator given by the matrix

U = (V [PH
ker V∗]∗0

0 T∗z
)(4.1)

is a minimal unitary extension of V .

Remark 4.1 ● U ∈ B(K) is a minimal unitary extension of V ∈ B(H) if and only if
U∗ is a minimal isometric dilation of V∗ .

● If V ∈ B(K+) is any minimal isometric dilation of T ∈ B(H) and U ∈ B(K) is
any minimal unitary extension of V, then U is a minimal unitary dilation of T .

● Suppose that V is the minimal isometric dilation of T given by (3.3) on the Krĕın
spaceK+ = H⊕ H2

DT
(T). The minimal unitary extension U given by (4.1) on the Krĕın

spaceK = H⊕ H2
DT

(T) ⊕ H2
ker V∗(T) is a minimal unitary dilation of T and its matrix

representation depends only on T and on its corresponding defect operators (does not
require the construction of a Julia operator or of an elementary rotation for T).

The following theorem explains the geometrical structure of minimal unitary
extensions.

Theorem 4.2 Let V be a bounded isometry on a Kreı̆n space H and U ∈ B(K) be any
minimal unitary extension of V . Then,

(i) L∗ = (U∗ − V∗)H is wandering for U, regular, and isometrically isomorphic with
ker V∗;

(ii) M−(L∗) = ⋁n≤0 U nL∗ is a regular subspace of K and

K = H⊕ M−(L∗);

(iii) M−(L∗) is invariant to U∗ and U∗∣M−(L∗) is a unilateral shift.

Proof The proof follows Theorem 3.1 (a) with the observation that U∗ is a minimal
isometric dilation of V∗ . ∎

Following Remark 4.1 and Theorem 3.4, we can characterize the uniqueness of a
minimal unitary extension.
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12 D. Popovici

Theorem 4.3 Let V ∈ B(H), H Kreı̆n space, be isometric. The following conditions are
equivalent:

(i) V has a unique minimal unitary extension;
(ii) V∗ is either contractive or expansive;

(iii) ker V∗ is either uniformly positive or uniformly negative;
(iv) ker V∗ is either Hilbert or anti-Hilbert space.

If U ∈ B(K) is a minimal unitary extension of V, then K⊖H is a Hilbert or an anti-
Hilbert space.

A pair T = (T1 , T2) of bounded linear operators on a Krĕın space H is said to be
commuting if T1T2 = T2T1. T is called double commuting if T1 commutes not only
with T2, but also with its adjoint T∗2 . By the end of this article, any pair of bounded
operators acting on a Krĕın space will be considered a commutative pair. In case
the components T1 and T2 are clear from the context or they are not needed in the
corresponding discussion, in order to avoid repetitions, we simply use the notation
T ∈ B(H)2 instead of T = (T1 , T2) ∈ B(H)2. If n = (n1 , n2) ∈ Z2 and T = (T1 , T2) ∈
B(H)2, the notation T n = T n1

1 T n2
2 will be frequently used whenever the computations

T n1
1 and T n2

2 make sense.

Definition 4.1 Let V = (V1 , V2) be a pair of commuting isometries in B(H), H a
Krĕın space. A unitary extension of V is a commuting pair U = (U1 , U2) of unitary
operators on a Krĕın space K containing H as a regular subspace such that U1 , U2
extend, respectively, V1 , V2. U is said to be minimal if, in addition,

K = ⋁
n∈Z2

U n
H.

Just to give an example, observe that the pair (Tz1 , Tz2) of multiplications by
coordinate functions z1 and z2 on a certain Hardy-type Krĕın space H2

H(T2) can be
extended by the commuting unitary pair (Mz1 , Mz2),

f
Mzi$→ z i f

on the L2-type Krĕın space L2
H(T2) introduced in an obvious manner. This unitary

extension is minimal.

Theorem 4.4 Let V = (V1 , V2) be a commuting pair of isometric operators in B(H).
Then, the pair U = (U1 , U2) given by the matrix representation

U1 = (
V1 [PH

ker(V1 V2)∗
V2∣ker(V1 V2)∗]∗0

0 [V1(I − V2V∗2 )∣ker(V1 V2)∗] + [V∗2 ∣ker(V1 V2)∗]T∗z
)(4.2)

and

U2 = (
V2 [PH

ker(V1 V2)∗
V1∣ker(V1 V2)∗]∗0

0 [V2(I − V1V∗1 )∣ker(V1 V2)∗] + [V∗1 ∣ker(V1 V2)∗]T∗z
)(4.3)
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is a minimal unitary extension of V on the Krĕın space

K = H⊕ H2
ker(V1 V2)∗

(T).

Proof Standard computations with operator matrices (in view of Proposition 2.2)
show that, in fact, formulas (4.2) and (4.3) define commuting unitary operators on
K = H⊕ H2

ker(V1 V2)∗
(T). Obviously, U is a unitary extension of V .

It remains to show the minimality. We will actually prove an apparently stronger
result, namely,

K = ⋁
n≤0

(U1U2)n
H.

To this end, let h ∈ H and n ∈ N be arbitrary. We see that

(U1U2)∗n [(U1U2)∗ (
h
0) − (

(V1V2)∗h
0 )] = ( 0

zn PH

ker(V1 V2)∗
h) ,

hence,

H2
ker(V1 V2)∗

(T) = ⋁{(U1U2)∗(n+1) ( h
0 ) − (U1U2)∗n ( (V1 V2)

∗h
0 ) ∣ h ∈ H, n ≥ 0},

which proves our claim. ∎

Remark 4.5 The conclusion of the previous theorem also holds for arbitrary finite
families V = (V1 , V2 , . . . , Vn) of commuting bounded isometries on a Krĕın space H.
More precisely, the family U = (U1 , U2 , . . . , Un) given by

U i = (
Vi [PH

ker(V1 . . .Vn)∗
Wi ∣ker(V1 . . .Vn)∗]∗0

0 [Vi(I − Wi W∗
i )∣ker(V1 . . .Vn)∗] + [W∗

i ∣ker(V1 . . .Vn)∗]T∗z
) ,

where Wi = ∏ j≠i Vj , i = 1, 2, . . . , n, is a minimal unitary extension of V on the Krĕın
space

K = H⊕ H2
ker(V1 . . .Vn)∗

(T).

For the Hilbert space case, we refer to [48, Theorem 3.3.1].

Proposition 4.6 If U = (U1 , U2) ∈ B(K)2 is a minimal unitary extension of the com-
muting isometric pair V = (V1 , V2) ∈ B(H)2, then U1U2 is a minimal unitary extension
of V1V2 .

Proof It is clear that, under the given hypothesis, U1U2 is a unitary extension of
V1V2 . Since, for m ≤ n ≤ 0, U m

1 U n
2 H ⊂ (U1U2)mH, we observe that

K = ⋁
m ,n≤0

U m
1 U n

2 H ⊂ ⋁
m≤0

(U1U2)m
H ⊂ K,

hence, K = ⋁m≤0(U1U2)mH, and the minimality of the unitary extension U1U2 is
proved. ∎

In view of Theorem 4.2, we can deduce a geometrical structure for the minimal
unitary extension.
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Corollary 4.7 Let U = (U1 , U2) ∈ B(K)2 be any minimal unitary extension of the
commuting isometric pair V = (V1 , V2) ∈ B(H)2 . Then,

(i) L∗ = ((U1U2)∗ − (V1V2)∗)H is wandering for U1U2, regular, and isometrically
isomorphic with ker(V1V2)∗;

(ii) M−(L∗) = ⋁n≤0(U1U2)nL∗ is a regular subspace of K and

K = H⊕ M−(L∗);(4.4)

(iii) M−(L∗) is invariant to (U1U2)∗ and (U1U2)∗∣M−(L∗) is a unilateral shift.

Let U = (U1 , U2) ∈ B(K)2 , U ′ = (U ′1 , U ′2) ∈ B(K′)2 be two minimal unitary
extensions of the pair V = (V1 , V2) of commuting bounded isometries onH. U and U ′
are said to be unitarily equivalent if there exists a unitary operator Φ ∶ K→ K′ which
intertwines U1 and U ′1 , respectively, U2 and U ′2 and such that Φ∣H = IH .

Theorem 4.8 Let V = (V1 , V2) ∈ B(H)2 be a commuting isometric pair such that
(V1V2)∗ is either contractive or expansive. Then, V has a unique minimal unitary
extension.

Proof Assume that, for example, (V1V2)∗ is contractive. Then, ker(V1V2)∗ (and,
hence, also H2

ker(V1 V2)∗
) is a Hilbert space.

Let U = (U1 , U2) be the minimal unitary extension of V given by (4.2) and (4.3)
and acting on the Krĕın space K = H⊕ H2

ker(V1 V2)∗
(T). If U ′ = (U ′1 , U ′2) ∈ B(K′)2

is any other minimal unitary extension of V, then, according to (4.4), K′

has an orthogonal decomposition of the form K′ = H⊕ M−(L′∗), with
L′∗ = ((U ′1U ′2)∗ − (V1V2)∗)H.

Since, for arbitrary finite sequences {hn}n , {gn}n of vectors in H, we have

⟨∑
n≥0

(U ′1U ′2)∗n((U ′1U ′2)∗ − (V1V2)∗)hn , ∑
m≥0

(U ′1U ′2)∗m((U ′1U ′2)∗ − (V1V2)∗)gm⟩K′

= ⟨∑
n≥0

zn(I − V1V2(V1V2)∗)hn , ∑
m≥0

zm(I − V1V2(V1V2)∗)gm⟩H2
ker(V1 V2)∗

(T),

the mapping

M−(L′∗) ∋ ∑
n≥0

(U ′1U ′2)∗n((U ′1U ′2)∗−(V1V2)∗)hn
ϕ+$→

∑
n≥0

zn(I − V1V2(V1V2)∗)hn ∈ H2
ker(V1 V2)∗

(T)

is well defined, and the linear operator Φ is isometric, densely defined,
and with dense range. It can be uniquely extended to a unitary operator
Φ ∈ B(M−(L

′∗), H2
ker(V1 V2)∗

(T)) (since H2
ker(V1 V2)∗

(T) is a Hilbert space).
Then, Φ = IH ⊕ Φ+ ∈ B(K′ ,K) is unitary and Φ∣H = IH . Moreover, for any h ∈ H,

ΦU ′1 h = ΦV1h = V1h = V1Φh = U1Φh,

ΦU ′1((U ′1U ′2)∗−(V ′1 V ′2)∗)h
= Φ[(I − V1V∗1 )V∗2 h + ((U ′1U ′2)∗ − (V1V2)∗)V1(I − V2V∗2 )h]
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= z0(I − V1V∗1 )V∗2 h + zV1(I − V2V∗2 )h
= U1(z0(I − V1V2V∗1 V∗2 )h)
= U1Φ((U ′1U ′2)∗ − (V1V2)∗)h,

and, by a similar argument,

ΦU ′1(U ′1U ′2)∗n((U ′1U ′2)∗ − (V1V2)∗)h = U1Φ(U ′1U ′2)∗n((U ′1U ′2)∗ − (V1V2)∗)h,

for any positive integer n. Conclude that ΦU ′1 = U1Φ since they are continuous and
coincide on a dense subset. By symmetry, we also obtain ΦU ′2 = U2Φ and, therefore,
U and U ′ are unitarily equivalent. ∎

Corollary 4.9 Let V = (V1 , V2) be a commuting isometric pair in B(H)2. If V1V2 has
a unique minimal unitary extension, then V has a unique minimal unitary extension.

5 Regular dilations for commuting pairs

Definition 5.1 Let T = (T1 , T2) be a commuting pair of bounded operators on a
Krĕın space H.

● An isometric (respectively, unitary) dilation of T is a pair U = (U1 , U2) of
bounded commuting isometric (respectively, unitary) operators on a Krĕın space K

containing H as a Krĕın subspace and satisfying

T n = PHU n ∣H , n ∈ Z2
+.(5.1)

● An isometric or unitary dilation U = (U1 , U2) ∈ B(K)2 of T = (T1 , T2) ∈ B(H)2

is said to be regular if

(T n−)∗T n+ = PH(U n−)∗U n+ ∣H , n ∈ Z2 .(5.2)

Here, for n = (n1 , n2) ∈ Z2, the usual notations n+ ∶= (max{n1 , 0}, max{n2 , 0}) and
n− ∶= (−min{n1 , 0},−min{n2 , 0}) are used. Formula (5.2) is consistent with the
dilation definition (5.1) which can be obtained for n ∈ Z2

+ (in this case n− = (0, 0) and
n+ = n). If (5.1) holds true, then (5.2) is actually equivalent with

T∗m
1 T n

2 = PHU∗m
1 U n

2 ∣H , m, n ≥ 0.

● An isometric (respectively, unitary) dilation U ∈ B(K)2 of T ∈ B(H)2 is called
minimal if K = ⋁n∈Z2

+
U nH (respectively, K = ⋁n∈Z2 U nH).

Remark 5.1 Suppose that the commuting pair T ∈ B(H)2 has a minimal isometric
(respectively, minimal regular isometric) dilation V ∈ B(K+)2. Let U ∈ B(K)2 be the
minimal unitary extension of V ∈ B(K+)2 as constructed in Theorem 4.4. Then, U is
a minimal unitary (respectively, minimal regular unitary) dilation of T.

As in the one-dimensional case, a minimal isometric dilation for a commuting pair
T ensures the existence of a co-isometric extension for T∗.

Proposition 5.2 Let V = (V1 , V2) ∈ B(K+)2 be a minimal isometric dilation of the
commuting pair T = (T1 , T2) ∈ B(H)2. Then, H is invariant to V∗ = (V∗1 , V∗2 ),

T n PH = PHV n , n ∈ Z2
+ and T∗ = V∗∣H .
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Proof For every m, n ∈ Z2
+ and h ∈ H, the dilation definition shows that

T n PH(V m h) = T n+m h = PHV n+m h = PHV n(V m h).

Since {V m h ∣ m ∈ Z2
+ , h ∈ H} is dense in K+ and PH , T , V are bounded, we actually

deduce that

T n PH = PHV n .

We will prove that V n∗h = T n∗h, for every n ∈ Z2
+ and h ∈ H. To this end, let

m ∈ Z2
+ and h′ ∈ H. Then,

⟨V n∗h − T n∗h, V m h′⟩K+ = ⟨h, V n+m h′⟩K+ − ⟨T n∗h, T m h′⟩ = 0.

Use again the minimality of V to obtain that V n∗h = T n∗h. Consequently, H is
invariant to V∗ and T∗ = V∗∣H . ∎

Let T = (T1 , T2) be a pair of commuting bounded operators on a Krĕın space H.
By a defect operator for T , we mean an operator DT ∈ B(DT ,H) with zero kernel on
a Krĕın space DT (called its defect space) such that

I − T∗1 T1 − T∗2 T2 + T∗1 T∗2 T1T2 = DT D∗T .

T is said to be a bidisc contraction, respectively, bidisc expansion if

⟨T1h, T1h⟩H + ⟨T2h, T2h⟩H ≤ ⟨h, h⟩H + ⟨T1T2h, T1T2h⟩H , h ∈ H,

respectively,

⟨T1h, T1h⟩H + ⟨T2h, T2h⟩H ≥ ⟨h, h⟩H + ⟨T1T2h, T1T2h⟩H , h ∈ H

or, equivalently, the defect space of T is a Hilbert, respectively, an anti-Hilbert space.
In what follows, we shall use the notations D1 = DT1 , D2 = DT2 , D = DT for the

defect operators and D1 =DT1 ,D2 =DT2 ,D =DT for the corresponding defect
spaces.

As in the one-dimensional case, recall that a subspace L is said to be wandering for
a commuting isometric pair V if V nL�V mL for all n, m ∈ Z2

+, n ≠ m.
Regarding the geometrical structure of a minimal regular isometric dilation, we

could mention the following theorem.

Theorem 5.3 Let V = (V1 , V2) ∈ B(K+)2 be a minimal regular isometric dilation of a
commuting pair T = (T1 , T2) ∈ B(H)2 . Then,

(i) L1 = (V1 − T1)H,L2 = (V2 − T2)H,L = (V1V2 − V1T2 − V2T1 + T1T2)H are regu-
lar, wandering, respectively, for V1 , V2 , V and isometrically isomorphic, respectively,
with D1 ,D2 ,D;

(ii) M1
+(L1) = ⋁m≥0 V m

1 L1 , M2
+(L2) = ⋁n≥0 V n

2 L2 , M+(L) = ⋁p∈Z2
+

V pL are regu-
lar and

K+ = H⊕ M+(L) ⊕ M1
+(L1) ⊕ M2

+(L2);(5.3)
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(iii) M i
+(Li) is invariant to Vi and Vi ∣M i

+(Li)
is a unilateral shift, i = 1, 2;

(iv) M+(L) is invariant to V and V ∣M+(L) is a pair of double commuting unilateral
shifts.

Proof As in the Hilbert space case [24], it is not hard to check that L1 ,L2 ,L are
wandering, respectively, for V1 , V2 , V and H, M1

+(L1), M2
+(L2), M+(L) are pairwise

orthogonal. Therefore, we prefer to omit the details.
Proceed similarly as in the proof of Theorem 3.1 to obtain

V m
1 h = T m

1 h +
m−1
∑
k=0

V k
1 (V1 − T1)T m−k−1

1 h, h ∈ H, m ≥ 1.(5.4)

We use (5.4) in conjunction with the formulas

V2h = T2h + (V2 − T2)h, h ∈ H(5.5)

and

V2(V1 − T1)h = (V1V2 − V1T2 − V2T1 + T1T2)h + (V1 − T1)T2h, h ∈ H,(5.6)

applied successively, to finally get

V m
1 V n

2 h = T m
1 T n

2 h

+ ∑
0≤p≤(m−1,n−1)

V p(V1V2 − V1T2 − V2T1 + T1T2)T(m−1,n−1)−p h

+
m−1
∑
i=0

V i
1 (V1 − T1)T m−1−i

1 T n
2 h +

n−1
∑
j=0

V j
2 (V2 − T2)T m

1 T n−1− j
2 h,

h ∈ H, m, n ∈ N∗ .

More precisely, we firstly apply V2 to (5.4) and then use (5.5) for T m
1 h and (5.6) for

T m−k−1
1 h, k ∈ {0, 1, . . . , m − 1}, instead of h. We obtain that

V m
1 V2h = T m

1 T2h + (V2 − T2)T m
1 h +

m−1
∑
k=0

V k
1 (V1V2 − V1T2 − V2T1 + T1T2)T m−k−1

1 h

+
m−1
∑
k=0

V k
1 (V1 − T1)T m−k−1

1 T2h.

Following again (5.5) and (5.6) for the computation of the vectors V2T2T m
1 h and,

respectively, V2(V1 − T1)T m−k−1
1 T2h, k ∈ {0, 1, . . . , m − 1}, another application of V2

shows that

V m
1 V 2

2 h = T m
1 T2

2 h + (V2 − T2)T m
1 T2h + V2(V2 − T2)T m

1 h

+
m−1
∑
k=0

V k
1 V2(V1V2 − V1T2 − V2T1 + T1T2)T m−k−1

1 h

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:17:52, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


18 D. Popovici

+
m−1
∑
k=0

V k
1 (V1V2 − V1T2 − V2T1 + T1T2)T m−k−1

1 T2h

+
m−1
∑
k=0

V k
1 (V1 − T1)T m−k−1

1 T2
2 h.

This iterative procedure is repeated n times.
Since, obviously, K+ contains H, M+(L), M1

+(L1), and M2
+(L2), we deduce that

K+ = H ∨ M+(L) ∨ M1
+(L1) ∨ M2

+(L2)

and, by orthogonality, (5.3) also holds.
It is then clear thatH, M+(L), M1

+(L1), M2
+(L2) are all regular and, since M+(L) =

L⊕ V1V2M+(L) ⊕ V1(V2M+(L))� ⊕ V2(V1M+(L))� , M1
+(L1) = L1 ⊕ V1M1

+(L1),
M2
+(L2) = L2 ⊕ V2M2

+(L2), we obtain that L,L1 ,L2 are also regular.
By a similar argument as in the proof of Theorem 3.1, we can deduce that L1 ,L2 ,L

are isometrically isomorphic, respectively, with D1 ,D2 ,D.
It is obvious that M+(L), M1

+(L1), M2
+(L2) are invariant to V1 , V2 and, respec-

tively, V and that V1∣M1
+(L1), V2∣M2

+(L2) are unilateral shifts. Since M+(L) =
M1
+(M2

+(L)) = M2
+(M1

+(L)), we obtain that V ∣M+(L) is a pair of commuting uni-
lateral shifts which, moreover, doubly commute.

To this aim, we firstly note that it is only necessary to prove that (V1∣M+(L))∗ and
V2∣M+(L) commute on the set {V m

1 V n
2 l ∣ m, n ≥ 0, l ∈ L}, which generates M+(L).

Indeed, for n ≥ 0,

((V1∣M+(L))∗V2)V n
2 l = (V1∣M+(L))∗V n+1

2 l = 0 = (V2(V1∣M+(L))∗)V n
2 l ,

since V n
2 l ∈ M2

+(L) = ker(V1∣M+(L))∗. Also, in view of the fact that V1∣M+(L) is
isometric (i.e., (V1∣M+(L))∗V1∣M+(L) = IM+(L)), the following equalities

((V1∣M+(L))∗V2)V m
1 V n

2 l = (V1∣M+(L))∗V1V m−1
1 V n+1

2 l = V m−1
1 V n+1

2 l

and

(V2(V1∣M+(L))∗)V m
1 V n

2 l = V2(V1∣M+(L))∗V1V m−1
1 V n

2 l = V m−1
1 V n+1

2 l

hold true for every m > 0 and n ≥ 0. ∎

Corollary 5.4 Let V = (V1 , V2) ∈ B(K)2 be a minimal regular isometric dilation of
the commuting pair T = (T1 , T2) ∈ B(H)2 . The following conditions are equivalent:

(i) M1
+(L1) is invariant to V2;

(ii) M2
+(L2) is invariant to V1;

(iii) T is a bidisc isometry (i.e., I − T∗1 T1 − T∗2 T2 + T∗1 T∗2 T1T2 = 0).

Proof The conclusion follows from the geometrical structure of K+ given by the
theorem above since

V3−i V n
i (Vi − Ti)h = V n

i (V1V2 − V1T2 − V2T1 + T1T2)h+V n
i (Vi − Ti)T3−i h,
h ∈ H, i = 1, 2, n ∈ N
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and (V1V2 − V1T2 − V2T1 + T1T2)h = 0, for all h ∈ H, if and only if I − T∗1 T1 − T∗2 T2 +
T∗1 T∗2 T1T2 = 0.

For the Hilbert space case, we refer to [24]. ∎

For the rest of the article, we shall suppose that T = (T1 , T2) is a pair of commuting
bounded operators on a Krĕın space H such that T1 , T2 are both contractive and
T is a bidisc contraction or T1 , T2 are both expansive and T is a bidisc expansion.
Equivalently, the defect spacesD1 ,D2, andD are either Hilbert or anti-Hilbert spaces.
Denote by ∥⋅∥1 , ∥⋅∥2 , ∥⋅∥ the Hilbert space norms, respectively, on D1 ,D2 ,D.

Remark 5.5 (i) Observe firstly that

I − T∗1 T1 − T∗2 T2 + T∗1 T∗2 T1T2

= D1D∗1 − T∗2 (I − T∗1 T1)T2

= D1D∗1 − (T∗2 D1)(T∗2 D1)∗

= D2D∗2 − (T∗1 D2)(T∗1 D2)∗ .(5.7)

Use the inequality

∥D∗1 T2h∥1 ≤ ∥D∗1 h∥1 (respectively, ∥D∗2 T1h∥2 ≤ ∥D∗2 h∥2), h ∈ H

to introduce a densely defined Hilbert space contraction on D1 (respectively, D2) by

R2D∗1 h = D∗1 T2h (respectively, R1D∗2 h = D∗2 T1h), h ∈ H,(5.8)

which can be extended, by continuity, to the whole space. In fact, the maps above
are (under our Krĕın space terminology) contractions if T is a bidisc contraction,
respectively, expansions if T is a bidisc expansion.

(ii) Taking into account the operators R1 and R2 (defined by (5.8)), formula (5.7)
can be re-written as

DD∗ = (D1DR2)(D1DR2)∗ = (D2DR1)(D2DR1)∗

or, equivalently, as

∥D∗h∥ = ∥D∗R2
D∗1 h∥DR2

= ∥D∗R1
D∗2 h∥DR1

, h ∈ H.

Hence, the linear operators U1 ∶D→DR1 and U2 ∶D→DR2 given by

U1D∗h = D∗R1
D∗2 h and U2D∗h = D∗R2

D∗1 h, h ∈ H(5.9)

are well defined unitary operators.

The next construction of a regular isometric dilation is the main result of this
section.

Theorem 5.6 Let T = (T1 , T2) be a pair of commuting bounded operators on a Kreı̆n
space H such that T1 , T2 are both contractive and T is a bidisc contraction or T1 , T2 are
both expansive and T is a bidisc expansion. The pair V = (V1 , V2) ∈ B(K+)2 given by
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the matrix representation

V1 =
⎛
⎜⎜⎜
⎝

T1 0 0 0
0 Tz1 0 [U∗1 D∗R1

]2
[D∗1 ]0 0 Tz 0

0 0 0 [R1]

⎞
⎟⎟⎟
⎠

(5.10)

and

V2 =
⎛
⎜⎜⎜
⎝

T2 0 0 0
0 Tz2 [U∗2 D∗R2

]1 0
0 0 [R2] 0

[D∗2 ]0 0 0 Tz

⎞
⎟⎟⎟
⎠

(5.11)

is a minimal regular isometric dilation of T on the Krĕın space

K+ = H⊕ H2
D(T2) ⊕ H2

D1
(T) ⊕ H2

D2
(T).

Proof Direct computations with matrices show that, for i = 1, 2, Vi is an isometric
operator on K+ if and only if [D∗i ]∗0 Tz = 0, [U∗i D∗R i

]∗3−i Tz i = 0, T∗i Ti + [D∗i ]∗0[D∗i ]0 =
IH and [U∗i D∗R i

]∗3−i[U∗i D∗R i
]3−i + [R i]∗[R i] = IH2

D3−i
(T).

While the first two equalities hold true by Proposition 2.2 (iv), the last two are
consequences of the conditions (ii), respectively, (iii) of the same proposition. Indeed,
[D∗i ]∗0[D∗i ]0 = D i D∗i and, hence, T∗i Ti + D i D∗i = IH, by (3.1). Also,

[U∗i D∗R i
]∗3−i[U∗i D∗R i

]3−i + [R i]∗[R i]
= [(U∗i D∗R i

)∗U∗i D∗R i
+ R∗i R i] (by Proposition 2.2 (i) and (ii))

= [DR i D
∗
R i
+ R∗i R i] (since U i is unitary)

= [ID3−i ] = IH2
D3−i

(T). (by (3.1))

Similarly, V1V2 = V2V1 if and only if [U∗1 D∗R1
]2[D∗2 ]0 = [U∗2 D∗R2

]1[D∗1 ]0,
[U∗i D∗R i

]3−i Tz = Tz3−i [U∗i D∗R i
]2, Tz[R i] = [R i]Tz and [D∗i ]0T3−i = [R3−i][D∗i ]0,

i = 1, 2. The first condition follows by Proposition 2.2 (v) and (5.9):

[U∗i D∗R i
]3−i[D∗3−i]0h = z0

1 z0
2U∗i D∗R i

D∗3−i h = z0
1 z0

2 D∗h, h ∈ H, i = 1, 2.

The following two conditions are consequences of Proposition 2.2 (iv). The last
equality uses Proposition 2.2 (v) and formula (5.8):

[D∗i ]0T3−i = [D∗i T3−i]0 = [R3−i D∗i ]0 = [R3−i][D∗i ]0 .

Moreover, by an inductive method, V∗n
2 V m

1 has the form

V∗n
2 V m

1 =
⎛
⎜⎜⎜
⎝

T∗n
2 T m

1 0 0 ∗
0 (Tz2)∗n(Tz1)m 0 ∗
∗ ∗ [R∗n

2 ](Tz)m ∗
0 0 0 (Tz)∗n[Rm

1 ]

⎞
⎟⎟⎟
⎠

,

which proves that

T∗n
2 T m

1 = PHV∗n
2 V m

1 ∣H , m, n ≥ 0.
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We can also obtain, by a similar argument, that

T m
1 T n

2 = PHV m
1 V n

2 ∣H , m, n ≥ 0.

Hence, V is a regular isometric dilation of T .
It remains to prove the minimality. To this end, take h ∈ H and observe that

(V1 − T1)h = (0, 0, [D∗1 ]0h, 0).

Proceed inductively to show that

V m
1 (V1 − T1)h = (0, 0, (Tz)n[D∗1 ]0h, 0), m ≥ 0,

that is,

H2
D1
(T) = ⋁

m≥0
V m

1 (V1 − T1)H.(5.12)

By symmetry, it also holds

H2
D2
(T) = ⋁

n≥0
V n

2 (V2 − T2)H.(5.13)

Now, the relation

(V1V2 − V1T2 − V2T1 + T1T2)h = (0, z0
1 z0

2 D∗h, 0, 0)

applied successively gives

V m
1 V n

2 (V1V2 − V1T2 − V2T1 + T1T2)h = (0, zm
1 zn

2 D∗h, 0, 0), m, n ≥ 0,

that is,

H2
D(T2) = ⋁

n∈Z2
+

V n(V1V2 − V1T2 − V2T1 + T1T2)H.(5.14)

Equations (5.12–5.14) show that the regular isometric dilation given by (5.10) and (5.11)
is minimal. ∎

Use Theorem 4.4, Remark 5.1, and Theorem 5.6 to obtain the following.

Corollary 5.7 Let T ∈ B(H)2 be as in Theorem 5.6 and V ∈ B(K+)2 be the minimal
regular isometric dilation of T given by (5.10) and (5.11). Then, T has a minimal regular
unitary dilation U ∈ B(K)2 given by (4.2) and (4.3) on the Kreı̆n space

K = H⊕ H2
D(T2) ⊕ H2

D1
(T) ⊕ H2

D2
(T) ⊕ H2

ker(V1 V2)∗
(T).

Let V = (V1 , V2) ∈ B(K+)2 and V ′ = (V ′1 , V ′2) ∈ B(K′+)2 be two minimal regular
isometric dilations of T ∈ B(H)2 . V and V ′ are said to be unitarily equivalent if there
exists a unitary operator Φ ∶ K+ → K′+ which intertwines V1 and V ′1 , respectively, V2
and V ′2 and such that Φ∣H = IH.

Theorem 5.8 Let T = (T1 , T2) be a pair of commuting bounded operators on a Kreı̆n
space H such that T1 , T2 are both contractive and T is a bidisc contraction or T1 , T2
are both expansive and T is a bidisc expansion. Then, T has a unique minimal regular
isometric dilation (up to a unitary equivalence).
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Proof Let V ∈ B(K+)2 be the minimal regular isometric dilation of T ∈ B(H)2

given by (5.10) and (5.11) on K+ = H⊕ H2
D(T2) ⊕ H2

D1
(T) ⊕ H2

D2
(T). If V ′ =

(V ′1 , V ′2) ∈ B(K′+)2 is any other minimal regular isometric dilation of T then, accord-
ing to (5.3), K′ has an orthogonal decomposition of the form

K
′
+ = H⊕ M+(L′) ⊕ M1

+(L′1) ⊕ M2
+(L′2),

with L′ = (V ′1 V ′2 − V ′1 T2 − V ′2 T1 + T1T2)H and L′i = (V ′i − Ti)H, i = 1, 2.
The maps

M+(L′) ∋ V
′m

1 V
′n

2 (V ′1 V ′2 − V ′1 T2 − V ′2 T1 + T1T2)h Φ$→ zm
1 zn

2 D∗h ∈ H2
D(T2),

M+(L′1) ∋ V
′m

1 (V ′1 − T1)h Φ1$→ zm D∗1 h ∈ H2
D1
(T)

and

M+(L′2) ∋ V
′n

2 (V ′1 − T2)h Φ2$→ zn D∗2 h ∈ H2
D2
(T)

are well defined and can be extended by linearity to densely defined isometries with
dense ranges. Since H2

D(T2), H2
D1
(T), and H2

D2
(T) are either Hilbert or anti-Hilbert

spaces, the applications above can be extended to unitary operators.
A routine check shows that IH ⊕ Φ ⊕ Φ1 ⊕ Φ2 ∶ K′+ → K+ is unitary and inter-

twines V1 and V ′1 , respectively, V2 and V ′2 . Hence, V and V ′ are unitarily equiva-
lent. ∎
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