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Abstract

The tail recursion modulo cons transformation can rewrite functions that are not quite tail-recursive
into a tail-recursive form that can be executed efficiently. In this article, we generalize tail recursion
modulo cons (TRMc) to modulo context (TRMC) and calculate a general TRMC algorithm from its
specification. We can instantiate our general algorithm by providing an implementation of applica-
tion and composition on abstract contexts and showing that our context laws hold. We provide some
known instantiations of TRMC, namely modulo evaluation contexts (CPS), and associative opera-
tions, and further instantiations not so commonly associated with TRMC, such as defunctionalized
evaluation contexts, monoids, semirings, exponents, and fields. We study the modulo cons instantia-
tion in particular and prove that an instantiation using Minamide’s hole calculus is sound. We also
calculate a second instantiation in terms of the Perceus heap semantics to precisely reason about
the soundness of in-place update. While all previous approaches to TRMc fail in the presence of
nonlinear control (e.g., induced by call/cc, shift/reset, or algebraic effect handlers), we can elegantly
extend the heap semantics to a hybrid approach which dynamically adapts to nonlinear control flow.
We have a full implementation of hybrid TRMc in the Koka language, and our benchmark shows the
TRMc transformed functions are always as fast or faster than using manual alternatives.

1 Introduction

The tail recursion modulo cons (TRMc) transformation can rewrite functions that are
not quite tail-recursive into a tail-recursive form that can be executed efficiently. This
transformation was described already in the early 70s by Risch (1973) and Friedman &
Wise (1975) and more recently studied by Bour et al. (2021) in the context of OCaml. A
prototypical example of a function that can be transformed this way is map, which applies
a function to every element of a list:

fun map( xs : list<a>, f : a -> b ) : list<b>
match xs
Cons(x,xx) -> Cons( f(x), map(xx,f) )
Nil -> Nil
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2 D. Leijen and A. F. Lorenzen

We can see that the recursive call to map is behind a constructor, and thus map as written
is not tail-recursive and uses stack space linear in the length of the list. Of course, it is
well known that we can rewrite map by hand into a tail-recursive form by using an extra
accumulating argument, but this comes at the cost of losing the simplicity of the original
definition.

The TRMc transformation can automatically transform a function like map to a tail-
recursive variant but also improves on the efficiency of the manual version by using in-
place updates on the accumulation argument.

In the following sections, we formalize our calculus and calculate a general tail recur-
sion modulo contexts algorithm (Section 3) that we then instantiate to various use cases
(Section 4 and Section 5), and in particular we study the efficient modulo cons instantia-
tion (Section 6), its extension to nonlinear control (Section 7), the user-facing first-class
constructor context feature and finally conclude with benchmarks (Section 9) and related
work. Readers may choose to read this article selectively in the following order:

1.1 Contributions

This paper is the extended version of Leijen & Lorenzen (2023). In previous
work (Risch, 1973; Friedman & Wise, 1975; Bour et al., 2021), TRMc algorithms are
given but all fall short of showing why these are correct, or provide particular insight in
what other transformations may be possible. In this article, we generalize tail recursion
modulo cons (TRMc) to modulo context (TRMC) and try to bring the general principles
out of the shadows of particular implementations and into the light of equational reasoning.
• Inspired by the elegance of program calculation as pioneered by

Bird (1984), Gibbons (2022), Hutton (2021), Meertens (1986), and many others,
we take an equational approach where we calculate a general tail recursion modulo
context transformation from its specification and two general context laws. The resulting
generic algorithm is concise and independent of any particular instantiation of the
abstract contexts as long as their operations satisfy the context laws (Section 3).

• We can instantiate the algorithm by providing an implementation of application and
composition on abstract contexts and show that these satisfy the context laws. In
Section 4, we provide known instantiations of TRMC, namely modulo evaluation con-
texts (CPS) and modulo associative operations, and show that those instances satisfy
the context laws. We then proceed to show various instantiations not so commonly
associated with TRMC that arise naturally in our generic approach, namely modulo
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Tail recursion modulo context: An equational approach 3

defunctionalized evaluation contexts, modulo monoids, modulo semirings, and modulo
exponents.

• In Section 6, we turn to the most important instance in practice, modulo cons. We show
how we can instantiate our operations to the hole calculus of Minamide (1998), and that
this satisfies the context laws and the imposed linear typing discipline. This gives us
an elegant and sound in-place updating characterization of TRMc where the in-place
update is hidden behind a purely functional (linear) interface.

• This is still somewhat unsatisfying as it does not provide insight in the actual in-place
mutation as such implementation is only alluded to in prose (Minamide, 1998). We pro-
ceed by giving a second instantiation of modulo cons where we target the heap semantics
of Xie et al. (2021) to be able to reason explicitly about the heap and in-place muta-
tion. Just like we could calculate the generic TRMC translation from its specification,
we again calculate the efficient in-place updating versions for context application and
composition from the abstract context laws. These calculated reductions are exactly the
implementation as used in our Koka compiler.

• A well-known problem with the modulo cons transformation is that the efficient in-place
mutating implementation fails if the semantics is extended with non-local control oper-
ations, like call/cc, shift/reset (Danvy & Filinski, 1990; Sitaram & Felleisen, 1990;
Shan, 2007), or general algebraic effect handlers (Plotkin & Power, 2003; Plotkin &
Pretnar, 2009), where one can resume more than once. This is in particular trou-
blesome for a language like Koka which relies foundationally on algebraic effect
handlers (Leijen, 2017; Xie & Leijen, 2021). In Section 7, we show two novel solu-
tions to this: The general approach generates two versions for each TRMc translation
and chooses at runtime the appropriate version depending on whether nonlinear con-
trol is possible. This duplicates code though and may be too pessimistic where the slow
version is used even if no nonlinear control actually occurs. Suggested by our heap
semantics, we can do better though – in the hybrid approach we rely on the precise ref-
erence counts (Xie et al., 2021), together with runtime support for context paths. This
way we can efficiently detect at runtime if a context is unique and fall back to copying
only if required due to nonlinear control.

• We have fully implemented the hybrid TRMc approach in the Koka compiler, and our
benchmarks show that this approach can be very efficient. We measure various variants
of modulo cons recursive functions and for linear control the TRMc transformed version
is always faster than alternative approaches (Section 9).

In this version, we make the following contributions over the conference version:
• We extend the TRMC algorithm to ensure that (when instantiated to general evaluation

contexts) it can optimize all recursive calls that are not under a lambda (Section 3).
In contrast, the algorithm presented in the conference paper could only achieve this if
the source program was in A-normal form (Flanagan et al., 1993). Our new algorithm
extends the previous algorithm to perform the necessary A-normalizations on-demand.

• We describe a method for composing context instantiations (Section 5). This is espe-
cially useful for programs where fast instantiations (like semiring contexts) are not quite
good enough to make the program tail-recursive. In that case, we can use the fast instan-
tiation where it applies and use a slower instantiation like defunctionalized contexts
for the rest. We use this insight to derive a tail-recursive evaluator for an arithmetic
expression evaluator on fields.
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4 D. Leijen and A. F. Lorenzen

• We include a detailed description of Koka’s implementation of constructor contexts. We
discuss a snippet of the assembly code generated by the Koka and explain the optimiza-
tions that make the implementation efficient (Section 7.3). Furthermore, we describe in
detail another implementation strategy proposed by Lorenzen et al. (2024), which does
not rely on reference counting and contrast it with our implementation.

• Constructor contexts were special in the conference version of this paper, since they
were the only contexts for which the transformation could not be done manually.
However, Lorenzen et al. (2024) show that the hybrid approach can be used to make
constructor contexts first-class values. This gives programmers the ability to make
their functions tail-recursive manually. We include several practical examples of pro-
gramming with first-class constructor contexts, where it would be hard to achieve a
tail-recursive version fully automatically, but a manual solution is evident.

The new content in this version supersedes several sections of the conference paper. We no
longer include “Improving Constructor Contexts” (which is now covered by the extended
algorithm in Section 3), “Modulo Cons Products” (which can be achieved more easily
using first-class constructor contexts), and “Fall Back to General Evaluation Contexts”
(which is less efficient than the implementation proposed in Section 7.4).

2 An overview of tail recursion modulo cons

As shown in the introduction, the prototypical example of a function that can be trans-
formed by TRMc is the map function. One way to rewrite the map function manually to be
tail-recursive is to use CPS where we add a continuation parameter k:

fun mapk( xs : list<a>, f : a -> b, k : list<b> -> list<b> ) : list<b>
match xs
Cons(x,xx) -> val y = f(x) in mapk(xx,f,compose(k, fn(ys) Cons(y,ys)))
Nil -> apply(k,Nil)

fun map( xs : list<a>, f : a -> b ) : list<b>
mapk(xs,f,id)

where we have to evaluate f(x) before allocating the closure fn(ys) Cons(y,ys) since f

may have an observable (side) effect. The function id is the identity function, and apply

and compose regular function application and composition:

fun compose( f : b -> c, g : a -> b ) : (a -> c) = fn(x) f(g(x))
fun apply( f : a -> b, x : a ) : b = f(x)
fun id( x : a ) : a = x

All our examples use the Koka language (Leijen, 2021) since it has a full implementation
of TRMc using the design in this paper, including support for nonlinear control (which
cannot be handled by previous TRMc techniques).

We would like to stress though that the described techniques are not restricted to Koka as
such and apply generally to any strict programming language (and particular instances can
already be found in various compilers, including GCC, see Section 4.6). Some techniques,
like the hybrid approach in Section 7.2, may require particular runtime support (like precise
reference counts), but this is again independent of the particular language.
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Tail recursion modulo context: An equational approach 5

2.1 Continuation style TRMc

Our new tail-recursive version of map may not consume any extra stack space, but it
achieves this at the cost of allocating many intermediate closures in the heap, that each
allocate a Cons node for the final result list. The TRMc translation is based on the
insight that for many contexts around a tail-recursive call, we can often use more efficient
implementations than function composition.

In this paper, we are going to abstract over particular constructor contexts and instead
represent abstract program contexts as ctx<a> with three operations. First, the ctx body

expression creates such contexts which can contain a single hole denoted as �; for exam-
ple, ctx Cons(1,Cons(2,�)) : ctx<list<int>>. We can see here that the context type
ctx<a> is parameterized by the type of the hole a, which for our purposes must match
the result type as well. Furthermore, we can compose and apply these abstract contexts as:

fun comp( k1 : ctx<a>, k2 : ctx<a> ) : ctx<a>
fun app( k : ctx<a>, x : a ) : a

Our general TRMC translation can convert a function like map automatically to a tail-
recursive version by recognizing that each recursive invocation to map is under a constant
constructor context (Section 6), leading to:

fun mapk( xs : list<a>, f : a -> b, k : ctx<list<b>> ) : list<b>
match xs
Cons(x,xx) -> val y = f(x) in mapk(xx,f,comp(k,ctx Cons(y,�)))
Nil -> app(k,Nil)

fun map( xs : list<a>, f : a -> b ) : list<b>
mapk(xs,f,ctx �)

This is essentially equivalent to our manually translated CPS-style map function where
we replaced function application and composition with context application and context
composition, and the identity function with ctx �.

Thus, an obvious way to give semantics to our abstract contexts ctx<a> is to represent
them as functions a -> a, where a context expression is interpreted as a function with a
single parameter for the hole, for example, ctx Cons(1,Cons(2,�)) = fn(x) Cons(1,Cons

(2,x)) (and therefore ctx � = fn(x) x = id). Context application and composition then
map directly onto function application and composition:

alias ctx<a> = a -> a
fun comp( k1 : ctx<a>, k2 : ctx<a> ) : ctx<a> = compose(k1,k2)
fun app( k : ctx<a>, x : a ) : a = apply(k,x)

Of course, using such semantics is equivalent to our original manual implementation and
does not improve efficiency.

2.2 Linear continuation style

The insight of Risch (1973) and Friedman & Wise (1975) that leads to increased efficiency
is to observe that the transformation always uses the abstract context k in a linear way,
and we can implement the composition and application by updating the context holes in-
place. Following the implementation strategy of Minamide (1998) for their hole-calculus,
we can represent our abstract contexts as a Minamide tuple with a res field pointing to the
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6 D. Leijen and A. F. Lorenzen

final result object, and a hole field which points directly at the field containing the hole
inside the result object. Assuming an assignment primitive (:=), we can then implement
composition and application efficiently as:

where the empty ctx � is represented as Id (since we do not yet have an address for the
Ctx.hole field). If we inline these definitions in the mapk function, we can see that we end
up with a very efficient implementation where each new Cons cell is directly appended to
the partially build final result list. In our actual implementation, we optimize a bit more by
defining the ctx type as a value type with only the Ctx constructor where we represent the
Id case with a hole field containing a null pointer. Such a tuple is passed at runtime in two
registers and leads to efficient code where the match in the app function, for example, just
zero-compares a register (see Section 7.3). Section 9 shows detailed performance figures
that show that the TRMc transformation always outperforms alternative implementations
(for linear control flow).

2.3 First-class constructor contexts

The constructor context can be implemented using in-place updates since the TRMC con-
version guarantees it is used linearly. However, it turns out this also makes the conversion
invalid if the host language has advanced control primitives like call/cc or general alge-
braic effect handlers (as in Koka). For example, for the map function, the passed in function
f might resume multiple times. We describe this issue in detail in Section 7.1. As we show
in this paper, we can compile constructor contexts in such a way that we are able to detect
if a context is used nonlinearly and, in such case, fall back to copying the context path at
runtime to maintain correct semantics (Section 7.2). This still gives us the in-place update
efficiency in the usual case but now also handles nonlinear usage.

Furthermore, this fully encapsulates the imperative implementation of constructor con-
texts behind a purely functional interface, and we can expose these contexts as first-class
values in the language. This allows us to write the result of the TRMc transformation
manually.

In Koka, first-class constructor contexts are written as a ctx K expression with a single
hole denoted by an underscore _ (Lorenzen et al., 2024). For example, we can write a
list constructor context as ctx Cons(1,_) or a binary tree constructor context as ctx Node

(Node(Leaf,1,Leaf),2,_). The composition operation is written as (++), while application
is written as (++.). For example, the expression (ctx Cons(1,_)) ++ (ctx Cons(2,_)) ++.

Nil evaluates to (ctx Cons(1,Cons(2,_))) ++. Nil and then to [1,2]. Using these context
expressions, we can directly implement the TRMC transformed map function in Koka:
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Tail recursion modulo context: An equational approach 7

fun map-trmc’( xs : list<a>, f : a -> b, k : ctx<list<b>> ) : list<b>
match xs
Cons(x,xx) -> map-trmc’(xx,f, k ++ ctx Cons(f(x),_))
Nil -> k ++. Nil

fun map-trmc( xs : list<a>, f : a -> b ) : list<b>
map-trmc’(xs,f,ctx _)

These constructor context are quite efficient (see Lorenzen et al., 2024 and Section 7.3),
and the Koka compiler implements the automatic TRMc conversion as a source-to-source
transformation using the first-class constructor contexts directly. We give further examples
of the programming with first-class constructor contexts in Section 8.

3 Calculating tail recursion modulo context

In order to reason precisely about our transformation, we define a small calculus in
Figure 1. The calculus is mostly standard with expressions e consisting of values v, applica-
tion e1 e2, let-bindings, and pattern matches. We assume well-typed programs that cannot
go wrong, and where pattern matches are always complete and cannot get stuck. Since
we reason in particular over recursive definitions, we add a special environment F of
named recursive functions f . We could have encoded this using a fix combinator, but using
explicitly named definitions is more convenient for our purposes.

Following the approach of Wright & Felleisen (1994), we define applicative order eval-
uation contexts E. Generally, contexts are expressions with one subexpression denoted as
a hole �. We write E[v] for the substitution E[� := v] (which binds tighter than function
application). The definition of E ensures a single reduction order where we never evaluate
under a lambda. Dually, we define tail contexts T (Abelson et al., 1998). They describe the
last term to be evaluated in an expression. Unlike evaluation contexts, there can be several
holes in a tail context (say, in different branches of a match-statement) and the substitution
T[� := v] is assumed to be capture-avoiding. We also define expression contexts X which
match any expression that is not under a lambda.

The operational semantics can now be given using small step reduction rules of the form
e1−→ e2 together with the (step) rule to reduce in any evaluation context E[e1] �−→E[e2]
(and in essence, an E context is an abstraction of the program stack and registers). We write
�−→∗ for the reflexive and transitive closure of the �−→ reduction relation. The small step
operational rules are standard, except for the (fun) rule that assumes a global F environment
of recursive function definitions.

When e �−→∗ v, we call e terminating (also called valuable Harper, 2012). When an
evaluation does not terminate, we write e⇑ . For closed terms, we write e1

∼= e2 if e1 and
e2 are extensionally equivalent: either e1 �−→∗ v and e2 �−→∗ v, or both e1⇑ and e2⇑ . For
open terms, we write e1

∼= e2 if σ (e1) ∼= σ (e2) for all substitutions σ of free variables by
values. During reasoning, we sometimes use the following equalities:

(letid) let x= e in x ∼= e
(letapp) (λx. e1) e2

∼= let x = e2 in e1

(letfloat) E[let x= e1 in e2] ∼= let x = e1 in E[e2] if x �∈ fv(E)
(matchfloat) E[match e { pi→ ei }] ∼= match e { pi→E[ei] } if fv(pi) �∩ fv(E)
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8 D. Leijen and A. F. Lorenzen

Expressions:

e ::= v (value)
| e e (application)
| let x = e in e (let binding)
| match e { pi �→ ei } (matching, i� 1)

p ::= Ck x1 . . . xk (pattern)

v ::= x, y (variables)
| f (recursive functions)
| λx. e (functions)
| Ck v1 . . . vn (constructor of arity k, with k � 0 and n� k)

F ::= { fi = λx. ei } (recursive definitions)

Syntax:

f x1 . . . xn = e
.= f = λx1 . . . xn. e

λx1 . . . xn. e
.= λx1. . . . λxn. e

Evaluation Contexts:

E ::= � | E e | v E | let x = E in e |match E { pi �→ ei } (strict, left-to-right)

Tail Contexts:

T ::= � | e T | let x = e in T |match e { pi �→Ti } (tail context)

Expression Contexts (= Tail Context + Evaluation Context):

X ::= � |X e | e X | let x = X in e | let x = e in X
| matchX { pi �→ ei } |match e { pi �→Xi }

Operational Semantics:

(let) let x = v in e −→ e[x:=v]
(beta) (λx. e) v −→ e[x:=v]
(fun) f v −→ e[x:=v] with f = λx. e ∈ F
(match) match (Ck v1 . . . vk) { pi �→ ei } −→ ei[x1:=v1, . . ., xk :=vk]

with pi = Ck x1 . . . xk

e1−→ e2

E[e1] �−→E[e2]
[STEP]

Fig. 1. Syntax and operational semantics.

Since the hole in an evaluation context marks the first term to be evaluated, rewriting along
these equalities does not change the evaluation order. Rewrites using the last equality may
lead to code duplication since they push the evaluation context into each branch (but this
can be avoided by inserting join points Maurer et al., 2017).
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Tail recursion modulo context: An equational approach 9

It is straightforward to show these equalities hold, for example, if e2 is terminating:

(λx. e1) e2

�−→∗ (λx. e1) v { e2 terminating }
�−→ e1[x:=v] { (beta) }
←− let x = v in e1 { (let) }
∗←− let x = e2 in e1 { e2 terminating }
(and if e2⇑ , then both do not terminate).

3.1 Abstract contexts

Before we start calculating our general TRMC transformation, we first define abstract con-
texts as an abstract type ctx τ in our calculus. There are three context operations: creation
(as ctx), application (as app), and composition (as (•)). These are not available to the user
but instead are only generated as the target calculus of our TRMC translation. We extend
the calculus as follows:

v ::= . . . | ctx E | _ • _ | app

where we assume that the abstract context operations are always terminating. In order to
reason about contexts as an abstract type, we assume two context laws. The first one relates
the application with the construction of a context:

(appctx) app (ctx E) e = E[e]

The second law states that composition of contexts is equivalent to a composition of
applications:

(appcomp) app (k1 • k2) e = app k1 (app k2 e)

When we instantiate to a particular implementation context, we need to show the context
laws are satisfied. In such case, we only need to show this for terminating expressions
e, since if e⇑ , the laws hold by definition. In particular, for (appctx) it follows directly
that app k e⇑ and E[e]⇑ . Of particular note is that the latter only holds for E contexts
since they guarantee that the hole is first in the evaluation order and that is one reason why
evaluation contexts are the maximum context possible for our TRMC translation. Similarly,
for (appcomp) it follows directly that (app (k1 • k2) e)⇑ and app k1 (app k2 e)⇑ .

3.2 Calculating a general tail-recursion-modulo-contexts algorithm

In this section, we are going to calculate a general TRMC translation algorithm from its
specification. The algorithm is calculated assuming an abstract context where the context
laws hold. Eventually, the algorithm needs to be instantiated in the compiler to par-
ticular contexts (like constructor contexts), with a particular implementation of context
application and composition. We show many such instantiations in Sections 4 and 6.

For clarity, we use single parameter functions for proofs and derivations (but of course
the results extend straightforwardly to multiple parameter functions). Now consider a
function f x = ef with its TRMC transformed version denoted as f ′:

f ′ x k = �ef �f ,k (k �∈ fv(ef ))
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10 D. Leijen and A. F. Lorenzen

Our goal is to calculate the static TRMC transformation algorithm �_�f ,k from its specifi-
cation, where f is the function we intend to transform and k is a fresh variable representing
the context. The first question is then how we should even specify the intended behavior
of such function?

We can follow the standard approach for reasoning about continuation passing style
(CPS) here. For example, Gibbons (2022) calculates the CPS version of the facto-
rial function, called fact′, from its specification as: k (fact n) ∼= fact′ n k, and simi-
larly, Hutton (2021) calculates the CPS version of an evaluator from its specification as:
exec k (eval e) ∼= eval′ e k. Following that approach, we use app k (f e) ∼= f ′ e k (a) as our
initial specification. This seems a good start since it implies:

f e
= �[f e] { context }
= app (ctx�) (f e) { (appctx) }
∼= f ′ e (ctx�) { specification (a) }
and we can thus replace any applications of f e in the program with applications to the
TRMC translated f ′ instead as f ′ e (ctx�).

Unfortunately, the specification is not yet specific enough to calculate with as it does
not include the translation function �_�f ,k itself which limits what we can derive. Can we
change this? Let’s start by deriving how we can satisfy our initial specification (a):

app k (f e)
∼= app k (let x = e in ef ) { (letapp) }
∼= let x = e in app k ef { (letfloat), x�∈ fv(k) }
= let x = e in �ef �f ,k { define specification (b) below }
= let x = e in f ′ x k { def . }
∼= f ′ (let x = e in x) k { (letfloat), x�∈ fv(f ′, k) }
∼= f ′ e k { (letid) }
This suggests a more general specification as app k e ∼= �e�f ,k (b) (for any e) which
both implies our original specification but also includes the translation function now. The
improved specification directly gives us a trivial solution for the translation as:

(base) �e�f ,k = app k e

That is not quite what we need for general TRMC though since this does not translate
any tail calls modulo a context in e at all. However, we can be more specific by matching
on the shape of e. In particular, we can match on general tail-modulo-context calls in the
expression e if it has the shape E[f e1]. We can then calculate1:

app k E[f e1]
= app k (app (ctx E) (f e1)) { (appctx) }
= app (k • ctx E) (f e1) { (appcomp) }
∼= f ′ e1 (k • ctx E) { specification (a) }
= �E[f e1]�f ,k { define }
1 The reader may note that the use specification (a) in this derivation is not directly inductive on the argument. In

all the other derivations in this section, the use of our specification is always on a smaller term (and similarly
in related work by Hutton, 2021 or Gibbons, 2022). Only in the directly tail-recursive case here, we use the
specification on the original term. However, we show in Appendix B.1 that since we apply it after unfolding the
original function, we can use Löb induction to show the use of our specification here is still sound (Theorem 1).
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Tail recursion modulo context: An equational approach 11

Effectively, we replace all direct tail-recursive calls in the original function f to tail-
recursive calls in our translated function f ′ by just extending the continuation parameter k.
Together with our earlier equation, we now have an initial specification of our transation
function:

(tail) �E[f e]�f ,k = f ′ e (k • ctx E) iff (�)
(base) �e�f ,k = app k e otherwise

Note that the equations overlap – for a particular instance of the algorithm we generally
constrain the (tail) rule to only apply for certain contexts E constrained by some particular
(�) condition (e.g., constructor contexts), falling back to (base) otherwise. Similarly, the
(tail) case allows a choice in where to apply the tail call for expressions like f (f e) for
example and a particular instantiation of (�) should disambiguate for an actual algorithm.
By default, we assume that any instantiation matches on the innermost application of f (for
reasons discussed in Section 4.2).

This is still a bit constrained, as these equations do not consider any evaluation contexts
E where the recursive call is under a let or match expression. We can again match on these
specific forms of e. For example, let x = e0 in e1 where e0 �=E[f e′] (so it does not overlap
with E contexts):

app k (let x = e0 in e1)
∼= let x = e0 in app k e1 { (letfloat), x�∈ fv(k) }
∼= let x = e0 in �e1�f ,k { specification }
= �let x = e0 in e1�f ,k { define }
Unfortunately, this rule is still too restrictive in general as it does not apply when the
let-statement is itself under a context E. For example, we might encounter an expression
like:

let x = (let y = e0 in f x y) in e1

Here, the recursive call is under the let-binding of x (as E[let y = e0 in f x y]), but the
y = e0 binding prevents the recursive call f x y to be the focus of the evaluation con-
text. This situation occurs whenever an expression is not in A-normal form (Flanagan
et al., 1993), and these cannot be optimized by the rules outlined so far (and neither by
the rules as presented in earlier work Leijen & Lorenzen, 2023). Instead, we need to con-
sider the general case where the let-binding appears under a context E. Assuming that the
variables bound in let-bindings and matches are fresh, we can calculate:

app k E[let x = e0 in e1]
∼= app k (app (ctx E) (let x = e0 in e1)) { (appctx) }
∼= let x = e0 in app k (app (ctx E) e1) { (letfloat), x�∈ fv(E, k) }
∼= let x = e0 in app k E[e1] { (appctx) }
∼= let x = e0 in �E[e1] �f ,k { (specification) }
= �E[let x = e0 in e1] �f ,k { define }
Effectively we have lifted out the let-binding from the evaluation context. We can do the
same for matches:
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12 D. Leijen and A. F. Lorenzen

app k E[match e0 { pi→ ei }]∼= app k (app (ctx E) (match e0 { pi→ ei })) { (appctx) }
∼= match e0 { pi→ app k (app (ctx E) ei) } {(matchfloat), pi = Ci x1 . . . xn, xj �∈ fv(E, k)}
∼= match e0 { pi→ app k E[ei] } { (appctx) }
∼= match e0 { pi→ �E[ei] �f ,k } { (specification) }
= �E[match e0 { pi→ ei }] �f ,k { define }
This form of specification essentially performs A-normalization whenever necessary to
create further opportunities to match on tail-recursive calls. Our presentation follows the
approach of Maurer et al. (2017), who describe the positions in a term that occur last in
an evaluation order as tail contexts T. They show that A-normalization can be achieved
by commuting the E and T contexts whenever possible. This is exactly the approach taken
here, where we commute single let-bindings and matches under E contexts to the front
of the term. A potential drawback of the match normalization is that it duplicates the
evaluation context E in each of the branches. Maurer et al. (2017) also show how join
points can be used to avoid code duplication in such case.

This leaves one last expression form to consider: the application of a function
to an argument. Using the intuition of commuting tail contexts, we might define
�E[e0 e1] �f ,k = e0 � E[e1] �f ,k . However, while e0 can now be evaluated early, the appli-
cation itself depends on the result of our transformation. Thus, we need to be a bit more
careful and instead calculate:

app k E[e0 e1]
∼= app k (app (ctx E) (e0 e1)) { (appctx) }
∼= app k (app (ctx E) ((let g = e0 in g) e1)) { (letid), for fresh g }
∼= let g = e0 in app k (app (ctx E) (g e1)) { (letfloat), fresh g }
∼= let g = e0 in app k E[g e1] { (appctx) }
∼= let g = e0 in �E[g e1] �f ,k { (specification) }
= �E[e0 e1] �f ,k { define }
In this general form, we need to strengthen our requirement that e0 �=E[f e′] to ensure that
it does not overlap with our newly calculated rules. We write e0 �=X[f e′] to mean that e0

cannot have a recursive call under an expression context X. The expression context X[e]
matches all possible expressions that contain e, unless e occurs in X[e] exclusively under
lambdas.

3.3 The tail-recursion-modulo-contexts algorithm

Figure 2 shows all five of the calculated equations for our generic tail recursion mod-
ulo contexts transformation (extended to multiple parameters). We can instantiate this
algorithm by defining the context type ctx α, the context construction (ctx), composition
(•), and application (app) operations, and finally the (�) condition constrains the allowed
context E to fit the particular context type.

As remarked in Section 3.2, our equationally derived algorithm relied on a (single) non-
inductive step, but we can still show formally that the algorithm is indeed sound:
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Tail recursion modulo context: An equational approach 13

(tlet) �E[let x = e0 in e] �f ,k = let x = e0 in � E[e] �f ,k

(tmatch) �E[match e0 { pi→ ei }] �f ,k = match e0 { pi→ �E[ei] �f ,k }
(tapp) �E[e0 e] �f ,k = let g = e0 in �E[g e] �f ,k with g fresh
(tail) �E[f e0] �f ,k = f ′ e0 (k • (ctx E)) iff (�)
(base) �e�f ,k = app k e otherwise

where e0 �=X[f e′]

Fig. 2. Calculated algorithm for general selective tail recursion modulo context transformation. It is
parameterized by the (�) condition, the composition (•), and application (app) operations.

Theorem 1. (The TRMC translation is sound)
Let f x = ef and f ′ x k = �ef �f ,k , then app k (f x) ∼= f ′ x k.

See Appendix B.1 for the proof.
Thanks to the A-normalization, we can also show that the TRMC algorithm exhaustively

optimizes recursive calls:

Theorem 2. (Matching all recursive calls)
For any transformed expression e′ = �e�f ,k with (�) unconstrained, we have e′ �=X[f e0].

There are two types of recursive calls that cannot be optimized by our algorithm: First,
we do not optimize recursive calls inside lambdas. This is a necessary restriction, since it
is impossible in general to push the accumulated context k under a lambda. Second, our
algorithm will only optimize the first recursive call(s) in the evaluation order. If those are
followed by further recursive calls, the evaluation context E stored as ctx E in the (tail) rule
may still contain unoptimized recursive calls. We will revisit this problem in Section 4.2.

To see our algorithm in action, let’s consider the map function again:

map xs f = match xs { Nil→Nil
Cons x xx→Cons (f x) (map xx f ) }

When translating this function, we first use the (tmatch) rule with E = � to descend into
the branches of the match. In the Nil branch, the (base) rule applies. In the Cons branch,
we use the (tapp) rule (again with E = �) to bind the call to f x. We then use the (tail)
rule to optimize the recursive call to map xx f:

map′ xs f k = match xs { Nil→ app k Nil
Cons x xx→ let c = Cons (f x) in map′ xx f (k • (ctx (c�))) }

However, for Constructor Contexts (Section 6), it is useful to keep the Cons constructor in
the context passed to map. In our pratical implementation, we therefore modify the (tapp)
rule slightly to extract the arguments instead of the entire partially applied function. Our
final transformation for map is then:

map′ xs f k = match xs { Nil→ app k Nil
Cons x xx→ let y = f x in map′ xx f (k • (ctx (Cons y�))) }
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14 D. Leijen and A. F. Lorenzen

4 Instantiations of the general TRMC transformation

With the general TRMC transformation in hand, we discuss various instantiations in
this section. In the next section, we look at the update-in-place modulo cons (TRMc)
instantiation in detail.

4.1 Modulo evaluation contexts

If we use true for the (�) condition, we can translate any recursive tail modulo evaluation
context functions. Representing our abstract context directly as an E context is usually
not possible though as E contexts generally contain code. The usual way to represent an
arbitrary evaluation context E is simply as a (continuation) function λx. E[x] with a context
type ctx α = α→α:

(ectx) ctx E = λx. E[x] (x�∈ fv(E))
(ecomp) k1 • k2 = k1 ◦ k2

(eapp) app k e = k e

This is an intuitive definition where ctx� corresponds to the identity function and context
composition to function composition. If we apply the TRMC translation, we are essentially
performing a selective CPS translation where the context E is represented as the continua-
tion function. We can verify that the context laws hold for this instantiation (where we can
assume e is terminating):

Composition:

app (k1 • k2) e
= app (k1 ◦ k2) e { (ecomp) }
= app (λx. k1 (k2 x)) e { def ◦ }
= (λx. k1 (k2 x)) e { (eapp) }
∼= let x= e in k1 (k2 x) { (letapp) }
∼= k1 (k2 (let x= e in x)) { (letfloat) }
∼= k1 (k2 e) { (letid) }
= k1 (app k2 e) { (eapp) }
= app k1 (app k2 e) { (eapp) }

and application:

app (ctx E) e
= app (λx. E[x]) e { (ecomp) }
= (λx. E[x]) e { (eapp) }
∼= let x= e in E[x] { (letapp) }
∼= E[let x= e in x] { (letfloat) }
= E[e] { (letid) }

As a concrete example, let’s apply the modulo evaluation context to the map function:

map xs f = match xs { Nil→Nil
Cons x xx→ let y = f x in Cons y (map xx f ) }

which translates to:

map′ xs f k = match xs { Nil→ app k Nil
Cons x xx→ let y = f x in map′ xx f (k • (ctx (Cons y�))) }

and which the compiler can further simplify into:

map′ xs f k = match xs { Nil→ k Nil
Cons x xx→ let y = f x in map′ xx f (λx. k (Cons y x)) }
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Tail recursion modulo context: An equational approach 15

where we derived exactly the standard CPS style version of map as shown in Section 2.
A general evaluation context transformation creates more opportunities for tail-recursive
calls, but this also happens at the cost of potentially heap allocating continuation closures.
As such, it is not common for strict languages to use this instantiation. The exception
would be languages like scheme that always guarantee tail calls, but in that case the modulo
evaluation contexts instantiation is already subsumed by general CPS conversion.

4.2 Nested translation of modulo evaluation contexts

The current instantiation is already very general as it applies to any E context, but we can do
a little better. While the innermost non-tail call E[f e] becomes f ′ e (k • ctx E), the context
E may contain itself further recursive calls to f . Since k is just a variable this allocates a
closure for each composition (•) and invokes every nested call f e with an empty context
as f ′ e (ctx�) before composing with k. This is not ideal, and in the classic CPS translation
this is avoided by passing k itself into the closure for ctx E directly. Fortunately, we can
achieve the same by specializing the compose function using the specification (b):

k • (ctx E)
= λx. k ((ctx E) x) { (ecomp), (•) }
∼= λx. k E[x] { (ectx), (beta) }
= λx. app k E[x] { (eapp) }
∼= λx. �E[x]�f ,k { specification (b) }
That is, in the compiler, instead of generating k • (ctx E), we invoke the TRMC translation
recursively in the (tail) case and generate λx. �E[x]�f ,k instead. This avoids the alloca-
tion of function composition closures and directly passes the continuation k to any nested
recursive calls.

4.3 Modulo defunctionalized evaluation contexts

In order to better understand the shapes that evaluation contexts can take, we want to
consider the defunctionalization (Reynolds, 1972; Danvy & Nielsen, 2001) of the general
evaluation context transformation. It turns out that this yields an interesting context in its
own right. First, we observe that in any recursive function the evaluation context can only
take a finite number of shapes depending on the number of recursive calls. We write this
as:

E : :=� | E1 | . . . | En

We define an accumulator datatype by creating a constructor H for the � context and for
each Ei a constructor Ai that carries the free variables of Ei. The compiler then generates
an app function where we interpret Ai by evaluating Ei with the stored free variables:

(dctx) ctx Ei = Ai x1 . . . xm H where x1, . . ., xm = fv(Ei)
(dcomp) k1 •H = k1

(dcomp) k1 • (Ai x1 . . . xm k2) = Ai x1 . . . xm (k1 • k2)
(dapp) appH e = e
(dapp) app (Ai x1 . . . xm k) e = �Ei[e , x1 . . . xm]�f ,k

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100117
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.89, on 05 Nov 2025 at 10:51:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100117
https://www.cambridge.org/core


16 D. Leijen and A. F. Lorenzen

Just as we saw in Section 4.2, we need to use the translated evaluation context in the
definition of app to translate nested calls. The context laws now follow by induction – see
Appendix B.2 in the supplement for the derivations. Applying this instantiation to the map

function, we obtain:

type ctx α = H |A1 α (ctx α)
map′ xs f k = match xs {Nil→ app k Nil; Cons(x, xx)→ let y = f x in map′ xx f (A1 y k) }
In the Cons branch, we have inlined k • (A1 y H). The app function interprets A1 by calling
itself recursively on the stored evaluation context:

app k xs = match k {H→ xs; A1(y, k′)→ app k′ (Cons y xs) }
As we can see, using the modulo defunctionalized evaluation context translation, we
derived exactly the accumulator version of the map function that reverses the accumulated
list in the end (where app is reverse)! In particular, for the special case where all evaluation
contexts are constructor contexts Cm x1 . . . (f . . .) . . . xm (as is the case for map), the accu-
mulator datatype stores a path into the data structure we are building and thus essentially
becomes a zipper structure (Huet, 1997).

This defunctionalized approach might resemble general closure conversion at
first (Appel, 1991): In both approaches, we store the free variables in a datatype. However,
in closure conversion the datatype typically also contains a machine code pointer and one
jumps to the code by calling this pointer, while in our case we match on the specialized
constructors (similar to the approach of Tolmach & Oliva, 1998).

4.3.1 Reuse

As the defunctionalization makes the evaluation context explicit, we can optimize it fur-
ther. As Sobel & Friedman (1998) note, the defunctionalized closure is only applied once
and we can reuse its memory for other allocations. This can happen automatically in lan-
guages with reuse analysis such as Koka (Lorenzen & Leijen, 2022), Lean (Ullrich & de
Moura, 2019), or OPAL (Didrich et al., 1994). In particular, in the app function, the match:

A1 y k′ → app k′ Cons(y, xs)

can reuse the A1 in-place to allocate the Cons node if the A1 is unique at runtime. In our
case, the context is actually always unique (we show this formally in Section 6.1), and the
A1 nodes are always reused! Even better, if the initial list is unique, we also reuse the initial
Cons cell for the A1 accumulator itself in map′ and no allocation takes place at all – the
program is functional but in-place (Xie et al., 2021; Lorenzen et al., 2023).

4.4 Modulo associative operator contexts

In the previous instantiations, we considered general evaluation contexts. However, we can
often derive more efficient instantiations by considering more restricted contexts. A par-
ticularly nice example are monoidal contexts. For any monoid with an associative operator

 : τ→τ→ τ and a unit value unit : τ , we can define a restricted operator context as:

A : :=� | v
A

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100117
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.89, on 05 Nov 2025 at 10:51:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100117
https://www.cambridge.org/core


Tail recursion modulo context: An equational approach 17

For a concrete example, consider the length function defined as:

length xs = match xs {Cons x xx→ 1 + length xx; Nil→ 0 }
which applies for integer addition (
 = +, unit = 0). The idea is now to define a compile
time fold function (|_|) over a context A to always reduce the context to a single element of
type τ :

(|�|) = unit
(|v
A|) = v
 (|A|)
We can now instantiate the abstract contexts by defining the (�) condition to constrain
the E context to A, and the context type to ctx τ = τ , where we use the fold operation to
represent contexts always as a single element of type τ :

(lctx) ctx A = (|A|)
(lcomp) k1 • k2 = k1
 k2

(lapp) app k e = k
 e

The context laws hold for this definition. For composition, we can derive:

app (k1 • k2) e
= app (k1
 k2) e { (lcomp) }
= (k1
 k2)
 e { (lapp) }
= k1
 (k2
 e) { assoc. }
= app k1 (app k2 e) { (lapp) }
and for context application we have:

app (ctx A) e
= app (|A|) e { (lctx) }
= (|A|)
 e { (lapp) }
We proceed by induction over A.

Case A = �:

= (|�|)
 e
= unit
 e { fold }
= e { unit }
= �[e] { � }

and the case A = v
A′:
= (|v
A′|)
 e
= (v
 (|A′|))
 e { fold }
= v
 ((|A′|)
 e) { assoc. }
= v
A′[e] { induction hyp. }
= A[e] { A context }

Common instantiations include integer addition (
 = +, unit = 0) and integer multipli-
cation (
 = ×, unit = 1). The TRMC algorithm with A contexts instantiated with integer
addition translates the previous length function to the following tail-recursive version:

length′ xs k = match xs {Cons x xx→ length′ xx (k • (ctx (1 + �))); Nil→ app k 0 }
The intention is that the fold function is performed by the compiler, and the compiler can
simplify this further as:

k • (ctx (1 + �)) = k + (ctx (1 + �)) = k + (|1+�|) = k + 1
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18 D. Leijen and A. F. Lorenzen

such that we end up with:

length′ xs k = match xs {Cons x xx→ length′ xx (k + 1); Nil→ k }
This time we derived exactly the text book accumulator version of length.

4.4.1 Using right biased contexts

Our defined context only allows the recursive call on the left, but we can also define a right
biased context:

A : :=� |A
 v

with the fold defined as:

(|�|) = unit
(|A
 v|) = (|A|)
 v

We can now compose in the opposite order:

(rctx) ctx A = (|A|)
(rcomp) k1 • k2 = k2
 k1

(rapp) app k e = e
 k

We can again show that the context laws hold for this definition (see Appendix B.3 in the
supplement). As an example, we can instantiate 
 as list append ++ with the empty list as
the unit element to transform the reverse function:

reverse xs = match xs {Cons x xx→ reverse xx++ [x]; Nil→ [] }
First, our TRMC algorithm transforms it into:

reverse′ xs k = match xs {Cons x xx→ reverse′ xx (k • (ctx (�++ [x]))); Nil→ app k [] }
and with our instantiated context, this simplifies to:

reverse′ xs k = match xs {Cons x xx→ reverse′ xx ([x]++ k); Nil→ []++ k }
Using right-biased contexts, we derived the text book accumulator version of reverse.
This shows that our general TRMC algorithm can be instantiated to eliminate append calls
automatically as first proposed by Hughes (1986) and Wadler (1987).

4.5 Modulo monoid contexts

To handle general monoids, we need to consider recursive calls on both sides of the
associative operation:

A : :=� | v
A |A
 v

This context A expresses arbitrarily nested applications of 
. As monoid operations may
not be commutative, we cannot use a single element to represent the context. Instead, we
need to use a product context where we accumulate the left and right context separately:

(|�|) = (unit, unit)
(|v
A|) = (v
 l, r) where (l, r) = (|A|)
(|A
 v|) = (l, r
 v) where (l, r) = (|A|)
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which we compose as:

(actx) ctx A = (|A|)
(acomp) (l1, r1) • (l2, r2) = (l1
 l2, r2
 r1)
(aapp) app (l, r) e = l
 e
 r

We can again show that the context laws hold for this definition (see Appendix B.4 in the
supplement).

4.6 Modulo semiring contexts

We can also combine the associative operators of two monoids, as long as one distributes
over the other. This is the case for semirings in particular (although we do not need commu-
tativity of +). Semiring contexts are relatively common in practice. For example, consider
the following hashing function for a list of integers as shown by Bloch (2008):

hash xs = match xs {Cons x xx→ x + 31 ∗ (hash xx) ; Nil→ 17 }
Implementing modulo semiring contexts in a compiler may be worthwhile as deriving a
tail-recursive version manually for such contexts is not always straightforward (and the
interested reader may want to pause here and try to rewrite the hash function in a tail-
recursive way before reading on).

We can define a general context for semirings as:

A : :=� | v + A | v ∗ A |A + v |A ∗ v

For simplicity, we assume we have a commutative semiring where both addition and mul-
tiplication commute. This allows us to use again a product representation at runtime where
we accumulate the additions and multiplications separately (and without commutativity
we need a quadruple instead). In the definition of the fold, we take into account that the
multiplication distributes over the addition:

(|�|) = (unit+, unit∗)
(|v + A|) = (v + l, r) where (l, r) = (|A|)
(|v ∗ A|) = (v ∗ l, v ∗ r) where (l, r) = (|A|)
(|A + v|) = (|v + A|) (+ commutes)
(|A ∗ v|) = (|v ∗ A|) (∗ commutes)

Finally, to compose the contexts we need to use distributivity again. Note how the (scomp)
rule mirrors the definition of (|A|) above:

(sctx) ctx A = (|A|)
(scomp) (l1, r1) • (l2, r2) = (l1 + (r1 ∗ l2), r1 ∗ r2)
(sapp) app (l, r) e = l + r ∗ e

We can show the context laws hold for these definitions:

app ((l1, r1) • (l2, r2)) e
= app (l1 + (r1 ∗ l2), r1 ∗ r2) e { (scomp) }
= (l1 + (r1 ∗ l2)) + (r1 ∗ r2) ∗ e { (sapp) }
= l1 + r1 ∗ (l2 + r2 ∗ e) { assoc and distr. }
= app (l1, r1) (app (l2, r2) e) { (sapp) }

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100117
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.89, on 05 Nov 2025 at 10:51:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100117
https://www.cambridge.org/core


20 D. Leijen and A. F. Lorenzen

and

app (ctx A) e
= app (|A|) e { (sctx) }
= l + r ∗ e { (sapp), for (l, r) = (|A|) }
We proceed by induction over A (where we compress some cases for brevity):

case A = �:

= l + r ∗ e { (|�|) = (l, r) }
= unit+ + unit∗ ∗ e { fold }
= e { unit }
= �[e] { � }

and A = v1 + v2 ∗ A′:

= l + r ∗ e { (|v1 + v2 ∗A′|) = (l, r) }
= (v1 + v2 ∗ l′) + (v2 ∗ r′) ∗ e { (|A′|) = (l′, r′) }
= v1 + v2 ∗ (l′ + r′ ∗ e) { assoc. and distr }
= v1 + v2 ∗A′[e] { induction hyp. }
= A[e] { A context }

When we apply this to the hash function, we derive the tail-recursive version as:

hash′ xs k = match xs {Cons x xx→ hash′ xx (k • (ctx (x + 31 ∗�))); Nil→ app k 17 }
which further simplifies to:

hash′ xs (l, r) = match xs {Cons x xx→ hash′ xx (l + r ∗ x, r ∗ 31); Nil→ l + r ∗ 17 }
The final definition may not be quite so obvious, and we argue that the modulo semiring
instantiation may be a nice addition to any optimizing compiler. Indeed, it turns out that
GCC implements this optimization (Dvořák, 2004) for integers and floating point numbers
(if –fast-math is enabled to allow the assumption of associativity). This implementation
specifically creates two local accumulators for addition and multiplication and uses a direct
while loop to compile the tail-recursive calls.

4.7 Modulo exponent contexts

As a final example of an efficient representation of contexts, we consider exponent contexts
that consist of a sequence of calls to a function g:

E : :=� | g E

If we use a defunctionalized evaluation context from Section 4.3, we derive a datatype that
is isomorphic to the peano-encoded natural numbers: the continuation counts how often
we still have to apply g. As such, we can represent it more efficiently by an integer, where
we fold an evaluation context into a count:

(|�|) = 0
(|g A|) = (|A|) + 1

We can define the primitive operations as:

(xctx) ctx A = (|A|)
(xcomp) k1 • k2 = k1 + k2

(xapp) app 0 e = e
(xapp) app (k + 1) e = app k (g e)

where app k e applies the function g to its argument k times. See Appendix B.5 in the
supplement for the derivations that show the context laws hold for this definition.
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Note that if g is the enclosing function f , then the (xapp) specification is not tail-
recursive. In that case, we can again use specification (b) to replace app k (g e) by �g e�f ,k

at compile time (as shown in Section 4.2). A nice example of such an exponent context is
given by Wand (1980) who considers McCarthy’s 91-function:

g x = if x > 100 then x− 10 else g (g (x+ 11))

Using the exponent context with the recursive (xapp), we obtain a mutually tail-recursive
version:

g′ x k = if x > 100 then app k (x− 10) else g′ (x+ 11) (k + 1)
app k e = if k = 0 then e else g′ e (k − 1)

5 Context composition

While the contexts we have defined so far are useful when they apply, they can fall short if
they only match some of the recursive calls. This makes them fragile when a new recursive
call is added to a function, as the context may no longer apply. In this section, we remove
this restriction by showing how fast but restricted contexts can be composed with slower
more general ones. This is not implemented in Koka though.

5.1 A basic expression evaluator

To motivate the composition of contexts, we consider a basic arithmetic expression
evaluator in the style of Hutton (2021):

type expr
Lit(lit : int)
Add(e1 : expr, e2 : expr)

fun eval(e)
match e
Add(e1,e2) -> eval(e1) + eval(e2)
Lit(n) -> n

The + suggests the use of a monoid context. However, this does not apply directly, since
we have two recursive calls to eval instead of just one. The best we can do is to ignore the
first recursive call and treat it as a regular value. Then we would obtain:

fun eval(e, addacc)
match e
Add(e1,e2) -> eval(e2, eval(e1,addacc))
Lit(n) -> addacc + n

However, we have not quite achieved a tail-recursive version yet. Like Hutton (2021), we
can achieve this by using defunctionalized evaluation contexts:

type accum
Hole
AddL(k : accum, e : expr)
AddR(addacc : int, k : accum)
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fun eval(e, acc)
match e
Add(e1,e2) -> eval(e1, AddL(acc,e2))
Lit(n) -> app(acc, n)

fun app(acc, result)
match acc
Hole -> result
AddL(k,e) -> eval(e, AddR(result,k))
AddR(addacc,k) -> app(k, addacc + result)

This version is now tail-recursive, but it is also more complex than the original version and
involves the allocation of AddL and AddR constructors. In particular, the AddR constructor
seems superfluous, as it corresponds to the context app(k,addacc + eval(e2)), which we
optimized using the monoid contexts earlier. In this section, we want to combine the two
approaches to obtain a more efficient version, where we use both an accumulator and a
monoid context:

type accum
Hole
AddL(k : accum, e : expr)

fun eval(e, acc, addacc)
match e
Add(e1,e2) -> eval(e1, AddL(acc,e2), addacc)
Lit(n) -> app(acc, addacc + n)

fun app(acc, result)
match acc
Hole -> result
AddL(k,e) -> eval(e,k,result)

This version has the best of both worlds: it is fully tail-recursive and only needs to allocate
a defunctionalized continuation for the left recursive call (where we need to keep track
of the expression e2), while the right recursive call is efficiently handled by the monoid
context.

5.2 Swapping contexts

To achieve this transformation in general, we need to be able to compose two contexts. For
two contexts E1 and E2, we can define their product context, which consists of tuples of the
two contexts. We can apply a product context to an expression by applying each context
in turn:

(papp) app (l, r) e = app l (app r e)

But how would we compose two product contexts? We would like to turn a composition
of tuples into a tuple of compositions as (l1, r1) • (l2, r2) = (l1 • l2, r1 • r2). We can try to
calculate this directly:

app ((l1, r1) • (l2, r2)) e
= app (l1, r1) (app (l2, r2) e) { (appcomp) }
= app l1 (app r1 (app l2 (app r2 e))) { (papp) }
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. . . but now we are stuck. Here, l1, l2 belong to the context E1 and r1, r2 to E2. In order to
make progress, we have to swap the inner contexts r1 and l2. But this is not always going to
be possible! Instead, we need to parameterize the product context with a swap operation:

(appswap) app l (app r e) = app r′ (app l′ e) where (l′, r′) = swap(l, r)

If the contexts are connected in this sense, we can continue to calculate their composition:

app l1 (app r1 (app l2 (app r2 e)))
= app l1 (app l′2 (app r′1 (app r2 e))) { swap(r1, l2) = (l′2, r′1) }
= app (l1 • l′2) (app (r′1 • r2) e) { (appcomp) }
= app (l1 • l′2, r′1 • r2) e { (papp) }
This gives us a definition for product contexts: we can fold any context E = E1 | E2 by
composing the folds of E1 and E2:

(|�|) = (ctx�, ctx�)
(|E1[e]|) = (ctx E1, ctx�) • (|e|)
(|E2[e]|) = (ctx�, ctx E2) • (|e|)

(pctx) ctx E = ((|E|))
(pcomp) (l1, r1) • (l2, r2) = (l1 • l′2, r′1 • r2) where (l′2, r′1) = swap(r1, l2)
(papp) app (k1, k2) e = app k1 (app k2 e)

With this definition in hand, we can now derive several contexts from the previous section
from the more basic contexts we defined earlier.

5.2.1 Modulo monoid contexts

We motivated the Modulo Monoid Contexts in Section 4.5 as the composition of a left-
biased and a right-biased context. In fact, we can now derive this context as the product
context of a left-biased and right-biased contexts, with swap(l, r) = (r, l). This follows
the swap law since:

app l (app r e)
= l
 (e
 r)
= (l
 e)
 r
= app r (app l e)

With this, we get exactly the previous definition of (acomp) of Modulo Monoid Contexts.

5.2.2 Modulo semiring contexts

Similarly, we can derive the semiring context (Section 4.6) as the composition of two left-
biased contexts for its addition (l) and multiplication (r). Here, the swap operation is given
by swap(r, l) = (r ∗ l, r):

app∗ r (app+ l e)
= r ∗ (l + e)
= (r ∗ l) + (r ∗ e)
= app+ (r ∗ l) (app∗ r e)
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With this, we get exactly the previous definition of (scomp) and it our new context cor-
responds to the semiring contexts we defined earlier. For this definition to work, it is
important though that the left-biased context for the addition is in the first component of
the tuple with multiplication in the second. That allows us to define a swap operation that
uses the distributivity of the semiring to swap the contexts. We could not define a swap
operation if multiplication is in the first component, since this would require us to move an
addition under a multiplication, which is only possible if the semiring has multiplicative
inverses.

5.3 Composing (defunctionalized) evaluation contexts

(Defunctionalized) evaluation contexts are the only contexts introduced in the last section
that can reliably make all recursive calls tail-recursive. For this reason, they are particularly
attractive for composition with other contexts that lead to faster code in practice but only
apply in more limited cases. Thankfully, this is easily possible, since we can swap an
arbitrary context r with a general evaluation context l by storing it in a closure:

swap (r, l) = ((λx. app r x) • l, ctx�)

We can verify that this definition fulfills the swap law:

app r (app l e)
= (λx. app r x) (app l e) { eta expansion }
= app (λx. app r x) (app l e) { (eapp) }
= app ((λx. app r x) • l) e { (appcomp) }
= app ((λx. app r x) • l)�[e]
= app ((λx. app r x) • l) (app (ctx�) e) { (appctx) }
The same approach can also be used for defunctionalized evaluation contexts. Analogous
to creating a fresh closure, we could create a special constructor to store an application
of the other context. However, to avoid allocations and to enable a nested translation
(Section 4.2), we integrate the restricted context into the constructors.

We define the extended accumulator datatype by creating a constructor H for the �
context and for each Ei a constructor Ai that carries the free variables of Ei and the
inner context k′. The compiler then generates an app function where we interpret Ai by
evaluating Ei with the stored free variables:

(dctx) ctx Ei = Ai x1 . . . xm (ctx�) H where x1, . . ., xm = fv(Ei)
(dcomp) k1 •H = k1

(dcomp) k1 • (Ai x1 . . . xm k′ k2) = Ai x1 . . . xm k′ (k1 • k2)
(dapp) appH e = e
(dapp) app (Ai x1 . . . xm k′ k) e = �Ei[e , x1 . . . xm]�f (k,k′)

Then we can define the swap operation as:

swap (k1, H) = (H, k1)
swap (k1, Ai x1 . . . xm k′ k2) = (Ai x1 . . . xm (k1 • k′) k2, ctx�)
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This definition again fulfills the swap law. Case H:

app r (appH e)
= app r e { (dapp) }
= appH (app r e) { (dapp) }
Case Ai x1 . . . xm k′ k2:

app r (app (Ai x1 . . . xm r′ k2) e)
= app r (�Ei[e, x1 . . . xm]�f (r′, k2)) { (dapp) }
= app r (app (r′, k2) (Ei[e, x1 . . . xm])) { specification (b) }
= app r (app r′ (app k2 (Ei[e, x1 . . . xm]))) { (papp) }
= app (r • r′) (app k2 (Ei[e, x1 . . . xm])) { (appcomp) }
= app (r • r′, k2) (Ei[e, x1 . . . xm]) { (papp) }
= �Ei[e, x1 . . . xm]�f (k2, r • r′) { specification (b) }
= app (Ai x1 . . . xm (r • r′) k2) e { (dapp) }
= app (Ai x1 . . . xm (r • r′) k2)�[e]
= app (Ai x1 . . . xm (r • r′) k2) (app (ctx�) e) { (appctx) }

5.4 Extending the expression evaluator

We can use this insight to derive a tail-recursive expression evaluator which supports
multiplication as well, where we compose a defunctionalized evaluation context with a
semiring context. First, we add a new constructor Mul(e1,e2) to our expression datatype
which encodes the multiplication eval(e1) * eval(e2). We then create a datatype accum

which stores the defunctionalized evaluation contexts when descending into the first
expression e1. These constructors contain both the second expression e2 and the semir-
ing context (a, m). When descending into e1, we store the current semiring context in the
constructor and continue with the semiring context ctx� = (0, 1):

app (acc, (a, m)) (eval e1 + eval e2)
= eval′ ((acc, (a, m)) • (AddL 0 1 Hole e2, (0, 1))) e1 { (tail) }
= eval′ (acc •AddL a m Hole e2, (0, 1) • (0, 1)) e1 { (pcomp) }
= eval′ (AddL a m acc e2, (0, 1)) e1 { (dcomp) }
This calculation directly follows the recipe for composing with defunctionalized evaluation
contexts and can thus be derived algorithmically. Our full implementation becomes:

type expr
Lit(lit : int)
Add(e1 : expr, e2 : expr)
Mul(e1 : expr, e2 : expr)

type accum
Hole
AddL(a : int, m : int, k : accum, e : expr)
MulL(a : int, m : int, k : accum, e : expr)

fun eval(e, acc, a, m)
match e
Add(e1,e2) -> eval(e1, AddL(a,m,acc,e2), 0, 1)
Mul(e1,e2) -> eval(e1, MulL(a,m,acc,e2), 0, 1)
Lit(n) -> app(acc, a + m * n)
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fun app(acc, n)
match acc
Hole -> n
AddL(a,m,k,e) -> eval(e,k, a + m * n, m)
MulL(a,m,k,e) -> eval(e,k,a, m * n)

In contrast, a translation using just defunctionalized evaluation contexts would require two
more constructors AddR and MulR (just as in the basic example). Unfortunately though, now
that we store the semiring context in accum, our constructors carry a few more elements
than the constructors of expr. In a language like Koka, which can reuse constructors of
equal size (Xie et al., 2021; Lorenzen & Leijen, 2022), it would be preferable to obtain
constructors of the same size as expr, since we could then hope to avoid the allocation of
AddL and MulL by reusing the memory of Add and Mul. This is often possible when using
non-composed defunctionalized evaluation contexts and Lorenzen et al. (2023) show that
it is guaranteed to work if the original function has the shape of a map or fold (like eval).
Alas, the same is not true for composed contexts, since we need to store the additional
semiring context. However, using composed contexts like here can still avoid allocations
in languages that lack reuse analysis.

Finally, we can reduce the number of elements stored in the constructors and obtain a
more natural version of the evaluator by using the distributivity law to push the semiring
context into the expression. For the Add case, we calculate:

app (acc, (a, m)) (eval e1 + eval e2)
= app acc (app (a, m) (eval e1 + eval e2)) { (papp) }
= app acc (a + m ∗ (eval e1 + eval e2)) { (sapp) }
= app acc (a + m ∗ eval e1 + m ∗ eval e2) { distributivity }
At this point, the recursive call to eval e1 is under a semiring context (a, m) and an
evaluation context � + m ∗ eval e2. We thus have to store an extra m in our AddL

constructor:

eval′ ((acc, (0, 1)) • (AddL 0 1 Hole m e2, (a, m))) e1 { (tail) }
= eval′ (acc •AddL 0 1 Hole m e2, (0, 1) • (a, m)) e1 { swap }
= eval′ (AddL 0 1 acc m e2, (a, m)) e1 { (dcomp) and (scomp) }
It turns out that in this version, the semiring context stored in the accumulated datatype is
always going to be (0, 1), so we can simplify the definition by omitting it. We thus obtain
the implementation:

type accum
Hole
AddL(m : int, k : accum, e : expr)
MulL(a : int, k : accum, e : expr)

fun eval(e, acc, a, m)
match e
Add(e1,e2) -> eval(e1, AddL(m,acc,e2), a, m)
Mul(e1,e2) -> eval(e1, MulL(a,acc,e2), 0, m)
Lit(n) -> app(acc, a + m * n)

fun app(acc, n)
match acc
Hole -> n
AddL(m,k,e) -> eval(e,k,n,m)
MulL(a,k,e) -> eval(e,k,a,n)
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This version is slightly more efficient than the previous one, but the constructors are still
too big for reuse analysis to apply. Furthermore, it is unclear whether we can derive this
algorithmically as well. Instead, we will stick with the more general version that can be
derived directly from the composition of contexts and extend it to derive an evaluator that
can also handle subtraction and division.

To extend the expression evaluator to support division, we might try to add a new con-
text for division and show how to compose it with the semiring context. However, this is
not straightforward, since (a + �)−1 cannot be simplified to a′ + �−1 for any other a′:
the inverse of the sum depends on the �, which is not yet known, and there is no general
rule for exchanging the inverse operation with addition. Instead, we need to use an idea
from the theory of continued fractions.

5.5 Aside: Continued fractions

Continued fractions are a representation of the rational (or real) numbers that arises from
the Euclidean algorithm. They consist of a sequence of nested additions and fractions with
numerator 1. For example, we can calculate the continued fraction of 4.24 as:

4.24= 4 + 24
100

= 4 + 1
100
24

= 4 + 1

4 + 4

24

= 4 + 1

4 + 1

6

= 4 + 1

4 + 1

6

1

= 4 + 1

4 + 1

5 + 1

1

We can write such a (long-form) continued fraction (with the final ‘1’ left implicit) as
[4, 4, 5]. Then we can compute its floating point representation with a simple recursive
algorithm:

fun frac(xs)
match xs
Nil -> 1
Cons(a,xx) -> a + (1/frac(xx))

This algorithm is not tail-recursive, and it might be quite difficult to make tail-recursive
without further insight (and without resorting to general evaluation contexts). However,
it is well known that continued fractions can be calculated by their convergents, which is
a sequence hn, kn with frac([a0, . . ., an]) = hn / kn. The convergents start with h−2 = 0,
h−1 = 1, k−2 = 1, and k−1 = 0 and are further calculated by:

hn

kn
= an ∗ hn−1 + hn−2

an ∗ kn−1 + kn−2

This gives us a tail-recursive algorithm to calculate the continued fraction (where we write
h1 for hn−1, h2 for hn−2 and equivalent for k1 and k2):

fun frac’(xs, h1, k1, h2, k2)
match xs
Nil -> (1*h1 + h2) / (1*k1 + k2)
Cons(a,xx) -> frac’(xx, a*h1 + h2, h1, a*k1 + k2, k1)

fun frac(xs)
frac’(xs,1,0,0,1)
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It turns out that we can use the same idea to define a general context that applies to arbitrary
sequences of addition, multiplication, and inverses.

5.6 Modulo fields context

Using the insight from continued fractions, we can define general field contexts that sup-
port not only addition and multiplication but also additive and multiplicative inverses. We
define the context F as:

F : :=� | a + F |m ∗ F | F−1

It turns out that we use the same convergent representation as for continued fractions,
where we keep four numbers:

x ∗ h1 + h2

x ∗ k1 + k2

and define the fold operation as:

(|�|) = x ∗ 1 + 0

x ∗ 0 + 1

(|a + F|) = x ∗ 1 + a

x ∗ 0 + 1
• (|F|)

(|m ∗ F|) = x ∗ m + 0

x ∗ 0 + 1
• (|F|)

(|F−1|) = x ∗ 0 + 1

x ∗ 1 + 0
• (|F|)

We can apply a field context to an expression by substituting the expression for x.
Similarly, we can compose two field contexts by substituting the second context into the
first context and simplifying the expression. Our context is defined as:

(fctx) ctx F = (|F|)
(fcomp)

x ∗ h1 + h2

x ∗ k1 + k2
• y ∗ h′1 + h′2

y ∗ k′1 + k′2
= y ∗ (h′1 ∗ h1 + k′1 ∗ h2) + (h′2 ∗ h1 + k′2 ∗ h2)

y ∗ (h′1 ∗ k1 + k′1 ∗ k2) + (h′2 ∗ k1 + k′2 ∗ k2)

(fapp) app
x ∗ h1 + h2

x ∗ k1 + k2
e = e ∗ h1 + h2

e ∗ k1 + k2

and the context laws hold.

5.7 An advanced expression evaluator

Using the field contexts, we can extend our expression evaluator to support arbitrary
field operations. Our implementation arises directly from the obvious expression evaluator
which folds the expression into a rational number:

fun eval(e : expr) : rat
match e
Add(e1,e2) -> eval(e1) + eval(e2)
Mul(e1,e2) -> eval(e1) * eval(e2)
Neg(e1) -> from-int(-1) * eval(e1)
Inv(e1) -> from-int(1) / eval(e1)
Lit(n) -> from-int(n)

We can directly define the field context as a datatype, where we define empty(),

add(a), mul(a), and inv() to correspond to the fold operations:
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type fctx
Fctx( h1 : rat, h2 : rat, k1 : rat, k2 : rat )

fun fapp(f : fctx, r : rat) : rat
(f.h1*r + f.h2) / (f.k1*r + f.k2)

fun add(a : rat) : fctx
Fctx( from-int(1), a, from-int(0), from-int(1) )

...

Then we use the TRMC algorithm with the composition of defunctionalized contexts and
field contexts to obtain a tail-recursive version that uses a field context for the field oper-
ations and a defunctionalized context for the recursive calls that leave an expression to be
evaluated:

type accum
Hole
AddL(f : fctx, k : accum, e : expr)
MulL(f : fctx, k : accum, e : expr)

fun eval(e : expr, acc : accum, f : fctx)
match e
Add(e1,e2) -> eval(e1, AddL(f, acc, e2), empty())
Mul(e1,e2) -> eval(e1, MulL(f, acc, e2), empty())
Neg(e1) -> eval(e1, acc, comp(f, mul(-1)))
Inv(e1) -> eval(e1, acc, comp(f, inv()))
Lit(n) -> app(acc, fapp(f, from-int(n)))

fun app(acc : accum, r : rat)
match acc
Hole -> r
AddL(f,k,e) -> eval(e, k, comp(f, add(r)))
MulL(f,k,e) -> eval(e, k, comp(f, mul(r)))

The final derived program is actually quite sophisticated and fully tail-recursive. We
believe that deriving this algorithm manually would be nontrivial. Moreover, it only allo-
cates a small amount of memory while descending the left-spine. In contrast, a simple
application of defunctionalized contexts without field contexts would require us to allocate
a constructor even in the Neg and Inv cases, which would be less efficient.

6 Modulo constructor contexts

As shown in the introduction, the most interesting instantiation is of course the modulo
cons transformation on constructor contexts. We can define a constant constructor context
K as:

K ::= � |Ck v1 . . . K . . . vk

We define the (�) condition in the TRMC translation to restrict the context E to K contexts
only. A possible way to define the contexts is to directly use K as a runtime context:

(kctx) ctxK = K
(kcomp) K1 •K2 = K1[K2]
(kapp) appK e = K[e]
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Similar to general evaluation contexts (Section 4.1), the context laws hold trivially for such
definition (Appendix B.6 in the supplement) – and just as with general evaluation contexts,
the map function translates to:

map′ xs f k = match xs {
Nil→ app k Nil
Cons x xx→ let y = f x in map′ xx f (k • (ctx (Cons y�))) }

Even though this is a valid instantiation, it does not yet imply that this can be efficient. In
particular, the composition K1[K2] could a fresh context every time and it may be difficult
to implement such substitution efficiently at runtime as it needs to copy K1 along the path
to the hole. What we are looking for instead is an in-place updating instantiation that can
compose in constant time.

6.1 Minamide

Minamide (1998) presents a “hole calculus” that can directly express our contexts in
a functional way but also allows an efficient in-place updating implementation. Using
the hole calculus as our target calculus, we can instantiate the translation function using
Minamide’s system.

We define the context type as a “hole function” (λ̂x. e), where ctx α ≡ hfun α α. and
instantiate the context operations to use the primitives as given by Minamide (1998):

(hctx) ctx K = λ̂x. K[x]
(hcomp) k1 • k2 = hcomp k1 k2

(happ) app k e = happ k e

Satisfyingly, our primitives turn out to map directly to the hole calculus primitives. The
reduction rules for happ and hcomp specialized to our calculus are (Minamide, 1998,
fig. 5):

(happly) happ (λ̂x. K) v −→ K[x:=v]
(hcompose) hcomp (λ̂x. K1) (λ̂y. K2) −→ λ̂y. K1[x:=K2]

This means that for any context k, we have k ∼= λ̂x. K[x] (1). We can now show that our
context laws are satisfied for this system, with composition:

app (k1 • k2) e
= app (hcomp k1 k2) e { (hcomp) }
= happ (hcomp k1 k2) e { (happ) }
∼= happ (hcomp (λ̂x. K1[x]) (λ̂y. K2[y])) e { (1), 2 }
∼= happ (λ̂y. K1[x][x:=K2[y]]) e { (hcomp) }
∼= (K1[x][x:=K2[y]])[y:=e] { (happly) }
= K1[K2[e]] { contexts }
∼= K1[happ (λ̂y. K2[y]) e] { (happly) }
∼= happ (λ̂x. K1[x]) (happ (λ̂y. K2[y]) e) { (happly) }
∼= happ k1 (happ k2 e) { (1), (2) }
= app k1 (app k2 e) { (happ) }
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and application:

app (ctxK) e
= app (λ̂x. K[x]) e { (hctx) }
= happ (λ̂x. K[x]) e { (happ) }
∼= K[x][x:=e] { (happly) }
= K[e] { contexts }
The hole calculus is restricted by a linear-type discipline where the contexts ctx α ≡
hfun α α have a linear type. This is what enables an efficient in-place update implemen-
tation while still having a pure functional interface. For our needs, we need to check
separately that the translation ensures that all uses of a context k are indeed linear. Type
judgments in Minamide’s system (Minamide, 1998, fig. 4) are denoted as � ; H �m e : τ

where � is the normal type environment, and H for linear bindings containing at most one
linear value. The type environment � can itself contain linear values with a linear type
(like hfun) but only pass those linearly to a single premise. The environment restricted to
nonlinear values is denoted as �|N. We can now show that our translation can indeed be
typed under the linear type discipline:

Theorem 3. (TRMC uses contexts linearly)
If �|N ; ∅�m fun f = λx1 . . . xn. e : τ1→ . . .→ τ n→ τ and k fresh

then �|N, f ; ∅�m fun f ′ = λx1 . . . xn. λk. �e�f ,k : τ1→ . . .→ τ n→ ((τ , τ ) hfun)→ τ .

To show this, we need a variant of the general replacement lemma (Hindley &
Seldin, 1986, Lemma 11.18; Wright & Felleisen, 1994, Lemma 4.2) to reason about linear
substitution in an evaluation context:

Lemma 1. (Linear replacement)
If �|N ; ∅�m K[e] : τ for a constructor context K then there is a sub-deduction
�|N ; ∅�m e : τ ′ at the hole and �|N ; x : τ ′ �m K[x] : τ .

Interestingly, this lemma requires constructor contexts and we would not be able to derive
the Lemma for general contexts as the linear type environment is not propagated through
applications. The proofs can be found in Appendix B.7 in the supplement, which also
contains the full type rules adapted to our calculus.

6.2 In-place update

The instantiation with Minamide’s system is using fast in-place updates and proven sound,
but it is still a bit unsatisfactory as how such in-place mutation is done (or why this is
safe) is only described informally. In Minamide’s system, a suggested implementation for
a context is as a tuple 〈K, x@i〉 where K is (a pointer to) a context and x@i is the address of
the hole as the ith field of object x (in K). The empty tuple 〈〉 is used for an empty context
(�). Composition and application directly update the hole pointed to by x@i by overwriting
the hole with the child context or value.

In contrast, Bour et al. (2021) show a TRMC translation for OCaml that uses destination
passing style which makes it more explicit how the in-place update of the hole works. In
particular, the general construct x.i := v overwrites the ith field of any object x with v.
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To gain more insight of why in-place update is possible and correct, we are going to
use the explicit heap semantics of Perceus (Xie et al., 2021; Lorenzen & Leijen, 2022). In
such semantics, the heap is explicit and all objects are explicitly reference counted. Using
the Perceus derivation rules, we can soundly translate our current calculus to the Perceus
target calculus where the reference counting instructions (dup and drop) are derived auto-
matically by the derivation rules (Xie et al., 2021, fig. 5). The Perceus heap semantics
reduces the derived expressions using reduction steps of the form H | e1 �−→r H ′ | e2,
which reduces a heap H and an expression e to a new heap H ′ and expression e2 (Xie
et al., 2021, fig. 7). The heap H maps objects x with a reference count n� 1 to values,
denoted as x �→n v. In this system, we can express in-place updates directly, and it turns
out we can even calculate the in-place updating reduction rules for comp and app from the
context laws. Before we do that though, we first need to establish some terminology and
look carefully at what “in-place update” actually means.

6.2.1 The essence of in-place update

Let’s consider a generic copy function, (x.i as y), that changes the ith field of an object x to
y, for any generic constructor C:

x.i as y = match x {Ck x1 . . . xi . . . xk→Ck x1 . . . y . . . xk }
When we apply the Perceus algorithm (Xie et al., 2021), we need to insert a single drop:

x.i as y = match x {Ck x1 . . . xi . . . xk→ drop xi; Ck x1 . . . y . . . xk }
In the special case that x is unique at runtime (i.e., the reference count of x is 1), we can
now derive the following:

H , x �→1 Ck x1 . . . xi . . . xk | x.i as y { x�∈H , 1 }
= H , x �→1 Ck x1 . . . xi . . . xk |match x {

Ck x1 . . . xi . . . xk→ drop xi; Ck x1 . . . y . . . xk } { def . }
−→r H , x �→1 C xj |

dup(xj); drop(x); drop(xi); Ck x1 . . . y . . . xk { (matchr) }
−→∗r H ′, x �→1 C xj | drop(x); drop(xi); Ck x1 . . . y . . . xk { (dupr), H ′ has xj dup′d, 2 }
−→r H ′ | drop(xj); drop(xi); Ck x1 . . . y . . . xk { (dropr) }
−→r H | drop(xi); Ck x1 . . . y . . . xk { cancel H ′ dup xj (2) }
∼= H | let z = Ck x1 . . . y . . . xk in drop(xi); z { drop commutes }
−→r H , z �→1 C x1 . . . y . . . xk | drop(xi); z { (conr), fresh z, 3 }
= H , x �→1 C x1 . . . y . . . xk | drop(xi); x { α rename (1), (3) }
And this is the essence of in-place mutation: when an object is unique, an in-place update
corresponds to allocating a fresh copy, discarding the original (due to the uniqueness of x),
and α-renaming to reuse the original “address”.

We will write (x.i := z) for (x.i as z) in the special case of updating a field in a unique
constructor, where we can derive the following reduction rule:

(assign) H , x �→1 C . . . xi . . . | x.i := y −→∗r H , x �→1 C . . . y . . . | drop xi; x
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and in the case the field is a �, we can further refine this to:

(assignn) H , x �→1 C . . . �i . . . | x.i := y −→∗r H , x �→1 C . . . y . . . | x
For convenience, we will from now on use the notation C . . . xi . . ., and C . . . �i . . . to
denote the ith field in a constructor if there is no ambiguity.

6.2.2 Linear chains

We need a bit more generality to express hole updates in contexts. In particular, we will
see that all objects along the path from the top of the context to the hole are unique by
construction. We call such unique path a linear chain, denoted as [H]n

x :

[H]n
x = [x �→n v0, x1 �→1 v1, . . ., xm �→1 vm]n

x (m � 0)

where for all xi ∈ (dom(H) − {x}), we have xi ∈ fv(vi−1) (and therefore for all y ∈ dom(H)
we have reachable(H , x)). Since the objects in H besides x are all unique and not reachable
otherwise, we also say that x dominates H . When the dominator is also unique, we call it
a unique linear chain (of the form [H]1

x). We can define linear chains inductively as well
since a single object always forms a linear chain:

(linearone) x �→n v = [x �→n v]n
x

and we can always extend with a unique linear chain:

(linearcons) x �→n . . . z . . ., [H]1
z = [x �→n . . . z . . ., H]n

x

Using (linearcons) we can derive that we can append a unique linear chain as well:

(linearapp) [H1, y �→1 . . . z . . .]n
x , [H2]1

z = [H1, y �→1 . . . z . . ., H2]n
x

6.2.3 Contexts as a linear chain

To simplify the proofs, we assume in this subsection that all fields in K contexts are
variables:

K : :=� |C x1 . . . K . . . xn

since we can always arrange any K to have this form by let-binding the values v. It turns
out that a constructor context then always evaluates to a unique linear chain:

Lemma 2. (Contexts evaluate to unique linear chains)
For any K, we have H |K[C . . .�i . . .] −→∗r H , [H ′, y �→1 C . . . �i . . .]1

x | x.

We can show this by induction on the shape of K (Appendix B.8 in the supplement).

6.2.4 Calculating the fold

Following Minamide’s approach, we are going to denote our contexts as a tuple 〈x, y@i〉
where x is (a pointer to) a constructor context and y@i is the address of the hole as the ith
field of object y. We define ctx K = (|K|). For an empty context, we use an empty tuple
((|�|) = 〈〉), but otherwise we can specify the fold as:

(foldspec) H | (|K[C . . .�i . . .]|) ∼= H | let x = K[C . . . �i . . .] in 〈x, [x]@i〉
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where we use the notation [x] do denote the last object of the linear chain formed by
K (Lemma 2). We can now calculate the definition of (|_|) from its specification (see
Appendix B.9 in the supplement), where we get following definition for (|_|):
(|�|) = 〈〉
(|C . . .�i . . .|) = let x = C . . . �i . . . in 〈x, x@i〉
(|C . . . K . . .|) = let 〈z, x@i〉 = (|K|) in 〈C . . . z . . ., x@i〉 (K �=�)

This builds up the context using let bindings, while propagating the address of the hole. As
before, the intention is that the compiler expands the fold statically. For example, the map
function translates to:

map′ xs f k = match xs {
Nil→ app k Nil
Cons x xx→ let y = f x in map′ xx f (k • (let z = Cons y � in 〈z, z@2〉)) }

where z@2 correctly denotes the address of the hole field in the context.

6.2.5 Updating a context

Before we can define in-place application, we need an in-place substitution operation
subst 〈x, y@i〉 z that substitutes z at the hole (at y@i) in the context x. Note that in our
representation of a context as a tuple 〈x, y@i〉 we treat y@i purely as an address and do not
reference count y as such. The y part is a “weak” pointer, and we cannot use it directly
without also having an “real” reference. This means that if we want to define an in-place
substitution, we cannot define it directly as y.i := z (since we have no real reference to y).
Instead, we are going to calculate an in-place updating substitution from its specification:

(subspec) H , [H ′, y �→1 C . . . �i . . .]1
x | subst 〈x, y@i〉 z ∼= H , [H ′, y �→1 C . . . z . . .]1

x | x
We do this by induction of the shape of the linear chain. For the singleton case, we have:

H , [y �→1 C . . . �i . . .]1
y | subst 〈y, y@i〉 z

= H , [y �→1 C . . . �i . . .]1
y | y.i := z { define, (we have a y reference!) }

−→ H , [y �→1 C . . . z . . .]1
y | y { (assignn) }

and for the extension we have:

H , [x �→1 C . . . x′j . . ., [H ′, y �→1 C . . . �i . . .]1
x′ ]

1
x | subst 〈x, y@i〉 z

= H , [x �→1 C . . . x′j . . ., [H ′, y �→1 C . . . �i . . .]1
x′ ]

1
x

| dup x′; x.j := �; x.j := subst 〈x′, y@i〉 z { define }
−→∗ H , [x �→1 C . . . �j . . ., [H ′, y �→1 C . . . �i . . .]1

x′ ]
1
x

| x.j := subst 〈x′, y〉 z { (dupr), (assign) }
∼= H , [x �→1 C . . . �j . . ., [H ′, y �→1 C . . . z . . .]1

x′ ]
1
x | x.j := x′ { induction hyp. }

−→ H , [x �→1 C . . . x′j . . ., [H ′, y �→1 C . . . z . . .]1
x′]

1
x | x { (assignn) }

This leads to the following inductive definition of subst:

H | subst 〈x, x@i〉 z = H | x.i := z
H | subst 〈x, y@i〉 z = H | dup x′; x.j := �; x.j := subst 〈x′, y@i〉 z

where x �= y ∧ [x �→1 C . . . x′j . . ., [H ′]1
x′ ]

1
x ∈H
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That is, to update the last element of the chain in-place, we need traverse down while
separating the links such that when we reach the final element it has a unique reference
count and can be updated in-place. We then traverse back up fixing up all the links again.
Of course, we would not actually use this implementation in practice – the derivation
here just shows that the substitution specification is sound, and we can thus implement
the (subspec) reduction by instead using the tuple address y@i directly to update the hole
in-place. In essence, due to the uniqueness of the elements in the chain, the y is uniquely
reachable through x, and thus it is safe to use it directly in this case.

6.2.6 Calculating application and composition

With the specification for fold and in-place substitution, we can use the context laws
to calculate the in-place updating version of application and composition. Starting with
application, we can calculate (for K �=�):

H | app (ctxK) e
= H | app (|K|) e { def . }
∼= H | app (let x = K[�] in 〈x, [x]@i〉) e { fold specification, K �=� }
∼= H , [H ′, y �→1 C . . . �i . . .]1

x | app 〈x, [x]@i〉 e { lemma 2, 1 }
= H , [H ′, y �→1 C . . . �i . . .]1

x | app 〈x, y@i〉 e { def . }
∼= H , z �→1 v, [H ′, y �→1 C . . . �i . . .]1

x | app 〈x, y@i〉 z { e is terminating 2 }
= H , z �→1 v, [H ′, y �→1 C . . . �i . . .]1

x | subst 〈x, y@i〉 z { define }
∼= H , z �→1 v, [H ′, y �→1 C . . . z . . .]1

x | x { (subspec) }
∼= H , z �→1 v |K[z] { lemma 2, (1) }
∼= H |K[e] { (2) }
And thus we define application directly in terms of in-place substitution as:

(uapp) H | app 〈x, y@i〉 z −→r H | subst 〈x, y@i〉 z
We arrived exactly at the “obvious” implementation where the hole inside a unique context
is updated in-place in constant time. This also corresponds to the informal implementation
given in Section 2.3. For composition, it turns out we can define it in terms of applications:

(ucomp) H | 〈x1, y1 @i〉 • 〈x2, y2 @j〉 −→r H | 〈app 〈x1, y1 @i〉 x2, y2 @j〉
where the derivation is in Appendix B.10 in the supplement. Again we arrived at the effi-
cient translation where the hole in the first unique context is updated in-place (and in
constant time) with a pointer to the second context. The full rules for application and
composition are (with the derivations for the empty contexts in Appendix B.10 in the
supplement):

(uapph) H | app 〈〉 x −→r H | x
(uapp) H | app 〈x, y@i〉 z −→r H | subst 〈x, y@i〉 z
(ucomp) H | 〈x1, y1 @i〉 • 〈x2, y2 @j〉 −→r H | 〈app 〈x1, y1 @i〉 x2, y2 @j〉
(ucompl) H | 〈〉 • 〈x2, y2 @j〉 −→r H | 〈x2, y2 @j〉
(ucompr) H | 〈x1, y1 @i〉 • 〈〉 −→r H | 〈x1, y1 @i〉
Note that (ucompr) is not really needed since by construction our translation never gen-
erates empty contexts for the second argument. The rules also correspond to the informal
implementation given in Section 2.3 where Id was used to represent the empty tuple.
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With these definitions, we still need to show that we can be efficient and that we never
get stuck. For efficiency, we need to show that a context 〈x, y@i〉 is always a linear chain
so we don’t have to check that at runtime in (subspec). This follows by construction since
any initial context ctx K is a linear chain (Lemma 2), and any composition as well (ucomp).
Second, the reference count of the dominator should always be 1 or otherwise (subspec)
may not apply – that is, contexts should be used linearly. This follows indirectly from
Lemma 4 where we show that our translation adheres to Minamide’s linear-type discipline.
A more direct approach would be to show that Perceus never derives a dup operation for
a context k in our translation. However, we refrain from doing so here, as it turns out
that with general algebraic effect handlers, the linearity of a context may no longer be
guaranteed!

7 Modulo first-class constructor contexts

In Koka, constructor contexts are first-class values in the language (Lorenzen et al., 2024).
A constructor context can be used more than once, as for example in the expression val c

= ctx Cons(1,_) in (c ++. [2] , c ++. [3]), where the context c is shared and it evalu-
ates correctly to ([1,2],[1,3]). This abstraction can safely encapsulate the limited form of
mutation necessary to implement a Minamide tuple, while still having a purely functional
interface that does not rely on linear types.

As we will show in Section 7.2, a ctx K expression is compiled such that each con-
structor context has at runtime a representation of its linear chain (the context path). The
Koka compiler compiles a context like ctx Node(Node(Node(Leaf,1,Leaf),2,_),5,Leaf)

internally into a Minamide tuple:

val x = Node3(Node(Leaf,1,Leaf),2,hole) in Ctx(Node1(x,5,Leaf), x@3)

where each constructor along the context path is annotated with a child index (1 and 3)
leading from the root down to the hole.

When we compose or apply a context, we have to determine whether the context is
shared. If the contexts happen to be used linearly, then all operations execute in constant
time, just as in Minamide’s approach. But if the context is shared, we will have to copy
it along the context path. This gives us a full functional semantics and any subsequent
substitutions on the same context work correctly (but will take linear time in the length of
the context path).

The ability to copy contexts if necessary is useful for programmers and we discuss
some examples in Section 8. But perhaps surprisingly, it is also important for the TRMC
transformation itself as we show next.

7.1 Nonlinear control

A long-standing issue in a TRMc transformation is that it is unsound in the presence of
non-local control operations like call/cc, shift/reset (Danvy & Filinski, 1990; Sitaram &
Felleisen, 1990; Shan, 2007), or in general with algebraic effect handlers (Plotkin &
Power, 2003; Plotkin & Pretnar, 2009), whenever a continuation or handler resumption
can be invoked more than once. Note that if only single-shot continuations or resumptions
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are allowed (as in OCaml Dolan et al., 2015) for example), the control flow is still always
linear and the TRMc transformation still sound. Since the Koka language relies founda-
tionally on general effect handlers (Leijen, 2017, 2021; Xie & Leijen, 2021), we need
to tackle this problem. Algebraic effect handlers extend the syntax with a handle expres-
sion, handle h e, and operations, op, that are handled by a handler h. There are two more
reduction rules (Leijen, 2014):

(return) handle h v −→ v
(handle) handle h E[op v] −→ e[x:=v, resume:= λy. handle h E[y]]

where (op �→ λx. λresume. e) ∈ h ∧ op �∈ E

That is, when an operation is invoked it yields all the way up to the innermost handler for
that operation and continues from there with the operation clause. Besides the operation
argument, it also receives a resumption resume that allows the operation to return to the
original call site with a result y. The culprit here is that the resumption captures the delim-
ited evaluation context E in a lambda expression, and this can violate linearity assumptions.
In particular, if we regard a TRMC context k as a linear value (as in Minamide), then such k
may be in the context E of the (handle) rule and captured in a nonlinear lambda. Whenever
the operation clause calls the resumption more than once, any captured linear values may
be used more than once!

A nice example in practice of this occurs in the well-known Knapsack problem as
described by Wu et al. (2014) where they use multiple resumptions to implement a
non-determinism handler:

effect nondet
ctl flip() : bool // a control operation that may resume more than once
ctl fail() : a // or not at all

fun select( xs : list<a> ) : nondet a // pick an element from a list
match xs
Nil -> fail()
Cons(x,xx) -> if flip() then x else select(xx)

fun knapsack(w : int, vs : list<int> ) : <nondet,div> list<int>
if w < 0 then fail()
elif w == 0 then []
else val v = select(vs) in Cons(v, knapsack(w - v, vs))

An effectful function in Koka has three arguments where the type a -> e b denotes a
function from type a to b with a potential (side) effect e. The select function picks an
element from a list using the operations of the nondet effect. The knapsack function picks
items from a list of item weights vs that together do not exceed the capacity w (of the
knapsack). Since it calls select it has the nondet effect and additionally it has a divergence
effect. We can now provide an effect handler that systematically explores all solutions
using multiple resumptions:

val solutions = handler
return(x) [x]
ctl fail() []
ctl flip() resume(True) ++ resume(False)

fun test() : div list<list<int>>
with solutions
knapsack(3,[3,2,1])
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That is, the solutions handler implements the flip function by resuming twice and
appending the results. Even though knapsack returns a single solution as a list, the test

function returns a list of all possible solution lists (as [[3],[2,1],[1,2],[1,1,1]]). The
knapsack function is in the modulo cons fragment and gets translated to a tail-recursive
version by our translation into:

fun knapsack’(w :int, vs :list<int>, k :ctx<list<int>> ) : <nondet,div> list<int>
if w < 0 then k ++. fail() elif w == 0 then k ++. []
else val v = select(vs)

knapsack’(w - v, vs, k ++ Cons(v, _))

Instead of having a runtime that captures evaluation contexts E directly, Koka usually uses
an explicit monadic transformation to translate effectful computations into pure lambda
calculus. The effect handling is then implemented explicitly using a generic multi-prompt
control monad eff (Xie & Leijen, 2020, 2021). This transforms our knapsack function into:

fun knapsack’(w:int,vs:list<int>,k:ctx<list<int>>) : eff<<nondet,div>,list<int>>
if w < 0 then ... elif w == 0 then Pure( k ++. [] )
else match select(vs)

Pure(v) -> knapsack’(w - v, vs, k ++ Cons(v,_))
Yield(yld) -> Yield( yield-extend(yld,

fn(v) knapsack’(w - v, vs, k ++ Cons(v,_)))

Every computation in the effect monad either returns with a result (Pure) or is yielding up
to a handler (Yield). As described by Xie & Leijen (2021), the Koka compiler backend
implements this monad as a primitive and can generate efficient C code without needing
to allocate closures in the fast non-yielding path.

In our example, we inlined the monadic bind operation where the result select(vs) is
explicitly matched. We see that in the Yield case, the continuation expression (namely
fn(v)knapsack’(w - v, vs, k ++ Cons(v,_))) is now explicitly captured under a lambda
expression – including the supposedly linear context k! This is how we can end up at
runtime with a context that is shared (with a reference count > 1) and where the rule
(ucomp) should not be applied.

7.2 Dynamic copying via reference counting

Our context composition is defined in terms of context application, which in turn relies on
the in-place substitution (Section 6.2.5):

(subspec) H , [H ′, y �→1 C . . . �i . . .]1
x | subst 〈x, y@i〉 z ∼= H , [H ′, y �→1 C . . . z . . .]1

x | x
This is the operation that eventually fails if the runtime context x is not unique. In
Section 6.2.5, the substitution operation was calculated to recursively visit the full linear
chain of the context. This suggests a solution for any non-unique context: we can actually
traverse the context at runtime and create a fresh copy instead.

It is not immediately clear though how to implement such operation at runtime: the
linear chains up to now are just a proof technique and we cannot actually visit the elements
of the chain at runtime as we do not know which field in a chain element points to the next
element. What we need to do is to explicitly annotate each constructor Ck (of arity k) in a
context also with an index i corresponding to the field that points to the next element, as
Ck

i . It turns out, we can actually do this efficiently while constructing the context – and we
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can do it systematically just by modifying our fold function to keep track of this context
path at construction:

(|�|) = 〈〉
(|C . . .�i . . .|) = let x = Ci . . . �i . . . in 〈x, x@i〉
(|C . . . Ki . . .|) = let 〈z, x@j〉 = (|K|) in 〈Ci . . . z . . ., x@j〉 (K �=�)

With such indices present at runtime, we can define non-unique substitution as:

(subapp) H , [H ′]n+1
x | subst 〈x, y@i〉 z ∼= H , [H ′]n+1

x | append x z

where append follows the context path at runtime copying each element as we go and
eventually appending z at the hole:

H , x �→n Ci . . . �i . . . | append x z −→r H , x �→n Ci . . . �i . . . | x.i as z
H , x �→n Ci . . . yi . . . | append x z −→r H , x �→n Ci . . . yi . . . | dup yi; x.i as (append yi z)

We can show the context laws still hold for these definitions (see Appendix B.11 in the
supplement). The append operation in particular can be implemented efficiently at runtime
using a fast loop that updates the previous element at each iteration (essentially using
manual TRMC!). In the Koka runtime system, it happens to be the case that there is already
an 8-bit field index in the header of each object which is used for stackless freeing. We can
thus use that field for context paths since if a context is freed it is fine to discard the
context path anyways. The runtime cost of the hybrid technique is mostly due to an extra
uniqueness check needed when doing context composition to see if we can safely substitute
in-place (see Section 7.3). As we see in the benchmark section, this turns out to be quite
fast in practice. Moreover, the Koka compiler uses static-type information when possible
to avoid this check if a function is guaranteed to be used only with a linear effect type.

7.3 Efficient code generation

As an example of the code generation of our TRMC scheme, we consider the map function
from our benchmarks in Section 9. The map function is specialized by the compiler for the
increment function, and after the TRMC transformation we have:

fun map_trmc’( xs : list<int32>, k : ctx<list<int32>> ) : list<int32>
match xs
Nil -> k ++. Nil
Cons(x,xx) ->
val y = x+1
val c = ctx Cons(y, _)
map_trmc’(xx, k ++ c)

fun map_trmc( xs : list<int32> ) : list<int32>
map_trmc’(xs, ctx _)

Here the empty context ctx _ is the Minamide tuple as a value type containing the final
result and hole address, something like Ctx(invalid, null). For efficiency, we represent
the empty tuple with a null address for the hole. The single-cell context ctx Cons(y, _)

is represented by the minamide tuple val c = Cons2(y, �) in Ctx(c, c@2). Eventually,
the Ctx value type is passed in registers (x19 and x21), and the generated code for arm64
becomes:
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map_trmc’:
... ; setup
mov x21, x2 ; x21 is the hole address of the tuple
mov x19, x1 ; x19 the final result part of the tuple
cmp x0, #5 ; is it Nil?
b.ne LBB3_5 ; if not, goto to Cons branch
...

LBB3_5: ; Cons branch
mov x20, x3 ; set up loop variables in registers
mov x23, #x100000000 ; used for fast int32 arithmetic
mov w24, #x020202 ; Cons header: fields=2,ctx path index=2,tag=2,rc=0
mov w25, #1

LBB3_6: ; tail call entry
ldp x26, x22, [x0, #8] ; load pair: x = x26 and xx = x22
ldr w8, [x0, #4] ; load ref count in w8
cbnz w8, LBB3_10 ; if not unique, goto slower copying path

LBB3_7:
add x8, x23, x26, lsl #31; increment x from/to a boxed int32 representation
asr x8, x8, #31
orr x8, x8, #0x1
stp x24, x8, [x0] ; store pair in-place: header and the incremented x
mov x8, x0
str x25, [x8, #16]! ; set tail to invalid (1) for now (not really needed)
cbz x21, LBB3_16 ; if this an empty tuple (hole==NULL), goto slow path
str x0, [x21] ; else store our Cons result into the current hole

LBB3_9:
mov x0, x22 ; continue with the tail (x22)
mov x21, x8 ; and set x21 to the new hole
cmp x22, #5 ; is it a Nil?
b.ne LBB3_6 ; if not, make a tail call
b LBB3_2 ; otherwise return
...

map_trmc:
mov x3, x1 ; set up the empty Minamide tuple
mov w1, #1 ; final result is invalid for now (1)
mov x2, #0 ; with the initial hole==NULL
b map_trmc’ ; and jump

Note in particular how the header for the Cons node in the context is set as
mov w24, #x020202 where, from left-to-right, we initialize the tag (0x02), the context path
field (0x02), and the total number of fields (also 0x02). As such, maintaining context paths
comes for free since it is done as part of header initialization. Also we see the reuse of
Perceus reference counting (Xie et al., 2021; Lorenzen & Leijen, 2022) in action, where
the Cons node that is matched (in x0) is reused for the context Cons node (also in x0). Since
the effect inferred for the specialized map function is total, the check for uniqueness of
the context is removed as it the context is guaranteed to be used lineraly.

7.4 Dynamic copying without reference counting

Lorenzen et al. (2024) show that it is possible to support first-class constructor contexts
even in languages without precise reference counts. Their proposed implementation (also
suggested by Gabriel Scherer) uses a special distinguished value for a runtime hole � that
is never used by any other object. A substitution now first checks the value at the hole:
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if it is a � value, the hole is substituted for the first time and we just overwrite the hole
in-place (in constant time). However, any subsequent substitution on the same context will
find some object instead of �. At this point, we first dynamically copy the context path (in
linear time) and then update the copy in-place.

( { , } ++. 3 ) , ( { , } ++. 4 )

5

2
1

= , ( { , } ++. 4 )

5

2
1 3

= ,

5

2
1 3

5

2
4

The illustration above (due to Lorenzen et al., 2024) shows a more complex example of
a shared tree context that is applied to two separate nodes. The runtime context path is
denoted here by bold edges. The intermediate state is interesting as it is both a valid tree,
but also a part of the tree is shared with the remaining context, where the hole points to
a regular node now. When that context is applied, only the context path (node 5 and 2) is
copied first where all other nodes stay shared (in this case, only node 1).

However, it turns out that this simple approach is not sound without further restrictions.
For general first-class contexts, the second context can be arbitrary (instead of always a
constant ctx in the TRMC case), the context composition operation c1 ++ c2 needs an
extra check in order to avoid creating cycles: we check if c2 has an already overwritten
hole or if the hole in c2 is at the same address as in c1. In either case, c2 is copied along
the context path.

Figure 3 shows a partial implemention in C code of how one can implement constructor
contexts in a runtime for languages without precise reference counting. We assume that
HOLE is the distinguished value for unfilled holes (�). When we compose two contexts, we
need to ensure we can handle shared contexts as well where we copy a context along the
context path if needed (using ctx_copy).

In the application and composition functions, the check (A) sees if the hole in c1 is
already overwritten (where *c1.hole != HOLE). In that case, we copy c1 along the
context path as shown in Section 7.2 to maintain referential transparency.

However, in the composition operation we also need to do a similar check for c2 as well
in order to avoid cycles: the second check (B) checks if c2 has an already overwritten hole,
but also if the hole in c2 is the same as in c1. In either case, c2 is copied along the context
path. Effectively, both checks ensure that the new context that is returned always ends with
a single fresh HOLE. Let’s consider some examples of shared contexts. A basic example is
a simple shared context, as in:

val c = ctx Cons(1,_) in (c ++. [2], c ++. [3])

which evaluates to ([1,2],[1,3]). Here, during the second application, check (A) ensures
the shared context c is copied such that the list [1,2] stays unaffected.

A more tricky example is composing a context with itself:

val c = ctx Cons(1,_) in (c ++ c) ++. [2]

which evaluates to [1,1,2]. The check (B) here copies the appended c (since
c1.hole == c2.hole). In this example, the potential for a cycle is immediate, but
generally it can be obscured with a shared context inside another. Consider:
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struct ctx_t { // a Minamide context
heap_block_t* root;
heap_block_t** hole;

};

struct ctx_t ctx_copy( struct ctx_t c ) {
struct ctx_t d = { .root = c.root, .hole = c.hole };
if( c.root == NULL ) return d;
heap_block_t** prev = &(c.root);
heap_block_t** next = &(d.root);

while( prev != c.hole ) {
*next = heap_block_copy( *prev );
prev = (*prev)->children + ((*prev)->ctx_path);
next = (*next)->children + ((*next)->ctx_path);

}
d.hole = next;
return d;

}

// (++.) : cctx<a,b> -> b -> a
heap_block_t* ctx_apply( struct ctx_t c1, heap_block_t* x )
{
// is c1 an empty context?
if (c1.root == NULL) return x;

// copy c1 ?
struct ctx_t d1 = (*c1.hole != HOLE ? ctx_copy(c1) : c1); // (A)

*d1.hole = x;
return d1.root;

}

// (++) : cctx<a,b> -> cctx<b,c> -> cctx<a,c>
struct ctx_t ctx_compose( struct ctx_t c1, struct ctx_t c2 )
{
// is c1 or c2 an empty context?
if (c1.root == NULL) return c2;
if (c2.root == NULL) return c1;

// copy c1 ?
struct ctx_t d1 = (*c1.hole != HOLE ? ctx_copy(c1) : c1 ); // (A)

// copy c2 ? (needed to avoid cycles)
struct ctx_t d2 = ((*c2.hole != HOLE || c1.hole == c2.hole)

? ctx_copy(c2) : c2 ); // (B)

*d1.hole = d2.root;
d1.hole = d2.hole;
return d1;

}

Fig. 3. Implementing constructor composition and application in the runtime system (for languages
without precise reference counts).
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val c1 = ctx Cons(1,_)
val c2 = ctx Cons(2,_)
val c3 = ctx Cons(3,_)
val c = c1 ++ c2 ++ c3 in (c ++ c2) ++. [4]

which evaluates to [1,2,3,2,4]. The check (B) again copies the appended c2 in c ++ c2

(since *c2.hole != HOLE).
Note that the (B) check in composition is sufficient to avoid cycles. In order to create

a cycle in the context path, either c1 must be in the context path of c2 (I), or the c2 in
the context path of c1 (II). For case (I), if c1 is at the end of c2, then their holes are at
the same address where c1.hole == c2.hole. Otherwise, if c1 is not at the end, then
*c1.hole != HOLE and we have copied c1 already due to check (A). For case (II) the
argument is similar: if c2 is at the end of c1 we again have c1.hole == c2.hole, and
otherwise *c2.hole != HOLE.

The implementation using precise reference counting is not very different from the
one without reference counting. The main difference is in the checks (A) and (B), which
become:

// copy c1 ?
struct ctx_t d1 = (!is_unique(c1.root) ? ctx_copy(c1) : c1 ); // (A)

// copy c2 ? (needed to maintain ctx paths where each node beside the root is
unique)
struct ctx_t d2 = (!is_unique(c2.root) ? ctx_copy(c2) : c2 ); // (B)

This is the implementation that is used in the Koka runtime system. The (B) check
here is required to maintain the invariant that context paths always form unique chains
(Section 7.2). From this property, it follows directly that no cycles can occur in the context
path.

7.5 Runtime behavior

Interestingly, the two implementations, with or without precise reference counting, do dif-
fer in their runtime performance characteristics, which are dual to each other in terms of
space and time.

7.5.1 Time

The implementation without reference counting only copies on demand when the hole is
already filled, whereas our earlier implementation with reference counts copies whenever
the context is found to be not unique upon filling the hole. The latter can be a problem if
the context is later discarded without being used. Consider the knapsack program, which
in its last iteration may call itself on a one-element list [x] with x = w. For this special
case, the code reduces to:

fun knapsack’(x : int, k : ctx<list<int>>) : <nondet,div> list<int>
val v = if flip() then x else fail() in k ++. Cons(v, [])

This computation is run twice, where the first run successfully returns
k ++. (Cons(x, [])) but the second run fails. The reference counting-based imple-
mentation has to copy k in the first run, since its reference count is not one (due to k being
captured for the second run). In contrast, assuming that the hole in k is not yet filled, the
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new implementation can simply fill the hole of k with Cons(x, []) in the first run without
copying. Since k is discarded in the second run, no copying is needed at all. We will come
back to this point in Section 9, where we see that the reference counting implementation
in Koka does not perform well in a backtracking search, presumably due to this issue.

7.5.2 Space

The implementation without precise reference counts can use more space though than the
one based on reference counting. This can occur when a context accidentally holds on
to values that have been written into its hole. Consider an earlier state of the knapsack
program, where it may process a list vs = Cons(v, vv) with v > w. Then we can simplify
the code to:

if flip()
then knapsack(w - v, Cons(v, vv), k ++ Cons(v, _))
else val v’ = select(vv) in knapsack(w - v’, Cons(v, vv), k ++ Cons(v, _))

Following the flip(), we first try to use v as our element. But since v > w, this computation
fails and we backtrack. However, our new algorithm may have written Cons(v, _) into the
hole of k. This value is now garbage, but this may not be obvious to a garbage collector or
reference counting scheme, since k is still live. Only when backtracking to the second run
do we copy k and discard the old value.

In contrast, the implementation based on reference counting would have copied (and
discarded) k in the first run already. Unlike the new implementation, it is garbage-free (Xie
et al., 2021) and guarantees that no space is used for values that are no longer needed. For
this reason, we prefer the implementation via reference counting in Koka, using the other
implementation for GC-based languages.

8 Programming with first-class constructor contexts

First-class constructor contexts turn out to be a powerful feature, and they allow us to
write many programs by hand that would be hard to generate automatically from a general
TRMC transformation. In this section, we explore some of these programs, all of which
can be written in Koka.

8.1 Modulo cons products

The partition function calls a predicate on each element of a list and appends it to one of
two piles depending on the result:

fun partition(p : a -> bool, xs : list<a>) : (list<a, list<a>)
match xs
Nil -> (Nil, Nil)
Cons(x, xx) ->
val (yes, no) = partition(p, xx)
if p(x)
then (Cons(x, yes), no)
else (yes, Cons(x, no))

The recursive call to partition is followed by a pattern match on the resulting tuple, an if-
statement and finally the constructor application. This does not fit the TRMc transformation
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directly, but it also might not seem too different – and indeed this function was suggested
as fruitful target for an expanded TRMC translation both by Bour et al. (2021) and the
conference version of this paper.

However, in order to make this function tail-recursive, the p(x) call would have to be
moved before the recursive call. That can be done by a compiler if p is pure, but what if p
may perform side effects? Thus, even an extended TRMc transformation could only apply
if the user first rewrote their code to:

fun partition(p : a -> bool, xs : list<a>) : (list<a, list<a>)
match xs
Nil -> (Nil, Nil)
Cons(x, xx) ->
val ok = p(x)
val (yes, no) = partition(p, xx)
if ok
then (Cons(x, yes), no)
else (yes, Cons(x, no))

The conference version of this paper describes a transformation that recognizes that the
pattern match on the returned tuple is mirrored in the creation of a new tuple and looks for
constructor contexts inside the created tuple.

However, it may not be worth implementing such specific transformation as we can
easily rewrite it manually using two explicit first-class constructor contexts for yes and no:

fun partition(p, xs, yes, no)
match xs
Nil -> (yes ++. Nil, no ++. Nil)
Cons(x, xx) ->
if p(x)
then partition(p, xx, yes ++ ctx Cons(x, _), no)
else partition(p, xx, yes, no ++ ctx Cons(x, _))

The resulting code is clearer than the version with an explicit ok variable, and not just
more efficient but arguably even clearer than the original version. For this reason, we now
recommend that programmers use first-class constructor contexts directly for examples
like this.

8.2 Difference lists

Another example of future work described by Bour et al. (2021) is the flatten function.
This function calls itself recursively and passes the result to the append function on lists:

fun append(xs : list<a>, ys : list<a>) : list<a>
match xs
Nil -> ys
Cons(x, xx) -> Cons(x, append(xx, ys))

fun flatten(xss : list<list<a>>) : list<a>
match xss
Nil -> Nil
Cons(xs, xss) -> append(xs, flatten(xss))

While append is tail-recursive modulo cons, flatten is not. However, append is just a
sequence of constructor applications ending in the second argument, and we can easily

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100117
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.89, on 05 Nov 2025 at 10:51:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100117
https://www.cambridge.org/core


46 D. Leijen and A. F. Lorenzen

rewrite it using a first-class constructor context returned from append (i.e., a difference
list):

fun append(acc : ctx<list<a>>, xs : list<a>) : ctx<list<a>>
match xs
Nil -> acc
Cons(x, xs) -> append(acc ++ ctx Cons(x, _), xs)

fun flatten-acc(acc : ctx<list<a>>, xss : list<list<a>>) : list<a>
match xss
Nil -> acc ++. Nil
Cons(xs, xss) -> flatten-acc(append(acc, xs), xss)

fun flatten( xss : list<list<a>> ) : list<a>
flatten-acc(ctx _, xss)

8.3 Composing constructor contexts

Another example which illustrates the usefulness of first-class conntexts that can be stored
in data structures is the composition of constructor contexts with defunctionalized evalu-
ation contexts. While constructor contexts naturally apply to the map over a list, they do
not apply directly to a map over trees:

type tree<a>
Leaf
Bin(l : tree<a>, a : a, r : tree<a>)

fun tmap(t, f)
match t
Bin(l, x, r) -> Bin(tmap(l, f), f(x), tmap(r, f))
Leaf -> Leaf

Here, the first recursive call to tmap is not in a constructor context and thus the TRMc
transformation alone is not enough to make this tail-recursive. However, instead of resort-
ing to full defunctionalized evaluation contexts, we can use them only for descending into
the left child and keep using constructor contexts to descend into the right branch:

type accum<a,b>
Hole
Accum(acc : accum<a,b>, top : ctx<tree<b>>, x : a, r : tree<a>)

fun tmap-acc(t, f, acc, top)
match t
Bin(l, x, r) -> tmap-acc(l, f, Accum(acc, top, x, r), ctx _)
Leaf -> tmap-app(f, top ++. Leaf, acc)

fun tmap-app(f, l, acc)
match acc
Hole -> l
Accum(acc, top, x, r) -> tmap-acc(r, f, acc, top ++ ctx Bin(l, f(x), _))

This function immediately follows from the technique described in Section 5.3. It extends
the acc accumulator whenever it goes into the left subtree and extends the top accumu-
lator whenever it goes into the right subtree. While a version using only defunctionalized
evaluation contexts corresponds to pointer reversal (Schorr & Waite, 1967), this version
reverses only the pointers going to the right child, but leaves the pointers to the left child
intact.
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8.4 Polymorphic recursion

In this paper, we have limited ourselves to recursive functions where each recursive call
has the same return type. However, there are some functions where the recursive call might
have a different return type due to polymorphic recursion. For example, Okasaki (1999)
presents the following random access list:

type seq<a>
Empty
Zero( s : seq<(a, a)> )
One ( x : a, s : seq<(a, a)> )

fun cons(x : a, s : seq<a>) : seq<a>
match s
Empty -> One(x, Empty)
Zero(ps) -> One(x, ps)
One(y, ps) -> Zero(cons((x, y), ps))

Here the recursive call instantiates a with (a,a), and the hole in Zero(�) has type seq

<(a,a)>. It turns out that for polymorphically recursive code, performing the translation
can lead to code that is not typeable is System F. This issue is well known for defunc-
tionalized evaluation contexts, where GADTs are required to regain typability (Pottier &
Gauthier, 2004). Analogously, we give two type parameters to first-class constructor con-
texts cctx<a,b> where a corresponds to the type of the root and b to the type of the hole.
Our primitive operations have the general types:

alias ctx<a> = cctx<a,a>

fun (++)( c1 : cctx<a,b>, c2 : cctx<b,c> ) : cctx<a,c>
fun (++.)( c : cctx<a,b>, x : b) : a

It turns out that this encapsulates the necessary type information to type the result of the
translation for polymorphic recursion. Even though Koka has an intermediate core repre-
sentation based on System F, the application and composition functions are primitives and
Koka transforms the above function without problems. Our cons function is translated to:

fun cons(x : a, s : seq<a>, acc : cctx<seq<b>, seq<a>>) : seq<b>
match s
Empty -> acc ++. One(x, Empty)
Zero(ps) -> acc ++. One(x, ps)
One(y, ps) -> cons((x, y), ps, acc ++ ctx Zero(_))

8.5 Multiple holes

A limitation of our current approach is that we do not support multiple holes in a con-
structor context. For example, consider the following function which builds a perfectly
balanced binary tree of height n:

fun tree(n : int) : tree<int>
if n <= 0 then Leaf else
val t = tree(n-1)
Bin(t, n, t)

This function cannot directly be made tail-recursive with our current approach. The issue is
that the value t occurs twice in the constructor. This means that we would need our context
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to have two holes instead of one. But the compact representation of our context paths
makes it impossible to fork the path, which means that we can only support copying for
single-hole contexts. When constructor contexts are only used linearly and never copied,
it is possible to support multiple holes directly (Bagrel, 2024).

8.6 TRMC as a source-to-source transformation

Since the introduction of first-class constructor contexts to the language, the TRMc trans-
formation has become source-to-source. This means that there is no longer a direct reason
for compiler writers to support TRMc directly as long as first-class contexts are supported,
since the latter allow programmers to recreate the effects of the TRMc transformation
manually.

Naturally, this raises the question of which parts of the transformation a compiler should
handle automatically. In Koka, we currently support the TRMc transformation to ensure
that the naive version of map is automatically optimized. However, we do not implement
all extensions that are possible. For example, we have not implemented the extension pro-
posed in Section 7.1 of the conference version of this paper since first-class constructor
contexts make it easily possible to derive it manually. Furthermore, we do not implement
an automatic translation for other kinds of contexts like the ones proposed in Section 4.

One choice for future compiler writers would be to automatically apply exactly those
contexts for which benchmarks indicate that they always improve performance. This seems
to be the case for constructor contexts and semiring contexts (which are also supported by
GCC, see Section 4.4). However, traditional CPS and defunctionalized contexts tend to
decrease performance. It can be valuable to use contexts that decrease performance since
they still protect against stack overflows, but this should only be done for those functions
that actually present a risk of causing a stack overflow.

Another option would be to let users make the choice on which functions should be
transformed and with which context. Possible contexts might either be baked into the lan-
guage or even declared directly by users. In Section 5, we describe how several contexts
can be composed so that the compiler can achieve tail-recursive functions where some of
the calls are eliminated using more performant contexts than other calls.

Finally, another sensible option would be to perform no TRMC pass in the compiler at
all and instead leave the transformation completely to programmers. We believe that the
implementations using an explicit accumulator presented in this section are often similar
in clarity to direct-style implementations and it would not be infeasible to simply perform
the TRMC transformation by hand where required. In return, the language enjoys simpler
semantics and there is a smaller implementation burden in the compiler.

9 Benchmarks

The Koka compiler has a full implementation the TRMC algorithm as described in this
paper for constructor contexts (since v2.0.3, Aug 2020). We measure the impact of TRMC
relative to other variants on various tests: the standard map function over a list (map),
mapping over a balanced binary tree (tmap), balanced insertion in a red-black tree (rbtree),
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and finally the knapsack problem as shown in Section 7. Each test program scales the
repetitions to process the same number of total elements (100 000 000) for each test size.

The map test repeatedly maps the increment function over a shared list of numbers from
1 to N and sums the result list. This means that the map function repeatedly copies the
original list and Perceus cannot apply reuse here (Lorenzen & Leijen, 2022). For example,
the test for the standard (and TRMC) map function in Koka is written as:

fun map-std( xs : list<a>, f : a -> b ) : list<b>
match xs
Cons(x,xx) -> Cons(f(x),xx.map-std(f))
Nil -> Nil

fun test(n : int)
val xs = list(1,n)
val x = fold-int(0, 100_000_000/max(n,1), 0) fn(i,acc)

acc + xs.map-std(fn(x) x + 1).sum
println("total: " ++ x.show)

For each test, we measured five different variants:
• trmc: the TRMC version which is exactly like the standard (std) version.
• std: the standard non-tail-recursive version. This is the same source as the trmc version

but compiled with the –fno-trmc flag.
• acc: this is the accumulator style definition where the accumulated result list- or tree-

visitor is reversed in the end.
• acc (no reuse): this is the accumulator style version but with Perceus reuse disabled for

the accumulator. The performance of this variant may be more indicative for systems
without reuse. Accumulator reuse is important as it allows the accumulated result to be
reversed “in place”.

• cps: the CPS style version with an explicit continuation function. This allocates a closure
for every element that eventually allocates the result element for the final result. Perceus
does not reuse the memory underlying closures.

The benchmark results are shown in Figure 4. For the map function, we see that our TRMC
translation is always faster than the alternatives for any size list. For a tree map (tmap),
this is also the case, except for one-element trees where the standard tmap is slightly faster
(6%). However, when we consider a slightly more realistic example of balanced insertion
into a tree, TRMC is again as fast or faster in all cases. The rbtree benchmark is interesting
as during traversal down to the insertion point, there two recursive cases where TRMC
applies, but also two recursive cases where TRMC does not apply. Here, we see that it still
helps to apply TRMC where possible as looping is apparently faster than a recursive call
in this benchmark.

Finally, knapsack implements the example from Section 7 with a backtracking effect.
Unfortunately, the TRMC variant, which uses the hybrid approach to copy the context on
demand, is less fast than the alternatives. It is not that much slower though – about 25%
at worst. The reason for this is that there is less sharing. For the accumulator version, at
each choice point the current accumulated result is shared between each choice, building
a tree of choices. At the end, many of these choices are just discarded (as the knapsack is
too full), and only for valid solutions a result list is constructed (as a copy). However, for
the hybrid trmc approach, we copy the context on demand at each choice point, and when
we reach a point where the knapsack is too full the entire result is discarded, keeping only
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Fig. 4. Benchmarks on Ubuntu 20.04 (AMD 5950x), Koka v2.4.1-dev. The benchmarks are map
over a list (map), map over a tree (tmap), balanced red-black tree insertion (rbtree), and the knapsack
program that uses nonlinear control flow. Each workload is scaled to process the same number of total
elements (usually 100 000 000). The tested variants are TRMC (trmc), the standard non-tail-recursive
style (std), accumulator style (acc), accumulator style without Perceus reuse (acc (no reuse)), and
finally CPS style (cps).
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valid solutions. As such, the trmc variant copies more than the other approaches depending
on how many of the generated solutions are eventually kept. Still, in Koka we prefer the
hybrid approach to avoid code duplication.

10 Related work

Tail recursion modulo cons was a known technique in the LISP community as early as
the 1970s. Risch (1973) describes the TRMc transformation in the context of REMREC
system which also implemented the modulo associative operators instantiation described
in Section 4.4. A more precise description of the TRMc transformation was given
by Friedman & Wise (1975).

More recently, Bour et al. (2021) describe an implementation for OCaml which also
explores various language design issues with TRMc. The implementation is based on des-
tination passing style where the result is always directly written into the destination hole.
This entails generating an initial unrolling of each function. For example, the map function
is translated (in pseudo code) as:

fun map( xs, f )
match xs
Nil -> Nil
Cons(x,xx) ->
val y = f(x)
val dst = Cons(y,�)
map_dps( xx, f, dst@2 )
dst

fun map_dps( xs, f, dst@i ) : ()
match xs
Nil -> dst.i := Nil
Cons(x,xx) ->
val y = f(x)
val dst’ = Cons(y,�)
dst.i := dst’
map_dps( xx, f, dst’@2 )

This can potentially be more efficient since there is only one extra argument for the des-
tination address (instead of our representation as a Minamide tuple of the final result with
the hole address), but it comes at the price of duplicating code. Note that the map_dps func-
tion returns just a unit value and is only called for its side effect. As such it seems quite
different from our general TRMC based on context composition and application. However,
the destination passing style may still be reconciled with our approach: with a Minamide
tuple the first iteration always uses an “empty” tuple, while every subsequent iteration has
a tuple with the fixed final result as its first element, where only the hole address (i.e., the
destination) changes. Destination passing style uses this observation to specialize for each
case, doing one unrolling for the first iteration (with the empty tuple), and then iterating
with only the second hole address as the destination.

The algorithm rules by Bour et al. (2021) directly generate a destination passing style
program. For example, the core translation rule for a constructor with a hole is:

n′ = |I| + 1 d′.n′ ←�[U] � dps T[dl.nl←Kl]l

d.n←K[C((ei)i∈I ,�, (ej)j)][U] � dps let d′ = C((ei)i∈I , Hole, (ej)j) in
d.n←K[d′];
T[dl.nl←Kl]l

[DPS-REIFY]

Here a single rule does various transformations that we treat as orthogonal, such as folding,
extraction, instantiation of composition, and the actual TRMc transformation. Allain et
al. (2025) expand on the design and give a formal proof of correctness using separation
logic.
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In logic languages, difference lists (Clark & Tärnlund, 1977) can be used to encode a
form of TRMc: difference lists are usually presented as a pair (L, X) where X is a logic vari-
able which is the last element of the list L. With in-place update of the unification variable
X, one can thus append to L in constant time – quite similar to our constructor contexts.
This is also done in the experimental Ozma backend of the Scala language (Doeraene &
Van Roy, 2013). Engels (2022) describes an implemention of TRMC for the Elm lan-
guage that can also tail-optimize calls to the right of a list append by keeping the last
cell of the right-appended list as a context. Pottier & Protzenko (2013) implement a type
system inspired by separation logic, which allows the user to implement a safe version
of in place updating TRMc through a mutable intermediate datatype. Laziness works
similar to TRMc for the functions we consider: recursive calls guarded by a construc-
tor are thunked and incremental forcing can happen without using the stack. The listless
machine (Wadler, 1984) is an elegant model for this behavior.

Hughes (1986) considers the function reverse and shows how the fast version can be
derived from the naive version by defining a new representation of lists as a composi-
tion of partially applied append functions (which are sometimes also called difference
lists). His function rep(xs) (defined as fn(ys) xs ++ ys) creates such abstract list and
is equal to our ctx when instantiated to append functions and list contexts (Section 4.1).
Similarly, his abs(f) function (defined as f []) corresponds to our app k [] in that case,
and finally, the correctness condition would correspond to our (appctx) law. The idea of
calculating programs from a specification has a long history, and we refer the reader to
early work by Bird (1984), Wand (1980), and Meertens (1986), and more recent work
by Gibbons (2022) and Hutton (2021).

Defunctionalization (Reynolds, 1972; Danvy & Nielsen, 2001) has often been used to
eliminate all higher-order calls and obtain a first-order version of a program. Wand &
Friedman (1978) describes a defunctionalization algorithm in the context of LISP.
Minamide et al. (1996) introduce special primitives pack and open (that correspond roughly
to our ctx and app) and describe a type system for correct usage. Bell et al. (1997)
and Tolmach & Oliva (1998) perform the conversion automatically at compile-time.
Danvy & Nielsen (2001) propose to apply defunctionalization only to the closures of
self-recursive calls, which should produce equal results as our approach in Section 4.3.
However, they do not give an algorithm for this and the technique has so far mainly been
used manually (Danvy & Goldberg, 2002; Gibbons, 2022).

An early implementation of TRMc in a typed language was in the OPAL com-
piler (Didrich et al., 1994). Similar to Bour et al. (2021), they also used destination
passing style compilation with an extra destination argument where the final result is writ-
ten to. Like Koka and Lean, OPAL also managed memory using reference counting and
could reuse matched constructors (Schulte & Grieskamp, 1992). Reuse combines well with
TRMc and in recent work Lorenzen & Leijen (2022) show how this can be used to speed up
balanced insertion into red-black trees using the functional but in-place (FBIP) technique.
Sobel & Friedman (1998) propose to reuse the closures of a CPS-transformed program for
newly allocated constructors and show that this approach succeeds for all anamorphisms.
However, reuse based on dynamic reference counts can improve upon this by for example
also reusing the original data for the accumulator (and generalize to nonlinear control).
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We are using the linearity of the Perceus heap semantics (Xie et al., 2021; Lorenzen &
Leijen, 2022) to reason about linear chains and the essence of in-place updates. In our
case, these linear chains are used to reason about the shape of a separate part of the heap.
This suggest that separation logic (Reynolds, 2002) could also be used effectively for such
proofs. For example, Moine et al. (2023) use separation logic to reason about space usage
under garbage collection.

11 Conclusion and future work

In this paper, we explored tail recursion modulo context and tried to bring the general
principles out of the shadows of specific algorithms and into the light of equational rea-
soning. We have a full implementation of the modulo cons instantiation and look forward
to explore future extensions to other instantiations as described in this paper.
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A Further Benchmarks

Figure A1 shows benchmark results of the map benchmark. This time we included the
results for OCaml 4.14.0 which has support for TRMc (Bour et al., 2021) using the
[@tail_mod_cons] attribute. For example, the TRMc map function is expressed as:

let[@tail_mod_cons] rec map_trmc xs f =
match xs with
| [] -> []
| x :: xx -> let y = f x in y :: map_trmc xx f

Comparing across systems is always difficult since there are many different aspects, in
particular the different memory management of both systems where Koka uses Perceus
style reference counting (Xie et al., 2021) and OCaml uses generational garbage collection,
with a copying collector for the minor generation, and a mark-sweep collector for the major
heap (Doligez & Leroy, 1993).

The results at least indicate that our approach, using Minamide-style tuples of the final
result object and a hole address, is competitive with the OCaml approach based on direct
destination passing style. For our translation, the trmc translation is always as fast or faster
as the alternatives, but unfortunately this is not the case in OCaml (yet) where it requires
larger lists to become faster then the standard recursion.

OCaml is also faster for lists of size 10 where std is about 25% faster than Koka’s trmc.
We believe this is in particular due to memory management. For the micro benchmark,
such small lists always fit in the minor heap with very fast bump allocation. Since in the
benchmark the result is always immediately discarded no live data need to be traced in
the minor heap for GC – perfect! In contrast, Koka uses regular malloc/free with reference
counting with the associated overheads. However, once the workload increases with larger
lists, the overhead of garbage collection and copying to the major heap becomes larger,
and in such situation Koka becomes (significantly) faster. Also, the time to process the 100
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Fig. A1. Benchmarks on Ubuntu 20.04 (AMD 5950x), Koka v2.4.1-dev, OCaml 4.14.0. The bench-
mark repeatedly maps the increment function over a list of a given size and sums the result list. Each
workload is scaled to process the same number of total elements (100 000 000). The tested variants
of map are TRMC (trmc), accumulator style (acc), the standard non-tail-recursive style (std), and
finally CPS style (cps).
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58 D. Leijen and A. F. Lorenzen

M elements stays relatively stable for Koka (around 0.45 s) no matter the sizes of the lists,
while with GC we see that processing on larger lists takes much longer.

B Proofs

B.1 The TRMC Algorithm is Sound

In Section 3.2, we used equational reasoning to derive the TRMC algorithm which makes
it sound by construction. However, since we use an assumed specification (a), we gen-
erally need to make sure we only use this inductively on smaller terms (Hutton, 2021;
Gibbons, 2022). However, we use the specification on the original term in the directly
tail-recursive case, where we translate a tail-recursive expression f e to its correspond-
ing tail-recursive call in the translation f ′ e k. Intuitively, this is correct since we map
each original recursive call to a recursive call in the translation, but technically it is not
inductive.

It is a bit beyond the scope of this paper, we can show formally that such recursive
reasoning step is actually sound in general. In particular, we can use a slightly more pow-
erful notion of equality. We base our development on the step-indexed logical relation
of Appel & McAllester (2001).

Definition 1.
For closed terms e1 and e2, we write F � e1 � i e2 if for all 0 < j < i we have e1 �−→j v
implies e2 �−→∗ v under the global environment of top-level functions F. We write
F � e1

∼= i e2 if F � e1 � i e2 and F � e2 � i e1.

The above definition is similar to the e � k f : τ relation of Appel & McAllester (2001)
(Section 3), but simplified in two ways: we do not consider a typing relation : τ and
we require that the values produced by e1 and e2 are the same instead of merely being
equivalent for i − j steps. The latter choice implies that this notion of equality is not con-
gruent under lambdas and we cannot rewrite under lambdas (which is the case for our
development).

We use the subscript i instead of k to avoid confusion with our notation for continua-
tions. We omit the environment F where it is clear from the context.

Definition 2.
For open terms e1 and e2 with free variables �, we write F � e1 � i e2 if for all substitu-
tions σ mapping � to values, we have F � σ (e1) � i σ (e2) and similarly for F � e1

∼= i e2.
We write F � e1 � e2 if F � e1 � i e2 for all i and similarly for F � e1

∼= e2.

This definition is similar to the � � k e � f : τ relation but simplified to use the same
substitution σ for both e1 and e2 instead of substitutions σ1, σ2 whose values are equivalent
for i steps.

The main induction principle we need is the following:

f �∈ E, e′ ∀e′′, (F, f x = e′′ � E[f x] � e′)⇒ (F, f x = e′′ � E[e] � e′)

F, f x = e � E[f x] � e′
[UNFOLDING]

Informally, this lemma states that we can show that E[f x] � e′ by unfolding f exactly one
step and then rewrite using the inequality we aim to prove. The key insight that makes this
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sound is that we quantify over all possible implementations of f . The “free theorem” of f
then implies that our assumption can only access the inequality and not any other properties
of f .

Lemma 3. (Unfolding Lemma)
Let f be a function, E be an evaluation context and e, e′ be expressions where E, e′ do not
mention f . If for any implementation of f with E[f x] � e′ we have E[e] � e′, then for
f x = e, we have E[f x] � e′.

Proof. Construct a sequence of functions fi as follows: f0 x = f0 x and fi+1 x = e[fi/f ].
• We show that fj x � fj+ 1 x for all j by induction on j. Case j = 0: Obvious, since f0 x

diverges. Case j = j′ + 1: By induction on e. Case e = f v: Then fj′ v � fj v � fj+ 1 v.
All other cases follow from the inductive hypothesis since fj′ x and fj x only differ in the
recursive calls.

• We show that E[fi x] � e′ for all i. We have f0 x � e′ since f0 diverges on all inputs.
We have E[f0 x] � e′, since the hole in an E context is always evaluated. Assume that
E[fi x] � e′. Then for f = fi, the assumption gives us E[e] � e′ and thus E[fi+1 x] � e′.

To finish the proof, we thus only have to show that E[f x] � E[fj x] for some j. Assume
that E[f x] converges in i steps to v. Then f x converges in j � i steps to some value w. We
show that fj x also converges to w by induction on j, which implies that E[fj x] converges
to v.
• Case j = 0: Since f x has to take at least one step, it does not yield a value.
• Case j = j′ + 1: By the induction hypothesis, we have f x � j′ fj′ x. We show that for

f x = e, we have f x � j fj x by induction on e. Case e = f v: Then f v � j′ fj′ v � fj v.
All other cases follow from the inductive hypothesis since f x and fj x only differ in the
recursive calls.

Our proof of the unfolding lemma is in the style of Scott Induction, where we create a chain
of approximations fi to the least fixpoint f . An alternative approach would be to define con-
textual equality of terms using weakest preconditions (Turon et al., 2013; Krogh-Jespersen
et al., 2017; Timany et al., 2024, Section 8) and to replace the approximation functions by
Löb induction (Appel et al., 2007; Dreyer et al., 2009) in the weakest-precondition relation.

Proof of Theorem 1:

Let f x = ef and f ′ x k = �ef �f ,k , then app k (f x) ∼= f ′ x k.

Proof. We focus on the (tail) case of the translation, while (tlet), (tmatch), (tapp), and
(base) can be handled as in the text of the paper.

We show f ′ x k = �ef �f ,k � app k (f x) by the unfolding lemma with
E = �, e′ = app k (f x). That is, we assume that f ′ x k � app k (f x) and show that
this implies that �ef �f ,k � app k (f x):

�E[f e0]�f ,k

= f ′ e0 (k • ctx E) { (tail) }
∼= let x = e0 in f ′ x (k • ctx E) { (letfloat) }
� let x = e0 in app (k • ctx E) (f x) { assumption : f ′ x k � app k (f x) }
∼= let x = e0 in app k (app (ctx E) (f x)) { (appcomp) }
∼= let x = e0 in app k E[f x] { (appctx) }
∼= app k E[f e0] { (letfloat) }
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60 D. Leijen and A. F. Lorenzen

We show app k (f x) = app k (ef ) � f ′ x k by the unfolding lemma with
E = app k�, e′ = f ′ x k. That is, we assume that app k (f x) � f ′ x k and show that
this implies that app k (ef ) � f ′ x k:

app k E[f e0]
∼= app k (app (ctx E) (f e0)) { (appctx) }
∼= app (k • ctx E) (f e0) { (appcomp) }
� f ′ e0 (k • ctx E) { assumption : app k (f x) � f ′ x k }
= �E[f e0]�f ,k { (tail) }

B.2 Context Laws for Defunctionalized Contexts

app (k1 • k2) e
= app (k1 •Hole) e { assumption }
= app k1 e { def • }
= app k1 (app Hole e) { def app }
= app k1 (app k2 e) { def k2 }
and case k2 = Ai x1 . . . xm k3

app (k1 • k2) e
= app (k1 •Ai x1 . . . xm k3) e { assumption }
= app (Ai x1 . . . xm (k1 • k3)) e { def ◦ }
= �Ei[e | x1, . . ., xm] �f ,k { def app, k = k1 • k3 }
= app (k1 • k3) (Ei[e | x1, . . ., xm]) { spec (b) }
= app k1 (app k3 (Ei[e | x1, . . ., xm])) { inductive hypothesis }
= app k1 (app (Ai x1 . . . xm k3) e) { def app }
= app k1 (app k2 e) { def app }
For application we have:

app (ctx Ei) e
= app (Ai x1, . . . xm Hole) e { def ctx }
= �Ei[e | x1, . . ., xm] �f ,k { def app, k = Hole }
= app Hole (Ei[e | x1, . . . xm]) { spec (b) }
= Ei[e | x1, . . . xm] { def app }
= Ei[e]

B.3 Context Laws for Right-biased-contexts

app (k1 • k2) e
= app (k2
 k1) e { (rcomp) }
= e
 (k2
 k1) { (rapp) }
= (e
 k2)
 k1 { assoc. }
= app k1 (app k2 e) { (rapp) }
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and for context application we have:

app (ctx A) e
= app (|A|) e { (rctx) }
= e
 (|A|) { (rapp) }
We proceed by induction over A.

Case A = �:

= e
 (|�|)
= e
 unit { fold }
= e { unit }
= �[e] { � }

and the case A = A′ 
 v:

= e
 (|A′ 
 v|)
= e
 ((|A′|)
 v) { fold }
= (e
 (|A′|))
 v { assoc. }
= A′[e]
 v { induction hyp. }
= A[e] { A context }

B.4 General Monoid Contexts

app ((l1, r1) • (l2, r2)) e
= app (l1
 l2, r2
 r1) e { (acomp) }
= (l1
 l2)
 e
 (r2
 r1) { (aapp) }
= (l1
 (l2
 e
 r2)
 r1) { assoc. }
= app (l1, r1) (app (l2, r2) e) { (aapp) }
and

app (ctx A) e
= app (|A|) e { (actx) }
= l
 e
 r { (aapp), for (l, r) = (|A|) }
We proceed by induction over A: case A = �:

= l
 e
 r { for (l, r) = (|�|) }
= unit
 e
 unit { fold }
= e { unit }
= �[e] { � }
and A = v
A′:

= l
 e
 r { for (l, r) = (|v
A′|) }
= (v
 l)
 e
 r { fold, for (l, r) = (|A′|) }
= v
 (l
 e
 r) { assoc., for (l, r) = (|A′|) }
= v
A′[e] { induction hyp., for (l, r) = (|A′|) }
= A[e] { A context }
and A = A′ 
 v:

= l
 e
 r { for (l, r) = (|A′ 
 v|) }
= l
 e
 (r
 v) { fold, for (l, r) = (|A′|) }
= (l
 e
 r)
 v { assoc., for (l, r) = (|A′|) }
= A′[e]
 v { induction hyp., for (l, r) = (|A′|) }
= A[e] { A context }
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62 D. Leijen and A. F. Lorenzen

B.5 Context Laws for Exponent Contexts

We prove the composition law by induction on k2:

app (k1 • k2) e
= app (k1 + k2) e
= app k1 e { case k2 = 0 }
= app k1 (app 0 e) { (xapp) }
= app k1 (app k2 e) { k2 = 0 }
and

app (k1 • k2) e
= app (k1 + (k′ + 1)) e { case k2 = k′ + 1 }
= app ((k1 + k′) + 1) e { assoc. }
= app (k1 + k′) (g e) { (xapp) }
= app k1 (app k′ (g e)) { inductive hyp. }
= app k1 (app (k′ + 1) e) { (xapp) }
= app k1 (app k2 e) { k2 = k′ + 1 }
Appliction can be derived as:

app (ctx A) e
= app (|A|) e { (xctx) }
We proceed by induction over A: case A = �:

= app (|�|) e
= app 0 e { fold }
= e { (xapp) }
= �[e] { � }
and A = g A′:

= app (|g A′|) e
= app ((|A′|) + 1) e { fold }
= app (|A′|) (g e) { (xapp) }
= A′[g e] { induction hyp. }
= A[e] { A context }

B.6 Constructor Contexts

Composition:

app (k1 • k2) e
= app (k1[k2]) e { (kcomp) }
= (k1[k2])[e] { (kapp) }
= k1[k2[e]] { contexts }
= k1[app k2 e] { (kapp) }
= app k1 (app k2 e) { (kapp) }
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x : τ ∈ �

� ; ∅�m x : τ
[VAR]

� ; x : τ �m x : τ
[HLE]

�|N � {x : τ1} ; ∅�m M : τ2

� ; ∅�m λx : τ1. M : τ1→ τ2

[ABS]

� ; x : τ1 �m M : τ2

� ; ∅�m λ̂x : τ1. M : (τ1, τ2) hfun
[HFUN]

�1 ; ∅�m M1 : τ1→ τ2 �2 ; ∅�m M2 : τ1

�1 � �2 ; ∅�m M1 M2 : τ2

[APP]

�1 ; ∅�m M1 : (τ1, τ2) hfun �2 ; H �m M2 : τ1

�1 � �2 ; H �m happ M1 M2 : τ2

[HAPP]

�i ; Hi �m Mi : τ i Ck : τ1→ . . .→ τ k→ τ

�i �i ; ⊕i Hi �m Ck M1 . . . Mk : τ
[CONS]

�1 ; ∅�m M : τ1 �2 ; ∅�pat pi : τ1 �→Mi : τ2

�1 � �2 ; ∅�m match M { pi �→Mi } : τ2

[MATCH]

�, f : τ ; ∅�m λx. e : τ

� ; ∅�m fun f = λx. e : τ
[FUNDECL]

�1 ; ∅�m M1 : τ1 �2, x : τ1 ; ∅�m M2 : τ1

�1 � �2 ; ∅�m let x = M1 in M2 : τ2

[LET]

Ck : τ ∈ �

� �m Ck : τ
[CON]

f : τ ∈ �

� �m f : τ
[FUN]

� ; ∅�m Ck : τ1→ . . .→ τ k→ τ

�, x1 : τ1, . . ., xk : τ k ; ∅�Mi : τ ′

� ; ∅�pat Ck x1 . . . xk : τ �→ ei : τ ′
[PAT]

Fig. B1. Minamide’s type system adapted to our language

and application:

app (ctxK) e
= appK e { (kctx) }
= K[e] { (kapp) }

B.7 Constructor Contexts and Minamide

The hole calculus is restricted by a linear-type discipline where the contexts ctx α ≡
hfun α α have a linear type. This is what enables an efficient in-place update implemen-
tation while still having a pure functional interface. For our needs, we need to check
separately that the translation ensures that all uses of a context k are indeed linear. Type
judgments in Minamide’s system (Minamide, 1998, fig. 4) are denoted as � ; H �m e : τ

where � is the normal type environment and H is the linear one containing at most one
linear value. The type environment � can still contain linear values with a linear-type but
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only pass those to one of the premises. The environment restricted to nonlinear values is
denoted at �|N. We can now show that our translation can be typed in Minamide’s system:

Lemma 4. (TRMC uses contexts linearly)
If �|N ; ∅�m fun f = λxs. e : τ1→ . . .→ τ n→ τ and k fresh

then �|N, f ; ∅�m fun f ′ = λxs. λk. �e�f ,k : τ1→ . . .→ τ n→ ((τ , τ ) hfun)→ τ .

To show this, we need a variant of the general replacement lemma (Hindley &
Seldin, 1986, Lemma 11.18; Wright & Felleisen, 1994, Lemma 4.2) to reason about linear
substitution in an evaluation context:

Lemma 5. (Linear replacement)
If �|N ; ∅�m K[e] : τ for a constructor context K, then there is a sub-deduction
�|N ; ∅�m e : τ ′ at the hole and �|N ; x : τ ′ �m K[x] : τ .

Proof. By induction over the constructor context K.

Case �.

�|N ; ∅�m �[e] : τ { assumption }
�|N ; ∅�m e : τ { subject reduction }
�|N ; x : τ �m x : τ { [hle] }
�|N ; x : τ �m �[x] : τ ′ { definition }
�|N ; x : τ �m E[x] : τ ′ { definition }
Case Ck w1 . . . K′ . . . wk .

�|N ; ∅�m Ck w1 . . . K′[e] . . . wk : τ { assumption }
�|N ; ∅�m wi : τ i for i �= j { [cons] and nonlinearity }
�|N ; ∅�m K′[e] : τ j { [cons] }
�|N ; x : τ ′ �m K′[x] : τ j { inductive hypothesis }
�|N ; x : τ ′ �m Ck w1 . . . K′[x] . . . wk : τ { [cons] }
Again we see that our maximal context is an evaluation context as we would not be able to
derive the Lemma for contexts under lambda’s for example (as the linear-type environment
is not propagated under lambda’s).

Proof. (Of Theorem 4) By the FUNDECL and ABS rules we obtain:

�1 = �|N, f : τ1→ . . .→ τ n→ τ , x1 : τ1, . . ., xn : τ n

�1 ; ∅�m e : τ { inductive property }
By the FUNDECL and ABS rules, we need to derive:

�2 = �|N, f : τ1→ . . .→ τ n→ τ ,
f ′ : τ1→ . . .→ τ n→ ((τ , τ ) hfun)→ τ , x1 : τ1, . . ., xn : τ n

�2, k : ((τ , τ ) hfun) ; ∅�m �e�f ,k : τ

In particular, we have �1 ⊆ �2. We proceed by induction over the translation function
while maintaining the inductive property.

Case (base).

�e�f ,k = app k e = happ k e
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k : (τ , τ ) hfun ; ∅�m k : (τ , τ ) hfun { [hle] }
�1 ; ∅�m e : τ { assumption }
�2 ; ∅�m e : τ { weakening }
�2, k : (τ , τ ) hfun ; ∅�m happ k e { [happ] }
Case (tail), e = K[f e1 . . . en].

�e�f ,k = f ′ e1 . . . en (k • ctxK) = f ′ e1 . . . en (hcomp k (λ̂x. K[x]))

�1 ; ∅�m K[f e1 . . . en] : τ { assumption }
�2 ; ∅�m K[f e1 . . . en] : τ { weakening }
�2 ; x : τ ′ �m K[x] : τ { linear replacement with nonlinearity of �2 }
�2 ; ∅�m λ̂x. K[x] : (τ , τ ) hfun { [hfun] }
�2, k : (τ , τ ) hfun ; ∅�m

hcomp k (λ̂x. K[x]) : (τ , τ ) hfun { hcomp, [happ], [hfun] }
�2 ; ∅�m f e1 . . . en : τ ′ { linear replacement with nonlinearity of �2 }
�2 ; ∅�m ei : τ i { [app] }
�2, k : (τ , τ ) hfun ; ∅�m f ′ e1 . . . en

(hcomp k (λ̂x. K[x])) { [app] }
Case (let), e = let x = e1 in e2.

�e�f ,k = let x = e1 in �e2�f ,k

�1 ; ∅�m let x = e1 in e2 : τ { assumption }
�1 ; ∅�m e1 : τ1 { [let] }
�2 ; ∅�m e1 : τ1 { weakening }
�1, x : τ1 ; ∅�m e2 : τ { [let] }
�2, k : (τ , τ ) hfun, x : τ1 ; ∅�m �e2�f ,k : τ { inductive hypothesis }
�2, k : (τ , τ ) hfun, ; ∅�m let x = e1 in �e2�f ,k : τ { [let] }
Case (match), e = match e1 { pi �→ ei }.
�e�f ,k = match e1 { pi �→ �ei�f ,k }

�1 ; ∅�m match e1 { pi �→ ei } : τ { assumption }
�1 ; ∅�m e1 : τ ′ { [match] }
�2 ; ∅�m e1 : τ ′ { weakening }
�1 ; ∅�pat pi �→ ei : τ { [match] }
�1 ; ∅�m Ck : τ1→ . . .→ τ k→ τ ′ { [pat] }
�1, x1 : τ 1, . . ., xk : τ k ; ∅�m ei : τ { [pat] }
�2, k : (τ , τ ) hfun, x1 : τ 1, . . ., xk : τ k ; ∅�m �ei�f ,k : τ { inductive hypothesis }
�2, k : (τ , τ ) hfun ; ∅�pat pi �→ �ei�f ,k : τ { [pat] }
�2, k : (τ , τ ) hfun ; ∅�m match e1 { pi �→ �ei�f ,k } : τ { [match] }
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B.8 Contexts Form Linear Chains

Proof. (Of Lemma 2) By induction on the shape of K:

Case C . . .�i . . .:

H |C . . .�i . . .

−→∗r H , x �→1 C . . . �i . . . | x { (conr) }
= H , [x �→1 C . . . �i . . .]1

x | x { linear chain }
Case C . . . K′[C′ . . .�i . . .] . . .

H | (|C . . . K′[C′ . . .�i . . .] . . .|)
−→∗r H , [H ′, y �→1 C′ . . . �i . . .]1

x′ | 〈C . . . x′ . . .〉 { induction hyp. }
−→r H , x �→1 C . . . x′ . . ., [H ′, y �→1 C′ . . . �i . . .]1

x′ | x { (conr) }
= H , [x �→1 C . . . x′ . . ., H ′, y �→1 C′ . . . �i . . .]1

x | x { linear chain }

B.9 Deriving Constructor Context Fold

Given the specification:

(foldspec) H | (|K[C . . .�i . . .]|) ∼= H | let x = K[C . . . �i . . .] in 〈x, [x]@i〉
we can calculate the fold using induction over the shape of K. In the case that K = �, we
derive:

H | (|C . . .�i . . .|)∼= H | let x = C . . . �i . . . in 〈x, [x]@i〉 { specification }
∼= H , x �→1 C . . . �i . . . | 〈x, [x]@i〉 { (letr), (conr), 1 }
= H , [x �→1 C . . . �i . . .]1

x | 〈x, [x]@i〉 { linear chain }
= H , [x �→1 C . . . �i . . .]1

x | 〈x, x@i〉 { def . }
∼= H | let x = C . . . �i . . . in 〈x, x@i〉 { (letr), (conr), 1 }
and otherwise, K has the form C′ . . .K′ . . . where
(|K′[C . . .�i . . .]|) = let x = K′[C . . . �i . . .] in 〈x, [x]@i〉 (by induction):

H | (|C′ . . . K′[C . . .�i . . .] . . .|)
∼= H | let x = C′ . . . K′[C . . . �i . . .] . . . in 〈x, [x]@i〉 { specification }
∼= H | let z = K′[C . . . �i . . .] in let x = C . . . z . . . in 〈x, [x]@i〉 { (letr) }∼= H | let 〈z, [z]@i〉 = (|K′[C . . . �i . . .]|) in

let x = C . . . z . . . in 〈x, [x]@i〉 { calculate }
∼= H , [H ′, y �→1 C . . . �i . . .]1

z , x �→1 C . . . z . . . | 〈x, [x.i]〉 { (letr), lemma 2, 1 }
= H , [x �→1 C . . . z . . ., [H ′, y �→1 C . . . �i . . .]1

z ]1
x , | 〈x, [x]@i〉 { linear chain }

= H , [x �→1 C . . . z . . ., [H ′, y �→1 C . . . �i . . .]1
z ]1

x , | 〈x, y@i〉 { def . }
∼= H | let 〈z, y@i〉 = (|K′[C . . .�i . . .]|) in 〈C . . . z . . ., y@i〉 { (letr), (conr) (1) }
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B.10 Deriving Constructor Context Composition

We can calculate for a K1, K2 �=�:

H | app (ctxK1 • ctxK2) e
∼= H | app (let x1 = K1[�] in 〈x1, [x1]@i〉) • (ctxK2) e {fold specification, K1 �=�}∼= H , [H1, y1 �→1 C1 . . . �i . . .]1

x1
| app (〈x1, [x1]@i〉 • ctx K2) e { lemma 2, 1 }

∼= H , [H1, y1 �→1 C1 . . . �i . . .]1
x1

, [H2, y2 �→1 C2 . . . �j . . .]1
x2| app (〈x1, [x1]@i〉 • 〈x2, [x2]@j〉) e {fold specification, K2 �=�, lemma 2, 2}

= H , [H1, y1 �→1 C1 . . . �i . . .]1
x1

, [H2, y2 �→1 C2 . . . �j . . .]1
x2| app (〈x1, y1 @i〉 • 〈x2, y2 @j〉) e { def . }

= H , [H1, y1 �→1 C1 . . . �i . . .]1
x1

, [H2, y2 �→1 C2 . . . �j . . .]1
x2| app 〈app 〈x1, y1 @i〉, y2 @j〉 e { calculate }

= H , [H1, y1 �→1 C1 . . . x2 . . .]1
x1

, [H2, y2 �→1 C2 . . . �j . . .]1
x2| app 〈x1, y2 @j〉) e { (uapp) }

= H , [H1, y1 �→1 C1 . . . x2 . . .]1
x1

, [H2, y2 �→1 C2 . . . �j . . .]1
x2

,
z �→1 v | app 〈x1, y2 @j〉 z { e terminating, 3 }

∼= H , [H1, y1 �→1 C1 . . . �i . . .]1
x1

, [H2, y2 �→1 C2 . . . z . . .]1
x2

,
z �→1 v | app 〈x1, y1 @i〉 x2 { (app) }

∼= H , [H1, y1 �→1 C1 . . . �i . . .]1
x1

, [H2, y2 �→1 C2 . . . �j . . .]1
x2

,
z �→1 v | app 〈x1, y1 @i〉 (app 〈x2, y2 @j〉 z) { (app) }

∼= H , [H1, y1 �→1 C1 . . . �i . . .]1
x1

, [H2, y2 �→1 C2 . . . z . . .]1
x2| app 〈x1, y1 @i〉 (app 〈x2, y2.j) e { (3) }

∼= H , [H1, y1 �→1 C1 . . . �i . . .]1
x1
| app 〈x1, y1 @i〉 (app ctxK2) e { (2) }

∼= H | app (ctxK1) (app (ctxK2) e) { (1) }
and thus define composition as:

(ucomp) H | 〈x1, y1 @i〉 • 〈x2, y2 @j〉 −→r H | 〈app 〈x1, y1 @i〉 x2, y2 @j〉
In case the context is empty, we can calculate immediately:

H | app (ctx�) e
= H | app (|�|) e { def . }
∼= H | app 〈〉 e { fold specification }
∼= H | e { calculate }
= H |�[e] { contex }
For the empty contexts, we can calculate for application:

app (ctx� • ctxK2) e
= app ((|�|) • ctx K2) e { def . }
∼= app (〈〉 • ctx K2) e { fold specification }
∼= app (ctxK2) e { calculate }
∼= K[e] { (appctx) }
∼= �[K[e]] { contexts }
and similarly for K2 = � (but note that in our translation we never have k • ctx�).
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B.11 Soundness of the Hybrid Approach

We need to show the context laws still hold for the hybrid approach.
At runtime, a context K is always a linear chain resulting from the fold or composi-

tion. We write H | K̂ for a non-empty context [H ′, y �→m C . . . �i . . .]n
x | 〈x, y@i〉 if we have

H0 | (|K|) ∼= H0, [H ′, y �→m C . . . �i . . .]1
x | 〈x, y@i〉.

Application:

H | app K̂ e
= H , [H ′, y �→m C . . . �i . . .]n+1

x | app 〈x, y@i〉 e { (A), 1 }
∼= H , z �→1 v, [H ′, y �→m Ci . . . �i . . .]n+1

x | app 〈x, y@i〉 z { e is terminating 2 }
= H , z �→1 v, [H ′, y �→m Ci . . . �i . . .]n+1

x | append x z { calculate }
Now proceed by induction on H ′. H ′ = �:

H , z �→1 v, [y �→n+1 Ci . . . �i . . .]n+1
y | append y z { singleton }

∼= H , z �→1 v, [y �→n+1 Ci . . . �i . . .]n+1
y | y.i as z { calculate }

∼= H , z �→1 v, [y �→n Ci . . . �i . . .]n
y , [x′ �→1 Ci . . . z . . .]1

x′ | x′ { (as) }
∼= H , z �→1 v, [y �→n Ci . . . �i . . .]n

y | K̂[z] { (1) }
∼= H , [y �→n Ci . . . �i . . .]n

y | K̂[e] { (2) }
and

H , z �→1 v, [x �→n+1 C′ . . . yi . . ., [H1]1
y]n+1

x

| append x z
∼= H , z �→1 v, [x �→n+1 C′ . . . yi . . ., [H1]1

y]n+1
x

| dup yi; x.i as (append yi z) { (append) }
∼= H , z �→1 v, [x �→n+1 C′ . . . yi . . ., [H1]2

y]n+1
x

| x.i as (append y z)
∼= H , z �→1 v, [x �→n+1 C′ . . . yi . . ., [H1]1

y]n+1
x , [H2]1

y′
| x.i as y′ { induction hyp. }

∼= H , z �→1 v, [x �→n C′ . . . yi . . ., [H1]1
y]n

x ,
[x′ �→1 C′ . . . y′i . . ., [H ′′]1

y′]
1
x′ | x′ { (as) }

∼= H , z �→1 v, [x �→n C′ . . . yi . . ., [H1]1
y]n

x

|C′ . . . K̂′[z] . . .
∼= H , z �→1 v, [x �→n C′ . . . yi . . ., [H1]1

y]n
x

| K̂[z]
∼= H , [x �→n C′ . . . yi . . ., [H1]1

y]n
x

| K̂[e] { (2) }
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