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Regular Dilations on Krein Spaces

Dan Popovici

Abstract. For bounded operators on Krein spaces, isometric or unitary dilations always exist. We
prove that any minimal isometric or unitary dilation has a precise geometrical structure. Moreover,
a bounded operator T has a unique minimal unitary dilation if and only if T and T* have unique
minimal isometric dilation if and only if T is either contractive or expansive and T* is either
contractive or expansive. Passing to the bi-dimensional case, a minimal unitary extension (in short,
m.u.e.) U = (Uy, U,) is obtained for a pair V = (V4, V2) of commuting bounded isometries on a
Krein space. There is a link with the one-dimensional case: if U is an m.u.e. for V, then U U,
is an m.u.e. for V. Also, if (V1V3)* is either contractive or expansive, then V has a unique
minimal unitary extension. A minimal regular isometric dilation is obtained for a commuting pair
T = (T1, Tz) of bounded operators on a Krein space such that T;, T, are contractions and T is a
bidisc contraction or Ty, T, are expansions and T is a bidisc expansion. The existence of a minimal
unitary extension is used to provide a minimal regular unitary dilation for T. Discussions about
uniqueness and geometric structure conclude the article.

Introduction

One of the most fruitful directions of research in order to develop a suitable spectral
theory for nonselfadjoint operators was opened by the theorem of Sz.-Nagy [56] on the
existence of a unitary dilation for every contraction operator on a Hilbert space. The
matrix construction for such dilations, proposed by Schiffer in [52], was the starting
point to obtain their precise geometrical structure (cf. [29, 58, 61]).

The problem of finding isometric or unitary dilations for families of commuting
contractions was proposed by Sz.-Nagy and solved in the case when the family in
discussion is double commuting (cf. [57, 60]). Ando [2] proved that every pair of
commuting contractions has isometric dilation. Unfortunately, Ando’s result cannot
be extended for arbitrary families of more than two contractions, according to the
example given by Parrot [46].

Later developments show that the problem of finding a unitary dilation for a family
T = (Ty)wen of commuting contractions on a Hilbert space §) can be reduced, by the
Naimark theorem [45], to the possibility of extending the function

785 n - T" e B(H)
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2 D. Popovici

to a positive definite one on Z®. It was the idea of Brehmer [9] to consider the regular
extension

Z%5n 0 (T )T e B($H)

and to obtain the so-called regular unitary dilations. Their systematic study was
completed and simplified later by Sz.-Nagy [59] and Halperin [30, 31]. In the
multi-variable case, even supposing that the existence is assured, minimal isometric
or unitary dilations are, in general, not unique. However, the minimality condition
ensures the uniqueness of a regular isometric or unitary dilation. Regular dilation
results have been used to provide models for commuting multi-operators [13, 47,
49, 63], in connection with intertwining liftings [26], von Neumann inequalities
[6], [25], operator moment problems [50], Markov processes [41], completely
contractive representations of product systems of correspondences [55], or in the
context of right LCK semigroups [37].

The large class of applications involving dilation theory, for example, in operator
interpolation problems, optimization, control, and systems theory (excellent refer-
ences are given by the survey of Shalit [53] or by the books of Foias-Frazho [22],
Foiag-Frazho-Gohberg-Kaashoek [23] and Rosenblum-Rovnyak [51]), but also in
prediction theory [35] motivate our work.

It is natural to assume that such a theory on spaces with indefinite metric (in par-
ticular on Krein or Pontryagin spaces) will provide at least a similar set of applications.
We should mention in this context that operators on Krein have been used recently,
for example, in machine learning [39, 40] or frame theory [17, 34, 38].

The following section (Section 2) is devoted to some preliminary facts concerning
Krein spaces, their Krein subspaces, and bounded operators on such objects. Basic
facts on the theory of Krein spaces and operators on them are given in [3, 8, 32, 36];
to see also the excellent monograph [27].

One variable dilation theory on Krein spaces is the subject of Section 3. The
indefinite case started with the theorem of Davis [14] proving that every bounded
operator on a Hilbert space $) has a unitary dilation on a Krein space £ containing
$) as a regular subspace. The result holds true even if we suppose that £ is a
(more general) Krein space, as showed by Dijskma-Langer-de Snoo [16] using
Carathéodory-type representations for holomorphic operator functions, or by
Constantinescu-Gheondea [10] following a Schiffer-type matrix construction.
Geometric structure results are obtained for any minimal isometric or unitary
dilation (Theorem 3.1). In such a generality, a minimal isometric dilation of a
bounded operator T is unique (up to a unitary equivalence) if and only if T is either
contractive or expansive [28]. We prove that T has a unique minimal unitary dilation
if and only if T and T* have unique minimal isometric dilations.

The main result of Section 4, the existence of a minimal unitary extension for
every commuting pair of bounded isometries on a Krein space, is based on a matrix
construction similar to the one given by the author in [48, Theorem 3.3.1]. The Hilbert
space case was obtained by Itd [33] (cf. also Brehmer [9] and Douglas [18]). The
problem of finding conditions for the uniqueness of a minimal unitary extension
reduces to the unidimensional case by the observation in [7] (on Hilbert spaces), and

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:17:52, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

2.1

Regular Dilations on Krein Spaces 3

extended here, that U, U, is a minimal unitary extension for V;V, if U = (U, U) isa
minimal unitary extension for V = (V;, V,).

Two-variable dilation theory on Krein spaces has also been considered earlier.
The first result in this generalized context has been obtained by Azizov, Barsukov,
and Dijksma in [4]. We should also remark that, in the Hilbert space case, Andos
theorem [2] was proved to be equivalent with the commutant lifting theorem given by
Sz.-Nagy and Foiag [62]. In the indefinite case, several versions of this last mentioned
theorem have been obtained by Alpay [1], Baidiuk and Hassi [5], Constantinescu and
Gheondea [10, 11], Dritschel [19], Dritschel and Rovnyak [21], or Dijksma, Dritschel,
Marcantognini, and de Snoo [15]. Some of these proofs could lead to different Ando-
type dilations. An excellent survey on this topic is presented in the paper [20] of
Dritschel. There are attempts to a several (more than two) variable dilation theory
on Krein spaces (see, e.g., [42]). The theory of unitary extensions for pairs of Krein
space isometries has been initiated in the paper of Marcantognini and Moran [43].

The last section contains structure results for the minimal (regular) isometric
dilation provided that such a dilation exists. The geometric structure given by The-
orem 5.3 is the indefinite correspondent of some Hilbert space results appeared in
[54] (for double commuting contractions) or, more generally, in [24] (for commuting
contractive pairs having regular dilation). The most important result of the article
is the existence of a minimal regular isometric dilation for every commuting pair
T = (Ty, T») of bounded operators on a Krein space such that Ty, T, are contractions
and T is a bidisc contraction or T, T, are expansions and T is a bidisc expansion
(Theorem 5.6). If the conditions above are satisfied, a minimal regular isometric
dilation is unique up to a unitary equivalence (Theorem 5.8). The unitary extension
(obtained in Section 4) for a regular isometric dilation provides a regular unitary
dilation (Corollary 5.7).

We remark that similar results also hold true for finite families of more than two
commuting operators. These topics will be treated elsewhere.

Preliminaries on Krein spaces
Krein spaces, regular subspaces, and operators

A Krein spaceis a complex linear space £ equipped with a Hermitian sesquilinear form
(-,-)# and having a decomposition

(2.1) R=R, 0 R,

where (R, +(-,-)g) are Hilbert spaces (“®” denotes an orthogonal direct sum).
Decomposition (2.1) is said to be a fundamental decomposition of the Krein space £
and, in general, it is not unique. It induces on R a Hilbert space structure: if P, are
the orthogonal projections onto R, and J = P, — P_ (called a fundamental symmetry
or signature operator) then 8 becomes a Hilbert space (denoted £;) when equipped
with the inner product

Ryx Ry (x,y) =[x, p]=x,y)aeC.
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4 D. Popovici

The strong topology of this Hilbert space is independent of the choice of a
fundamental decomposition and is usually called the Mackey topology of K. All
topological notions on a Krein space are to be understood with respect to this strong

topology.
The cardinal numbers

74 (8) = dimgrg(R.)

are the positive (respectively, negative) indices of & and are also independent of the
choice of a fundamental decomposition. The rank of indefiniteness of £ is k(R) =
min £*(R).

A subspace ) of a Krein space R is a closed linear manifold of K. It is positive
(respectively, negative) if

(h,h)g >0 (respectively, (h, h)g < 0),

for every h € R. A positive (respectively, negative) subspace is said to be maximal
positive (respectively, maximal negative) if it is not contained in a larger positive
(respectively, negative) subspace. It is called uniformly positive (respectively, uniformly
negative) if, for a certain &; > 0,

(h,h)g > 8;|h|; (respectively, (h,h)g < =8;|h[}), he$.

Similarly, one defines maximal uniformly positive (respectively, maximal uniformly
negative) subspaces.

The orthogonal subspace of $) is H* ={k € &]| (h,k) =0, h e H}. For each pair
(9, M) of subspaces in K, we use the notation M LT if M c N, and M & N if
the sum 9 + N is closed, orthogonal, and direct. §) is said to be regular (or ortho-
complemented) if R = $H & H*.

Proposition 2.1 The following conditions are equivalent:
(i) 9 is regular.
(ii) $ is a Krein space in the inner product inherited from K.
(iil) There exists a fundamental symmetry ] on & such that J$ c ) (hence JH = ).

Condition (ii) justifies the use of the term Krein subspace for any regular subspace.

IfT:D(T) c R — R, is a densely defined linear operator between Krein spaces
£ and 8, then its Krein adjoint T* : ©(T*) c &, — £ is uniquely determined by
the relation

(6T ) = (Tx y)sy, x €D(T), y e D(T).

The Krein adjoint T* and the Hilbert adjoint T™ computed relative to fundamental
symmetries J; (on R;) and J, (on 8;) are related by T* = J;T*],. If T belongs
to B(£,R;) (the set of all bounded linear operators between £; and K;), then
T* € B(R,, £1). Note that any fundamental symmetry J on a Krein space K belongs
toB(R)and J* =J* =] =].

A linear operator V :D(V) c & — R, is isometric if (Vx,Vy)g, = (%, ¥)a,» %,
y € &. An isometric operator U between Krein spaces £ and £, is said to be unitary
lfg(U) = .ﬁl and %(U) = .ﬁz.
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An everywhere defined isometry is bounded if and only if its range is closed. Then,
the range is a regular subspace. We deduce that any unitary operator is continuous.
However, a densely defined Krein space isometry may fail to have a continuous
extension.

Two subspaces M; (of &) and M, (of Ky) are said to be isometrically isomorphic if
there exists a boundedly invertible isometric operator U : 9%, — ;. In this situation,
My is regular if and only if 901, is regular. Note that two regular subspaces are
isometrically isomorphic if and only if they have the same positive (respectively,
negative) indices. Let us finally remark that definite Krein spaces (their rank of
indefiniteness is null) K can be characterized by the fact that every unitary operator U
on R is power bounded (sup,, | U" | < o).

2.2 Hardy-type Krein spaces and operator extensions

If O, M, ..., M, is a finite family of mutually orthogonal regular subspaces of a
Krein space £, then the subspace M, @ M, & --- & M, is clearly regular. The result
remains no longer true if the family is infinite. For a finite or infinite family {&, } 450
of Krein spaces we can, however, compute their external orthogonal direct sum as
the set @,,59 &, of all sequences k = {k, } ,50 With 3,50 kx| < oo (here, for each n,
the norm ||, is computed relative to a given fundamental decomposition of R).
It becomes a Krein space relative to the indefinite inner product ({f,},, {kn}n) ==
Susolbuknda,» {Hutns{kn}n € ®uso Ru. If R is a Krein space, then the external
orthogonal direct sum of a family of identical copies of £ can be obviously identified
with the Hardy-type Krein space H%(T), of functions on the torus

ze f(2) = Y 2"y, with Y [[k,|? < oo.

n>0 n>0

If our family is doubly indexed, we obtain similarly H (T?).

The following set of bounded operators will be frequently used in our construc-
tions.

Let R, &1, R, be given Krein spaces:

« the multiplication by the independent variable z on the Hardy-type space H%(T) :
(T:f)(2) =2f(2), ze€T, feHy(T),
has the adjoint T, given by
(T f)(2) =2(f(2) - £(0)), zeT, feHx(T);

o the pair (T,, T;,) of multiplications by coordinate functions z; and z; on Hg(T?)
— defined similarly;
« any T € B(£) can be extended to a bounded operator [T] on H%(T) by

([T1f)(2) = T(f(2)), zeT, feHK(T);
« any T € B(Ry, R,) can be extended to [Ty € B(&;, H (T)) by

([T)oki)(2) := 2°Tky, zeT, ky € Ry;
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6 D. Popovici

its adjoint is given by

[T]5f =T*(f(0)), feHg(T);
o finally, any T e B(8,R,) can be extended to a bounded operator [T]; €
B(HZ, (T), Hy, (T%)) by
([T1if)(z1,22) = T(f(21)), zi €T, feHg(T), i=12.

Moreover,

([THEN) =T (f(zei)), zeT, feHg (T, i=1,.2
(here e; := (1,0) and e, := (0,1)).
Their joint properties are mentioned in the following.
Proposition 2.2 Let R, Ry, Ry, R}, R} be given Krein spaces. Then,
(i) the map

B(R)> T w [T] e B(H%(T))

is a *-algebra homomorphism;
(ii) the map

B(R1, R2) > T - [T]o € B(Ry, H:, (T))

is linear; moreover, for T € B(£1,8,), [S]oT = [ST]o (when S € B(£,, R})),
[S][T]o = S*T (when S € B(8;, 1)), and

[STo[T15f = ST*(£(0))2°, f € H,(T)
(when S € B(£1, 8));
(iii) the map
B(R1, /) 3 T = [T]; e B(HE (T), Hg, (T?))

is linear; moreover, for T € B(81, R2), [S];[T]: = [S*T] (when S € B(£;, &2))
and

([STLT] )(z1,22) = ST* (f(ziei)),  zi €T, f e Hg, (T?), i =1,2

(when S € B(81, 8)));
(iv) let T € B(Ky, Ry). Then,

- [T]T, = T,[T] and T,[T]* = [T]* T, (when £ = R2);

- [TIRT:=0;

- [T]iTz = Tzi[T]i) TZ[T]T [T] T, a”d[ ]
(v) let T € B(Ry, Ry) and S € B(K], RS). Then,
S1[T]o = [ST]o (when 8] = & = R,);
T] [S i, i =1,2 (when R = R, = R));
ST =[S Jo[T*]; (when 8 = R,);
S]2[T]o (when R; = Rp);
V29TSky, ki€ &y, i=1,2(when & = R)).

=0,i=12;

i~ 23—
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3 Isometric and unitary dilations for bounded operators

It is well known that any bounded self-adjoint operator A on a Krein space 2 can be
factorized into the form

A = BB",

for a certain operator B € B(5, ) with zero kernel on a Krein space B.

By a defect operator for T € B(£;,8,), R and K, Krein spaces, we mean an
operator Dt € B(®D, &) with zero kernel on a Krein space © r (called its defect space)
such that

3.1) I-T*T = DyD5%.

Let T € B($), $ Krein space. An isometric (respectively, unitary) dilation of T
is a bounded isometric (respectively, unitary) operator U on a Krein space £2 §)
satisfying

(3.2) (T"h,h'Ye ={U"h,h")g, h,h' €9, neZ,.

An isometric (respectively, unitary) dilation U € B(8&) of T € B($) is said to be
minimal if R = V159 U"$) (respectively, R = Vo, U"H).

For bounded operators T € B($)), minimal isometric (respectively, unitary) dila-
tions always exist [10, 16]. A Schiffer-like matrix construction is still possible in these
generalized settings [10].

Define &, = $ ® H;_(T). Then, an isometric dilation V of T on &, is given by
the representation

T 0
o (o, 1)

A minimal unitary dilation U of T on the Krein space & = H%T* (T)e® He Hy (T)
can be built in terms of a Julia operator or elementary rotation (to see [11, 12]) for T,
i.e., a unitary operator of the form

T Dr+
(D; L )EIB(‘ﬁ®©T*)‘?J®©T)'
More precisely,
) 0 0
(3.4) U=| [D3]5 T 0
[Lo[Io,. 15 [D7]o T,
As regarding the geometry of minimal dilations, we could mention the following

theorem.

Theorem 3.1 Let V € B(R,) (respectively, U € B(R)) be any minimal isometric
(respectively, unitary) dilation of T € B($)).

(@) (1) £=(V-T)9iswanderingforV (ie, V'LLV"L, n,m >0, n + m), regular,
and isometrically isomorphic with ® r;
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8 D. Popovici
(i) M:(L) = Vso V"L is regular and
(3.5) R, =Heo M (L)
(b) () £=(U-T)$ and £* = (U* - T*)$ are wandering for U, regular, and iso-

metrically isomorphic, respectively, with O and D p+;
(i) My(L) =Vuso UL and M_(L£%) = Vo UL are reqular and

(3.6) R=M_(L£)ene M, ().
Proof Allthe orthogonality properties involved here can be easily checked following
the definition of an isometric or unitary dilation and, therefore, we shall omit the

details.
Observe firstly that a successive application of the formula

Vh=Th+(V-T)h, he®

will lead to

n-1
(37) Vih=T"h+ Y VRV -T)T"*'h, he$, neN.

k=0
Hence, (3.5) holds. Consequently, M,(£) is regular and, since M.(£)=£L@®
VM, (L), £isalso regular. Moreover,

(V=T)h,(V-T)h")x, =(h, W)~ (Th,Th')g

((I-T*T)h,h')g
=(Dth,D3hYo,, h,h' €

shows that the map
£5(V-T)h> DiheDr

is well defined (® r is a Krein space), isometric, densely defined, and with dense range.
It is also injective (since £ is regular) and, therefore, k*(£) = k*(Dr). Deduce that
£ and D 1 are isometrically isomorphic and the proof of (a) is complete.

To obtain (3.6), we apply (3.7) for (U, T') and then for (U*, T*) instead of (V, T).
Since M_(£*) and M, (£) are regular we show, as before, that £ and £* are regular.
A similar argument as for the minimal isometric dilation allows us to conclude that £
and £ are isometrically isomorphic, respectively, with ® 1 and D 7. ]

Corollary 3.2 Let U € B(R) be any minimal unitary dilation of T € B($). Then,
£:=\VU"H

n>0

is a regular subspace of R, invariant to U, and V., = Ul|g, is a minimal isometric dilation
of T.
Similarly,

R =\ U"H

n<0
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Regular Dilations on Krein Spaces 9

is a regular subspace of R, invariant to U*, and V_ = U*|g_ is a minimal isometric
dilation of T*.

Remark 3.3 e Proposition 2.1 gives another condition, usually used as an axiom in
the isometric or unitary dilations definition: if U € B(&) is any minimal isometric
or unitary dilation of T € B(5)), then § is a regular subspace of &. Theorem above
indicates the structure of its orthogonal complement. Therefore, (3.2) can be re-
written as

T" =PyU"y, n2>0,
where Py, is the orthogonal projection onto §). Another consequence of (3.2) is
T*nZPij*nhj, n>0.

e Let V € B(R,) be a minimal isometric dilation of T € B(f)). Then, for any
h,h e $Handn >0,

(V*h=T*h,h'y = (h, VI') = (b, TH') = 0
and
(V*h =T h, V" (V = T)W) = (h, V** 2R’y = (h, V"' TH')
~(T*h, V'™ 'UB'Y + (T*h, V' TH') = 0.

By the geometrical structure of £, given by (3.5), we deduce that § is invariant to V*
and V*|g = T*.

e Let U € B(R) be a minimal unitary dilation of T € B($). It is clear that M, (£)
is invariant to U and M_(£*) to U*. Since M, (£) and M_(£) are regular, Uly, (¢)
and Uly_(e+) are unilateral shifts (according to the definition in [44]).

An operator T € B($),8), $,8 Krein spaces, is a contraction (respectively,
expansion) if

(Th, Th)g < (h,h)y (respectively, (Th, Th)g > (h,h)y), he$
or, equivalently,
I-T*T >0 (respectively, ] - T*T <0).

Contractions (respectively, expansions) can be characterized by the fact that their
defect spaces are Hilbert (respectively, anti-Hilbert) spaces.

Let U € B(R), U’ € B(R') be two minimal unitary dilations of T € B($) and
V =Ulg,, V' =U'|g,, where 8, = V50 U"$, &, = V50 U"$ the corresponding
minimal isometric dilations (according to Corollary 3.2). V € B(R,)and V' € B(&))
are unitarily equivalent if there exists a unitary operator @ : K, — K, which inter-
twines V and V' (i.e, ®V = V'®) and ®|g, = I. If, moreover, @ can be extended to
a unitary operator on £ onto & which intertwines U and U’, then U € B(R) and
U’ € B(R') are said to be unitarily equivalent.

A result by Gheondea and Popescu shows that minimal isometric dilations are, in
general, not unique (up to a unitary equivalence).
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Theorem 3.4 [28] A bounded operator T on a Krein space $) has a unique minimal
isometric dilation if and only if T is either contractive or expansive.

The same kind of conditions holds for minimal unitary dilations.

Theorem 3.5 T € B($) has a unique minimal unitary dilation if and only if T is either
contractive or expansive and T~ is either contractive or expansive.

Proof Assume that, for example, T is contractive and T~ is expansive. Then, Dr
(and hence also H%T (T)) is a Hilbert space and © 7+ (and hence also H% - (T))is an
anti-Hilbert space.

Let U be the minimal unitary dilation of T given by (3.4) and acting on the Krein
space R = H:%DT* (T)® $H® Hy (T). If U' e B(R') is any other minimal unitary
dilation of T then, according to (3.6), & has an orthogonal decomposition of the form
R=M_(")YoHo M (L), withe' = (U -T)Hand £~ = (U™ - T*)$.

Since, for arbitrary finite sequences {h, },, {gn }n of vectors in §), we have

(OSU™U = T)h, >, U™(U = T)gm) s

n>0 m>0
= Z((UI = T)hy, (UI ~T)gn)s
n>0
= Z((I_ T*T)hn’gn)f)
n>0
= (Y 2"Djh,, Y ZmD}gm)HzDT(—ﬂ-),
n>0 m>0

the mapping

M ()5 Y U™ (U = T)hy =5 3 2" Dishy € H: (T)
n>0 n>0

is well defined, and the linear operator ®. is isometric, densely defined, and
with dense range. It can be uniquely extended to a unitary operator @, €
B(M. (L), Hy (T)) (since H3 (T)) is a Hilbert space). Similarly, we can define
a unitary operator ®_ € B(M_(£"),Hg_, (T)).

Then, ©=0_® Iy ® D, € B(R,R) is unitary, Ol =I5 and OU' =UO.
Moreover, @R/, = &, and, therefore, U and U’ are unitarily equivalent.

Conversely, suppose that, for example, T is neither contractive nor expansive or,
equivalently, the Krein space © r is indefinite. If Z € B(D ) is a unitary operator with
| 2" > oo, then the matrix

Ty 0 0
v'=| [ T 0
(L]o[Io,.]o [D7]o I.[Z]

defines a minimal unitary dilation of T on 8= H%T* (T)® $He Hy (T). If
T would have a unique minimal unitary dilation, then U’ and the minimal
unitary dilation U on K given by (3.4) would be unitarily equivalent via a unitary
operator ® € B(R) which leaves invariant H%T(T). We get a contradiction since
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. * nl _ 1z * n .
limyoe (O, Tl )| =l |07y T2l [ < oo, while

T
limy, oo [ (T=[2])"] = limp oo | 27 = 00. "

Corollary 3.6 T has a unique minimal unitary dilation if and only if T and T™ have
unique minimal isometric dilations.

Commuting isometric pairs and their unitary extensions

Using dilation theory, we can easily deduce that every bounded isometry V on a
Krein space §) has a unitary extension U on a Krein space K containing $) as a regular
subspace which is minimal in the sense that
R=\/U"H.

neZ
We just have to take the minimal isometric dilation of V* given by (3.3) and observe
that it is a unitary operator U* on & = ) ® Hy_, . (T). More precisely, the linear
operator given by the matrix

(4.1) U= (\0/ [Pl?eiy* I )

is a minimal unitary extension of V.

Remark 4.1 e U € B(8) is a minimal unitary extension of V € B($)) if and only if
U* is a minimal isometric dilation of V*.

o If V € B(R,) is any minimal isometric dilation of T € B($) and U € B(R) is
any minimal unitary extension of V, then U is a minimal unitary dilation of T

e Suppose that V is the minimal isometric dilation of T given by (3.3) on the Krein
space &, = ) & H3) ,(T). The minimal unitary extension U given by (4.1) on the Krein
space & = $) ® H3,_(T) @ Hy,, . (T) is a minimal unitary dilation of T and its matrix
representation depends only on T and on its corresponding defect operators (does not
require the construction of a Julia operator or of an elementary rotation for T).

The following theorem explains the geometrical structure of minimal unitary
extensions.

Theorem 4.2 Let V be a bounded isometry on a Krein space $) and U € B(R) be any
minimal unitary extension of V. Then,

(i) £* = (U* - V*)$ is wandering for U, regular, and isometrically isomorphic with
ker V*;
(i) M_(£*) = V<o U"L* is a regular subspace of & and

R=HeM_(£);
(iii) M_(£*) is invariant to U* and U*|y_g~) is a unilateral shift.

Proof The proof follows Theorem 3.1 (a) with the observation that U* is a minimal
isometric dilation of V*. u

Following Remark 4.1 and Theorem 3.4, we can characterize the uniqueness of a
minimal unitary extension.
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12 D. Popovici

Theorem 4.3 Let V € B(9), 9 Krein space, be isometric. The following conditions are
equivalent:

(i) V has a unique minimal unitary extension;

(if) V™ is either contractive or expansive;

(iil) ker V'* is either uniformly positive or uniformly negative;
(iv) ker V* is either Hilbert or anti-Hilbert space.

IfU € B(R) is a minimal unitary extension of V, then R © $) is a Hilbert or an anti-
Hilbert space.

A pair T = (T;, T,) of bounded linear operators on a Krein space $) is said to be
commuting it 1T, = T,Th. T is called double commuting if T; commutes not only
with T, but also with its adjoint T; . By the end of this article, any pair of bounded
operators acting on a Krein space will be considered a commutative pair. In case
the components T; and T, are clear from the context or they are not needed in the
corresponding discussion, in order to avoid repetitions, we simply use the notation
T e B(H)? instead of T = (T, Ty) € B(H)2. If n=(ny,ny) €eZ?> and T= (T}, T») €
B(£)?, the notation T" = T;" T;”* will be frequently used whenever the computations
T;" and T, make sense.

Definition 4.1 Let V = (V;, V,) be a pair of commuting isometries in B($), $ a
Krein space. A unitary extension of V is a commuting pair U = (Ui, U,) of unitary
operators on a Krein space £ containing §) as a regular subspace such that Uj, U,
extend, respectively, V4, V. U is said to be minimal if, in addition,

g=\ U"$.

nez?

Just to give an example, observe that the pair (T, T,,) of multiplications by
coordinate functions z; and z; on a certain Hardy-type Krein space H (T?) can be
extended by the commuting unitary pair (M,,, M., ),

Faf

on the L?-type Krein space L% (T?) introduced in an obvious manner. This unitary
extension is minimal.

Theorem 4.4 Let V = (V1, V) be a commuting pair of isometric operators in B($).
Then, the pair U = (Uy, U,) given by the matrix representation

9 *
(4.2) U= (Vl |:Pker(Vle)’* V2|ker(VlV2)*:|() )
0 [VI(I - VZVZ*)|ker(V1Vz)*] + [V2*|ker(V1Vz)*]T;
and
ks *
(4.3) U, = (V2 |:Pkif(Vlvz)* Vl|ker(VlV2)*]0 )
0 [(V2(T = ViVi)ker(viv)* ] + [V lker(viva) < 1 T2
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Regular Dilations on Krein Spaces 13

is a minimal unitary extension of V on the Krein space
2
.ﬁ = »6 ® err(Vle)* (T)

Proof Standard computations with operator matrices (in view of Proposition 2.2)
show that, in fact, formulas (4.2) and (4.3) define commuting unitary operators on
R=9H0 le(er(Vl V)* (T). Obviously, U is a unitary extension of V.

It remains to show the minimality. We will actually prove an apparently stronger
result, namely,

&=V (UU,)"5.

n<0

To this end, let i € $ and n € N be arbitrary. We see that

» () (v E L, 0
(L) [(UIUZ) (0)_( 0 )]_(Z”Pl’?er(v]vzvh ’
hence,

Hl%er(Vle)*(T) = \/{(UIUZ)*(YH-I) (61) _ (UIUZ)*H ( (VI‘Z]Z)*h) | h € g)’ n> 0})

which proves our claim. [ ]

Remark 4.5 The conclusion of the previous theorem also holds for arbitrary finite

families V = (W, V3,..., V,,) of commuting bounded isometries on a Krein space $).
More precisely, the family U = (Uy, Uy, ..., U,) given by
U = (Vvl [P]?er(vlmvn)*I/Vi|ker(Vl...V,,)*:|3 )
0 [VI(I - M/z Wi*)|ker(Vl...V,,)*] + [VV: ker(Vl...V,,)*]T;
where W; =[] ;.; Vj, i =1,2,...,n, is a minimal unitary extension of V on the Krein
space

R= ’ﬁ @ Hlier(Vl...V,,)* (T)
For the Hilbert space case, we refer to [48, Theorem 3.3.1].

Proposition 4.6  If U = (Uy, U) € B(R)? is a minimal unitary extension of the com-
muting isometric pair V = (V1, V3) € B($)?, then U U, is a minimal unitary extension
OfVlV2.

Proof It is clear that, under the given hypothesis, U U, is a unitary extension of
W Va. Since, for m < n <0, U"UY$H c (UUz)™$), we observe that

f=\ U"UsHc V(LiU)"Hck

m,n<0 m<0

hence, & = V,,<0(U1U;)™$, and the minimality of the unitary extension U;U, is
proved. [ ]

In view of Theorem 4.2, we can deduce a geometrical structure for the minimal
unitary extension.
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14 D. Popovici
Corollary 4.7 Let U = (U, U,) € B(R)?* be any minimal unitary extension of the
commuting isometric pair V = (V, V3) € B($)?. Then,

(i) £ = ((WUp)* = (MiV2)*)$) is wandering for U U,, regular, and isometrically
isomorphic with ker(V;V,)*;
(i) M_(L*) = Vo (U1U2)" £ is a regular subspace of 8 and

(4.4) R=9oM_(£);

(iil) M_(£*) is invariant to (UyUy)* and (U1Uy)*|y_(c) is a unilateral shift.

Let U= (U, Uy) e B(R)?, U’ =(U{,U;) € B(R')? be two minimal unitary
extensions of the pair V = (V;, V,) of commuting bounded isometries on $). U and U’
are said to be unitarily equivalent if there exists a unitary operator @ : 8 - & which
intertwines U; and Uj, respectively, U, and U} and such that ®|g = Ig.

Theorem 4.8 Let V = (V;,V,) € B(9)?* be a commuting isometric pair such that
(ViVa)* is either contractive or expansive. Then, V has a unique minimal unitary
extension.

Proof Assume that, for example, (V;V,)* is contractive. Then, ker(V;V,)* (and,
hence, also H} er(viv,)+) is @ Hilbert space.

Let U = (Uy, U,) be the minimal unitary extension of V given by (4.2) and (4.3)
and acting on the Krein space =@ Hlier(Vle)*(T)' If U'= (U, Uj) e B(R)?
is any other minimal unitary extension of V, then, according to (4.4), &
has an orthogonal decomposition of the form K =$He M_(£™), with
£ = ((UU)* = (MV2)*) 4.

Since, for arbitrary finite sequences {h, },, {gn }» of vectors in §), we have

(X (UIU) ™ ((U{U3)" = (ViVa) Yk, 3 (UTU) ™ ((U[U3)* = (ViVa) " ) gm) s

n>0 m20
= (2 "I~ ViVa(ViVa) Y, 3 2" (1= ViVa(ViV2) ") gm) 2 (T)>
n=0 m20 ker(V1V2)*
the mapping

M_(£7%) 5 3 (UU3) " ((ULUB) (Vi Va)* Yy 2

n>0

3 2" (1= ViVa(ViVa) Y € Higyyysy- (T)

n>0

is well defined, and the linear operator @ is isometric, densely defined,
and with dense range. It can be uniquely extended to a unitary operator

® e B(M_(£%), HE o (vivy)+ (T)) (since HY, ;). (T) is a Hilbert space).
Then, @ = I, ® @, € B(K', R) is unitary and @|g = I. Moreover, for any h € §,

®U/h = ®Vih = Vih = ViOh = U,®h,

OUI((U1U3)" (W V3)")h
= O[(I-ViVi) Vi h+ ((U1U3)" = (V) )Vl = V2 V5 )]
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= ZO(I— Vi)V h+z2Vi(I- V2V, )h
= Ui(2"(I- iVa W' V;)h)
= Lio((U[U3)" = (WV2)")h,
and, by a similar argument,
QU(UTU) ™" ((U1U;)" = (WV2) )k = Ui(U U) ™" ((U1U3)" = (V) "),

for any positive integer n. Conclude that ®U;j = U; @ since they are continuous and
coincide on a dense subset. By symmetry, we also obtain ®U} = U, ® and, therefore,
U and U’ are unitarily equivalent. [ ]

Corollary 4.9 Let V = (W, V3) be a commuting isometric pair in B($)*. If V;V, has
a unique minimal unitary extension, then V has a unique minimal unitary extension.

5 Regular dilations for commuting pairs

Definition 5.1 Let T = (Ty, T;) be a commuting pair of bounded operators on a
Krein space 9.

e An isometric (respectively, unitary) dilation of T is a pair U = (Up, U) of
bounded commuting isometric (respectively, unitary) operators on a Krein space &
containing §) as a Krein subspace and satistying

(5.1) T" = PU"|g, neZ?.

e An isometric or unitary dilation U = (Uy, Uy) € B(R)? of T = (Ty, Tz) € B($)?
is said to be regular if
(5.2) (T" )*T" =Pg(U" )*U" |5, neZ?

Here, for n = (ny, n,) € Z?, the usual notations n* := (max{n;,0}, max{n,,0}) and
n~ := (—min{n;, 0}, —min{n,,0}) are used. Formula (5.2) is consistent with the
dilation definition (5.1) which can be obtained for n € Z?2 (in this case n~ = (0,0) and
n* = n). If (5.1) holds true, then (5.2) is actually equivalent with

" T, = PaU™UY|g, m,n>0.

e An isometric (respectively, unitary) dilation U € B(8)? of T € B($)? is called
minimal if R = Vnezi U"$ (respectively, R = V,,ez2 U 9H).

Remark 5.1 Suppose that the commuting pair T € B($)?* has a minimal isometric
(respectively, minimal regular isometric) dilation V € B(R,)*. Let U € B(K)?* be the
minimal unitary extension of V € B(£,)? as constructed in Theorem 4.4. Then, U is
a minimal unitary (respectively, minimal regular unitary) dilation of T.

As in the one-dimensional case, a minimal isometric dilation for a commuting pair
T ensures the existence of a co-isometric extension for T*.

Proposition 5.2 Let V = (W, V3) € B(R:)?* be a minimal isometric dilation of the
commuting pair T = (Ty, Ty) € B(H)2. Then, § is invariant to V* = (V;*, V'),

T"Py =P V", neZi and T*=V*|g.
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16 D. Popovici
Proof Foreverym,n e Zi and h € 9, the dilation definition shows that
T"Pg(V™h) = T"""h = Py V""" h = Po V" (V" h).

Since {V™h | m e Z2,he$} is dense in &, and Py, T,V are bounded, we actually
deduce that

T"Py = Py V",

We will prove that V"*h = T""h, for every n € Z2 and h € §). To this end, let
m e Z2 and h' € $. Then,

(V*h= T, V"h') g, = (h, V""" W) g, —(T" h, T"h') = 0

Use again the minimality of V to obtain that V"*h = T""h. Consequently, § is
invariantto V* and T* = V*|g. |

Let T = (Ty, Tz) be a pair of commuting bounded operators on a Krein space £).
By a defect operator for T, we mean an operator Dt € B(Dr, §) with zero kernel on
a Krein space © 1 (called its defect space) such that

I-TTT - T, T, + Ty T, 1T, = DrD7.
T is said to be a bidisc contraction, respectively, bidisc expansion if
(Tvh, Tih)g + (Toh, Toh)g < (b, h)g + (T1 Toh, I T2 h)s, he$,
respectively,
(Tvh, ih)g + (Tah, Toh)g 2 (h, h)g + (T1Tah, T Toh)s, he$

or, equivalently, the defect space of T is a Hilbert, respectively, an anti-Hilbert space.

In what follows, we shall use the notations D; = Dy,, D; = Dr,, D = Dt for the
defect operators and ®; =91, 9, =9D1,,0 =D for the corresponding defect
spaces.

As in the one-dimensional case, recall that a subspace £ is said to be wandering for
a commuting isometric pair V if V*£1V™ £ for all n,m € Z2,n + m.

Regarding the geometrical structure of a minimal regular isometric dilation, we
could mention the following theorem.

Theorem 5.3 Let V = (W}, V,) € B(R,)? be a minimal regular isometric dilation of a
commuting pair T = (Ty, Ty) € B($)?. Then,

(i &= (Vl - Tl)ﬁ,gz = (Vz - Tz)f))S = (Vle -V -V + Tsz)YJ are regu-
lar, wandering, respectively, for Vi, V2, V and isometrically isomorphic, respectively,
Wlth @1, @2, @;

(i) M} (£1) = Vimso V"L, M3 (£2) = Vauso V5' €2, My (L) = Vpezz VPL are regu-
lar and

(5.3) =9 M. (L)e M (&) e M (L)
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(iii) M (&;) is invariant to V; and Vilui (e, is a unilateral shift, i =1,2;
(iv) M (L) is invariant to V and V|y, (¢) is a pair of double commuting unilateral
shifts.

Proof As in the Hilbert space case [24], it is not hard to check that £;, £, £ are
wandering, respectively, for Vj, V3, V and $5, ML (£,), M2(£;), M, (£) are pairwise
orthogonal. Therefore, we prefer to omit the details.

Proceed similarly as in the proof of Theorem 3.1 to obtain

m—1
(5.4) V"h=T"h+ Y VFVi-T)T"*h, he$H m>1.
k=0

We use (5.4) in conjunction with the formulas
(5.5) Voh=Toh+(Va,-T)h, he$
and
(5.6) Va(i-TH)h=WV,-VL-VWhH+T1T)h+(Vi-T)T:h, he$,
applied successively, to finally get

V"VIh = TN h

+ Z VP(WVZ - ‘/ITZ - V2T1 + T] Tz)T(m_l’n_l)_pl’l
0<p<(m—-1,n-1)

m-1 n-1 . ;
+ S VI(Vi- T TR+ Y Vi (Ve - T) T Ty U h,
i=0 j=0

he$, mneN*.

More precisely, we firstly apply V; to (5.4) and then use (5.5) for T h and (5.6) for
T/ *1h,k € {0,1,...,m —1}, instead of h. We obtain that

m—1
‘/1mV2h = TlmTzh + (VZ _ TZ)TImh + Z ‘/lk(‘/lVZ _ ‘flTZ _ VZTI + TITZ)TIm—k—lh
k=0

+ Y vk - 1) T ok,
0

3

=~
I}

Following again (5.5) and (5.6) for the computation of the vectors V,T,T{"h and,
respectively, Vo(Vi — T}) /" ¥ Tyh, k € {0,1,...,m — 1}, another application of V;
shows that

VI"VER = T T2h + (Vo = Ty) T Toh + Va(Vy = To) T™h

m-—1
+ Z Vlsz(Vle -V -WT + Tsz)Tlm_k_lh
k=0

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:17:52, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core
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m—1
+ Z Vlk(VlVZ -hL -V, + TITZ)TImfk—lTZh
k=0
m—1
V(- TR
k=0

This iterative procedure is repeated » times.
Since, obviously, &, contains $J, M, (£), M1 (£;), and M2 (£;), we deduce that

R =HVM (L) v M (L) VvM(L,)

and, by orthogonality, (5.3) also holds.

Itis then clear that ), M, (£), M2 (£,), M2 (£,) areall regular and, since M, (£) =
Lo VM, (L) ® Vi(VaM, (L)) @ Va(ViM, (L)) ML(L) = £ @ IML(£)),
M2(£,) = £, ® V,M2(£,), we obtain that £, £, £, are also regular.

By a similar argument as in the proof of Theorem 3.1, we can deduce that £;, £,, £
are isometrically isomorphic, respectively, with ©;,0,, 9.

It is obvious that M, (£), M (£,), M2(£,) are invariant to V;, V, and, respec-
tively, V and that Vi[yn(e,), Valmz(e,) are unilateral shifts. Since M, (£) =
ML (M3 (L)) = M2(ML (L)), we obtain that V|, (¢) is a pair of commuting uni-
lateral shifts which, moreover, doubly commute.

To this aim, we firstly note that it is only necessary to prove that (Vi|, (¢))* and
Valm, (¢) commute on the set {V;" V,'l | m,n > 0,1 € £}, which generates M, (£).

Indeed, for n > 0,

((Vilag, (2)) " V2) Va' L = (Vi (2)* Vo T = 0 = (Va(Valag, (2)) ") VA' L,

since Vy'l € M2(L) =ker(Vi|p, (2))*. Also, in view of the fact that Vi|y, (e) is
isometric (i.e., (Vi|u, (2))* Vilm, (2) = Im, (2))s the following equalities

((V1|M+(2))>(-V2)Vlmvznl — (VI|M+(£))>«-V1V1m—1V2n+ll — Vlm—1V2n+1l
and
(Va(Vilaa, ) )" VS L = Va(Vilag, () VAV MV L= Vv
hold true for every m > 0 and n > 0. ]

Corollary 5.4 Let V = (V1,V;) € B(R)? be a minimal regular isometric dilation of
the commuting pair T = (Ty, To) € B($)?. The following conditions are equivalent:

(1) ML(£,) is invariant to Vy;
(i) M2(L,) is invariant to Vy;
(iii) T is a bidisc isometry (ie., - Ty Ty - T, T, + Ty T, 1 T, = 0).

Proof The conclusion follows from the geometrical structure of £, given by the
theorem above since

Voo VI (Vi-Ti)h = V' (V2 - VT - V, Ty + TV T ) h+ V" (V; - T;) Ts_ih,
he$H, i=12, neN
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and (V\V, - VT, -V, Ti + TiTh)h =0, forall h e §, ifand only if I - T)' Ty - T, T +
Tfr T;r T1 Tz =0.
For the Hilbert space case, we refer to [24]. ]

For the rest of the article, we shall suppose that T' = (Tj, T ) is a pair of commuting
bounded operators on a Krein space §) such that Tj, T, are both contractive and
T is a bidisc contraction or T, T, are both expansive and T is a bidisc expansion.
Equivalently, the defect spaces ©;,;, and © are either Hilbert or anti-Hilbert spaces.
Denote by |-||1, ||| 2> [-|| the Hilbert space norms, respectively, on ©;, D,,D.

Remark 5.5 (i) Observe firstly that
I-TTH-TL+T LI,
= DlDf - T;(I - Tfr T])Tz
= DDy - (T, D1)(T; Dy)”
(5.7) =D,D; - (T D;)(Ty D2)".

Use the inequality

| DY Tahfy < [Drhly  (vespectively, [ Dy Tih[; < [Dyh[2),  hed
to introduce a densely defined Hilbert space contraction on ®; (respectively, ©,) by
(5.8) RyDih =D; Thh (respectively, RiD;h = D;T1h), he$,

which can be extended, by continuity, to the whole space. In fact, the maps above
are (under our Krein space terminology) contractions if T is a bidisc contraction,
respectively, expansions if T is a bidisc expansion.

(ii) Taking into account the operators R; and R, (defined by (5.8)), formula (5.7)
can be re-written as

DD* = (DDy,)(DiDx,)" = (D2Dg,)(D;Dx,)"
or, equivalently, as

| DR = [ D&, Dy hl0s, =

D, Dshlo,,, hes.

Hence, the linear operators U; : ® — ®pg, and U, : ® - Dy, given by
(5.9) UiD*h =Dy Dih and U,D*h=D} Dih, he$
are well defined unitary operators.

The next construction of a regular isometric dilation is the main result of this
section.

Theorem 5.6 Let T = (Ty, T,) be a pair of commuting bounded operators on a Krein
space $) such that Ty, T, are both contractive and T is a bidisc contraction or Ty, T, are
both expansive and T is a bidisc expansion. The pair V = (V1, V;) € B(R,)? given by
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the matrix representation

T 0 0 0
0 T, 0 [U; D% 1,
5.10 Vi = Z1 1 YR,
(510) "D o 0 T, 0
0 0 0 [Ri]
and
T, 0 0 0
_| O T, [U; Dx, 0
(5.11) V, = 0 0 (R ] 0
[D3]o 0 0 T,

is a minimal regular isometric dilation of T on the Krein space

Ry =9H o Hp(T?) © Hy, (T) ® Hy (T).
Proof Direct computations with matrices show that, for i = 1,2, V; is an isometric
operator on &, ifand only if [D] |7 T, = 0, [U; Dy 15_; T, = 0, T; T; + [D; ][ D} ]o =
Iy and [Uf Dy, I3 [Uf Dy, Js-i + [Ri]*[Ri] = L, (m)-

While the first two equalities hold true by Proposition 2.2 (iv), the last two are
consequences of the conditions (ii), respectively, (iii) of the same proposition. Indeed,
[Df 151D o = DiDf and, hence, T;*T; + D; D} = I, by (3.1). Also,

[U7 Dk, J5-i[U7 D, Js-i + [Ri]"[Ri]
= [(U; Dg,)*U; Dy, + RiR;]  (by Proposition 2.2 (i) and (ii))
= [Dg,Dg, + R{ R;] (since U; is unitary)
=[lo, ] = I, (m). (by (3.1))

Similarly, V1V, =V,V; if and only if [UyDg ]2[D3]o=[U;Dg, h[D Jo,
[UfDg,l5-iT: = T, ,[U; Dy, 12, Te[Ri] = [Ri]T; and [Dj]oTs-; = [R3-i][ D] Jo
i =1,2. The first condition follows by Proposition 2.2 (v) and (5.9):

[U; D, 15-i[Dji_;]oh = 2{23U; D§ Dy_;h = 2)z3D*h, he$H,i=1,2.

The following two conditions are consequences of Proposition 2.2 (iv). The last
equality uses Proposition 2.2 (v) and formula (5.8):

[D;JoTs-i = [D; Ts-i]o = [Rs-iD; Jo = [Rs-:][D; Jo-

Moreover, by an inductive method, V" V] has the form

" 0 0 *
*nyrm _ 0 (TZZ)*n(TZl)m 0 *
Rl I " [R:"](T.)" « |
0 0 0 (T.)*"[RI"]

which proves that

T;"T" = Py Vy " V"o, m,n > 0.
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We can also obtain, by a similar argument, that
TImTzn:PyJVlmVZnh'), m,n > 0.

Hence, V is a regular isometric dilation of T'.
It remains to prove the minimality. To this end, take & € §) and observe that

(Vi = Th)h = (0,0, [D; Joh,0).
Proceed inductively to show that

V" (Vi-Ti)h =(0,0,(T;)"[D; ]oh,0), m=>0,

that is,

(5.12) H (T) = ,.Yo V(W = Ty)$.
By symmetry, it also holds

(513) Ho,(T) = V V'(Va - T2)5.

Now, the relation
(ViVy = ViTy - Vo Ty + Ty Ty ) h = (0,2°29D* 1,0, 0)
applied successively gives
V'V (ViVa = VT = VO Ty + Ty Ty )h = (0,222 D*h,0,0),  m,n >0,
that is,

(5.14) H%(T*) = \/ V'"(WV, - VTo - Vo Ty + Ty T2) 6.

neZ2
Equations (5.12-5.14) show that the regular isometric dilation given by (5.10) and (5.11)
is minimal. [ |

Use Theorem 4.4, Remark 5.1, and Theorem 5.6 to obtain the following.

Corollary 5.7 Let T € B($))? be as in Theorem 5.6 and V € B(R,)?* be the minimal
regular isometric dilation of T given by (5.10) and (5.11). Then, T has a minimal regular
unitary dilation U € B(8)? given by (4.2) and (4.3) on the Krein space

R= ’“6 @ HZ@(TZ) ® HZQI(T) @ H%Z(T) @ leer(Vle)* (T)

Let V= (V;,V;) € B(R,)? and V' = (V{, V) € B(R’,)? be two minimal regular
isometric dilations of T € B($))*. V and V" are said to be unitarily equivalent if there
exists a unitary operator @ : R, — K’ which intertwines V; and V/, respectively, V,
and Vj and such that ®|g = I5.

Theorem 5.8 Let T = (Ty, T») be a pair of commuting bounded operators on a Krein
space $) such that Ty, T, are both contractive and T is a bidisc contraction or Ty, T,
are both expansive and T is a bidisc expansion. Then, T has a unique minimal regular
isometric dilation (up to a unitary equivalence).

Downloaded from https://www.cambridge.org/core. 29 Nov 2025 at 01:17:52, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

22 D. Popovici

Proof Let V e B(R,)* be the minimal regular isometric dilation of T € B($)?
given by (510) and (5.11) on K, = @ H;(T?)® H; (T) ® H; (T). If V' =
(V{,V;) e B(&,)?*is any other minimal regular isometric dilation of T then, accord-
ing to (5.3), &' has an orthogonal decomposition of the form

R =He M (L) e M () e M(L),

with £/ = (‘/IIVZI - ‘/IITZ - VZITI + T1T2).6 and 2: = (‘/1, - T,‘)ﬁ, i=12.
The maps

M. ()3 V"V, (V] = V{Ty = VJTy + Ty Ty ) h — 22 D*h e H (T?),
M. () > V" (V = Ti)h - 2" D} h € H, (T)
and
M, (£5)5 V;"(V - Ty)h = 2" Dih e H (T)

are well defined and can be extended by linearity to densely defined isometries with
dense ranges. Since H3, (T?), Hy (T), and H} (T) are either Hilbert or anti-Hilbert
spaces, the applications above can be extended to unitary operators.

A routine check shows that Iy & ® & ®; @ @, : &, — &, is unitary and inter-
twines V; and V), respectively, V, and V,. Hence, V and V' are unitarily equiva-
lent. ]
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