FACTORIZATION AND CONGRUENCE IN THE ARITHMETICS
OF CAYLEY’'S ALGEBRA

by P. J. C. LAMONT
(Received 7 December, 1989)

This paper treats factorization and congruence in the arithmetics of Cayley’s algebra
C. Results, proved by Rankin [10], on the number of factorizations of a given element in
the nonmaximal arithmetics H, and J, are reviewed. Further, new results on congruence
are established and are used to find the number of factorizations of a prescribed element
in the remaining arithmetics, including the maximal arithmetics J,,. When computer
factorizing a given element, the congruence results can be used as a heuristic device to
prune the search tree.

Let J be any arithmetic of Cayley’s algebra C. If, for any two elements £, & of an
arithmetic J of C, there exists an element n of J such that

E=8n )
¢ is said to be divisible by & on the left in J and & is said to divide { on the left in J.
Similarly we define { to be divisible by 7 on the right in J if there exists an § of J such that
(1) holds. In both cases ¢ is said to have the factorization &7 in J and &, 71 are called
factors of { in J. We write
{=E&n inlJ.

For example, an element p of norm 1 in J, henceforth called a unit of J, divides any
element £ of J on the left and on the right in J. Also, clearly, a rational integer m divides
an element ¢ of J on the right in J if and only if m divides { on the left in J.

An element {of J is said to be a Cayley prime for J if, for all factorizations &n of { in
J, either N =1 or Nn =1. For example, suppose that { has norm a rational prime p,
say. Then it follows, since N§ = NE Nn = p, that either § or n has norm 1. In this case, {
is a Cayley prime.

If, for given quaternions «, 8, y,

a =Py
it follows, by the associative law of multiplication for quaternions, that for any quaternion
o
o =(B6)(67'y).

Thus if B divides « on the left in a quaternion arithmetic H' of C, it follows that for any
unit & belonging to H', Bd divides « on the left in H'.
If £, &, n are Cayley numbers and { = &7 the relation

¢ =(86)(67"n)

in general only holds when § is a nonzero real number.
Suppose that, for N = N&' and Nn =Nn',

E=8n=&n'
are two different factorizations in arithmetic J of an element { of J. Then, from [9], it
follows that no explicit relation, corresponding to a principal isotopism of C can exist
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between (&, n) and (&', ') other than

§=_§Ia n=-n'

unless ¢ of fu is a quaternion for some unit u of C or { is of some other special form.
We shall see that the factors of a given element of J, can be characterized up to a
factor of 21 by considering congruence modulo 2 in J,.
For any rational integer m >0 and Cayley integers &, 7 of J,,, we define £ to be
congruent to 7 modulo m in J,, if § — n is divisible by m in J,,. We then write

E=7n (modulominl,)

or, when no confusion can arise,
‘E=mn (modm).

It is clear that for this definition congruence is well defined in the sense that it is an
equivalence relation.
If

§=§ (modm), n=mn, (modm)
then

En=£§&mn (modm).

We only consider modulus m for m a rational integer.
We first prove

THEOREM 1. For any elements n and n' of J,, such that
n=n' (modulo2inl/J,)
Nn and Nn' are either both even or both odd rational integers.
We have n = n'+ 2{ where § is an element of J,,. Therefore,
Nn=Nn'+4N¢+2R(2n'{).

But n'{ is an element of J,,. Hence R(27n’E) must be an integer. The result follows.
Also we have

THEOREM 2. Any element  of maximal arithmetic J,, is congruent modulo 2 in J,, to an
element 1 of an arithmetic J, containing J,, of C if and only if T is itself an element of J.

We have
=1t (modulo?2inlJ,).
Thus
{=14+2a

where « is an element of J,,. Thus 2« is contained in J,. Hence { belongs to J if and only
if v belongs to J.
We now prove the more difficult

THEOREM 3. Any element & of odd norm of a maximal arithmetic J, of Cayley’s
algebra C is congruent modulo 2 in J,, to an element, unique apart from sign, of norm 1 of
Jo.
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Let & be any given element of odd norm in J,,. Then, from the definition of J,,, it
follows, since & has odd norm, that, with the notation of [3],

E=apt 6,5

where «, is an element of J,, &, equals &,, &, £, , or &, , and u is a basic unit assigned
to an associative triad containing w, and v is a basic unit assigned to a triad not containing w.
Suppose that §, =0. Then & = ay and

7
o= D, ai;, (mod2)
5s=0

where each a, is 0 or 1. Since Na, is odd, the numer r of coefficients for which a,=1
(0 =5 =7) must be odd.
If r =1 the result follows.
If r =3 we have
ao=i5, + i, +i;, (mod2).
It is easy to prove that there exists a basic unit i, of C for which (i, + i, + i, + i) is
contained in J,,. But for any such set (u,, u,, us, us)

INZES

;=0 (mod?2).

T

1
Thus in this case

ap=i, (mod?2).
If r =5 we have, since

7
> =0 (mod2),
=0

a, congruent modulo 2 in J,, to the sum of three different basic units of C. The case r =5
has thus been reduced to the case r = 3.
Similarly the result follows if r = 7.
If 6,=1, we have
E=ap+ &)

From above we see that if Na, is odd, a, is congruent modulo 2 in J,, to a basic unit
i,, say, of J,. Now write

4
§(w) = % 2 W
I=1

where w;, (1 =s = 8) are the eight basic units of J,.
Then we have i, = w;, for some /, (1=, <4) for if not § is congruent modulo 2 in J,, to an
element of even norm of J,, which cannot be true. Thus

E=4(—w,+w,+w,+w,) (mod2)

and the result follows.
Now suppose that Naj is even. Then

7
o=, aj; (mod2)
s=0

where each a, =0 or 1. Since Na, is even the number r of coefficients a, =1 must be
even.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 22:37:07, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5001708950000820X


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S001708950000820X
https://www.cambridge.org/core

174 P. J. C. LAMONT

If » =0 or 8 the result follows at once.

If r =2 or 6 we have
g = is, + i.\'z + g(w) (mOd 2)
where as before

4
E(w) = % Z w;
i=1

and the w’s form a set D, say, of four basic units of C. Precisely one of i, and i, cannot
occur in D, for & must be congruent modulo 2 in J,, to an element of odd norm. If neither
i, nor i, occurs in D the result follows as before. We now suppose that both i and i,
occur in the set D. In this case it is easy to prove that there exist two elements w,, w;, of
D for which

l . .
. . . I, +i, +w +w
is a contained in J,,. 2y, + by s, + W)

We deduce that L
is, +i;,=w, +w,, (mod?2).

1
Hence

E=3(—w, —w,+w, +w,) (mod2).
Finally we suppose that r = 4. Then
E=i, +i,+i,+i,+3w, +w,+ws+w,) (mod2).

Clearly the sets (i,, i, i,, is,) and (w;, w,, w;, w,) must have an even number of elements

in common for otherwise § is congruent modulo 2 in J,, to an element of even norm. If the

sets have no element in common or four elements in common the results is immediate. If

they have precisely two elements in common the argument reduces to the previous case.
Thus for any element & contained in J,,

E=p (modulo2inlJ,)
where p is an element of norm 1 of J,. If also
E=p' (modulo2inlJ,)

where Np' =1 it follows that p = +p’. Theorem 3 has thus been proved.
As an example we consider the element

E=14iy+3(is+is+ig—iy).
Since the characteristic unit [3] x(§) =1 and
E=1+i+3Q+i+ir+is)is=ag+ &,
where ag=1+1i, and &, = &/, we can take w =iy, i, or i. In J,, we have
B=1—i1+is+ig=0 (mod2)
since x(3B) = is. Thus in J;,
E=—iyj—ig+3(is+is+ig+i;) (mod2)
=3(—iy+is—ig+i;) (mod2)
while in J;, we have
E=3(+is+is—ig—i;) (mod?2).

Next we deduce from Theorem 3
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THEOREM 4. Any element 1 of even norm of a maximal arithmetic J,, of Cayley’s
algebra C is congruent modulo 2 in J,, to the sum of two elements of J,, of norm 1 or to
zero.

This follows since any such element 7 can be written as 1, + n, where 7, and 7, are
linear combinations of disjoint defining sets of units for J,, and are such that N7, and N7,
are odd.

Theorems 3 and 4 are used to characterize and count the number of distinct factors in
maximal arithmetic J,, of a given element { of J,. However, we must first relate the

7 7
number of representations of odd rational integer mn as Y z2, where Y zi, is an
s=0 5s=0

element of J,,, to the number of representations of rational integers m and n of this form.

7
We define r,(m) to be the number of different representations of m as Y, x? where
s=0

;
¥ x,i; is contained in fixed arithmetic J, of C for h an integer between 0 and 7 or one of
s=0

the seven basic units of C other than 1. Further we write ry(m) = r(m). Clearly,
r(m)=r(m) and r,(m)=r,(m)

for s and ¢ between 1 and 7. For example, r(1) =16, and r,(1) =48 and r, =240 for
1=s=T7.

We state without proof some results on the number of distinct representations of a
rational integer as the norm of an element of any fixed arithmetic of C containing the
eight basic units of C.

THEOREM §.
(i) For an odd rational integer

r(m)r(1) = r(m)r,(1).
(ii) For m, n odd rational integers such that (m,n) =1
ra(m)ry(n) = r,(mn)r,(1).
(iii) For p a rational prime and integer t >0
n(p) =r(1)(1+p?)

(r(p™") = r(p)r(p") — )P’ru(p*™).
(iv) For integer t>0

and

s
r(2) = 16{2 2% — 1}
s=1
where in each case h may take any one of the values 0,1,...,7,i,,i5,...,1;.

The results for r(m) are given in Rankin’s paper [10]. Then it follows that, for m
odd,

r(4m) = {er()r(m) = T1r(m).

Hence the number of representatibns of 4m as a sum of eight squares of integers, four of
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which are odd, is 70r(m). Thus, from Theorem 5(i), it follows that

r,(m) =15r(m)
and
r,(m)=3r(m) for 1=ss=<7.

An independent proof of Theorem 5 can be given by means of the methods indicated by
Rankin.
We now prove

THEOREM 6. Any element { of maximal arithmetic J,, of C for which N = mn where
m, n are positive rational integers such that (m,n)=1 has precisely 240 different
factorizations En in J,, for which NE =m and Nn = n.

If NE,=m = NE, and £, # &, then the absolute value of R(&,, &,) is less than m.
For if

;
E=> x5, (t=1,2)
s=0
we have

N £8)= é (x15 2 x5)7 <2 i (x3, £ x3,) =4m.

Further, suppose that { is dividisible on the left by &, and &, in J, where
N&, = N&, =m. Write

E=&mn, and C=E&m,.

Then
o Eno= (&)= Exn.
Similarly, . -
me=né,.
Thus _ -
”2§1§2= (m&)(Eno).
Hence,

n’R(,&,) = NER(n,11,).
But (m, n) = 1. Therefore,
R(£&)=0 or +im.

Suppose further that
E,=E, (mod2inlJ,).

Then -
£&=1 (mod2inlJ,). ()
Thus, by Theorem 2, £,&, is contained in J,. Hence
R(EIEZ) =0. . (3)

Now N(E,&,)=m? and m is odd. Therefore, £,&, has one or five odd rational
integral components. It is easy to show that any set of five basic units of C contains a basic
defining set of units for J,,. Thus the sum of any five such basic units is congruent modulo
2 in J,, to one of the five units. Hence

£1&,=i, (mod2) 4)
for some ¢, (1=t=<7).
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FACTORIZATION AND CONGRUENCE 177
But (2) and (4) cannot both hold. Hence
£ #& (mod2). 5)
From (5), Theorem 3 and the fact that
r.(1) =240,

it follows that any { of odd norm mn where (m, n) =1 has at most 240 factorizations &n
in J,, such that N§ =m, Ny =n. .

Now suppose that there exists a § in J, of norm mn with less than 240 such
factorizations. For all such £ for which N{ = mn the number of factorizations of this form
is given by r,(m)r,(n).

We deduce that
r(mr,(n) <240 > 1=240r,(mn).
NE=mn
But this contradicts Theorem 5(ii) with # = w. This completes the proof of Theorem 6.
Next we prove

THEOREM 7. Any element { of maximal arithmetic J,, of C for which N{ = p'*! where
p is an odd rational prime and | >0 has precisely

(i) 240(1 + p*) distinct factorizations &En in J,, for which NE=p and Nn=p' if p
divides & in J,, or

(i) 240 such factorizations if p does not divide § in J,,.

Proof. (i) Suppose that p divides  in J,,. Then {=p{’ where L' is contained in J,,.
Let £ be any element of J, of norm p and suppose that n = £§’. Then 7 is contained in
J... Also

En=E(EL)=pl' =t

Thus ¢ has as many distinct factorizations &n with NE=p and Nn=p’ as there are
distinct elements of norm p in J,,. The result follows from (iii) of Theorem 5.

(ii) Suppose now that p does not divide £ in J,. Let { have distinct factorizations
Eim, and &,n, in J,, for which

N& =NE,=p and Nn,=Nn,=p.
Suppose that

£,=§&, (mod2inlJ,).
Then -
5i&,=1 (mod2inlJ,).

Thus, by Theorem 2, &, is an element of J;.
Now, we have

R{&(5:0) + (881)5:) =R(D)2R(E.E2).

51(&25) =p&n, and (651)52 = Pihéz-

Therefore, p divides 2R({)R(E,Ey). Since odd prime p does not divide ¢ in J, it does not
divide 2R(). Therefore, p divides R(&,§,). But R(§,&,) is an integer and N(§,&,) =p*.

But,
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Now &,+# +&,. Therefore &,£,#p. Hence R(§,&,)=0 and &£, has one or five odd
rational integral components. Thus, as in the proof of Theorem 6, §,&, is congruent
modulo 2 in J,, to a basic unit of J; other than £1. Therefore each element of § of norm p
which divides ¢ on the left in J,, is congruent modulo 2 to a distinct element of norm 1 of
J,. Hence there exist at most 240 distinct factorizations & in this case. For all { of norm
p™'in J, the number of factorizations of this form is given by

r.(p)r.(p').

Suppose that there exists a ¢ in J,, of norm p’*! which is not divisible by p in J,, with less
than 240 factorizations of the type described. Then

r.(p)r.(p')<240 > 1+240(1+p%) > 1

NE=p'*'pt ¢ Nt=p"*tp|t
=240{r,(p"") = r(p"™")}
+240(1 +pIHr.(p'™h)
=240r,,(p"") + 240p°r,(p™)
=r.(p)r.(p").

Hence no such { exists. The result has thus been proved by contradiction. This completes
the proof of Theorem 7.

Let { be any element of an arithmetic J, for some h (h=0,1,...,7,i,,i5,...,i;) of
C. Suppose that N§ =mn #0. We use a notation suggested by that of Rankin [10] and

define

Qu(E;m,n)=Q,(8)
to be the set of all factorizations &n of ¢ in J, for which NE =m and Nnp=n. Also we
define

Su(&;m, n)=S5,(8)

to be the number of such factorizations.
Thus we have proved, for w a basic unit of C other than 1, the following result.

THEOREM 6. For m, n odd positive rational integers such that (m,n) =1,
S,.(&; m, n) =240,
Also we have proved
THEOREM 7. For p an odd rational prime and [ >0
(i) if p divides ¢ in J,,
$.(&;p,p)=240(1 +p%), or
(ii) if p does not divide § in J,,
S.(L;p, p') =240.
From Theorems 6 and 7 we deduce the following results.

THEOREM 8. For m, n odd positive rational integers such that (m,n) =1

So(&;m,n)=16.
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THEOREM 9. For p an odd rational prime and 1 >0
(i) if p divides § in J,

So(&;p,p") =16(1+p?), or
(i) if p does not divide ¢ in J,

So(&;p,p')=16.

THEOREM 10. For m, n odd positive rational integers such that (m,n) =1 and any t
A=t=7)
S, (&;m,n)=48.

THeoREM 11. For p an odd rational prime, 1 >0, and any t (1=t =T7)
(i) if p divides & in J,

S5(&p,p")=48(1+p%), or
(ii) if p does not divide  in J,
S(C;p,p)=48.

The methods used to establish Theorems 6 and 7 were first used by Rankin [10] to
establish Theorems 8 and 9 above. We have used the idea of congruence modulo 2 in J,,,
while Rankin used the fact that the eight basic units of C are linearly independent and
generate J, over the rational integers.

We have already see that J, occurs as a subset of J,, for any basic unit w of C other
than 1 and that J, (1 =¢=<7) occus as a subset of J,, for three basic unis w of C for which
w # 1. Further, the elements of J,, which belong to J, (0 =s =7) are characterized as the
elements of J,, congruent modulo 2 in J,, to an element of J, of norm 1. Thus Theorems 8
and 10 follow from Theorems 5 and 6, while from Theorems 5 and 7 we deduce Theorem
9 and 11.
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