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In this paper, we calculate the available energy, an upper bound on the thermal energy
released that may in turn drive turbulence, due to an ion-temperature-gradient instability
driven by curvature in the presence of adiabatic electrons. This is done by choosing an
appropriate set of invariants that neglect parallel dynamics, whilst keeping the density
profile fixed. Conditions for vanishing available energy are derived and are found to be
qualitatively similar to conditions for stability derived from gyrokinetic theory, including
strong stabilisation if the ratio of the temperature and density gradient, dIn 7 /dInn =n,
falls in the range 0 < n < 2/3. To assess the utility of the available energy, a database con-
sisting of 6 x 10* local gyrokinetic simulations in randomly sampled tokamak geometries
is constructed. Using this database and a similar one sampling stellarators (Landreman
et al. 2025 J. Plasma Phys. vol. 91, E120), the available energy is shown to exhibit corre-
lation with the ion energy flux as long as the parallel dynamics is unimportant. Overall it
is found that available energy is good at predicting the energy flux variability due to the
gradients in density and temperature, but performs worse when it comes to predicting its
variability arising from geometry.

Key words: fusion plasma, plasma instabilities, plasma nonlinear phenomena

1. Introduction

Turbulent transport has long been known to degrade the energy confinement
of magnetic-confinement fusion devices. In both tokamaks and neoclassically opti-
mised stellarators, turbulent transport is the dominant energy loss mechanism, and
sets a lower limit on the magnetic field strength and/or physical size of the fusion
device. The turbulence depends on the magnetic field and on plasma parameters
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(e.g. magnetic shear, the shape of the flux surface, and the gradients of density and
temperature), which raises the possibility that the magnetic field geometry could be
shaped to minimise the impact of turbulent transport on plasma energy confinement.
Finding such an optimal design point requires intimate knowledge of the turbulence
and its dependence on such parameters.

Understanding and assessing this dependence is, in general, a difficult problem, as
the nonlinear chaotic nature of the turbulence obfuscates a straightforward anal-
ysis. However, different modelling methods have made great progress, such as
(quasi-)linear modelling (Stephens et al. 2021; Staebler, Belli & Candy 2023), non-
linear mode coupling (Pueschel ef al. 2016; Hegna, Terry & Faber 2018), advances
in direct computation of turbulence (Barnes ef al. 2019; Di Siena et al. 2022;
Hoffmann, Frei & Ricci 2023; Mandell ef al. 2024; Rodriguez-Fernandez et al.
2024) and the use of machine learning to model turbulence (van de Plassche et al.
2020; Honda et al. 2023). All these models are valuable, but trade off generality,
interpretability and computational costs. A computationally cheap model of broad
generality based on simple physical considerations (at the cost of, for example, accu-
racy) could be a valuable addition in this marketplace of models, as it provides a
tool to efficiently scan over a wide region of parameter space to identify possible
attractive designs.

Thermodynamic methods can be used to devise such models, where the dynamics
of individual particles are neglected in favour of global properties such as energy and
entropy. For instance, by exploiting properties of the Helmholtz free energy, one can
derive general bounds on the nonlinear growth rates of the free energy (Helander &
Plunk 2022; Plunk & Helander 2022, 2023; Costello & Plunk 20254). Furthermore,
entropy-maximising arguments have pointed to a degree of universality in the tails
of the energy distribution of so-called Lynden-Bell equilibria, which exhibit power-
law behaviour (Lynden-Bell 1967; Ewart et al. 2022, 2023; Banik, Bhattacharjee
& Sengupta 2024). Finally, by exploiting conservation laws, one can derive upper
bounds on the amount of thermal energy that can be converted into other forms
of energy and drive turbulence in various systems (Lorenz 1955; Gardner 1963;
Kolmes & Fisch 2020). This quantity is called the ‘available energy’ and is the main
focus of this paper.

The available energy can be calculated by determining the ground state distribution
function F of whatever particle species is being considered, which is defined as the
distribution function that minimises the total thermal energy

Erif1= [ dxef Ve (1.1)

subject to appropriate constraints. Here, E; is the total thermal energy, € = mv?/2
is the kinetic particle energy and x = (r, v) denotes phase-space coordinates with
the volume element dr dv=,/g dx. More specifically, if the distribution function
evolves according to the Vlasov equation, it has an uncountably infinite number of
invariants as it satisfies

d
a/maﬂ@=0 (12)

for any smooth functional C[ f] for which the integral exists. These so-called Casimir
invariants are a consequence of incompressibility of the flow in phase-space (i.e.
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Liouville’s theorem df/df = 0) and severely limit the amount by which E7[f] can
decrease. The distribution function that minimises the energy E[F] subject to the
constraint that all Casimir invariants of F equal those associated with some ‘initial’
distribution function f; is referred to as the Gardner re-stacking of f; (see Kolmes,
Helander & Fisch (2020) for a discretised interpretation of such an operation, and
see figure 3 of Kolmes & Fisch (2020) for a one-dimensional example of a Gardner
re-stacking). The available energy A is defined as the difference in thermal energy
between the initial state, f;, and the ground state, A = E;[f;] — Er[F] > 0.

By accounting for additional (adiabatic) invariants, such as the magnetic moment
u relevant in magnetised plasmas, one can further restrict the available energy
(Helander 2017). Importantly, when enough constraints are imposed on the system,
the available energy depends critically on the relative sign of the magnetic field gradi-
ent and the gradients in e.g. temperature or density, and the notion of ‘good’ or ‘bad’
curvature becomes important (Helander & Mackenbach 2024). This dependence on
the geometry of the magnetic field was first observed in the available energy of
trapped electrons where invariance of the magnetic moment and the parallel invari-
ant is imposed (Helander 2017, 2020), and it was later shown that this available
energy can be used to estimate the nonlinear energy flux in trapped-electron-mode
dominated turbulence (Mackenbach, Proll & Helander 2022, 2023a,b).

This raises the question whether available energy can be used to model other types
of instabilities relevant for magnetic-confinement fusion plasmas. One particularly
critical instability to consider is the ion-temperature-gradient (ITG) mode, which is
understood to be responsible for much of the ion-heat turbulent transport in toka-
maks and stellarators. For instance, in the Wendelstein 7-X stellarator, it is believed
to cause ‘clamping’ of the ion temperature (which stays clamped to a certain value
in electron-heated plasmas beyond some input power; Beurskens et al. 2021). In the
Tokamak a Configuration Variable (TCV), negative triangularity is often observed
to improve confinement, and simulations point to a decrease in turbulent energy
flux resulting from ITG instabilities (Balestri ef al. 2024), although it may be the
trapped-electron-mode that determines the turbulence (Marinoni et al. 2009; Merlo
et al. 2019). In both these devices, there is considerable freedom to vary the geome-
try of the magnetic field, and it is thus of interest to assess how the turbulence and
the available energy then changes, and whether they change in the same way.

The available energy depends on the chosen invariants (also observed by Kolmes,
Ochs & Fisch (2024) in an investigation concerning mirror machines), and modelling
for example the ITG instability requires one to choose the ‘correct’ constraints. In
this paper, we turn our attention to the relation between available energy and the
curvature-driven ItiTG mode (also known as the toroidal branch of the ITG instabil-
ity). Analyses of this instability typically assume adiabatic electrons, implying that the
electron density fluctuations, dn,., are in phase with fluctuations of the electrostatic
potential, §@. As a consequence, the E x B drift is out of phase with the density
fluctuations, implying that there is no radial electron particle flux and the density
profile is fixed. We recall that Helander (2020) found that, if the phase-space coor-
dinates x are divided into invariants y, which stay constant during the collisionless
motion of each particle, and the remaining coordinates z, the ground state with a
fixed density profile F = F[e(x) + «x(r), y] is a function of € 4+ « and the invariants
y alone, and furthermore satisfies d F/d(e + x) < 0. The Lagrange multiplier «(r),
which depends on the real-space coordinate r, ensures that the density of the ground
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state is the same as the initial density,

/dvF:n,»(w). (1.3)

Here, n; () is the density of the initial distribution function (which shall be taken
to be Maxwellian later) and 1 labels the different magnetic surfaces across which
the density varies. The ground state is governed by the following integro-differential
equation (which may be derived by equating the Casimirs of the initial distribution
function and the ground state):

<8F(w, y)) _ [ dzdlw —e®) —x(IVED, 2)
dow ),  [dzd[fi(x)— F(w, »IV/g(y.2)’

where the phase-space coordinates x can be parametrised via x = (y, z), the Dirac
delta function is given as §(x), and w distinguishes different level sets of F and
€ + k. As shown in § 2, the calculation of the available energy for ions involved in the
curvature-driven ITG instability is similar to that of trapped electrons (Mackenbach
et al. 2022, 2023b), which we shall refer to as TZ.

(1.4)

2. Calculation and behaviour of the available energy
2.1. Shape of the domain and choice of the invariants

We choose the domain of the calculation to be a flux tube, a slender tube around a
magnetic field line that is everywhere parallel to the magnetic field. The slenderness
of the domain allows us to replace relevant functions by their linear expansions in
the coordinates perpendicular to the magnetic field, which can be expressed as

B=Vy x Va, 2.1)

where ¥ is the toroidal flux enclosed by a magnetic surface divided by 27, and
o =60 — 1 is the Clebsch angular coordinate labelling the different field lines on such
surfaces with 6 being a straight-field-line poloidal angle and ¢ being the rotational
transform (related to the safety factor as ¢ = 1/¢). This representation suggests that
¥ and « be used to parametrise the directions perpendicular to the central magnetic
field line B,, and one can furthermore employ the arc length along this field line, £,
as a third coordinate. Away from the central field line of the flux tube, this coordinate
is taken to be constant on planes perpendicular to By, i.e. By x V£ =0. All metric
components associated with the coordinates are then defined and depend, to leading
order in the width of the flux tube, only on the coordinate £. Other functions may
readily be expressed by their linear expansions in the perpendicular coordinates
and o, where the expansion coefficients only depend on the parallel coordinate £,
and we have thus parametrised r = (¢, «, £).

There are two main branches of the ITG instability: the slab mode and the
curvature-driven one. In the following analysis, the available energy of the ions is
calculated using an ordering that singles out the latter instability branch by tak-
ing the parallel ion dynamics to be slower than the perpendicular dynamics, i.e.

IThough in the current investigation the density is held fixed, there is no fundamental limitation on choosing
different profiles, e.g. ones that are quasi-neutral, break adiabaticity to some degree or satisfy the field equations.
An investigation considering more general scenarios, aiding in physically interpreting the Lagrange multiplier, is
ongoing and will be published at a later date.
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kyvr <k, -vp. Here, k; denotes the parallel wave number, vy the thermal ion
speed, k, the wave number perpendicular to the magnetic field and vp the mag-
netic drift velocity (Biglari, Diamond & Rosenbluth 1989; Plunk et al. 2014). As
such, we take the parallel velocity v, of each ion to be invariant, as the perpendic-
ular drifts dominate the dynamics. Furthermore, we assume that the ion magnetic
moment u = mv? /2B is invariant, where m is the ion mass, v, is the perpendicular
velocity and B is the magnetic field strength. Finally, we take the parallel coordi-
nate £ as being invariant as well, implying that parallel movement of the ions is much
slower than typical turbulent time scales. In other words, Gardner re-stacking is only
allowed on planes perpendicular to B,,” since the parallel ion motion is unimportant.
It is worthwhile to briefly consider when such an ordering is valid. Define the ‘transit
frequency’ of a particle travelling at thermal speed vy to be Wy, ~ vr/gR, i.e. how
often it traverses a ‘connection length’ gR per unit time, where R is the major radius
of the toroidal device. Further taking the characteristic frequency of the turbulence
to be www ~ vr/Ly, where Ly ~ T/|VT|, requiring @y, < wwp Necessitates

L; < qR. (2.2)

In other words, if the gradients in temperature are sufficiently large, the parallel
dynamics may safely be neglected.

We recall that the cross-section of the domain at constant £ cannot be chosen freely
if it is assumed that both the initial distribution function and the ground state can be
replaced by their linear expansions, where the full argument is given by Mackenbach
et al. (2023b), of which we give a brief overview. Since the phase-space Jacobian is

drdv =" dy de d¢ due dv, (2.3)
m

the following quantity is constant in time ¢ as a consequence of the Casimir invariants
(since p, vy and £ are invariant):

A:/ dy da O [f(t, ¥, a, €, pn,v) — ], (2.4)
D

where ®[x] is the Heaviside function, f the plasma distribution function, ¢ any
real scalar constant and D denotes the integration domain. If we furthermore
assume that any distribution function may be written as f ~ f,+ f, (¥ — Vo) +
fu(a —atg) (Where subscripts to f denote partial derivatives, i.e. 9, f = f,, while
Yo and o denote corresponding values at the centre of the domain), the condition
9, A(t, ¢, i, vy, £) =0 cannot be satisfied in all domain shapes D, where a subscript
zero refers to the fact that the function is evaluated at the centre of the domain. A
geometric argument can be used to show that the only sufficiently smooth domain D
that conserves A is elliptical in the (¥, a)-plane. In terms of the rescaled coordinates
x =@ —y)/AY¥ and y = (0 — og)/ Acx, the domain satisfies the equation

D:[(x,y): (xg) +(%> <1], (2.5)

2 An important corollary from this observation is that a different choice of the invariant parallel coordinate, e.g.
z with normal vector Vz misaligned with the central field line, would give rise to a different result. Physically, a differ-
ent choice of Vz changes the planes of re-stacking, which may then involve displacements parallel to By. However,
since we stipulate that the perpendicular dynamics dominates, the current choice of re-stacking perpendicular to By
(i.e. z=1¢) is the correct one.
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where x' =xcos? — ysin® and y' =xsin® + ycos¢ for some rotation-angle ¢
(which is different from the poloidal angle ). If one violates this condition by
choosing e.g. a square cross-section, still approximating the ground state with its
linear expansion, unphysical results arise such as negative available energies under
certain conditions. We highlight that Ay, Ax and the angle ¢ can, in general,
depend on the invariants.

This domain shape corresponds to the most general case and the available energy
may be calculated in this tilted ellipse. However, for simplicity, we specialise to
the case of a circular domain in (x, y)-space, thus taking a =b = 1. For any func-
tion h(x, y) that can be approximated by a linear expansion, &~ h,x + h,y on the
domain D, we note the following integral required for (1.4):

2
[n2+n2 (2.6)

2.2. Available energy

/ dxdydh(x, y)]=
D

With the domain shape D given in (2.5) and setting a = b = 1, we now turn to the
calculation of the available energy associated with an initially Maxwellian distribu-
tion function in local thermodynamic equilibrium (where we assume the temperature
and density are flux functions, i.e. n =n(y) and T =T (¥)),

32 ,
fu@) =n@) [%(w] o~ UBFm/DITO 2.7)

It is straightforward to evaluate the perpendicular derivatives of this plasma
distribution function. For economy of notation, we write

T()_T|:dlnn+d1nT<i_§>:| (2.80)
CAO=01 T T \t 7 2) o4
0= up, (228 2.8b
a)a(u’ )ZI’L 0( aw >a[’ ( )
dln B
vt

where the particle energy is € = uB + mvﬁ /2, quantities with a subscript zero are
evaluated at the centre of the elliptical domain (¥, y) and understand that the
derivatives are evaluated at the centre of the flux tube too. We note that the per-
pendicular derivatives of the magnetic field are related to the particle drifts at the
centre of the flux tube, as may be seen by expressing the quantity vy =b x VIn B

30One can relax this assumption, and, as will be argued later, such a domain is expected to correspond to a
system where the principle components of the perpendicular correlation lengths are not co-aligned with ¢ and «.
In other words, denoting the spatial correlation function of some field ¢(r) as @ (Ar) = f dr (r)e(r + Ar) /(p(r)z,
its level sets at fixed £ for small Ar are ellipses whose major and minor axes are not parallel to the coordinates
and «. As long as the perpendicular correlation lengths are similar, this assumption is not of great consequence, but
when the level sets become very eccentric and tilted, this can affect results.
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in (¥, a, £) coordinates,

! aBB Vt//—l—aBB v (2.9)
vww=—|—Bx —B x , .
"= \oy dar “

where we have employed B x V£ = 0. Taking inner products with Vi and Va, one
finds the relations

0B 0B

— =y - Vq, — =—vy - V. (2.10)

0V /4 da /,

Now, to solve the ground-state equation, we require perpendicular derivatives of
both the particle energy and the initial distribution function, and definitions of (2.10)
allow us to succinctly express them as

(M) = Wy + Ky, 2.11a)
aw wv),0,¢
dle —i-/c])
gle Tkl = —wy +ky, (2.11b)
< aa [I.,UH,W,E
(%> _ Juo (0] —,), 2.11¢)
al/f wv),0,¢ TO
3
(ﬂ) _Juo, (2.11d)
80[ /leH,WsK T()

where 0k, =k, and 9,k |y, =ky are, for the moment, unknown. Without loss
of generality, we set ¥, = oy = 0 henceforth, for ease of notation. To calculate the
numerator in the ground state (1.4) (derived by equating the Casimirs), we need the
following integral as a function of the particle energy w:

TAY Ax 2
m AP (@, + k) + (Ba) @y — k)
(2.12)
where we have employed (2.6), and w — e (v, og) — x (Yo, &tp) vanishes since the
ground state and initial distribution function are identical to leading order in

slenderness of the flux tube. We also require the denominator, i.e. the ‘waterbag
distribution’ (Ewart, Nastac & Schekochihin 2023),

T Ay AaT, 2
mfuo /(AP (@] — w)? + (Aa) (wy)?

where, to leading-order, fj; o = F. Substituting these results in (1.4), we find that the
ground state becomes
Sumo

F,[€+K;/./L, U”,E]Z—TG, (214)
0

where a prime denotes differentiation with respect to the first argument, and G is
defined by

1/ dydadw—e—«]=
m Jp

Z/dwdaa[fM—F]: (2.13)
m Jp

(AY) (0o — 0])* + (A)*(wy)?
(AY)2(@o + Ka)? + (M) (@ —Ky)?

Glry (£), ka(0)] E\/ (2.15)
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The functions «, and k, are determined by the condition that the density remains
fixed,

[ o (Fle v 0= =0, (2.16)

and we wish to manipulate this equation to find explicit expressions for these func-
tions. Taking partial derivatives of (2.16) with respect to ¢ and «, and invoking
(2.11) and (2.14), gives two coupled nonlinear algebraic equations for «, and «y,

/ du dy % (Ko — o) Gy, ky) = / du dy % (0] —w,), (2.17a)
0 0

/ d,bL de % (a)w — K,p) G(Kl/,, Koz) = f d,LL dU“ %w,/,, (217b)
0 0

and we prove uniqueness of the solution pair (xy, k,) in Appendix A.
With the ground-state given in (2.14), we can now evaluate the available energy,
A=" |  dydededudy (fy — Fe, (2.18)

m Jpxy

where V: (u >0, v, € R, £ €R). Asin the case of the TA, we note that f(fM —F)
dy da =0, because the number of particles with given values of (w, v, £) is
conserved. The integral can thus be evaluated to leading order as

8(6+K)a(fM_F)¢2+8(6+K)a(fM_F)a2:|

oY oY da o

o WD (fu—F) , w(fu—F) ,
- DXde/f doa de dp dy |:3W o ¥ —i—aa ™ a |,

A=l dyr da de dp dv, [

m Jpxy

(2.19)
having simply added and subtracted the same term, and understanding that the
partial derivatives are performed in (Y, «, £, u, v))-coordinates with remaining coor-
dinates held fixed. The second term on the right-hand side of the equation vanishes
as a consequence of (2.16), and writing out the derivatives in full, we find

A== dy da d¢ dp dv, Juo [(@a + k) (@0 — @)Y + (wy — ky)wy o]
m Jpxy Ty
+ T dyr da d€ du dv, mG [(@a +Kk)* Y? + (0y — k) 0?] .
m Jpxy Ty

(2.20)
The integrals over the elliptical cross-section in the (v, a)-plane can readily be eval-
uated, [, ¥*dy da =7 (AY)* (Aa)/4 and [ o dy de =7 (AY)(Awa)’/4, so that
the available energy becomes (using (2.14))

ZAYA
A_w/dgdludv Jio
dm TO

x [\/ (AP (@4 + ) + (DaP (@) — 0y (AP (@, — 0] + (Aa)(wy)?

- (Aw)z(wa + KO()(a)Ol - a):) - (AO{)Z((D‘/[ - KW)a)lﬂ:|’ (221)
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dropping the domain of integration V from here on. As expected, the expression for
the available energy is always positive definite, as may be verified by the following
argument. Note that the function in square brackets in (2.21) is of the form

Va> + b/ +d> —ac —bd, (2.22)

where a = Ay (w, + ky), b= Aa(wy —ky), ¢ = AY (v, — ) and d = Aa(w,). To
prove positive definiteness, we must show \/ (a4 b?)(c* + d?) = ac + bd, which fol-
lows readily as squaring both sides results in (ad)? + (bc)? > 2(ad)(bc), simplifying
to (ad — bc)? >0, as required. We have now fully specified the available energy:
solving the nonlinear algebraic (2.17) for each ¢ gives the functions «, (¢) and «, (£),
which are required to calculate the available energy given in (2.21).

2.3. Conditions for stability

It is worthwhile to consider under what conditions the available energy vanishes
(apart from the trivial case of vanishing gradients of density and temperature, or
vy - V¥ = vy - Va =0), and we shall refer to this as stability. In the notation of
(2.22), this occurs if and only if ad = bc, and hence,

Ky (0) [0] (€) — o (1, O] = wy (1, 0) [w] () + k(D] . (2.23)
Taking the derivative of (2.23) with respect to v at fixed (u, £) gives
[y, (£) — wy (14, D13 0] (€) =0 (2.24)
(having divided out de/dv)), which can only be satisfied under two conditions.

(i) If the temperature gradient vanishes, d.w! = dIn T/dy = 0 according to (2.8).
Note that there may still be a non-zero density gradient.

(i) If the magnetic field is isodynamic (see Helander 2014) so that wy, =0
everywhere and consequently «, = 0, consistently with (2.175).

Let us now investigate the first condition.
2.3.1. Pure density gradient

Under the assumption of no temperature gradient, the derivative of (2.23) with
respect to (u, £) simplifies to

Ky Wy + (Ko + a):)a)w =0, (2.25)

giving a direct relation between «, and k,. Substituting this back into (2.23), we find

T
LD (e + 0T) =0, (2.26)

o

Assuming the drifts do not vanish, we thus have

Ky=—w!

*

Ky =0. (2.27)

It remains to be checked if the derived conditions are compatible with the constraint
on the density. Substituting (2.28) into (2.15), we find that G =1, and (2.17) is
indeed satisfied. Hence, if there is no ITG present, the available energy always

https://doi.org/10.1017/50022377825100846 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825100846

10 R. Mackenbach, P. Helander, M. Landreman, S. Brunner and J. Proll

vanishes, as may be verified by filling in the results of (2.27) into (2.21). This is
in line with Helander (2020), who found that the available energy always vanishes
in a Maxwellian plasma with no temperature gradient and a fixed, slightly varying
density profile (with no invariants aside from the Casimirs). Further constraining the
ground state by means of additional invariants can only lower the available energy,
which then must remain zero. As we shall see in the case of an isodynamic field,
simply satisfying (2.23) is not sufficient for having zero available energy, and more
care is required.

2.3.2. Isodynamic magnetic field
In the case where w, and k, both vanish, the available energy given in (2.21)
becomes

2
A_—JgﬁégflwdudvZﬂ%Aw)R{wa+w@@)-1%ﬂ (2.28)

where the ramp function is defined as R(x) = (x + |x|)/2. For stability, we thus
require that «, + o, and ! — w, have opposite signs for all (¢, u, v), where it is
important to remember that «,, and «, only depend on £ while w, is independent of
v;. We note that

a)T—a) =T0

* o dw

where we have defined n=dInT/dInn and nzp=(d1In B/0Y ), /(dInn/dy). If
n > 2/3, the constant term in the square brackets of (2.29) is negative and we must
require mvﬁn /2T, < 0 to keep the sign fixed (at fixed u and ¢), resulting in incom-
patible conditions. In contrast, if however n < 2/3, we need mvﬁn/ZTo >0, giving
one condition for stability:

dlnn| 3 m;
2T

B
+ % (n — m;)} : (2.29)
0

0<n< % (2.30)
This is sufficient to maintain the same sign of (2.29) for u© =0 and any v, and we
now seek conditions that ensure the sign stays fixed for all x. Suppose momentarily
that ! — w, changes sign for some p (so that uBy(n — ng)/ Ty < 0). To keep the
product (k, + wy)(w, — w!) of the same sign, «, + @, must change sign too, imply-
ing that both factors must share the same zero-line in phase space. The zero-line of
the first factor is given by uBy/ Ty = —«,/ Ty0y In B, whereas the second factor gives

By, 1= (3/2)n+ (mvi/2To)n
Ty B N —1N .
Equating the two, we must have that
ke 1= G/ + (mv} /2Ty
To B n—1ns
and we arrive at a contradiction since «, is a function of the arc-length alone. Thus,

if wBy(n —ng)/ Ty <0, there is non-zero available energy present.
Assuming now instead uB(n — ng)/ Ty = 0, so that maintaining the sign of (2.29)

requires
nZns. (2.33)

(2.31)

3, In B, (2.32)
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Since np =np(€), ensuring the highest value of nz(¢) satisfies this equality is
necessary for stability,
nz= mlaX[nB(ﬁ)], (2.34)

where max[A(x)] returns the highest value the function /(x) takes over the domain.
Let us investigate what this inequality implies in typical conditions, relating it to
the particle drifts via (2.10). For standard density and temperature profiles that
decrease as functions of minor radius, i.e. d, In 7 < 0 and 9, Inn < 0, the inequality
simplifies to

min [M} > 19, InT]. (2.35)
By
Equation (2.35) has a surprising corollary: if it is not satisfied, one can increase
the magnitude of the ITG to satisfy it, and, if one is stable under the conditions
derived, this would imply decreasing the available energy. This condition for stability
is furthermore automatically met for a magnetic field with good curvature only,
which we define as 9y, Bl = vy « Va > 0 everywhere.

We have now derived conditions that keep the sign of (2.29) fixed and we must
now verify whether the sign of «, + w, is always opposite to that of ! — w,, so that
the ramp function in (2.28) is always greater than or equal to zero. To this end, we
investigate the equation for «,, (2.17a), which in the isodynamic limit reduces to

/du dv, %G(Kﬁwanwf—m:_/du du, % (@ —wy),  (2.36)
0 0

where o (x) = x/|x| returns the sign of x. Under the necessary conditions for stability
derived so far, we may set

0! — 0y =0 (0] — w,)|0] — w,], (2.37)
where o (0! — w,) is a constant. Consequently, (2.36) becomes

fu,

/dM d‘UII MG(KQ + a)a)|a)f - woz| = —O'((l): - a)a) / d,LL de _0|a)3: - Cl)a|,
Ty Ty
(2.38)
and we have that
0(Ky +wy) = —a(a)f —Wy), (2.39)

as required for stability.

Summarising, given an isodynamic magnetic field, we have found that necessary
and sufficient conditions for stability are 0 < n <2/3, and furthermore n > ns. A
clarifying plot may be found in figure 1, where the stability boundaries are plotted as
a function of the gradient for d, In B > 0. We note close correspondence to results
found by Costello & Plunk (2025b) (see also Plunk 2015), where one important
difference pertains to the curvature drift. This is taken into account in the calculation
by Costello & Plunk (2025b), but does not enter in the available energy. This is a
simple consequence of the fact that all variation in € = uB + mvﬁ /2 at fixed u and
v is due to B, manifesting as gradient drifts.

4We note that the condition 1 > 5z, although a necessary condition for vanishing available energy, is in
practice not a very restrictive condition. That is, though there is non-zero available energy present if n < np and
0<n<2/3,itis extremely small, as may be verified in figure 9.
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:stable
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o

stable
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FIGURE 1. Stability diagram in an isodynamic field where we have assumed 9y In B < 0 (typ-
ically the case locally on the outboard mid-plane of an up-down symmetric tokamak, i.e. the
bad-curvature side). The dashed line denotes a pure density gradient, which is always stable.
The region between the dashed, dotted and full line satisfies 0 < 1 < 2/3, but not n > np, and
thus has non-zero available energy.

2.3.3. Effect of the constraint on density
It is helpful to investigate what effect the assumed constancy of the density gradient
has on the stability criteria found. This can be easily investigated, as setting «, =
ky, =0 is equivalent to the unconstrained case, where the density profile is such
that it minimises the thermal energy of the initial Maxwellian distribution function.
Equation (2.23) becomes

oy (i, O] (€) =0, (2.40)

which can only be be satisfied in isodynamic fields, disregarding the trivial case of
having no gradients in density and temperature. In isodynamic fields, the available
energy can be found by setting «, = 0 in (2.28), resulting in

T
/ de dp dy, %(Aw)zij (‘:)— - 1) . (2.41)
0

o

ZAYA
A:n v Aa
2m

To have zero available energy, the argument of the ramp function must be negative
everywhere, and we thus require

Q)T TO 3 mvﬁ /‘LBO
@e l—2p4+ —Lp+ B0 — <0. 2.42
o —vy [ Sn+t o7, " + T (n—ns) (2.42)

As already derived, for the factor in brackets to have the same sign (namely positive)
everywhere, we require 0 < < 2/3 and np < n. However, to ensure the argument is
negative, we require np < 0, which is a more stringent condition. In terms of a device
with radially decreasing density profile, for stability, we thus require an isodynamic
field with

d,InB>0 (2.43)

everywhere to have vanishing available energy; hence, the device has good curva-
ture everywhere. Conversely, the bad-curvature region of an isodynamic magnetic
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field will always have energy available for non-zero gradients, if the density is
unconstrained. Physically, this may be understood by considering a particle that is
moved radially to flatten the density gradient. When the density gradient is parallel
to the magnetic field strength gradient, flattening the density gradient is accom-
plished by moving particles from regions of high to low field strength. The kinetic
energy released by moving a particle from high to low field strength at constant u
and vy,

A€ = i (Buigh — Biow) (2.44)

is positive, implying that this process feeds the instability. Such a process is not
allowed if the density gradient is kept fixed, resulting in broader regions of stability.

2.4. Limit of steep density and temperature gradients

Having derived conditions for zero available energy, we now focus on the lim-
iting case where the gradients in density and temperature are very large. We thus
set w! — w! /e, and expand the relevant equations under the assumption that the
positive expansion parameter ¢ < 1. However, it is not clear a priori what scaling «,
and k should follow. As such, let us expand these scalars generally as

Ko

~
KC(N

,—1 Ky, —1

— ka0t me‘”THMJr..., (2.45)
and we now solve equations with different assumptions on the expansions of «y
and k.

2.4.1. Weak «-scaling
Let us first assume a weak scaling of both «, and k, with e, where we set «, _; =
ky —1 =0 so that (2.17) is, to leading order, given as

r A o o

/du dvy 212 | o7 4 [0, [(BY) o + 00) ~0, (2.46a)
Toe \/(Alﬁ)z(lﬂx,o + o) + (Aa)? (wy — Ky 0)?
T
A —
/ d d, L0 w1 [(A) (w4 — o) ~0.  (2.46b)
Toe \/(A‘//)z(/(a,o + wy)? + (Aa)?(wy — Ky 0)?
Similarly expanding the available energy from (2.21) gives
NZAWAQ fM,O

A~ — f de du dv, T{)[(Allr)zwf (0o + Kay0)

AV 1] 1y (A2, + 0o + (A0, — K02

(2.47)
Equations (2.46) and (2.47) can be solved in general numerically. However, we
note that the current scaling is unable to describe the solution if 0 <5 <2/3, and a
stronger scaling of « with & gives the correct solution, which may be seen as follows.
When 0 < n < 2/3, the quantity ! is of the same sign everywhere and one may set
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ol =o(@!)|w!'| with o (w]) = £1 being constant, and (2.46a) is given by

/dﬂ fMo |wT|A¢(Ka0+wa)
T Sy (K o+ @) + (D)2 (W) — kyo)?
=—o(w!) / du dy —’|a)f| (2.48)
Ty

We see that the fraction on the left-hand side is bounded in magnitude from
above by

|AY (Ko 0 + @4) | -1
V(A (Ko + 00)* + (D)X (@) — Ky0)
To solve (2.48), the fraction must approach £1, for which we require «, o — 00.

This invalidates the weak ordering presented, and one requires a stronger scaling of
K, With &.

(2.49)

2.4.2. Strong «-scaling
Let us therefore take «y _; 0 and «,_; #0, so that both variables have leading-
order dependence that scales as 1/¢. Expanding (2.17b) gives rise to

_ A r
ot [ apan 2 e ~0. (2.50)
0 \/(At//)zxj_l +(Aa)2

and we see that the integrand is always positive definite. As such, the only way to
satisfy (2.50) is by setting « _; =0, assuming that «, _; 7 0. Turning our attention
to (2.17a), its leading-order expansion is given as

J dp dvy fuow]

f du dy fM,o|0)*T|’
(2.51)

which can only be satisfied if w! is of the same sign everywhere, necessitating that

the ratio of gradients obeys 0 < n < 2/3, in line with what was found in the weak

1
. /dudv” fT [O’(Ka D! |+ o! ] 0 = o(ke_1)~—
0

k-scaling.
Expanding the available energy accordingly gives
2AYA
A= T Ay Aa / de du dv, m(Atp) R (ko—10]) +
2me? ’

(2.52)
[Cl): (Kot,O + a)a) - Ka,flwot] [1 + O-(Ka,flwz)]

2 e+ O(?)

where we note that, since ! is of the same sign everywhere when 0 < 7 <2/3, k4
must have the opposite sign, as in (2.51). The first two terms in the curly brackets
of (2.52) thus vanish, and the available energy becomes of order O(1). We thus
conclude that 0 < 1 < 2/3 makes the available energy approach a constant value in
the limit of large gradients in density and temperature, and this result holds for any
magnetic geometry. It is worthwhile to note that, for linear stability of the curvature-
driven ITG mode, it is sufficient to have 0 < n < 2/3 (Biglari et al. 1989), and this
criterion thus has nonlinear significance too.
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2.5. Perpendicular and parallel length scales

Having reached an understanding of the behaviour of the available energy in
various limiting conditions, we proceed to discuss its possible relation to gyrokinetic
turbulence, which requires one to specify the perpendicular length scales of the flux
tube, Ay and Aa (Mackenbach et al. 2022). The choice strongly affects the available
energy, as the substitution (A, Aa) — C(Ay, Ax) changes the available energy as
A — C*A (see 2.21). As in TA, we take this length scale to be the correlation length,
the length scale over which gradients in density and temperature are flattened (in
turn liberating thermal energy). In situations where micro-turbulence is dominant,
the correlation length is of the order of the gyroradius pgy, =muvr/|q|B,, where
q is the charge of the particle, vy =+/2T,/m is the thermal velocity and B, is a
reference magnetic field strength, typically taken to be By = 2v, /a2 with ¥, being
the toroidal flux over 27w at the last-closed flux surface, and @y, being the minor
radius of the device. As in TA, we estimate these length scales by defining

p(Y) =¥/, s = p(Wo)a, (2.53)

where p is the typical normalised radial coordinate and s is a newly intro-
duced binormal coordinate (reminding ourselves of the fact that o =6 — ).
Consequently, setting Ap = AS = Pgyro/Aminor = 0« iImplies that the correlation length
is a (normalised) gyroradius, which may be related to Ay and A« in (2.21).

The available energy depends on a parallel length scale too, in non-isodynamic
magnetic fields that have non-zero magnetic shear. This can readily be seen by
investigating the gradient of «,

Va=V(0 — ) — o, Vi, (2.54)

where we have defined ¢y = ¢(¥) and ; ='(). Hence, w, (related to the gradient
drift vy - Va via 2.10) grows without bound as ¢ — 400 if ¢; #0 and vy - Vi #0.
Consequently, the available energy given in (2.21) will depend on the considered
range of £, which we denote as A¢, and one needs to choose an appropriate range
a priori.5 If the device is a tokamak, a natural parallel length scale is the connection
length, i.e. the total length required to make one full poloidal turn,

™ B
Al =/ do. (2.55)
. B-Vo

In a stellarator, the appropriate choice of length scale is less evident, but one is
helped by the fact that the magnetic shear is typically much smaller than in tokamaks.
As a consequence, in stellarators, the choice is less important and we shall simply
take it to be a fixed parallel length, i.e. A¢ = constant.

3One might consider taking A¢ — oo, aiming for a finite total or volume-averaged available energy, similar to a
ballooning transform. In shearless fields, the volume-average converges to a finite value (see (B8)), but not when mag-
netic shear is present. For large wy, the unconstrained available energy (x = 0) scales as A ~ (Aa)z(wl)z(ww Jwq)?
and the constrained energy is even smaller. This contribution decays as O(w, 2) (or even more rapidly), but when
Wy Nw*T , the full expression must be used giving A ~(9(w2). Realise that wy ~w1 only at zero-crossings of
wg in the large-¢ limit, and width of the region where w, ~ ! scales as ~ 1/¢ (note similarities to the ‘weakly
driven’ regime of Rodriguez & Mackenbach 2023). The total energy diverges logarithmically to leading order,
A~ fol i~! ~In(A¢), and its volume average A/A{ tends to zero. In practice, narrow structures in £ will be
influenced by parallel dynamics, which are neglected here.
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3. Numerical results

In the following results, we investigate the behaviour of the available energy
divided by the thermal energy in a flux tube E; = (3/2)n,Tyn AY A [ B~ d¢ and
p2. (This latter factor is simply because the available energy normalised by the ther-
mal energy scales with the correlation length squared, which we have posited to be
p2.) In total, we thus have

i (3.1)
B ETP,%' '
Equations (2.17) and (2.21) are furthermore normalised in the following manner:
_ 2T0 A UV, A vy AT Aw‘ T N (Alﬂ)awl’l
Ur =4/ 7 v =—, V=, w, =——w,, W=—"""
m vy vr Ty n
R (Ay)o, T Aa R Ay . Ay, Aaky,
O =——F—, Oy=—70y, Oy=——0,, Ky= . Ky=——
T B B T, T,
(3.2)

where details of these normalisations are relegated to Appendix B. Finally, the
code used to calculate the available energy is freely available: https://github.com/
RalfMackenbach/AE_cITG.

We note that the available energy code is fairly fast, with a typical computation
taking seconds on a single CPU of a typical laptop computer, in tokamak geometry.
The exact compute time can vary, with notable exceptions requiring longer compute
time being calculations with 0 <7 < 2/3 and calculations in magnetic geometries
that are close to being isodynamic. A non-exhaustive comparison in terms of rel-
ative compute times with other methods for estimating turbulent transport levels
is included here, recognising the fact that the wide variety of codes and methods
obfuscates a simple analysis: different codes will likely excel in different situations.
We continue nonetheless and take the following values as characteristic for the dif-
ferent computations. Calculating the nonlinear heat-flux in a tokamak on a laptop
with CPUs using the gene code ((Jenko ef al. 2000), though we stress that gene
can also run on GPUs), which is a fair comparison since the available energy is
calculated on CPUs as well, requires tens of CPU-hours to get sufficient statistics
(for ITG-driven turbulence with adiabatic electrons). Instead, simply calculating the
linear growth rate, frequency and spectrum for a single mode on the same lap-
top computer with a single CPU can take tens of minutes (solving the initial-value
problem, where a precision of ~10~* was requested). A quasi-linear estimate would
require several of these modes, resulting in a compute time on the order of an hour.
The reduced model tglf (Kinsey, Staebler & Waltz 2008) speeds up such a linear
calculation significantly, where it takes of the order of CPU-seconds to calculate a
single mode, and tens of CPU-seconds for a spectrum of modes and estimation of
the fluxes. Compared with typical ITG optimisation proxies, such as those presented
by Roberg-Clark, Xanthopoulos & Plunk (2024) and Goodman et al. (2024), the
available energy is fairly expensive, as these methods have negligible compute (with
main operations consisting of fitting a second-order polynomial or simple operations
on arrays).

3.1. Parallel and phase-space structure of the available energy

Here, we first investigate the local properties of the available energy, i.e. how
it depends on the local drifts at each £. This may be achieved by considering a
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FIGURE 2. Available energy A (with white contour lines added so different regions can be
seen clearly), and the solutions to the density constraint equations K, and kv, as a function
of the radial (&) and binormal derivative (®y) of the magnetic field. Here, &7 =10 and
@, = 2. Note that since &7 ~—09,InT (and similarly for &,) and furthermore, wy ~ 3, In B.
Positive/negative w, means the magnetic field gradient is anti-/co-aligned with the density and
temperature gradient.

vanishingly small parallel extent A¢. The available energy then becomes a function
of four parameters R
A =A@, or, Oy, &), (3.3)

and we investigate its dependence here. The result is plotted in figure 2, where we
have furthermore included a plot of the solutions to (2.17), k, and &y

Let us take note of two general symmetries here. First, note invariance of the
available energy and the density constraint equations under (ky,, @y ) = —(ky, wy).
Thus, the available energy depends only on the magnitude of the radial drift and not
its sign. In terms of figure 2, this manifests as a mirror symmetry about the @, =0
axis. Furthermore, the substitution (w,, k,, ®!) = —(®,, k4, ®!) similarly leaves the
density constraint equations and the available energy unchanged. This tells us that
the available energy depends only on the relative sign of w! and w,. Indeed, if one
flips the sign of !, one finds that figure 2 is mirrored with respect to the @, =0
axis.

Now, investigating the available energy in detail, it is clear that the most avail-
able energy is present for negative @,, i.e. if the density and temperature gradient
are anti-aligned with the magnetic field gradient as in the bad-curvature region.
The good-curvature region, conversely, has only very little available energy present.
It is furthermore interesting to notice that if the magnitude of the binormal
drift becomes sufficiently large in the bad-curvature region, the available energy
decreases. Physically, this may be interpreted as follows: if the particles are drifting
too fast, they are unable to couple to and resonate with the drift-wave, resulting in
low available energy. For w, =0, we see that there exists a ‘sweet-spot” where the
drifting particles are maximally resonant with the drift wave, freeing up the most
available energy, at @, ~ —1.3 (though this value of course depends on the gradients
in density and temperature). The dependence of the available energy on @, is less
intricate: increasing the radial drift simply increases the total available energy.

https://doi.org/10.1017/50022377825100846 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825100846

18 R. Mackenbach, P. Helander, M. Landreman, S. Brunner and J. Proll
(dJ‘IHCDT) = (1/37 1)

Gy ) =(—2.0,0.5 Gy 0p) =(—0.5,0.5
4 (@ay &) = ) 0.011 (o, dp) =( ) 0.023
<
. » :
0 T ? T 0 T L T O
il o)
@, ) =(0.5,0.5 @ay ) =(2.0,0.5
A (@a, y) =( ) 0,008 ( ) =( ) 0010
<
1. 4 :
S
2z X L -
0 T = T 0 T T T 0
-4 -3 0 2 4 -4 -2 0 2 4
oy o)

FIGURE 3. Plot of the available energy integrand as a function of 0, and vy, for n > 2/3. Four
different combinations of drifts are included, where the top have ‘bad’ curvature and the bottom
two have ‘good’ curvature.

Having investigated the dependence of the available energy at fixed ¢, we now
investigate its dependence on 9; and ¥, ie. we investigate [ dy da dle(fy —
F)/Erp? for AL — 0, which becomes (see (BS))

~2
22
eIy,

3T

x {\/ (01 @ + ko) + (01 6y — ,2¢)2\/ (010 — DI+ (D10y)?  (3.4)

.24\(131_, 13”) =

A2 A A\ A2 A AT A2 A PN IN
— (V] @y +Ke) (V] Dy — @, ) — (V] @y — K,/,)(vlwl/,):|,

so that A = [ dv, dy A, vy). This allows us to probe the structure of the ground
state, its (an)isotropic features and where it differs the most from the initial
Maxwellian. A plot of the phase-space structure is given in figure 3, where n > 2/3.
It is clear that the overall phase-space structure is rich, showing a region of much
available energy near the origin and in a ‘bean’ at v, ~ 2. The structure is further-
more fairly isotropic in the bad-curvature region with small drifts compared with the
density and temperature gradients (negative and small @,, as in the top-right plot),
and gains more anisotropic features in the good-curvature region (positive @, ). Note
that there is nonetheless energy available, even in the good-curvature region. The
anisotropic features partly answer how any electrostatic instability can exist in the
good-curvature region, just as Ivanov et al. (2025) argued that such instabilities can-
not exist under certain assumptions of isotropy. The phase-space structure indicates
that isotropy is broken, opening up new routes for an instability to exist.

All in all, we see that the available energy exhibits rich behaviour in terms of
its dependencies on magnetic geometry and its velocity-space coordinates. The full
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calculation of the available energy is a weighted integral of available energies at
different ¢, as @&, (¢) and @, (¢) describe a trajectory in the space of figure 2 (e.g.
the trajectory of a zero-shear large-aspect-ratio circular tokamak would be a cir-
cle centred at the origin, &, ~ — cos and wy ~ sind with § =0 corresponding to
the outboard mid-plane). As we have shown here, regions of bad curvature will
contribute the most to such a trajectory in (&,, @y )-space.

3.2. Comparison to nonlinear local gyrokinetics

In this section, we compare the available energy with results from local, gyroki-
netic, ITG-driven turbulence simulations. A database of such simulations in ‘random’
stellarator geometries with adiabatic electrons has recently been constructed by
Landreman et al. (2025), where the results from >2 x 10° simulations are stored.
The magnetic geometry of the stellarators in that article are sampled in three dis-
tinct manners, which we briefly review (note that one can sample multiple flux tubes
from a single geometry).

(i) One sampling method imposes that the stellarators are heliotron-like (i.e. the
cross-section is a rotating ellipse), where the number of field periods (Ny,), the
aspect ratio, the elongation, the axis torsion and the plasma beta are sampled
randomly. Roughly, 27 %/25 % of the stellarators/flux tubes are sampled in
this manner. We note that these geometries generally do not confine trapped
particles.

(i1) Another method simply samples equilibria from the quasr database (Giuliani
2024), in which (approximately) quasi-symmetric geometries are stored (i.e.
where B has an invariant direction on a flux surface in Boozer-coordinates,
resulting in confined trapped particles). This constitutes some 19 %/24 % of
the stellarators/flux tubes.

(iii) The final method samples random boundary shapes by generating its Fourier
modes from probability distributions that have been fit to a dataset of known
stellarator shapes. Some 54 %/51 % of the stellarators/flux tubes are sampled
in this manner.

The combined set of stellarators is diverse, and includes aspect ratios ranging
from 2.9 to 10, and volume-averaged betas from 0% to 5%. The number of field
periods, Ny,, varies between 2 and 8, which results in varying magnetic-well lengths.
We have expanded this database with nonlinear simulations performed in ‘random’
tokamak geometries. These simulations, like those by Landreman er al. (2025), were
performed with the gx-code (Mandell et al. 2024), assuming adiabatic electrons and
accounting for an ion-temperature and density gradient. More details, such as the
construction of the probability density in parameter space where tokamaks are sam-
pled using the analytical Miller equilibrium (Miller ez al. 1998) and a numerical
convergence study, are provided in Appendix D.

Both simulation sets contain a fixed-gradient subset with 9,In7 =—3.0 and
9,Inn=—0.9, where p =r/dminor With r being the minor radial coordinate labelling
the flux surfaces and ay,, 1S the minor radius of the device. The complement of the
fixed-gradient subset has gradients that are chosen randomly, according to a sam-
pling procedure. These two subsets are constructed so that one may systematically
assess both the effect of the geometry and the effect of the gradients in density and
temperature separately. To aid in the latter, some simulations are performed in the
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same geometry twice: once with the density and temperature gradients fixed, and
once with randomly sampled values.

Finally, it should be noted that a crude argument on the basis of energy conserva-
tion relates the available energy to the energy flux (as also argued in TA). Consider
the invariant energy in the long wavelength, electrostatic limit of gyrokinetics (Dubin
et al. 1983; Brizard & Hahm 2007),

Etot ~ f

where 8f is the fluctuating part of the ion distribution function and vg is the E x B
drift velocity. The available energy bounds by how much the first term of (3.5)
can decrease, and it thus provides an upper bound on the kinetic ‘sloshing’ energy
(the second term). Thus, one finds v ~ A, and since the energy flux goes as Q ~
€(8f)|vg| (to be made precise in §3.2.1), we have Q ~ A*?2. Results shall often be
compared with this expected scaling.

dr |vgl*, (3.5)

3.2.1. Fixed-gradient subset

We start our analysis by focussing on the fixed-gradient subset. The result of this
analysis is plotted in figure 4, where the time-averaged nonlinear radial energy flux
is plotted against the available energy. The former is defined as

1 1
=— | dr dpodsdve (s -Vp), 3.6
0 tw/[m <L,,Ls/ pdsdve (5f)vg p> (3.6)

where the radial and binormal coordinates are defined in (2.53), and ¢, is a time
window in which the turbulence is saturated. Furthermore, §f is the fluctuating part
of the distribution function, the electric-field drift vg is the E x B/B?, and L, and
L, measure the perpendicular dimensions of the flux tube so that the integral over
the perpendicular coordinates is averaged. Finally, the angular brackets define a
flux-surface average (...)= [d¢ ...B~'/ [d¢ B™!

It is evident that, though there is certainly correlation if Ny, is small, for high
Ny, there is very little correlation in the bulk of the dataset, and the quasr equilibria
showcase an even smaller amount of correlation (quantitative values will be provided
in § 3.2.3). A likely reason for this mismatch is the dependence of the importance
of parallel dynamics (which we have ignored) on the periodicity, as a typical mag-
netic well size scales as Lye ~ R/Np,. Approximating the parallel wavenumber as
ky~1/Lyei ~ Ng,/R, one violates kjvr < k, - vp to an increasing degree when rais-
ing Ny,, invalidating a central assumption of the available energy derived. To assess
the validity of this hypothesis, we furthermore include a plot of the tokamak dataset
with fixed gradients (see figure 5), where the parallel length scale can readily be
defined via the connection length L, = [ d0 B/B - V6, the total length required
to make one poloidal turn. It may be seen that the simulations with a very short
connection length (and thus high k; ~1/L,,) deviate strongly from the predicted
power law. Conversely, simulations that are characterised by long connection lengths
stay closer to the predicted power law, although certainly with deviations. This cor-
roborates the idea that the parallel dynamics, i.e. non-negligible ion motion over
a connection length, affects the turbulence and violates our key assumption con-
cerning the available energy Using the right-most plot of figure 5, we see that the
decrease in log,, O/A A3 with decreasing logarithmic connection length is roughly
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FIGURE 4. Scatter plot comparing the available energy and the nonlinear, time-averaged, radial
energy flux (from nonlinear gyrokinetic simulations) for the fixed-gradient subset (i.e. 9, In T' =
—3.0 and 9, Inn = —0.9). The different outer panels correspond to different number of field-
periods, and all the field-periods are plotted together in the centre plot. The black dotted line
shows the expected power-law Q A3/2 and the colour of the scatter indicates whether the
geometry comes from the quasr-database (blue) or not (red). Furthermore Ng, = 0 corresponds
to the tokamak case.

linear, until 10g,;,(Lcon/@minor) = 0.7 is approached from above, after which the heat-
flux drops strongly. This gives a quantitative estimate of when parallel dynamics
is non-negligible (namely at Lo, /dminor & 5) and for shorter connection lengths, the
available energy is likely no longer of practical use (for this combination of gradients
in tokamaks).

Figures 4 and 5 do not show the full extent of the dataset, as stable simulations
are characterised by exponential decay of the heat flux, and thus depend critically
on the decay rate, simulation time and initial condition, rendering the precise value
of Q meaningless. To investigate whether available energy may be useful in pre-
dicting the nonlinear stability of a simulation, we plot histograms of A for Q <0.1
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FIGURE 5. Left: scatter plot of the available energy against the nonlinear radial energy flux
for tokamaks alone, where the points are coloured according to their connection length. Right:
scatter plot of the (logarithm of the) ratio Q/A3/? and the connection length. Both show results
for the fixed-gradient subset.

(‘stable’ cases) and Q > 0.1 (‘unstable’ cases). The result is shown in figure 6. One
sees that for all Ny, except tokamaks (Ng, = 0), sufficiently small available energy
implies that the simulation is stable. This bolsters some hope for stellarator equilib-
rium optimisation purposes, as optimising for sufficiently low available energy will
then likely imply that the device is nonlinearly stable. Upon closer scrutiny, one rea-
son for the mismatch in tokamaks becomes apparent. As may be seen in figure 5,
simulations with very short connection lengths tend to be stable and the available
energy is a poor predictor in this regime. Furthermore, the shortest connection
lengths L., ~ g R are characterised by small major radius and thus strong curvature
drive as w, ~ 1/R. The points with the strongest curvature drive have large available
energy (as in a strongly driven limit A ~ w,,), but are in reality stabilised by the short
connection length, thus explaining the mismatch. Indeed, repeating the same analysis
on the tokamak set but only allowing for data with 3 < R/ayiner < 4, this mismatch is
reduced somewhat, and the stable and unstable distributions end up looking similar,
making available energy at best a poor predictor of nonlinear stability in tokamaks.

A similar phenomenon seems to occur for the stable simulations with high avail-
able energy, present for Ny, =8 and Ny, =9. These data are characterised by having
a magnetic field with a high mirror ratio (leading to stronger mirror forces) and
a short dominant parallel wavelength (increasing k), both enhancing the parallel
dynamics. The available energy strongly overestimates the turbulent transport of
these points since due to the large variation in magnetic field, the V B-drifts are sig-
nificantly enhanced, increasing the curvature drive. The parallel dynamics, however,
seemingly stabilises turbulence resulting in the mismatch.

3.2.2. Varying-gradient subset

We next consider the data with varying gradients, excluding the fixed-gradient subset
discussed in the previous section. The result is shown in figure 7. It is evident that
the scatter is much smaller in this case, highlighting that available energy is able to
capture the dependence of energy flux on the gradients in density and temperature.
As before, the scatter for the tokamak subset is worse than the stellarators. To
further assess how the gradient dependency is captured, we include a scatter of
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FIGURE 6. Distribution of log;, A for ‘stable’ (Q <£0.1, blue) and ‘unstable’ (Q > 0.1, orange)
simulation data. The y-axis denotes the probability density so that the total area under the blue
and orange distributions evaluate to unity.

the data against these gradients. The result is shown in figure 8, where one sees
expected trends: increasing the strength of the temperature gradient tends to increase
the available energy and nonlinear energy flux. However, if n is sufficiently close
to or smaller than 2/3, both the nonlinear energy flux and available energy are
significantly reduced. It is noteworthy that the critical n below which the energy flux
is stable is approximately n ~ 1, which could be due to other instabilities (e.g. the
slab branch) dominating or the Dimits-shift stabilising the turbulence. The current
available energy model does not capture such effects, and instead shows a significant
reduction if n < 2/3 as expected from the asymptotic theory discussed in § 2.4.

3.2.3. Quantitative comparison
Some quantitative measures of correlation are computed as a final step allowing
for direct comparison to results found by Landreman et al. (2025), who constructed
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FIGURE 7. Scatter plot of the available energy against the nonlinear, time-averaged, radial energy
flux for the varying-gradient subset. The outer panels correspond to different number of field-
periods, and all the field-periods are plotted together in the centre plot. The black dotted line
shows the expected power-law Q A3/2 and the colour of the scatter indicates whether the
geometry comes from the quasr-database (blue) or not (red).

a set of scalar ‘features’ that correlate especially well with the energy flux. Three
measures of correlation are investigated.

(i) The Spearman coefficient, which lies between —1 and 1, where a higher abso-
lute value indicates tighter correlation and a perfect monotonic relationship
between two variables returns a magnitude of 1, see Spearman (1904). For
analyses involving the Spearman coefficient, whenever Q < 0.1, it is set to
zero as the exact value of such ‘stable’ simulations is meaningless, though we
note that leaving Q unchanged does not alter the results significantly. The
Spearman coefficient then measures the correlation between A and Q (or
equivalently between In A and In Q).
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FIGURE 8. Top row: the energy flux (left) and available energy (right) scattered against the
density (@,) and temperature (&7 ) gradients. Bottom row: the energy flux and available energy
scatter against arctan(wr /@,). The n =2/3 line is added in all plots as a dashed red line, and
an n =1 line is added as a dashed grey line. Data of the varying-gradient subset.

(i) For regression analyses, the coefficient of determination R* € [0, 1] is used
where a higher value indicates better correlation. The regression is performed
between the true value In Q and its predicted value In Q,,. To predict the energy
flux, the machine learning gradient-boosted decision-tree package XGBoost is
used (Chen & Guestrin 2016), which attempts to find a function X that maps
inputs I to the output In Q, resulting in the prediction X(I)=In Q,. For
the fixed-gradient subset the input has only one component, namely I = {A},
whereas the varying gradient subset uses I = {A, @7, ®,}.

(iii) Finally, the log-loss (also known as cross-entropy) is used for scoring clas-
sification predictions of (in)stability, where a lower value indicates more
accurate predictions. The classification task attempts to predict whether
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Value
Measure Landreman Stellarators Tokamaks
Spearman (F) 0.79 0.10 0.24
Spearman (R) N/A 0.84 0.30
R? (F, XGBoost regr.) 0.74 0.33 0.11
R? (R, XGBoost regr.) 0.89 0.76 0.35
Log-loss/accuracy (§, XGBoost clas.) N/A 0.04/0.99 0.17/0.95

Log-loss/accuracy (R, XGBoost clas.) 0.11/0.95 0.14/0.94 0.24/0.92

TABLE 1. Various quantitative measures of correlation, for datasets of stellarators and toka-
maks, split between the fixed (§) and random ($R) gradient subsets. In the first column, the
correlation measure and analysis type, regression (regr.) or classification (clas.), is stated. The
‘Landreman’ column has best scoring values of Landreman er al. (2025). The ‘Stellarators’
column analyses the predictive capabilities of A for stellarators alone. The ‘Tokamaks’ col-
umn does the same for tokamaks alone. For the XGBoost analyses, each value is the mean
score on held-out data with fivefold cross-validation.

a simulation is °‘stable’ (Q >0.1) or ‘unstable’ (Q <0.1). This predic-
tion is again performed using XGBoost, where the fixed-gradient subset
uses only I ={A} as an input and the random-gradient subset uses I =
{A, &7, @,}, resulting in the mapping X (I') = stable/unstable. Accuracy scores
(= # correct predictions / # total predictions) for the classification analyses
are included as well, but these can be misleading as most of the data are
unstable so that simply predicting each datum to be unstable can lead to high
accuracy.

Finally, the tokamak and stellarator subsets are analysed separately due to their
differing behaviours. All these correlation measures are compared with their best-
scoring counterpart of Landreman et a/. (2025), who found that the nonlinear energy
flux correlates especially well with

B ( IVp|3>
fo=mean [ [O(B x k- Vs)+0.2] ) (3.7)

where kK = b - Vb is the curvature vector and the operator mean takes the average
of the 1nput array. As such, the correlation analysis with Spearman coefficient and
the regression analysis is performed as mentioned, where f, replaces A. To predict
stability instead, the feature

Vol
swab =mean [ [O(B x VB - Vs 04— 3.8
Jstab ([ ( )+ 0.4] NG > (3.8)
is used. The analysis for stability is then performed as mentioned, but with fia,
replacing A.

The results are presented in table 1, where four columns are presented. The first
column states the correlation measure and whether it was performed on the fixed ()
or random/varying (3) gradient subset. It is furthermore stated if it is a regression
(regr.) or classification (clas.) analysis. Best-scoring values for different correlation
measures presented by Landreman et al. (2025) are included in the second column,
(‘Landreman’). The third column (‘Stellarators’) analyses the predictive capabilities
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of available energy for stellarators alone, where we stress again that the fixed gra-
dient dataset only uses A to predict Q, and the varying-gradient database uses the
density and temperature gradients as well to predict the energy flux. The fourth
column (‘Tokamaks’) does the same for tokamaks, excluding stellarators. The corre-
lation coefficients exhibit the behaviour discussed in previous sections: the available
energy correlates relatively poorly with the energy flux in tokamaks in general. It
correlates fairly well in stellarators if the gradients in density and temperature are
allowed to vary, and it can furthermore make fairly accurate predictions of stabil-
ity in stellarators although both effects can largely be explained by the ITG: the
Spearman correlation coefficient between the ITG and nonlinear energy flux is
0.80 (not included in table 1), and the high correlation of the available energy is
thus largely explained by its dependence on it, increasing to 0.84 due to its addi-
tional dependencies. Similarly, performing XGBoost regression and classification
analyses on the varying-gradient subset where the only features retained are the gra-
dients in density and temperature (also not included in table 1), gives R*> ~0.71 and
accuracy ~ 0.92, respectively. The available energy increases these values to 0.76 and
0.94, respectively, showing that predictive capabilities increase, though only slightly.
The most surprising finding is that available energy can predict stability in tokamaks
fairly well too. This is likely a consequence of the anti-correlation found (with higher
available energy corresponding to short connection lengths and, possibly, stability),
and is thus likely strongly dependent on the probability space in which the toka-
maks are sampled (e.g. sampling at constant connection length may lead to different
results). We note in passing that similar implications on sampling likely exist in the
stellarator database too (e.g. sampling geometries with high mirror force will likely
give different outcomes).

4. Conclusions

As has been shown, the ground state associated with the curvature-driven branch
of the ITG instability may be calculated by neglecting parallel dynamics (kjvr <
k., -vp, achieved by setting v, and ¢ as invariants), where an adiabatic electron
response furthermore implies that the density profile must be held fixed. The avail-
able energy in the limit of a flux tube can then be calculated analytically, and it
is found that it vanishes exactly if the magnetic field is isodynamic, 0 < n <2/3,
and the amount of bad curvature is sufficiently small. Furthermore, in the limit
of strong gradients of density and temperature, the available energy is relatively
small in any magnetic field under the far less restrictive condition 0 < n < 2/3. The
available energy then approaches a constant and thus remains finite in the limit of
infinitely large gradients (at fixed ratio of gradients). It is notable that the condition
0 <71 <2/3, which guarantees linear stability of curvature-driven ITG modes, also
has nonlinear significance.

Investigating the contributions to the available energy, it is found that regions of
bad curvature contribute the most whereas regions of good curvature only contribute
slightly. Concerning the ground state in these regions, it is found that the velocity-
dependent contribution to the available energy is strongly anisotropic behaviour in
regions of good curvature, in contrast to regions of bad curvature that have more
isotropic structure.

The utility of the available energy presented has been assessed by means of a large
database of gyrokinetic nonlinear simulations, created by supplementing an existing
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stellarator database (Landreman et al. 2025) by including 6 x 10* tokamak simula-
tions. The available energy was calculated in all magnetic geometries simulated and
compared with the nonlinear energy flux as computed by gx. When the gradients in
density and temperature are held fixed, the available energy and energy flux are cor-
related if the number of stellarator field periods (Ny,) is sufficiently small. Assuming
that the parallel wavenumber varies like kj ~ 1/Lya ~ Nyp/R, it is postulated that
the mismatch is a consequence of the neglect of parallel ion motion in the available
energy. This hypothesis is verified for tokamaks by showing that the correlation is
especially poor for geometries with a short connection length, whereas geometries
with long connection lengths exhibit better correlation. When the gradients in density
and temperature are chosen randomly over a physically relevant range, the corre-
lation between available energy and energy flux is much more pronounced for the
stellarators and to a lesser degree for tokamaks, highlighting that available energy
captures the dependence of turbulence on these gradients quite well. Finally, the
dependence on 7 is investigated, and it is observed that both the available energy
and the turbulent energy flux are small when n < 2/3. The energy flux, however,
shows a marked decrease already when n approaches unity from above, indicating
different instabilities (e.g. the slab-branch of the ITG mode) or the Dimits shift may
play a role.

All in all, the results show that the curvature-driven branch of the ITG can
be modelled, though imperfectly, by the available energy, where the assumption
kyvr <k, -vp appears critical in determining its use as a proxy for the nonlinear
energy flux. Future works may enhance the model by a better choice of the parallel
and perpendicular length scales, which may be chosen by, for example, data-driven
methods. Parallel dynamics could also be captured by averaging the inputs (e.g. the
gradient drifts) over some parallel length scale, similar to Roberg-Clark, Plunk &
Xanthopoulos (2022). One could also allow for Gardner restacking over a small
parallel range A€ ~ pgyov7/|vp| to capture parallel dynamics. Further coupling the
current ion model to trapped electrons, via quasi-neutrality, would extend both mod-
els to account for mixed ITG and trapped-electron mode driven turbulence, which
shall be done in a future investigation.
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time-averaged spectra of the electrostatic potential are stored as HDFS5 files,
and data of Landreman er al (2025) are included for completeness too. The
full data (which includes ‘checkpoint’ files that contain all information of the
simulation at a certain snapshot, and spatio-temporal information on the full distri-
bution function) are archived and can be made available upon request. As stated

in the main text, code for reproducing results presented is made accessible via
https://github.com/RalfMackenbach/AE_cITG.
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Appendix A. Uniqueness of ky and kg

Here, we show that, if one has found a pair (ky, k,) that solves (2.17), it is the
only solution. First, let us show that the solution line «y (k,) to (2.17b) is unique,
which may be done by showing monotonicity of the left-hand side in «,, for any fixed
kq. Taking the partial derivative with respect to «, of the left-hand side of (2.17b)
results in

Fuo (AY)2 (K + @0)?
B / e Ao A o + 00 + (B ey — g Al

which is indeed always negative, and we have thus shown that the solution curve
ky (ky) 1s unique. It now remains to prove that, given «y (k,), (2.17a) is monotonic
in «k,. Taking the derivative of the left-hand side of this equation with respect to «,
results in the following condition for monotonicity:
2 2 2 l
f dyu dv, fuo (Aa) (wy —Kky)” + (Aa) (wy — Ky ) (Ko + wa)/cw G0
To (AP (ke + )7 + (Aa)(ky — ;)

Let us conveniently define the following averaging operator:

(A2)

[dudyy .. faro/(T)(AY) (ke + @)/ (AY) (Ko + w0)* + (Ac)* (k) — 0y))G
S dudvy faro/ (To)(AY) (kg 4+ @) (AY)? [ ((Ke + @0)? + (M) (ky — 0y))G

(A3)
so that (A2) may be written as
—_—
(w‘” K‘”) + (w“’ "“’)K(,, 0. (A4)
Ko + Wy Ko + g
In similar notation, the derivative of (2.17b), given ky (k,), With respect to k,
becomes
o = (M) (AS)
Ky + @y

and we thus require
I ?
Wy —K Wy — K Wy —K Wy —K
<¢ w)_(w ¢>=[w w_(w w)} 0. (a6
Ko + @y Ky + @y Ky + @y Ko + @y
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which is indeed true, showing that the solution pair (xy, k,) is unique. This argu-
ment fails if and only if wy, =k, =0, i.e. for isodynamic magnetic fields. This case
is treated in detail in Appendix C, where it is shown that the solutions to the density
constraint equation for «, can indeed become degenerate. However, all these degen-
erate solutions map to the same available energy (namely A =0), and A remains a
single-valued function.

Appendix B. Dimensionless equations and numerical implementation

Here, we non-dimensionalise the relevant equations, which is useful for the pur-
pose of numerical implementation and calculating the available energy in the limiting
case of no radial drifts. It will prove convenient to define

W, =—AYdy, Inn, (Bla)
2
A2 /-’LBO vy
=— =, B1
UJ_ T() U% ( C)
. v
V= v—Tl[, (Bld)
R Ay ! . (. 3
a)zz T =—®, — Or (vz—i—vi—z) , (Ble)
. Ak,
full) = ——, (B1f)
0
R Aak
Ry ()= =, (Blg)
0
A AV w, B xVB-Vua
u(0) = =AY 3 : (Blh)
//LBO BO
A B xVB-.V
by (0) = 5;”"’ = —AaxTw, (Bli)
0 0

where the thermal velocity is defined as vy = 4/2T,/m. The nonlinear function G,
given in (2.15), becomes

GZJ(%@—@V+@%@2‘ )

(0o + 20)® + (02.0y — )

Furthermore, the Maxwellian distribution function fj o, as given in (2.7),
simplifies to

Y
noe” I 'L

fM,Oz TZU; (B3)

The density constraint, (2.17), can now be written as

1 /OO / - PO A
— do? d Ky +020y) G =&, + &y, (B4a)
ﬁ 0 I l)|| ( L )
1 [ . € - A .
ﬁ d dvl A (ULC()I/, - Kv,) G= Wy, . (B4b)
0
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Similarly non-dimensionalising the available energy, given in (2.21), results in

YY)
Ay AanyT; UL
%\/_ f de de dby ——— ¢
[\/ (0 + R+ @20y — k)2 200 — 6TV + 20y (BS)

SN2 A AT 2 A 5ONRZ A
— (D1 Dy + Ro) (DT Dy — D) — (DT 0y — /cw)(vla)w):|.

Normalising the available energy to the total thermal energy in the flux tube

Ey = ngTom Ay A /dz (B6)
T= 2”0 07T o B’
we find
1 —of 03
PN e
Ay [ (o2 [ e [ at—
12/% (\/_ L
x [\/ (B0 + 8> + 26y — )7 (@20, — 017 + 20,0 (BY)

— (D} Dy + Ro) (D] O — D) — (D3 Dy — I?w)(ﬁic?)w)j|>,

where we made use of the fact that the integrand is even in v;. If the integrand
under the ¢-integral is periodic or the integral extends many times around the torus,
the expression becomes equal to a flux-surface average (Helander 2014), which we
denote by angular brackets and thus arrive at the expression

A= / / a
12\/_ L

<\/ (B2 + R+ (026, — )2 (3, — 611 + (836,)> (BY)

A2 A ANeA2 A AT A2 A ~ A2 A
— (V] wy +Ke) (V] 0y — @, ) — (V] @y — Kw)(vaw>>>-

To evaluate the integrals numerically let us take note of the following transforma-
tion,
—In(1 —u), O, = Erf ' (v), (B9)

where the inverse error function is defined as the inverse of Erf(x)=
(2//m) fox dt e**. With this substitution, relevant integrals simplify to

//d do? UA vi,vll)_f//duduf —In(1 —u), [t @]}

(B10)
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with the integration range u € [0, 1] and v € [0, 1]. We have found that the integral is
well approximated by a fixed Gaussian quadrature scheme in # and v using 100x 100
nodes. Other integration schemes (e.g. Hermite-Laguerre) have been attempted too,
but were found to be less robust in certain cases. An iterative fixed-point scheme
for solving the density constraint (i.e. rewriting (B4) in the form k¥ = F(x) and
iterating as k,; = F(k,)) was found to be the most sound method of approximating
solutions, where the solver halts if the change in solution (k,,; — k,) is less then some
prescribed amount.

Appendix C. Limiting cases: vanishing radial drifts and strong gradients of density
and temperature

In this appendix, we simplify the relevant equations, and we do so in the limit of
vanishing radial drift or very large gradients in density and temperature. This will
allow us to verify the calculation of the available energy in these limiting scenarios,
thus bolstering confidence that the numerical routines are correct.

C.1 Vanishing radial drifts

We first consider the case of vanishing radial drifts, i.e. ®;, =0, as is the case
in isodynamic magnetic fields or on specific locations in a fusion device (e.g. on
the outboard and inboard midplanes of an up-down symmetric tokamak). We shall
employ the non-dimensional equations denoted in Appendix B, where for ease of
notation, we drop the hats, understanding that we are still referring to normalised
quantities.

Constraint on the density
In the isodynamic limit, the equation for «,, as given in (B4), becomes

=w, + w,.

(Cl)
We first note that if a solution to this equation exists, it is unique. This follows from
the fact that the left-hand side is a monotonically increasing function of «,, which
implies uniqueness of the solution. In order to evaluate the integral, we define

2 2
1 e UiITL 1 3
ﬁ / dvl dvﬁ U—Ho (viwo + ko) lwun] ‘E -3 + (1 — nf) vl + vﬁ

3 1 B
2= - = 2= - C2
W) =5 n+vL(n ) ()
and p
Ry=——, (C3)
Wy

so that the integral can be written as

2 2

1 /' e it w, + o
— | dv? dvP ——0 (V} —&,) [vP — v} =0 (wy) ———. (C4)

ﬁ 1 Il v ( € ) ‘ II 0} |a)n77|

We first focus on the integral over the parallel velocity,
o0 —v?
T(v? EL/ dv? < |v? — o7, (C5)
JzJy iy

https://doi.org/10.1017/50022377825100846 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377825100846

Journal of Plasma Physics 33

which is equal to

2
1 * el 1

if vy < 0 and otherwise

f/ ) f/”dvzev—”@tvs)

=—— v0 (1 — 2v0) Erf(vy) + ﬁe‘“o.

(C7)
2

where the error function is defined as Erf(x) = (2//7) fox e~ dt. The entire integral
can thus be expressed as

1 2'U() 7v2
Z(v))==—v; + ( ﬁ 0 —[1—2v5] Erf(v0)> oY), (C8)
where ®(x) denotes the Heaviside function.

We now turn our attention to the remaining integral, which simplifies to

/ dvl et (vL—Ka)I(v())—o(wa)‘”r“'”“. (C9)
wyn

If K, <0, the left-hand side is independent of «,, and we thus restrict our solution-
space to &, € [0, oo).6 One may split the integral into

Ko oo w, + w,
- / dv? eI T(]) + / dv? eI Z(]) = G(a)a)ﬁ. (C10)
0 Ka Wy
We note that the remaining integral over perpendicular velocity may be performed
analytically as well (by changing integration-variable to v3), but we shall numerically
solve the density constraint equation as above.

The available energy
Given a k, that solves (C10), we may now calculate the available energy in the
isodynamic limit, which can be expressed as

2_ .2
df U—UJ_ .
Ao = 6\/_de/ /dedv —— R [~wrw,(v] —k) (] —vp)]. (Cl1)

The integral over the parallel velocity may be evaluated by considering what sign
both —w,wr(v? —k&,) and v} have. Let us denote this integral as

00 —v] [Q(v

1
_ﬁ 0 H UH v)]. (C12)

OIf one instead allows i, € R, the solutions to (C9) become degenerate if a(vi — Ky) =1 solves the system,
as any Ky <0 is then a solution. In the notation of (2.36), this implies [ fiolw! —wo|dp dvy == [ fu ol —
wg) dpe dvy, which can only occur if ol — wy is of the same sign everywhere. As shown in § 2.3, this means there is
zero available energy, and one need not evaluate the density constraint.
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where we have relabelled 2 = —a)Ta)a(vi —ky). Now, if v(z) <0, there is no zero
crossing in vy in this integral, which may simply be evaluated as

R(Q v
. ()/ dzev o

_ L
=R(2) (5 )

If v2 > 0, however, v, changes sign at v, so that the entire integral may be evaluated

as
_ R 9)/ dzev vy — |)+R(Q)f dze (v” v2)

=R(2) <§ - vg) +192] [ﬁevé - G - vg) Erf(vo)] ,

where we have used R(x)+ R(—x)=|x|. The entire function may now be
written as

T =R(2) (— — vo) 192 [%evé — (% — v§> Erf(vo)} o).  (C15)

Returning to the task of evaluating the available energy, it may now succinctly be
written as

(C13)

(C14)

—~ 1 d¢
Aiso = / dUJ_ 71&..7 (C16)

6fd€

where the final integral over v may be done numerically.

C.2 Limit of strong gradients

Here, we simplify the equations in the limit of steep gradients in temperature and
density.

Constraint on the density

Let us rewrite (2.46) in terms of the normalisations given in Appendix B, where we
furthemore introduce &, | = AYk,0/ Ty and &y = Aaky o/ Ty. Dropping the hats for
ease of notation, we have

Y|

22
[ dvi dv e — ! [a)Z + ! v 0,/ <\/(Ku,,o +viw,)?+ (loy — K,,,,o)2>]

KO(,() - - 7U2 7112 ’
S dvi duj € jH Hwl|/ <\/ (ka0 4+ Vi 00)> + (Vi 0y — Kw,0)2>
(Cl7a)
w2
,/‘dvj_dvz : j i |a) |UJ_ww/<\/(Kon + vla)a)z + (vla)l# - Kl#()) )
Ky,0= = (C17b)
f ded v ej—H" I|/<\/(Ka,o +viw,)?+ (Uia)w — K¢,0)2>
The integrals over parallel Velocity are of the form

7= [t iel, Tm e [ —|w L)
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and can be calculated analytically, leaving the remaining integrals over v? to be
evaluated numerically. As in (C2), we may rewrite the diamagnetic drift as

! =wr (”12 — vﬁ) , (C19)

where we have defined v} =3/2 — 1/ — v?. These integrals are nearly identical to
(C5), and we find

]
Z,(v}) = v} — X (v}) =Z(vy)), (C20)

so that the density constraint equations reduce to

Ko, 0 =

S dvt e o @nTi ) + Tt ou/ (Vikeo + 1100 + 0oy — .07 |

[ dvi e‘”iI(vf)/<\/(Ka,o +viw,)r + Wiy — KM)Z)

’

(C21a)

[ dv} e’”iI(vf)viw¢,/(\/(Ka,o +viw)? + (Viwy, — KM)Z)

S dvt e 120D/ (VKeo + 107 + (Vg — k.0

The problem has thus been simplified from involving double integrals to single ones,
which reduces computational costs.

(C21b)

Kyo0=

The available energy
Similarly, the available energy in the strong-gradient limit, given in (2.47), may be
written as

2 2

. 1 de 1 00 o0 e Vi1

As rong — T~ - d7 — | —= dl)2 / dvz _—
rone 12[%/19(«/5/0 oy

(C22)
X |:a)f (v} we + Ka0) + wal\/(via)a + Ka,o)2 + (Viwy — K¢,0)2i|>,

and one can again evaluate the integral over the parallel velocity. The available
energy becomes

_ 1 ae [ > .
Asron = d Ted
trong 12f%/B</o vie terl
2

X |:0 (1)L (v]) (V] 0y + Kay0) +I(v12)\/ (v, + Ka’o)z + (vViwy +Ky0) | )
(C23)

thus again reducing the number of integrals by one.
Isodynamic field with strong gradients

As a final step, we evaluate the available energy in an isodynamic field with strong
gradients. This is most readily done from (2.49«), which in the case of isodynamicity
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becomes

1 7UH7UL
W / dvf vt — [o] + 1010 (eup + v )] %0, (C24)

and the integral over parallel velocity similarly becomes

/ dv? e*"iz(vf)a(xc,,o +v]w,) A |w | (C25)
wr
Defining k, | = —k4.0/®s, Where we impose k, 1 € [0, 00), we find
Ka1 S S X s 2 o w,0(wy)
— dvi e "1 Z(vy) + dv e "1 Z(vy) ~ o] (C26)
0 Ry wr

which can be solved numerically and used to calculate the available energy as in
(C23).

C.3 A comparison of the limits

Here, we numerically evaluate the limiting cases derived and compare them with
a calculation of the full available energy. To do so, we assume a vanishingly
small parallel domain (A¢ — 0), so that the integral over the parallel coordi-
nate need not be evaluated. In such a scenario, the available energy depends on
A= A(a),,, o1, Oy, ©y) and we 1nvest1gate its dependencies on these parameters.
This may be seen in figure 9, where A in both limits derived and the full available
energy are plotted.

It may be seen that the limits agree closely in various cases. In the limit of only
radial drifts (i.e. panels a, d and g), we see that the strongly driven limit agrees
closely with A, especially if the gradients are sufficiently large. The isodynamic avail-
able energy, however, is zero everywhere and does not depend on the radial drift.
Further investigating a case where there is a pure binormal drift (panels b, e and /),
we find that all agree closely, with only the strongly driven limit showing more pro-
nounced deviations at low gradients. Finally, investigating a case where both radial
and binormal drifts are present (panels ¢, / and i), we see that the isodynamic avail-
able energy underestimates the available energy at negative @, which is present in
the full calculation and the strongly driven limit.

As a final check, the dependence of the full available energy and its strong-gradient
asymptote on the gradient strength is calculated and compared, further verifying that
the code is correct. The result is shown in figure 10, where one clearly sees that the
results agree in the large-gradient limit. One furthermore sees the error approach a
constant value for large enough gradients, and this constant is set by the numerical
resolution of the integrals.

Appendix D. Details of constructing the tokamak simulation database
D.1 Construction of the probability space

To sample ‘random’ tokamaks, we opt to use a radially local equilibrium model as
done by Miller ef al. (1998). Such a radially local equilibrium model solves the Grad-
Shafranov equation given the following properties of a flux surface: its rotational
transform and magnetic shear, the pressure gradient, its poloidal cross-section and
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FIGURE 9. A figure of the available energy, calculated without additional assumptions (panels
a—c), in the limiting case of strong gradients in temperature and density (panels d—f), and in the
limiting case of vanishing radial drifts (panels g—i).
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/ 102

2 ] *. F
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FIGURE 10. Available energy (solid orange), its strong-gradient asymptote (dashed blue) and
the relative error (dotted red) as a function of the gradient strength. For this figure, ®y = &y =1

and n =2.
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the poloidal cross-section of neighbouring flux surfaces. The latter two quantities are
given with the following parametrisation (Turnbull ef al. 1999):

RO, r)=Ry+rcos (0 +|arcsind]sin@), Z(@,r)=«rsin (0 + ¢ sin[260]).
(DD)

Here, 0 € [—m, ) is a poloidal angle parametrising the flux surfaces, r measures
the minor radius, R,(r) the centre of the flux surface, «(r) the elongation, &(r)
the triangularity and ¢ (r) the squareness. Given all these function values and their
derivatives at some r,, one can construct the flux surface at r, and its immediate
neighbours. Importantly, this parametrisation is up-down symmetric and hence does
not have large intrinsic rotation (Peeters et al. 2011; Ball et al. 2014). It should be
noted that not all local equilibria parametrised in this way correspond to a valid
global MHD equilibrium: for instance, if |9, Ry| > 1, flux surfaces will intersect.

We continue the construction of random tokamaks by normalising all length scales
to the minor radius @ piyer, SO that A = Ry/aminer 1S the aspect ratio and r/ayine: = 0
is the normalised radial coordinate. The aspect ratio is sampled uniformly on the
interval [1.1, 10], whereas p is sampled from a linear probability density function,
P(p) =2p for p €0, 1], resampling if p < 0.01. The radial derivative of the aspect
ratio, d,A =9, Ry, is informed from TCV-fits, and we sample it uniformly on the
interval [0.0, 0.2].

Next, focussing on the shaping, the elongation « (p) is uniformly sampled from the
interval [1, 3], and its radial derivative d,« is sampled from a normal distribution
whose mean and standard deviation are «. This allows for exotic choices such as
negative d,«, which may indeed occur in cases with hollow current profiles (Ball
2016). The triangularity (§,) and squareness (¢,) at the edge of the device (p = 1) are
sampled from a Gaussian. Specifically, §, is sampled from a normal distribution with
zero mean and a standard deviation of 0.4, resampling if |§,]| > 0.9. Similarly, the
distribution of ¢, has zero mean and a standard deviation of 0.2, and is resampled if
¢, < —0.45 or ¢, > 0.9 to avoid self-intersection of the flux surface. The triangularity
and squareness at p are then calculated by employing the flat current-profile solution
to the Grad-Shafranov equation (Ball 2016, Ch. 3), i.e. § = pé, and ¢ = p?¢,. Radial
derivatives 9,8 and d,¢ are sampled from a normal distribution, too, whose mean is
given by §, and 2p¢,, respectively. The standard deviation of the distribution of 9,6
and 0,¢ are chosen to be twice their mean. If § and 9,6 have opposite signs, it is
resampled, and the same is done for ¢ and 9,¢.

Finally, we describe sampling procedures for the rotational transform, magnetic
shear and pressure gradient. The safety factor ¢ is sampled uniformly on the inter-
val [1, 10] and the magnetic shear s is sampled uniformly from the interval [—1, 2]
resampling if |s| < 0.05 (this is because low-shear simulations can be difficult to
resolve). The pressure gradient is given as Bd,In p=p(3,Inn+9,InT), where
the latter two gradients are kept fixed at d,lnn =—0.9 and 9,In T = —3.0 for the
fixed-gradient subset. (Sampling procedures for the random gradient subset shall be
introduced later.) Hence, we require a sampling procedure for 8, which we sam-
ple uniformly on the interval [0 %, 1 %)]. This sampling procedure gives a set of
parameters, but self-intersection or cross-intersection of flux surfaces may occur. We
numerically check if such intersections take place (simply checking for intersections
between all line-segments compromising the discretised flux surface), resampling the
tokamak if an intersection is found.

For data-normalisation purposes, we also need to define a reference magnetic field
B¢, which is specified by giving the major radial coordinate R, where the toroidal
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field is equal to the reference field strength, Bioroida(Reeo) = Brer- A typical choice is to
set Rgeo = Ry, the field at the geometric centre. However, in stellarator simulations
it is typical to set the reference field by dividing the total toroidal flux passing
the the last closed flux surface, 27 v,, by its poloidal cross-sectional area, waZ; ..
Though the difference arising from these two definitions is minor, we nonetheless
employ the stellarator definition of the reference-field to allow for an ‘apples-to-
apples’ comparison between stellarator and tokamak datasets, noting that relevant

quantities may be converted to other reference fields a posteriori. The toroidal flux
over the cross-sectional area at p of a tokamak parametrised by (Dl),7 is given as

‘/;/aminorzp dR Z

.
dR Z

‘/;/aminorzp dR

Z
Bir = RgeoBref dR ; == Rgeo =

(D2)

j;/aminor:p j;/aminor:l)

We find that the relative difference between R, and Ry, as in (D2) is typically <1 %
for a randomly sampled tokamak.

The git commit 0318a675 of the gx-code has been used for the simulations. Small
modifications to the Miller geometry module have been made to include squareness
and these may be found in the code directory of the available energy code. Code for
sampling the magnetic geometries may be found there too.

D.2 Convergence analysis of fixed-gradient subset

To ensure that tokamaks residing in the constructed probability space are suf-
ficiently accurately simulated, we draw 8 random tokamaks and find numerical
settings that accurately resolve them all, using a standard twist-and-shift bound-
ary condition for the parallel coordinate. To this end, we have doubled/halved

numerical parameters of interest individually,R and verified that the time-averaged
energy flux Q stays within 20 % of the lesser resolved, nominal case. We have
found that a simulation time of #;, = 2500 UT«/E/aminor is sufficient, with numeri-
cal settings ntheta =24, ny =96, nx =193, nhermite =12, nlaguerre =4
and y0 = 50.0 (where yO0 is binormal box-size in number of gyroradii). The time-
step cushion is set to c£1=0.6 and the amount of hyper-diffusion is set to
Dhyper = 0.1. It was verified that increasing the resolution drastically (e.g. dou-
bling nx, and ny simultaneously) does not reduce the error significantly below
20 %, whereas compute time increases significantly, indicating that the current error
level is reasonable. Finally, a small amount of collisions is present, chosen to be
vnewk = V;;dminor/ vr+/2 =0.01. We have verified that this low amount of collisions
does not impact results, as halving vnewk changed the time-averaged energy flux
by <20%. With these settings, we find that on average a simulation requires one
node-hour on the ‘Alps’ supercomputer of CSCS, with one node consisting of four
GH200 Nvidia GPUs.

"One could also set p =1 in the calculation using 8, and ¢,, but since the Miller parametrisation is local, we
opt to use the radial coordinate of the flux surface of interest. Differences in the reference field for either radial
coordinate are minute.

81n the nomenclature of a gx input file, we have doubled nx, ny, ntheta, nhermite and nlaguerre rela-
tive to the nominal case. The simulation time tysx has also been doubled. We have furthermore doubled the radial
box-size by doubling jtwist while simultaneously doubling nx, and the total box-size y0 while simultaneously
doubling nx and ny. Finally, cf1 and D_hyper have been halved.
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FIGURE 11. Histogram of maximal difference of logarithms between the nominal and more
highly resolved energy fluxes. Analysis performed on the unstable dataset, defined as Qpom >
0.1. One can see that almost all data fall below a maximal difference of one, meaning that the
energy flux changes by a factor less than two. Both the fixed-gradient (blue) and random-gradient
(orange) subset are included, having similar distributions. There are two data-points with whose
maximal difference in logarithms > 3: one with value 4.0 and one with value 15.1. A dashed
black line is added denoting where the maximal difference of logarithms equals log,(1.2), i.e.
20 % error.

To assess how well these numerical settings work on a larger set of tokamak
simulations, we have drawn 100 new random tokamaks and have doubled/halved
numerical parameters on these simulations too. The data are subdivided in an “unsta-
ble’ and a ‘stable’ set, where (for the nominal case) the former has Q > 0.1 and the
latter has Q < 0.1. This distinction is important, as a stable simulation is charac-
terised by exponential decay of the initial condition, and the value of Q is thus set
by the initial random perturbation, the decay rate and the simulation time, making
relative errors in Q meaningless. On the unstable dataset (N =96), we find that
approximately 72 % (N = 69) of the data are converged (i.e. Q changes by less than
20 % upon doubling/halving all relevant parameters individually). The distribution
of energy fluxes in the unconverged set shows a similar distribution as the converged
set, i.e. it is not the case that simulations with either large or small fluxes systemat-
ically require higher resolution. On the stable dataset (N =4), we find that Q can
rise above 0.1 when doubling/halving relevant parameters for 50 % (N =2) of the
data.

However, the current investigation focusses on the logarithm of Q and we have
thus performed an error analysis on log, Q. Denoting the nominal value as Q,om,
and all the more highly resolved values (doubling/halving numerical parameters)
as Q.. a histogram of the maximal difference of logarithms is given in figure 11.
We find that some 98 % of the unstable data change by a factor less then 2 upon
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FIGURE 12. Scatter of the nominal energy flux (Qnom) against the energy flux from a more
highly resolved simulation (Qyes). The line of ‘perfect’ convergence is included as a black dashed
line. All data with Q < 0.1 have been taken to be stable (Q =0). The left figure has fixed
gradients and the right figure has varying gradients. We furthermore note that 2 - ny, 2 - nx,
2.nhermite, 2-nlaguerre, 2 -ntheta and 2.t max correspond to doubling the num-
ber of binormal wavenumbers, radial grid-points, the number of Hermite moments with which
the distribution function is approximated, the number of Laguerre moments with which the dis-
tribution function is approximated, the number of gridpoints in the parallel direction and the
simulated time. Furthermore 2 - jmult and 2 - y0 correspond to doubling the radial box-size,
and doubling the radial and binormal box size, respectively. Finally, 1/2 - D hyper halves the
hyperdiffusion and 1/2 . c£1 halves the time step. We note that far outliers are typically sim-
ulations that are marginally unstable/stable, which are then stabilised/destabilised by changing
one parameter.

doubling/halving numerical parameters of interest, and as such, we expect that most
of the data are well converged for our analysis with the gradients of density and
temperature held fixed. A more detailed plot is given in figure 12, where the nominal
energy flux is compared with the energy flux of a more highly resolved simulation.

D.3 Random-gradient probability space and numerical convergence

To construct the dataset with varying gradients, the gradients are specified
indirectly by —d, In p and arctan(n), which are both sampled from a normal dis-
tribution. The former has mean 3.9 and standard deviation 1.0, and is resampled if
—d,1In p <0.5. The ratio of gradients is specified via an angle ©, where tan ¢ = 7.
This angle is sampled from a normal distribution with mean arctan(3.0/0.9) and
standard deviation 0.25, and is resampled if ¢ < arctan(1/3) or ¢ > w/2+40.1.
Given these two samples, it is decided with probabilities 1/3 to change only 7, only
—0d, In p or both, as compared with the nominal case. Finally, it is verified that the
gradients —d, In T and —9, In n are not too close to the nominal case (circumventing
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FIGURE 13. Sampled gradient values. The white circle in the centre are values excluded due to
being too close to the nominal values.

redundant simulations), resampling if they are. A plot of the sampled gradients is
given in figure 13. The simulations are performed in the same magnetic fields as
the fixed-gradient set, so that if only n or —d, In p is varied, it may e.g. be used to
estimate their respective critical values beyond which the simulation is nonlinearly
stable.

We have kept the numerical parameters the same as in the fixed-gradient case
when varying the gradients, and performed a convergence study on N = 108 sam-
ples. Splitting the data once more into a stable (Q < 0.1) and unstable (Q > 0.1) set,
and investigating the change in the logarithm of the heat flux when doubling/halving
numerical parameters, we find that most of the data are well converged, as may
be seen in figure 11, and some 96 % of the data change by less than a factor of
two when doubling/halving parameters. Further performing a similar analysis as
the fixed-gradient subset on the random gradient subset gives somewhat differing
results. The energy flux changes by less than 20 % when parameters are doubled or
halved for 55 % (N = 53) of the unstable (N =97) data. The stable data (N =11)
are converged for 72 % (N = 8) of the cases. All the data are furthermore displayed
in figure 12.
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