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Abstract

Underactuated Cable-Driven Parallel Robots (UACDPRs) typically rely on relative internal sensors to estimate
the end-effector (EE) state. Therefore, at startup, the reference values of the quantities measured by these sensors
are unknown, and so is the initial pose of the EE. The problem of determining the reference values of the internal
sensors is called initial-pose self-calibration. The latter is often formulated as an overdetermined system of nonlinear
equations and solved using nonlinear weighted least-squares methods, minimizing the error between modeled and
measured variables, and its effectiveness is highly influenced by the choice of measurement configurations, as well
as the motion planning and control strategy used to reach them. This work presents two practical data acquisition
methods for initial-pose self-calibration of UACDPRs, aiming to reduce the overall time required by the procedure
and enhance process automation. The first method is slower but richer in data, as it relies on equilibrium poses and,
therefore, can leverage cable-tension data, whereas the second method is faster and is based on geometric constraints
only. The performance of the methods is evaluated in terms of acquisition time, number of measurements, and
calibration accuracy on a 4-cable UACDPR prototype. The results highlight the merits and shortcomings of both
methods, namely, trade-offs between the velocity of data collection and the precision of pose estimation.

1. Introduction

Cable-Driven Parallel Robots (CDPRs) are a class of parallel manipulators that utilize cables instead of
rigid links to control the pose of the end-effector (EE). Each cable is spooled by a drum, which is part
of a winch, typically mounted on an external rigid frame. The cable is routed from the drum to the EE
through a pulley transmission system, where the final pulley is typically designed to swivel around an
axis tangent to its groove, ensuring smooth guidance to the robot EE. By adjusting the cable lengths
via servo-controlled winches, the EE can follow a desired trajectory and execute manipulation tasks.
Cables exhibit a high payload-to-weight ratio since they are subjected only to tensile stresses, making
CDPRs both lightweight and capable of handling significant loads [1]. Another key advantage is the
ease of deployment and reconfiguration. Indeed, the cable exit points from the frame can be changed
online to adapt the CDPR workspace to the task to be executed [2, 3] or to minimize power consump-
tion [4]. Alternatively, in the design phase, the CDPR geometry can be chosen to maximize stiffness
[5], minimize the maximum cable tension [6], or increase dexterity [7]. As cables impose unilateral
constraints, CDPRs are usually equipped with more cables than the EE degrees of freedom (DOFs). In
this configuration, if all cables always remain taut, the robot is overconstrained. Some CDPRs, called
Underactuated CDPRs (UACDPRs), employ fewer cables than the EE degrees of freedom [8], and they
are inherently underconstrained. Consequently, the EE retains some DOFs even when all actuators are
locked, and the EE pose cannot be assessed through direct kinematics only, since infinite poses are
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associated with the same set of cable lengths. Compared to overconstrained architectures, UACDPRs
may offer specific advantages, depending on the application. For example, they improve obstacle avoid-
ance, as fewer cables reduce the risk of interference with the environment, and fixed and operational
costs decrease, as fewer actuators are required [9].

Although reconfigurability makes CDPRs highly adaptable to varying tasks and environments,
frequent reconfigurations present a major challenge: the need for frequent recalibration. At every recon-
figuration, a calibration of the robot is needed to accurately determine the changes in the geometric
(and possibly the inertial) model parameters, with the aim of enhancing the robot’s performance.
Geometric calibration involves estimating the robot’s parameters by (i) performing some controlled
motion of the EE to measure some internal variables and a ground truth (i.e., the robot pose) and (ii) min-
imizing the difference between the ground truth and its mathematical model (which explicitly depends
on the measured internal variables) [10]. The conventional approach relies on external sensors to provide
the ground truth, such as laser trackers [11], which provide direct measurements of the EE pose relative
to a fixed reference frame. In this case, the function to be minimized is the difference between measured
and modeled EE poses [11]. Alternatively, when no additional sensors other than the ones embedded in
the robot kinematic chains are used for data acquisition, the procedure is called self-calibration, and it
may be preferred to the conventional one, as it requires no additional cost for external sensors. A draw-
back is that calibration poses must be estimated alongside the robot’s geometric parameters. As a result,
the number of unknowns increases while the number of independent equations remains the same. This
generally reduces the accuracy of the estimated parameters, yielding poorer calibration results.

In CDPRs, most authors assume that direct or indirect measures of cable lengths and cable tensions
are necessary for controlling the robot, as the former are used to derive motor setpoints, and the latter
provide at least additional safety or additional capabilities to the robot. Typically, relative rotary encoders
in the winch motors and load cells within the transmission are employed [12]. To compensate for cable
elongation and provide a direct measure of cable length, laser distance sensors may also be used [13].
Additionally, incremental encoders can be employed to measure the swivel angles in swivel pulleys
[14]. For a direct measure of the EE orientation, an Attitude and Heading Reference System (AHRS)
can be integrated into the platform, thus improving pose estimation accuracy [15, 16]. Finally, cable
orientations can be estimated using accelerometers mounted on cables near their anchor points on the
platform [17].

Using relative sensors requires performing a procedure at every CDPR startup to determine their
absolute reference values. This process, too, can be formulated as a self-calibration problem since it is
equivalent to determining the initial pose of the EE and using the inverse geometric or static problem
to determine the sensors’ reference values in the said pose.

In the past, several methods were proposed for the initial-pose self-calibration. Typically, the pro-
cedure is conducted offline using zero-order kinematics to model cable lengths based on the unknown
calibration poses, measuring cable length variations, and minimizing the residuals [11, 18, 19]. Some
approaches enhance accuracy by incorporating the swivel-pulley transmission model [20] or leveraging
swivel-angle measurements [ 14]. More recent techniques exploit observability indices to enable online
data selection for self-calibration [21, 22]. The initial-pose self-calibration is usually formulated as a
Nonlinear Least Squares [14, 18-20] or Nonlinear Weighted Least Squares (NWLS) [11, 21, 22] prob-
lem, where the unknowns include the initial values of the relative sensors and the measurement poses.
The residual vector is composed of the difference between the quantities modeled by inverse kinemat-
ics (in the case of cable lengths or swivel angles) or statics (for cable tensions) and the measured ones.
Even though effective solutions have been proposed for solving the initial-pose self-calibration problem
of UACDPRs from a theoretical standpoint, there is still room for improvement in both accuracy and cal-
ibration speed. Current state-of-the-art methods require several minutes for automatic data acquisition
[14], and the initial estimated pose exhibits position and orientation errors of 2.5 cm and 2.2 degrees,
respectively [23].

This paper extends the work presented in [23], where a rapid method for data acquisition and initial-
pose self-calibration was introduced. This method aims at reducing data acquisition time, maintaining
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Figure 1. UACDPR geometric model.

the same accuracy for the resulting initial pose compared to previous studies [14]. While [23] achieved
significant improvements in data acquisition efficiency, it requires operator intervention. In this study,
we propose two novel data acquisition algorithms aimed at increasing the degree of automation while
maintaining rapid and accurate self-calibration:

1. The first method involves moving the robot to static equilibrium poses, ensuring taut cables via
low-level tension control, similarly to [14]. Swivel-angle and cable-length variations are mea-
sured using incremental encoders, while an AHRS mounted on the EE captures orientation data.
Load cells are used to measure cable tensions and regulate the motion of the UACDPR.

2. The second method solely relies on geometric constraints for self-calibration. It employs the
same set of sensors as the first method but excludes load-cell measurements, using them only for
EFE motion control.

In both cases, the initial-pose estimation problem is formulated as a NWLS optimization prob-
lem, where the residuals to be minimized are the differences between the model-predicted values and
actual sensor measurements. Experimental validation is conducted on a 4-cable UACDPR prototype,
demonstrating the proposed methods’ effectiveness in reducing calibration time while maintaining
accuracy.

The remainder of the paper is organized as follows. Section 2 introduces the kinematic and static
models of a UACDPR. Section 3 presents the proposed self-calibration methodology, including data
acquisition procedures. The experimental validation of the method on a 4-cable UACDPR is described
in Section 4. Finally, conclusions and future research are provided in Section 5.

2. Kinematic and static models

A spatial UACDPR with a 6-degree-of-freedom (DoF’) EE and n cables is considered, with n < 6. Cables
are assumed to be massless and inextensible; therefore, no sagging or elastic phenomena are considered,
and cables can be modeled as straight lines. This assumption is reasonable for small-scale UACDPRs,
where the cable mass is negligible compared to the EE mass, and elastic deformations have a minimal
effect on system behavior [24]. Indicating the inertial frame with Oxyz and the frame attached to the EE
with Px'y'7, the EE pose is defined by the position vector p of P and the rotation matrix R(e), where
€ =[¢ 0 x]” contains the Euler angles according to the ZYX convention. Consequently, the generalized
coordinates of the EE are ¢ = [p” €”]”. Each cable is guided by a swiveling pulley into the workspace
(Figure 1a). The i-th cable enters the pulley groove at the fixed point D;, exits at B;, and is anchored to
the platform at point A;. To express the position of B; in the inertial frame, we introduce a local reference
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frame D,x;y;z;, with constant unit vectors i;, j;, k; (Figure 1b and 1c). The pulley geometry is modeled
as in [23]. Each pulley of radius r; and center C; is tangent to the local axis z; at D; and swivels about
z; by the angle o;. If the unit vector u; points from D, to C;, and the unit vector w; is orthogonal to the
pulley groove plane, then w; =k; x u;. The tangency angle 1; defines the orientation of the unit vector
n;, which points from C; to B;. The unit vector along the i-th cable is t; = w; x n;. The aforementioned
unit vectors can be described as:

u; = cos gi; + sin g;j;, w; = — sin o, + cos 03j;,
n; = cos Y,;u; + sin y¥K;, t; = sin Y,u; — cos yik;. (1)

The position of D; in the inertial frame Oxyz is identified by the constant vector d;, while B; is
described by b, = d, + r;(u; + n;). The constant position of 4; in the local frame Px'y'z’ is denoted by “a;,
and in Oxyz is given by a,=p+a,=p+ RPa;. Defining the vector 9, = A; — D; = a, — d;, and assum-
ing that the cable remains coplanar with the swivel pulley, the resulting constraint is w; - @, = 0. From
the latter, the swivel angle is found through inverse kinematics as:

o; = atan2(j; - 0,, i; - 0,). )
Then, defining the cable vector as p, = A; — B;, and considering pulley kinematics, we obtain:
p.=a,—b, =g, — ri(u;+n,). 3)

Since the cable is tangent to the pulley groove in B;, the tangency angle y; is determined using the
geometric constraint n; - p, = 0, leading to:

2
v 2r;
Y; = 2 arctan Z—k+\/(z—k) +1__r ) 4)

where o, = 0, - k; and ¢,, = 0, - u;. The total cable length [; (> 0) consists of the rectilinear segment || p, ||
and the arc D;B; wrapped around the pulley:

L= pl + 7w — ). 5)

The CDPR static model is obtained from the mechanical equilibrium of the EE. The model is formu-
lated under the assumption that all cables remain taut and that gravity is the only external force acting
on the EE, so that:

E'r=f, with f:[,g ] (6)
s xg

where g =[0,0, —mg]”, m is the EE mass, g is the gravitational acceleration, s’ is the position vector
from P to the center of mass G, and T € R" is the array of cable tensions. 27 e R®" is the structure
matrix, which relates cable tensions to forces and torques on the EE, and is computed as in [25]:

a; Xt

el:[ i ] cUSITINNE S| )

3. Self-calibration and data-acquisition algorithms

In previous studies [11, 18-20], motor encoders have been used as primary sensors for CDPR self-
calibration. For overconstrained CDPRs, load cells have been shown to be effective for this purpose too
[26, 27].

In this work, as in [23], we consider UACDPRs equipped with multiple internal sensors for state
estimation and motion control. In particular, indicating the measured quantities with the superscript
(-)*, an incremental encoder on the i-th swivel pulley measures variations in the swivel angles Ao;*
relative to the angular position at startup ;. An AHRS, rigidly attached to the platform with its reference
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frame coincident with the EE mobile frame, provides roll and pitch angles (¢* and 6*) relative to a local-
earth frame (east-north-up) coinciding with Oxyz, as well as the relative yaw variation A x* from the
startup configuration yx,. Additionally, an incremental encoder in the winch motor tracks the motor angle
displacement A6, relative to the startup value 6,,;0. When the i-th winch is designed with a constant
and known transmission ratio K between cable-length variation and motor displacement (as assumed
here), the cable-length variation can be indirectly estimated as Alf = KA@; , [28]. Finally, a load cell is
integrated into each transmission to measure the i-th cable tension 7.

The choice of this sensor set is based on three main reasons. First, previous studies [15, 16] demon-
strated the effectiveness of incremental encoders and AHRSs for accurate pose estimation in UACDPRs.
Therefore, it is reasonable to adopt this configuration as the available internal sensor suite, since
these sensors will also be used for state estimation after calibration. Second, cable-tension measure-
ments, whether obtained directly through load cells or estimated from motor currents [29], are typically
employed for control and safety purposes, such as ensuring that all cables remain taut during operation.
Since these measurements are already available in the control loop, they can be naturally included in
the self-calibration formulation to enhance pose estimation accuracy. Third, the use of multiple sensors
helps mitigate errors introduced by the simplified modeling assumptions described in Section 2, where
cables are modeled as straight lines and the swivel pulleys are assumed to remain coplanar with the
corresponding cable directions.

If other internal sensing systems are available, such as laser distance sensors for directly measuring
cable elongation [13], they can be easily integrated into our approach, which is fully general. Indeed,
including additional sensors may yield faster and more accurate results.

3.1. Self-calibration algorithms

At a generic EE pose ¢,, if the constraints imposed by the swivel pulleys and the cables on the moving
platform are active,' the relationships between modeled and measured quantities for cable lengths, swivel
angles, and orientation angles can be expressed as:

1G)=b+ AL, o()=0,+Ac], (®)
P&)=¢;, 0@&)=06", x&)=xo+Ax" ©)

In Egs. (8) and (9), the modeled cable-length array 1(¢;) and swivel-angle array o(¢;) are obtained
through inverse kinematics, namely through Eqgs. (5) and (2), whereas the modeled Euler angles
¢(&,), 0(L;), and x(¢,) are the orientation components of the pose ¢,. The measured quantities in
Eqgs. (8) and (9), instead, depend on the directly measured data Al*, Ac*, ¢*, 6*, Ax* and on the initial
values ly, 6, Xo-

Additionally, if the generic pose ¢, is a static equilibrium one, the relation between the modeled and
measured cable tensions is given by:

T(¢) =1, (10)

where the modeled tension array 7(&;) can be computed from (6) through a generic left inverse £~ of
the structure matrix:

()= EiT(Ci)f(Ci)- (11)

To define a specific inverse of Z”, we partition it into two blocks, namely Z"

e R™" and E; € R™®™, The corresponding left inverse is given by:

=[E. &/l

'Due to the unilateral nature of cable actuation, the constraints imposed by the swivel pulleys and cable lengths hold only when
cables remain taut and tension forces are sufficient to overcome pulley friction. Under these conditions, the cable vectors remain
coplanar with the pulley planes, ensuring the validity of pulley constraints.
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E_T = [E;T Onx(()—n)] ) (12)

where 0, is a null matrix with n rows and (6 — n) columns.

In conventional formulations (e.g., [11, 14, 18-20, 22]), the array of unknowns X in the initial-pose
self-calibration problem, typically includes the initial values l,, 0, xo, as well as multiple measurement
posesZ=1[¢1,...,¢[]". Withasufficient number of measurement poses , an overdetermined nonlinear
system of equations composed by Eqgs. (8), (9), and (10) can be established, which is desirable to reduce
the impact of measurement errors. In contrast, in our approach, the initial values 1y, o, and ¥, are
reformulated as explicit functions of the initial EE pose ¢, using the kinematic relations in Egs. (5)
and (2). This reformulation shifts the estimation task from identifying the initial value of the measured
quantities to estimating the initial EE pose (together with the measurement poses). The residuals for the
i-th measurement equilibrium pose become:

Fr.i - T(;i) - Tj': ¢(C1) - (pl*
Fl,i = l@i) - lo(Co) - Alf’ Fe,i = 9(;,-) - 9,-* (13)
F,,=0()— 0, — Ad7, X&) — x0(8o) — Ax;

Therefore, the actual calibration task becomes the estimation of ¢, from which the initial values of
the measured quantities can be derived via inverse kinematics. This strategy reduces the number of
unknowns and thus increases the equation-to-unknown ratio. Assuming that the modeling error intro-
duced by inverse kinematics is negligible, this leads to improved computational efficiency and fewer
measurements to obtain a desired accuracy in the estimation. Therefore, the same approach as in [23]
is used, where the array of unknowns X =[¢{,¢1, ..., /1" € R js composed by the initial pose &,
and k measurement configurations.

Two self-calibration algorithms are considered, each utilizing a different sensor set and indexed
by j € {rloe,lo€}. The first algorithm (j = tloe€) uses all the available sensors, including those mea-
suring cable tensions, swivel-angle variations, cable-length variations, roll, pitch, and yaw variations.
The second algorithm (j =/lo€) excludes cable tension measurements and only relies on the other
sensors. The motivation for considering these two algorithms lies in the set of equations available
for the self-calibration process, which directly influences the data acquisition strategy. On the one
hand, maximizing the ratio between the number of equations and the number of unknowns is desir-
able, and this can be achieved by incorporating all available sensors, including load cells. However,
using load cell measurements inherently requires relying on static equilibrium equations, as dynamic
equations would introduce additional unknowns (namely, pose derivatives), counteracting the goal of
maximizing the equation-to-unknowns ratio. As a consequence, the calibration process must rely on
static EE poses, potentially leading to longer data acquisition times due to the need for self-energy
dissipation. Excluding load cell measurements simplifies the calibration process by relying only on geo-
metric constraints, as shown in [23]. This allows for rapid movements and faster data acquisition at
the cost of a lower equation-to-unknowns ratio, which may, in turn, reduce the accuracy of calibration
results.

In both algorithms, the initial-pose self-calibration problem is formulated as a NWLS optimization:

. . 1
X0 = arg min h(X), with h(X)= EFJ.TW]-FJ-. (14)

The residual array F; is composed of different combinations of residual blocks depending on the sensor
set used :

F.po = [F F FL F']" e R*"), Fi,. = [F] FL F']" e R">), (15)

Each residual block is constructed by vertically stacking the corresponding single-pose residuals defined
in Eq. (13) across all kK measurement configurations:
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o) — 9}
9@1) - 91*
0(¢)— 0, — Ao X&) — x0(&y) — Axy
F, = : eR" F, = : e R¥,
0(¢,) — 008y — Aoy (&) — &
05— 0
L X (&) — x0(&o) — Ax} |
1(¢,) — (&) — AL} () — 1]
F, = : e R* F, = : e R*, (16)
1(5,) —1o(&) — AL L{CPHEE 5

In the NWLS formulation (14), the residual vector F; contains components of heterogeneous nature,
each with different units and levels of reliability. To account for this and to normalize the residual con-
tributions in the cost function, a weighting matrix W, is introduced. We assume that the residuals are
uncorrelated and that their associated errors, comprising both measurement noise and model uncertainty,
can be approximated as zero-mean white Gaussian noise. Under these assumptions, and following stan-
dard estimation theory [30], the optimal weighting matrix is diagonal, with each diagonal element equal
to the inverse of the variance of the corresponding residual component. Following the practical imple-
mentation adopted in [16], the variances are approximated using the maximum expected errors of each
measurement signal, accounting for both sensor specifications and known model uncertainties. This
leads to the following definition:

. 1 1 1 1
Wflae =d1ag ([F . llxnk’ W ’ llxnk» F ' llxnk’ g : 11><3k:|> )

. 1 1 1
Wlo'e ZdIag <|:F : 11><nk7 F : 11><nk7 F : 11><3ki|> s (17)

where 1 denotes an array of ones. The terms 87,.ux, 8Lars §Tmars S€mar r€present the maximum expected
errors (standard deviations) of the respective measurements, estimated according to the procedure
described in [16]. Using these values ensures that each residual contributes proportionally to the overall
cost, leading to an unbiased and balanced estimation of the unknowns X,.

3.2. Data acquisition

The first objective of the data-acquisition methods presented in this work is to ensure well-distributed
measurement poses within the static workspace of the robot [8]. This helps condition the numerical
solution to the nonlinear problem in Eq. (14), thus increasing the likelihood of convergence from an
initial pose guess to the actual initial pose. The second objective is to define a control strategy and
motion planning approach to move the EE to the measurement poses while satisfying the following
requirements:

1. the motion control cannot rely on sensor reference values, as they are unknown at startup (their
determination is the goal of the algorithm) or affected by high uncertainties;

2. in spite of requirement 1, the control strategy has to bring the UACDPR close enough to some
ideal pre-determined measurement poses;

3. motion planning and control must keep tension within a lower and an upper bound, to prevent
slackness and avoid cable breakage or exceeding actuator torque limits;
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Figure 2. Calibration poses selection and control planning.

4. since the first calibration method relies on static equations, the EE must be brought to equilibrium
configurations, reducing residual oscillations and enabling rapid data acquisition.

3.2.1. Selection of the measurement poses

Numerous theoretical methods have been proposed to determine optimal measurement configurations
for calibration based on observability indices [31]. These approaches include discrete optimization over
a predefined set of poses [32, 33], introducing deviations from ideal poses for improved robustness
[34], and online iterative pose selection to maximize observability [22]. However, the direct application
of these methods is challenging, since most of them assume that the robot can reach any EE pose,
which is true for overconstrained CDPRs (e.g., [33, 34]) and, more generally, for non-underactuated
architectures [31, 32]. In contrast, UACDPRs can only partially control the EE pose due to inherent
actuation limitations [35], so that observability criteria for fully actuated systems must be adapted, which
is beyond the scope of this paper. For this reason, we adopt a more pragmatic, heuristic-based strategy.

For the method involving static equations, we select equispaced positions along the Cartesian axes
within the workspace to ensure a uniform distribution of calibration configurations. This approach adapts
the methodology originally proposed in [26] for overconstrained CDPRs, which ensures that measure-
ment poses are well distributed in space and leads to a well-conditioned NWLS problem. To implement
this approach, we first evaluate the robot’s static workspace to determine its feasible boundaries. This
is achieved using the method proposed in [8], which involves discretizing the 3D installation volume
with a grid of candidate points p; for j=1,...,N. Each point p; is tested for inclusion in the static
workspace by solving the inverse geometrico-static problem, which provides the complete equilibrium
pose and corresponding cable tensions for a given position. Wrench feasibility and equilibrium sta-
bility are then checked to validate the configuration. The overall boundary of the static workspace is
finally reconstructed using the alpha-shape algorithm [36], based on the collection of valid points (see
Figure 2a). The complete algorithm for checking if a point belongs to the static workspace is detailed in
Appendix A.

Once the static workspace is defined, we select translational bounds p,, and p,, that define the corners
of a parallelepiped inscribed in the static workspace. A regular grid of n,, n,, and n, points is computed
across the position intervals [py, ., P> [Pry» Pusy)> @0d [Py, P, 1- Figure 2b shows an example with
n, =n, =n, = 3. At each position, we apply the method detailed in Appendix A to solve the inverse
geometrico-static problem and determine the orientation that satisfies static equilibrium. The resulting
k, poses are stored in the array Z,,,,, and their associated cable tensions, computed using Eq. (A2), are
stored as future control setpoints in the matrix Ty = [T1, . . . , T4, ]. This procedure ensures that each
measurement pose corresponds to a valid and controllable static equilibrium.

For the second self-calibration method, which does not rely on static equilibrium, we apply a similar
principle in the time domain. Constant-velocity trajectories are executed across the workspace, and data
are sampled at uniform time intervals. This approach aims to approximate a uniform spatial distribu-
tion of measurement poses. Although it does not explicitly optimize observability indices, prior studies
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suggest that calibration can still be effective if the poses are sufficiently numerous and well distributed
in the workspace [37, 38]. Observability-based pose selection maximizes the sensitivity of the resid-
uals to the unknown parameters, which improves convergence when only a limited number of poses
is used. However, comparable results may be achieved using a sufficient number of uniformly or ran-
domly sampled configurations, particularly near workspace boundaries [32]. Therefore, the proposed
approach offers a pragmatic solution that can ensure acceptable accuracy, provided that the control
strategy maintains the kinematic constraints (i.e., cable tensions remain within the prescribed bounds).

3.2.2. Data-acquisition procedure

Recalling requirements 1 through 4, it is not feasible to move the EE between equilibrium measure-
ment poses and simultaneously suppress residual oscillations using conventional trajectory shaping
techniques for vibration damping, such as input-shaped trajectories (e.g., [35]). These methods require
accurate joint-position feedback, which in turn depends on a calibrated reference for cable lengths.
Therefore, they are only applicable after the initial self-calibration process has been completed.

Furthermore, robust control strategies for UACDPRs that can cope with large geometric uncertain-
ties (such as those present prior to calibration) remain an open research challenge. For this reason, a
conservative control approach was adopted in this study, prioritizing safety and constraint preservation
performance.

Once the static equilibrium measurement poses are defined and the UACDPR is powered on, joint-
space force control is used to drive the EE. Assuming that the EE starts within the static workspace,
the initial cable tensions are recorded, and a smooth transition is commanded toward a desired tension
vector . In this context, we define 7(¢) as the time-varying tension reference used to guide the EE
between each equilibrium configuration , € Tmp(,i,,,.z While any static configuration corresponding to
T, is theoretically valid, a convenient “home” pose may be chosen, and 7, accordingly computed via
static analysis. This initial motion is essential for generating the initial guess used in Section 3.3.

After allowing sufficient time for the EE to reach equilibrium, data logging begins. The tension
setpoints in T, are then sequentially applied, with a waiting period introduced after each setpoint ;
is reached. Static equilibrium at each pose is detected by monitoring the ripple in the measured cable
tensions. When the amplitude of the ripple falls below the load cell’s uncertainty threshold, the system
is considered to have reached a steady state, and residual oscillations are assumed to be negligible.

The sequence of equilibrium poses is chosen to minimize transition time (Figure 2c¢). Although there
is no explicit control of the EE pose between tension setpoints, pure force control maintains active cable
constraints, ensuring requirement 3 is met. Since this method is sensitive to load-cell noise, accurate
calibration of load cells is crucial. If the measured cable tensions deviate from their true value, the actual
equilibrium configurations of the EE may differ from the expected ones, leading to incorrect assumptions
about static constraints. This, in turn, may affect the accuracy of the self-calibration algorithm, as the
constraints used to estimate the initial pose may no longer be valid. Moreover, unaccounted tension
errors can lead to situations where the EE moves outside the static workspace, further compromising
the reliability of the collected measurements.

To minimize total data acquisition time, we adopted a trial-and-error approach to tune the trajectory
profiles, striking a balance between fast transitions (enabled by higher velocities) and short oscilla-
tion damping periods. This tuning process is architecture-specific and needs to be performed only
once for a given UACDPR. If the system’s geometric and inertial properties remain unchanged, the
identified motion parameters can be reused across all subsequent startups, ensuring that the proposed
self-calibration procedure remains fully automatic in routine operation. This assumption aligns with the

2In this work, a 5th-degree polynomial is used to generate each cable-tension setpoint. This approach does not guarantee that
the EE remains strictly inside the static workspace during transitions, but the motion profiles can be experimentally adjusted to
keep constraints active (e.g., by increasing the transition duration).
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Figure 3. Flowchart of the data-acquisition algorithm.

current objective of automating initial-pose self-calibration, which is based on a fixed mechanical archi-
tecture. However, it would need to be reconsidered if the method were extended to the self-calibration
of geometric parameters, as might be required in reconfigurable UACDPRs.

The data acquisition method for the two self-calibration algorithms described in Section 3.1 differs
in the data extraction procedure. For the static-equation-based method, only equilibrium pose measure-
ments from Z,,, are used, identified by the stationary values of measured tensions in the pre-defined
setpoints Ti,,,.:. In contrast, for the method that does not rely on static equations, since Egs. (8) and (9)
are valid during the entire data acquisition procedure, any measure following the one corresponding to
the initial pose is a valid candidate for the calibration measurement set. Therefore, any sample time that
is a multiple of the logging interval can be selected to collect a sufficient number of measurements k
and to uniformly distribute measurement poses in the workspace.

The complete acquisition workflow for both self-calibration strategies is summarized in the flowchart
in Figure 3.

3.3. Initial guess

The self-calibration problem (14) is solved using a gradient-based optimizer, whose convergence
depends on the quality of the initial guess X, = [;ggum, Z;m]T, For both self-calibration algorithms,
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UACDPR prototype setup Winch and platform particulars

Figure 4. Extperimental setup.

the initial guess for the pose ¢, is obtained by solving the direct static problem (6) using the given
tension setpoint 7,. For the measurement poses comprised in the array Z,,.,,, a suitable tentative solu-
tion for the self-calibration algorithm with j = tlo€ is given by the ideal equilibrium poses included in
the array Z,q,,. For the self-calibration with j = lo €, instead, the procedure for finding a suitable initial
tentative solution is taken from [23]:

1. from the initial equilibrium pose 8 0.guess cable lengths I 4., and swivel angles o ¢ ., are obtained
through inverse kinematics;

2. estimates of cable lengths I' and swivel angles o* relative to the i-th measurement pose are
obtained by adding the i-th cable-length variations and swivel-angle variations measured dur-
ing the EE motion to ly g and 0 g, Namely I =1y . + Al and 67 = 0 g5 + A5 this
computation is made for all measurement poses, thus obtaining I, ..., I; and 67, ..., 07};

3. the measurement pose vector Z,,, is obtained performing a pose estimation for each measure-
ment pose using the corresponding reference values of I7, 0%, and €, through the sensor-fusion
algorithm described in [16].

4. Experiments and results

The effectiveness of the data acquisition method presented in Section 3.2 was assessed through exper-
iments on a spatial 4-cable UACDPR prototype at the IRMA L@B laboratory of the University of
Bologna, shown in Figure 4. The self-calibration algorithms described in Section 3.1 were tested offline
in a MATLAB environment. Table I reports the constant geometric parameters of the UACDPR, where
i, j, and k are the unit vectors of the local pulley frames aligned with the Oxyz axes. The coordinates
of vectors d; and "a] are expressed in Oxyz and Pxyz, respectively. These values were measured using a
meter tool with an uncertainty of I mm. The EE mass, measured with a weighing scale, is m = 12.992
kg, and the vector that points from P to G, obtained by the CAD model of the platform and expressed
in the mobile frame, is s’ = [000.173]" m. The sensors employed are shown in Figure 4b, where the
platform (A in Figure 4a) and the winch (B in Figure 4a) are shown in detail. Specifically, cable lengths
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Table I. Geometrical parameters of the 4-cable UACDPR prototype.

i r[m] d;[m] Pa[m] X; Y %
1 003 [1.065 — 1.155 1.839]” [0.075 — 0.075 0.266]" -k i
2 003 [1.066 1.155 1.839]” [0.075 0.075 0.266]" -k i
3003 [— 1.066 1.155 1.839]" [ — 0.075 0.075 0.266]" -k - i
4 003 [—1.065—1.1551.839]" [—0.075 —0.0750.266]" -k —j —i

were estimated by using 20-bit incremental encoders with an uncertainty of £0.144° on each motor axis
(C in Figure 4b), whereas swivel angles were measured by 16-bit incremental encoders with an uncer-
tainty of £0.03° (E in Figure 4b), mounted directly on the swivel axes of pulleys. Cable tensions were
measured using load cells inside the transmission (D in Figure 4b) with a full scale (F.S.) of 100 kg,
and accuracy of 0.02% F.S. EE Euler angles (ZYX convention) were measured using an Xsens MTi-630
AHRS fixed to the platform (F in Figure 4b). The uncertainty is £0.2° for roll and pitch and +-1° for yaw.
The AHRS was configured to set the startup value of the yaw measure to 0, as the north reference value
given by the magnetometer is not reliable due to the high electro-magnetic disturbances in the UACDPR
environment. The maximum absolute noise levels, based on the aforementioned sensor specifications
and on unmodeled effects were estimated according to the results of [16] as:

180al =1°, 8Lyl =0.01m,  [8€0| =2°,  [8Tpar] =10N. (18)

To measure the real EE initial pose £ ., = [Pg e €0 ]’ @nd use it as ground truth for the self-calibration
results, a manual homing procedure was performed before each test. The platform was positioned against
amechanical support where the nominal values of cable lengths, swivel angles, and yaw were previously
measured with a high-precision photogrammetry system.

After the static workspace analysis, the translational bounds were set as:

T

p,=[-04 —04 06]'m and p,=[04 04 12] m. (19)

The choice of the number of measurement poses k was guided by the main objective of this work: achiev-
ing automatic self-calibration in reduced time, without compromising accuracy. For the same reason,
our evaluation is mainly based on the calibration time. To analyze the effect of different measurement-
pose sets on the initial-pose self-calibration, two spatial grids were discretized using different values of
ny, ny, and n,. In the first grid, n, = n, =n, =2, resulting in a total of k = 8 equilibrium poses. In the
second grid, n, =n, =n, = 3, yielding k = 27 poses. The equilibrium poses Z,,.,, and tension setpoints
T, ipoine for k =2 are reported in Table II as an example, while results for k =27 are omitted as they do
not provide additional insights.

The initial tension setpoint was set close to the first component t; of T, (Which is the same
for the two grids), at T, = [100.00 100.00 100.00 100.00] N. The data logging rate for all sensors was
100 ms, balancing file size and data resolution. The self-calibration problem (14) was solved using a
PC with a 13th generation Intel i7 processor and 32 GB of RAM, distributing the computation across
14 cores. For both j = tloe and j = loe€ the fimincon MATLAB routine with a trust-region-reflective
algorithm was used with a termination tolerance of 107'° on the function value, of 10~® on the first-
order optimality, and of 107!° on the optimization variables. The gradient was analytically formulated
to improve computational efficiency, as in [23], and the initial guess was generated using the methods
described in Section 3.3. A graphical representation of the measured tensions, along with the reference
trajectory 7 used to transition between the equilibrium configurations, is shown in Figure 5.

The results of the two self-calibration methods introduced in Section 3.1 are reported in Table III,
where the following data are specified:
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Table I1. Ideal measurement poses and tension setpoints, with n, =n, =n, = 2.

i & idear; [M, rad] T setpoinsi 1]

1 [0.40 0.40 1.20 0.08 —0.09 0.01]" [118.48 170.83 115.57 82.98]"
2 [ —0.40 0.40 1.20 0.08 0.09 — 0.00]" [82.98 115.57 170.83 118.48]"
3 [—0.40 —0.40 1.20 — 0.08 0.09 0.00]” [115.49 82.97 118.54 170.73]"
4 [0.40 —0.40 1.20 —0.08 —0.09 — 0.00]" [170.73 118.54 82.97 115.49]"
5 [0.40 —0.400.60 —0.15 —0.15 —0.01]" [81.18 55.90 31.01 53.86]"
6 [—0.40 —0.400.60 —0.150.150.01]" [53.86 70.04 81.18 31.01]"
7 [ —0.400.40 0.60 0.150.15 —0.01]" [31.01 53.87 81.21 55.87]"
8 [0.40 0.40 0.60 0.15 — 0.15 0.01]” [55.87 81.21 53.87 31.01]"

200

150

0 1 1 1 1 1 1 1
0 16 32 48 64 80 96 112 128

time [s]

Figure 5. Sampled and reference tensions with k = 8. The black curves, with superscript (*), represent
the tension reference applied during transitions, while the colored curves are the measured tensions,
with superscript (*).

« the used sensor set j, and thus, the related self-calibration algorithm;

« the total self-calibration time f,,, composed by the data acquisition time and initial-pose
estimation time;

« the number of pose measurements k used in the algorithm;
« the resulting initial position error norm &, = [Py . — Posoil;

« the resulting initial orientation error &, = |&.as — ®o01|, Where « is the rotation angle in the
axis-angle parameterization of the initial orientation. The angle « is obtained from the rotation
matrix R(e) as:

> (20)

_ <R1,1(€)+R2,2(€)+R3,3(€) - 1)
o = arccos .
Trials a and b share the same dataset, corresponding to the data acquisition in which the EE tran-
sitioned between 8 equilibrium poses. Similarly, trials ¢ and d share a dataset where the EE followed
the path with 27 equilibrium poses. Therefore, the data acquisition time for trials a and b is the same
and equal to 74, = 2.13 min, whereas t,, = 5.11 min for trials ¢ and d. The total self-calibration time z,.
reported in Table III consists of both the data acquisition time ¢,, and the computational time required

by the solver t,,,, which depends on the number of poses k used in the optimization. For trials b and d,
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Table I11. Initial-pose self-calibration algorithm results.

Trial J t,. [min] k €, [mm] &, [deg]
a tloe 2.23 8 12 1.24
b loe 2.24 19 23 5.44
c tloe 10.04 27 7.2 3.14
d loe 10.02 128 22 2.86

where cable tension measurements were not used, the pose sampling rate from the logged dataset was
chosen such that the number of extracted poses k yielded an optimization time ¢,,, approximately equal to
that of their tension-based counterparts (trials a and ¢). This ensured a fair comparison between methods
that do and do not utilize load-cell measurements.

Incorporating tension measurements (j = tlo€) substantially improves position accuracy. For
instance, using only 8 equilibrium poses, the error drops from 23 mm (trial b) to 12 mm (trial a).
Similarly, for k = 27, it decreases from 22 mm (trial d) to 7.2 mm (trial c¢). This trend confirms that static
equilibrium constraints and cable tension measurements significantly enhance positional accuracy. The
effect on orientation accuracy is more difficult to interpret. When comparing trials a and b, the inclu-
sion of tension measurements reduces the orientation error from 5.44° to 1.24°, showing a clear benefit.
However, this trend does not persist when increasing the number of poses. In fact, trial ¢ (tension-based)
results in a worse orientation estimate (3.14°) than trial a (1.24°). This may be due to less favorable pose
distribution or greater noise influence in the larger dataset. Conversely, in the kinematic-only approach,
increasing k from 19 (trial ) to 128 (trial d) halves the orientation error (5.44° to 2.86°), as expected.
These results suggest that the impact of the number of measurement poses on orientation accuracy
is method-dependent: while the kinematic-only method benefits from more poses, the tension-based
method does not exhibit a clear trend and may be sensitive to dataset-specific factors.

Overall, the tension-based method (a, ¢) achieves better position accuracy while requiring signif-
icantly fewer measurements than the kinematic-only method (b, d). This is particularly noteworthy
because the tension-based method relies on a simplified physical model (neglecting cable sag and elas-
ticity) and uses cable-tension measurements, which typically carry greater uncertainty than kinematic
signals. Yet, despite these limitations, the inclusion of tension data and equilibrium constraints consis-
tently improves the positional estimate. It is also important to note that, although internal statics has
been previously used in self-calibration problems [14], to our knowledge, direct use of cable tension
measurements for initial-pose self-calibration in UACDPRs is novel. This work therefore provides the
first quantitative comparison of statics- vs. kinematics-based methods using real tension data. To obtain
self-calibration results comparable to those reported in [23], which achieved a best-case accuracy of
&, =23.36 mm and ¢, = 2.18° using a fast but manual procedure, the kinematic-only approach requires
at least k =128 poses and a total calibration time of over 10 minutes. In contrast, the tension-based
method achieves better performance with just kK = 8 and with the same self-calibration duration. These
findings emphasize the importance of exploiting static configurations and cable-tension measurements
to enable fast and accurate automatic self-calibration in UACDPRs.

5. Conclusions

In this paper, we presented a novel data acquisition framework for initial-pose self-calibration in
UACDPRs. The proposed procedures support automatic and rapid data collection, extending the
approach introduced in [23], which was fast but not automated. We improve upon [14], where high
accuracy required prolonged acquisition durations.

The proposed approach exploits pure force joint control to guide the EE through static equilibrium
configurations while ensuring that cable constraints remain active. By incorporating multiple sensor

https://doi.org/10.1017/50263574725102804 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574725102804

Robotica 15

measurements, including cable tensions, into the calibration process, the number of required measure-
ment poses is significantly reduced while maintaining high accuracy in the initial-pose estimation.
An experimental validation demonstrated that using static equilibrium poses in the calibration prob-
lem is mandatory to obtain accurate results in the estimation of the initial position. In particular, our
analysis demonstrated that leveraging force measurements effectively reduces the number of required
configurations, thus minimizing calibration time.

For future work, we aim to further automate the data acquisition process by developing a comprehen-
sive tool that integrates automatic measurement pose selection, motion planning, and a control strategy
to minimize both the path length and transition time between equilibrium poses, thus reducing unnec-
essary motion and overall data acquisition time. Another objective is to eliminate the need for an initial
trajectory tuning phase, which currently must be repeated after each reconfiguration of the UACDPR and
limits the system’s full automation potential. Additionally, we plan to integrate the two self-calibration
methods presented in this paper into a unified approach, leveraging their respective advantages: achiev-
ing high accuracy in both initial position and orientation while minimizing the required number of
equilibrium poses. A key challenge in this integration will be designing an algorithm for automatic data
extraction from logged measurements, ensuring that static equations are applied only when the EE is in
equilibrium configurations, while other sampled data contributes to the kinematic formulation.
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A. Static workspace evaluation

Following the approach described in [8], the modified inverse geometrico-static problem consists of
determining the cable tensions and the EE orientation for a given EE position within the workspace,
under a fixed tension distribution strategy (such as the barycentric method [39]). This leads to solving,
at each point, a system of three nonlinear equations in three unknowns (namely the EE orientation):

(ELE - S)g+EE A =0: (A1)

where

. E? € R¥>" and EL € R3*" are the translational and rotational blocks of the structure matrix E,T;
« E;7 e R™is any right inverse of E] and E]- € R™"~ spans the nullspace of E;

A € R"=3*! jg the array derived by the chosen tension distribution algorithm.

Then, cable tensions are obtained as:

T=E,"g+E "L (A2)
If the tensions satisfy the inequality constraints
Tinin ﬁ T 5 Tinax (A3)

and the pose is statically stable, then the pose is included in the static workspace. Static stability is
assessed by verifying the positiveness of the free-motion stiffness matrix KfL [25]:
K ' 2£27"(K+QE" (A4)

1T (ELTET

e R%% 5 any left nullspace basis of E”

ay [T 055 035
K—Zl:"'[ﬁ;n —aT~’i|+Z [03X3 E,.ﬁj]’

Al X ni”WiW,-T nin,'T Al 053 05,3
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where Z
defined as:

= 0(-,x») and the matrices K and Q are

(AS5)
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