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Abstract

We develop analogues of Green’s Np conditions for subvarieties of weighted projective
space, and we prove that such Np conditions are satisfied for high degree embeddings
of curves in weighted projective space. A key technical result links positivity with low
degree (virtual) syzygies in wide generality, including cases where normal generation
fails.

1. Introduction

One of the foundational results connecting syzygies and geometry is Green’s Theorem on linear
syzygies of smooth curves.

Theorem 1.1 [Gre84a]. Let C be a smooth curve of genus g embedded in Pn via a complete
linear series |L| and F be the minimal free resolution of the homogeneous coordinate ring of C.
If deg(L)≥ 2g+ 1+ p for some p≥ 0, then the embedding C ↪→ Pn satisfies the Np condition:
that is, it is normally generated and Fi is generated in degree i+ 1 for 1≤ i≤ p.

Let us recall the definitions of the terms in the theorem. The embedding C ↪→ Pn is defined to
be normally generated (or projectively normal) if the section ring

⊕
i≥0H

0(C, Li) is generated
in degree 1. Theorem 1.1 gives a common generalization, in the language of syzygies, of two
classical results showing that the algebraic presentation of a curve exhibits more rigid structure
as its degree grows. Specifically, the p= 0 case of Theorem 1.1 is Castelnuovo’s Theorem, which
states that C ⊆ Pr is normally generated if deg(L)≥ 2g+ 1 [Cas93]; while the p= 1 case is a
result of Fujita and Saint-Donat stating that C is cut out by quadrics whenever deg(L)≥ 2g+ 2
[Fuj77, SD72].

Theorem 1.1 helped launch the modern study of the geometry of syzygies. It led to numer-
ous generalizations involving embeddings of surfaces [AKL19, BH13, GP96, GP99, KL19,
NY22], smooth higher dimensional varieties [EGHP05, EL93, GP98, HSS06, HT13], abelian vari-
eties [Chi19, Par00, PP03, PP04], and Calabi–Yau varieties [Niu19]; see also [DE22, ENP20].
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Linear syzygies of curves in weighted projective space

Theorem 1.1 also led to Green’s Conjecture, which proposes a relationship between the Clifford
index of a non-hyperelliptic curve over C and the linearity of the free resolution of its coordinate
ring with respect to its canonical embedding [Gre84b]. This conjecture remains open in general
and is a highly active area of research; see e.g. [AFP+19, AV03, Voi02, Voi05]. For an introduc-
tion to the wide circle of ideas on syzygies of curves, see Aprodu and Nagel’s book [AN10], Ein
and Lazarsfeld’s survey [EL20], Eisenbud’s book [Eis05], and more [EL18, Far17].

The past two decades have seen a flurry of activity devoted to generalizing work on syzygies
to the nonstandard graded setting. For instance, Benson [Ben04] generalized Eisenbud–Goto’s
Theorem on Castelnuovo–Mumford regularity and linear free resolutions [EG84, Theorem 1.2(1)]
to nonstandard Z-graded polynomial rings, leading to breakthroughs in invariant theory due to
Symonds [Sym10, Sym11]. Benson’s resulting ‘weighted’ analogue of the Castelnuovo–Mumford
regularity was generalized by Maclagan and Smith to multigraded polynomial rings in [MS04],
with a view toward applications in toric geometry. This in turn led to much follow-up work
on multigraded regularity [BC17, BHS21, BHS22, CH22, CN20], as well as a wide-ranging pro-
gram on multigraded syzygies [BE21, BES20, BKLY21, BS22, BCN22, EES15, HNVT22, HS04,
HSS06, SVT06, Yan21].

The present work is the first generalization of Green’s Theorem that allows the target of
the embedding to be a variety other than projective space, connecting with the literature on
nonstandard gradings discussed above, and raising many new questions. For instance, it is far
from obvious how to even state an analogue of Theorem 1.1 for curves embedded in weighted
projective space. To define weighted Np conditions for p≥ 1, one must ask: What does it mean
for a complex of free modules over a nonstandard-Z-graded polynomial ring to be linear? To
illustrate the subtlety in this question, take a standard graded polynomial ring S and an S-
module M generated in degree 0. The minimal free resolution F of M is linear if and only if it
satisfies the following three equivalent conditions.

(1) The differentials in F are matrices of linear forms.

(2) The Betti table of F has exactly one row.

(3) The degrees of the syzygies grow no faster than those of the Koszul complex.

In the nonstandard Z-graded case, each of these yields a distinct analogue of a linear reso-
lution. Furthermore, there is no obvious ‘best’ choice, as each measures something meaningful:
(1) leads to strong linearity (Definition 4.1) and the Bernstein–Gel’fand–Gel’fand (BGG) cor-
respondence as in [BE22], (2) to weighted regularity and local cohomology as in [Ben04], and
(3) to Koszul linearity (Definition 4.12) and connections with Koszul cohomology; see § 4 for
details on these notions and how they are related. In fact, a central obstacle in our work is the
technical challenge of interpolating between these nonequivalent notions of linearity, a challenge
that simply is not present in the classical setting.

Phrasing an analogue of Theorem 1.1 also requires weighted versions of a complete linear
series and of normal generation. A weighted notion of normal generation is fairly straightforward;
see Definition 3.13. But defining a weighted version of a complete linear series turns out to be
rather subtle and, as with linearity, there are multiple potential analogues, depending on which
aspect of the classical notion one considers. The subtlety arises partly because there is a tension
between nondegeneracy and normal generation (see Examples 3.7 and 3.16), and partly because
any analogue must depend on data beyond just the line bundle. We propose a log complete series
in Definition 3.8 as an analogue of a complete linear series that requires a minimal amount of
extra data: a base locus and a degree. These lead to a rich family of examples of embeddings,
where the underlying weighted spaces are fairly simple, involving just two distinct degrees.
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For our weighted Np conditions, we use condition (3) from above.

Definition 1.2. Let S be the Z-graded polynomial ring corresponding to a weighted projective
space P(W ). Write wi for the maximal degree of an ith syzygy of the residue field. Let Z ⊆ P(W )
be a variety and F = [F0← F1← · · · ] the minimal S-free resolution of its coordinate ring. We
say Z ⊆ P(W ) satisfies the weighted Np condition if it is normally generated (Definition 3.13),
and Fi is generated in degree ≤wi+1 for all i= 1, 2, . . . , p (i.e. the complex [F0← · · ·← Fp] is
Koszul 1-linear, in the sense of Definition 4.12).

In the standard grading, we have wi+1 = i+ 1, so our definition extends Green’s; e.g. if the
variables of S = k[x1, x2, x3] have degrees 1, 2, and 5 then w1 = 5, w2 = 7, and w3 = 8.

We now turn to our main results. We establish the following standing hypotheses.

Setup 1.3. Let C be a smooth curve of genus g, L a line bundle on C, D an effective divisor on
C, and d≥ 2. Assume that deg(L⊗O(−D))≥ 2g+ 1. Let W be the log complete series of type
(D, d) for L (see Definition 3.8), S = k[x0, . . . , xn] the (nonstandard Z-graded) coordinate ring
of P(W ), and IC ⊆ S the defining ideal of the induced embedding C ⊆ P(W ).

Our first result is a weighted generalization of Castelnuovo’s theorem, i.e. the p= 0 case of
Green’s theorem; see also [GL86, Mat61, Mum70].

Theorem 1.4. Under Setup 1.3, the log complete series W is normally generated.

The key to Theorem 1.4 is using a suitable generalization of the notion of a complete linear
series (Definition 3.8), as many embeddings of curves into weighted projective spaces simply fail
to enjoy any reasonable analogue of normal generation; see Example 3.16.

The following generalization of Green’s theorem (Theorem 1.1) is our main result.

Theorem 1.5. With Setup 1.3: if deg(L⊗O(−D))≥ 2g+ 1+ q for q≥ 0 then C ⊆ P(W )
satisfies the weighted Nq+d·deg(D) condition.

The theorem shows that, even for embeddings into weighted projective spaces, geometric
positivity continues to find expression via low degree syzygies, and in a manner that grows
uniformly with deg(L). In other words, Green’s fundamental insight from Theorem 1.1 continues
to hold for embeddings into weighted projective spaces.

In fact, as the weighted setting has several distinct notions of ‘linearity’, the result even
helps bring Green’s result into sharper focus, clarifying that positivity is linked with linearity
as defined in relation to the Koszul complex, as opposed to alternate notions of linearity, which
are equivalent in the standard grading setting, but not in the weighted setting. In somewhat
rough terms, Theorem 1.5 states that, as q→∞, the Betti table of the (weighted) homogeneous
coordinate ring of C ‘looks increasingly like the Koszul complex’. The ring S is standard graded
if and only if D= 0, in which case Theorem 1.5 recovers Green’s Theorem. The reader may find
it helpful to look ahead to § 2, where we discuss several detailed examples.

As an immediate consequence of Theorem 1.5, we obtain a generalization of the aforemen-
tioned theorem of Fujita and Saint-Donat stating that a curve embedded by a complete linear
series of degree ≥2g+ 2 is cut out by quadrics. It is too much to hope that C will be cut out by
k-linear combinations of products xixj (see Example 2.1), but this intuition points towards the
correct degree bound on the relations.

Corollary 1.6. With Setup 1.3: if deg(L⊗O(−D))≥ 2g+ 2 then IC is defined by equations
of degree at most 2d=maxi �=j{deg(xixj)}.
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In other words, Corollary 1.6 implies that the degrees of the defining equations of C are
bounded by the maximal degree of a syzygy of m. A number of results in the literature have
a similar form to Corollary 1.6, showing that certain relations are generated in degree at most
twice the degree of one of the k-algebra generators, e.g. [LRZ16, LRZ18, Sym11, VZB22].

Our proof of Theorem 1.5 relies on a far more general result relating geometric positivity to
low degree syzygies of the section ring R :=

⊕
e≥0H

0(C, Le).

Theorem 1.7. Let C be a smooth curve of genus g, L a line bundle on C, and f : C→ P(W )
a closed immersion induced by a weighted series W associated to L (see § 3.1 for the definition
of a weighted series).1 Assume that deg(L)≥ 2g+ 1 and that dim S1 > g. Let F be the minimal
free resolution of the section ring R over the coordinate ring S of P(W ). The generators of each
Fi lie in degree ≤wi+1 for all i≤ dimW − g− 2.

Theorem 1.7 highlights that the connection between positivity of an embedding and low
degree syzygies is quite robust, as it applies to many situations where normal generation fails. For
instance, if we specialize to ordinary projective space, Theorem 1.7 may be applied to obtain low
degree syzygies even in cases where a curve is embedded by an incomplete linear series. In fact,
many of Green’s results allow for an incomplete linear series, and in the case of an embedding
into a standard projective space by an incomplete series, Theorem 1.7 follows from Green’s
Vanishing Theorem [Gre84a, Theorem 3.a.1]. In the weighted projective case, Theorem 1.7 can
be applied quite broadly, as it does not involve a log complete hypothesis.

There is an important distinction between Theorems 1.7 and 1.5: the degree bounds hold for
the section ring R and not for the coordinate ring S/IC , respectively. For this reason, Theorem 1.7
yields something like virtual Np conditions, where we use ‘virtual’ in the sense of the theory of
virtual resolutions introduced in [BES20], as F is a virtual resolution of the structure sheaf OC .
Theorem 1.7 shows that the connection between geometric positivity and low degree syzygies,
which was first illuminated by Green, holds in tremendous generality as long as one considers
virtual syzygies.

The main theme underlying the technical heart of this paper is the way that, when one passes
from a standard to a nonstandard grading, notions of linearity split apart and yet remain subtly
intertwined. More specifically, each of the three weighted notions of linearity of free complexes
mentioned above, and discussed in detail in § 4, come into play in the following ways.

– Koszul linearity is closely linked to geometric positivity; that is, it is the right notion for
weighted Np conditions.

– Strong linearity, specifically the multigraded linear syzygy theorem of [BE22], is essential
to our proof of our key technical result Theorem 1.7.2

– Weighted regularity plays a crucial role in our proof of Theorem 1.4.

In summary, our main results build on Green’s insight that geometric positivity is expressed
algebraically in terms of low degree syzygies, although this requires novel viewpoints on nearly
all of the objects involved. Our results provide a proof of concept for the broader idea that
the ‘geometry of syzygies’ literature has analogues in the weighted projective setting, and more

1We do not assume that W is a log complete series.
2In this way, the proofs of our main results echo the proof of Green’s Theorem 1.1 via Green’s linear syzygy
theorem, as in [Eis05, Section 8]. We expect that one could also use an analogue of the ML-bundle approach from
[GL88] to obtain similar results, although such an approach is complicated by the fact that the weighted series
W is generated in distinct degrees. See § 7.3.
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generally, for embeddings into toric varieties or beyond, bolstering the nascent homological
theories for multigraded polynomial rings. Our work also raises a host of new questions: What
might play the role of ‘scrolls’ in a weighted projective setting? Is there a weighted analogue of
Green’s Conjecture (perhaps for stacky curves)? See § 7 for an array of such questions related to
the results in this paper.

Let us now give an overview of the paper. We begin in § 2 with a host of examples illustrating
our main results. In § 3 we begin a detailed investigation of closed immersions into weighted
projective spaces; we introduce in this section our notion of a ‘log complete series’ and prove a
number of foundational results. Section 4 contains a detailed discussion of the various weighted
flavors of linear free complexes discussed above. In § 5 we prove Theorem 1.7, the central technical
result of the paper. In § 6 we prove the rest of our main results. Finally, in § 7 we outline some
follow-up questions raised by this work.

1.1 Notation

Throughout the paper, k denotes a field and the word ‘variety’ means ‘integral scheme that
is separated and a finite type over k’. Given a vector d= (d0, . . . , dn) of positive integers, we
let P(d) denote the associated weighted projective space. We always assume that d0 ≤ d1 ≤
· · · ≤ dn. We often use exponents to indicate the number of weights of a particular degree; for
instance, we write P(13, 22) for P(1, 1, 1, 2, 2). Given a weighted projective space P(d), we always
denote its coordinate ring by S. That is, S is the Z-graded ring k[x0, . . . , xn] with deg(xi) = di.
Alternatively, given a weighted vector space W , we write P(W ) for the corresponding weighted
projective space with coordinate ring S =Sym(W ). We write m for the homogeneous maximal
ideal of S.

2. Examples

Before diving into the heart of the paper, we illustrate our main results with some examples.
In particular, this section is intended to answer the question: What does a Betti table that
satisfies the weighted Np condition look like? All computations in Macaulay2 [GS] of Betti
tables throughout this section were performed in characteristic 0.

Theorem 1.5 reduces to Green’s Theorem (Theorem 1.1) when deg(D) = 0. The simplest new
cases are therefore when deg(D) = 1 and d= 2, and so we begin with such examples.

Example 2.1. Let C = P1,D= [0 : 1] and d= 2. If L=OP1(2) then the corresponding log complete
series W (see Definition 3.8) is 〈s2, st, st3, t4〉. This induces a closed immersion

P1→ P(12, 22) given by [s : t] �→ [s2 : st : st3 : t4].

The defining ideal IC for the curve is generated by the 2× 2 minors of(
x0 x

2
1 x2

x1 x2 x3

)
,

where deg(x0) = deg(x1) = 1 and deg(x2) = deg(x3) = 2. Corollary 1.6 implies that I is generated
in degree at most 4, and we can see that this holds and is sharp. A direct computation confirms
that C ⊆ P(W ) is normally generated (see Definition 3.13) and that S/IC is a Cohen–Macaulay
ring, as predicted by Theorem 1.4. Theorem 1.5 implies that this embedding satisfies the N2

condition, and we can check this by observing the free resolution

F =
[
S← S(−3)2 ⊕ S(−4)← S(−5)2← 0

]
920
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of S/IC . Indeed, F1 is generated in degrees ≤4 =w2 and F2 is generated in degrees ≤5 =w3 and
these bounds are sharp.

Example 2.2. Let us continue with the setup of the previous example, but now take L=OP1(8).
The corresponding log complete series W is spanned by s8, s7t, . . . , st7, st15 and t16. This
weighted series induces a map P1→ P(W ) = P(18, 22). In this case, the defining ideal IC is given
by the 2× 2 minors of the matrix(

x0 x1 x2 x3 x4 x5 x6 x
2
7 x8

x1 x2 x3 x4 x5 x6 x7 x8 x9

)
.

This ideal is generated in degree at most 4, as predicted by Corollary 1.6. Once again, one can
directly check that the embedding is normally generated and that S/IC is a Cohen–Macaulay
ring. Theorem 1.5 implies that this embedding satisfies the N8 condition, and one verifies this
by inspecting the Betti table3 of S/IC .

0 1 2 3 4 5 6 7 8
0 : 1 . . . . . . . .
1 : . 21 70 105 84 35 6 . .
2 : . 14 84 210 280 210 84 14 .
3 : . 1 14 63 140 175 126 49 8

Indeed, Fi is generated in degree ≤ 3 + i=wi+1 for 1≤ i≤ 8; once again, the bounds imposed
by the weighted Np conditions are sharp.

Example 2.3. Let C be the genus 2 curve defined by the equation z22 − z61 − 5z30z
3
1 − z60 in

P(1, 1, 3). Suppose that d= 2 and D is the single point [1 : 0 : 1]. Let L be a line bundle of
degree 10 on C. We have

deg(L⊗O(−D)) = 9= 2g+ 1+ q, with q= 4.

It follows from the Riemann–Roch Theorem that P(W ) = P(18, 22), and so the associated log
complete series induces an embedding C ⊆ P(18, 22). Theorem 1.4 shows that C ⊆ P(18, 22) is
normally generated and that its coordinate ring is a Cohen–Macaulay ring, which does not seem
obvious (at least to these authors). By Theorem 1.5, this embedding satisfies the Nq+d·degD =N6

condition. A computation in Macaulay2 yields the following Betti table for S/IC .

0 1 2 3 4 5 6 7 8
0 : 1 . . . . . . . .
1 : . 19 58 75 44 5 . . .
2 : . 14 80 186 220 136 26 2 .
3 : . 1 14 61 128 145 98 23 2
4 : . . . . . . . 6 2

Since w8 = 10, we see that the 7th syzygies require a generator of degree >w8, and thus C
satisfies the weighted N6 condition, but not the N7 condition.4

The examples so far have been in the case where d= 2 and degD= 1. We now consider the
shape of the Betti table in a slightly different setting.

3We follow standard Macaulay2 formatting of Betti tables, where the entry in the ith column and the jth row
corresponds to dimTori(S/I, k)i+j , and a dot indicates an entry of 0.
4Those familiar with the Green–Lazarsfeld Gonality Conjecture [GL88, EL15] might wonder if one can ‘see’ the
gonality of C in this Betti table. The answer is ‘yes’, but for a trivial reason; see § 7.
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Example 2.4. Let us consider the case of a genus g curve C, where d= 2 but now degD= 2.
Assume that deg(L⊗O(−D)) = 2g+ 1+ q for some q≥ 0. By the Riemann–Roch Theorem,
we have dimW1 = g+ q+ 2 and dimW2 = 4, and so C ⊆ P(1g+q+2, 24). Theorem 1.5 implies
that the minimal free resolution of S/IC satisfies the Nq+4 condition. Since there are now four
variables of degree > 1, the shape of the Betti table is more complicated. Specifically, we have
w2 = 4, w3 = 6, w4 = 8, and wi+1 =wi + 1 for i≥ 4. This implies that the Betti table of the curve
has the following shape, where a symbol ∗ indicates a potentially nonzero entry.

0 1 2 3 4 5 . . . q+ 4 q+ 5 . . . q+ g+ 4
0 : ∗ . . . . . . . . . . . . . .
1 : . ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ . . . ∗
2 : . ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ . . . ∗
3 : . ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ . . . ∗
4 : . . ∗ ∗ ∗ ∗ . . . ∗ ∗ . . . ∗
5 : . . . ∗ ∗ ∗ . . . ∗ ∗ . . . ∗
6 : . . . . . . . . . . ∗ . . . ∗

By combining Remark 4.8 and Corollary 6.6, we see that the kth row of the Betti table
vanishes for k > 6. The key moment for the weighted Nq+4 condition is in column q+ 5, where
Theorem 1.5 no longer guarantees that Fq+5 is generated in degree ≤wq+6 = q+ 10.

Remark 2.5. For C = P1, the following minor variants of Example 2.1 both lead to non-
Cohen–Macaulay examples:W = 〈s2, st, st3, t4, t6〉 andW ′ = 〈s2, st, st5, t6〉. This underscores the
challenge in finding an appropriate weighted analogue of a complete linear series.

3. Closed immersions into weighted projective spaces

We now begin to lay the technical foundation for this paper, starting with a study of closed
immersions into a weighted projective space.

3.1 Weighted series

Let Z be a variety and L a line bundle on Z. A weighted series is a finite-dimensional, Z-
graded k-subspace W ⊆⊕

i∈ZH
0(Z, Li). Choosing a basis s0, . . . , sn of W , where si ∈Wdi

⊆
H0(Z, Ldi), induces a rational map ϕW : Z ��� P(d) in exactly the same way as in the case of
an ordinary projective space. When the intersection of the zero loci of the si is empty, ϕW is a
well-defined morphism. Let S = k[x0, . . . , xn] be the Z-graded coordinate ring of P(d). We will
only be interested in the case where ϕW is a closed immersion; we describe sufficient conditions
for this in Proposition 3.2 below. In this case, let IZ ⊆ S denote the homogeneous prime ideal
corresponding to the embedding of Z in P(d). The homogeneous coordinate ring of ϕW is the
Z-graded ring S/IZ .

Remark 3.1. Before embarking on the results in this section, we highlight some key differences
between the behavior of sheaves on weighted and ordinary projective spaces.

(1) We have Pic(P(d)) = {OP(d)(�m)}�∈Z, where m= lcm(d0, . . . , dn) [BR86, Theorem 7.1(c)];
in particular, not every sheaf OP(d)(i) is a line bundle.

(2) It can happen that OP(d)(i)⊗OP(d)(j)�OP(d)(i+ j); see e.g. [BR86, pp. 134]. However,
it follows from [BR86, Corollary 4A.5(b)] that OP(d)(im)⊗OP(d)(j)∼=OP(d)(im+ j) for all
i, j ∈Z.
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(3) Given a graded S-module M , it is not always the case that M̃(j) := M̃ ⊗OP(d)(j) coincides

with M̃(j). Indeed, taking M = S(i), this follows from (2).

(4) Not every morphism Z→ P(d) arises as ϕW for some weighted series W . For instance, take
d= (1, 1, 2). By (1), every line bundle on P(d) is of the form OP(d)(2�) for some �∈Z. In
particular, OP(d)(1) is not a line bundle, and so there is no line bundle that can induce the

map P(d)
id−→ P(d).

Proposition 3.2. Let W be a weighted series with basis si ∈H0(Z, Ldi) for 0≤ i≤ n. Assume
that there exists � > 0 such that the map S�→H0(Z, L�) induced by ϕW :Z→ P(d) is surjective
and that L� is very ample. The morphism ϕW is a closed immersion.

Proof. Let f0, . . . , fr be a basis of H0(Z, L�). For 0≤ i≤ r, choose Fi ∈ S� such that
Fi(s0, . . . , sn) = fi. The linear series determined by the Fi induces a rational map ψ : P(d) ��� Pr.
Write U for the domain of definition of ψ. The image of ϕW lands in U since the restriction of
the Fi to Z is f0, . . . , fr, which is base-point free. By construction, the composition ψ ◦ϕW is
the morphism induced by |L�|. Since L� is very ample, the map ψ ◦ϕW is a closed immersion,
and so ϕW is a closed immersion into U [Sta12, 0AGC]; since Z is proper, it follows that ϕW is
a closed immersion as well. �

Remark 3.3. The pathologies described in Remark 3.1 all disappear when one works over the
associated weighted projective stack; see [GS15, Section 7] or [Per08, Theorem 2.6]. However,
the stack introduces its own complexities. For instance, the proof of Proposition 3.2 fails: letting
Pstack(W ) denote the associated stack and defining τW : Z→ Pstack(W ) in the same way as ϕW ,

the composition Z
τW−−→ Pstack(W ) ��� Pr being a closed immersion does not imply that τW is a

closed immersion. For a simple counter example, one can let Z be a point and τW be any map
to a stacky point.

Example 3.4. Let Z = P1 and L=OP1(2). The weighted series W spanned by s2, st∈H0(Z, L)
and st3, t4 ∈H0(Z, L2) induces a map ϕW : P1→ P(1, 1, 2, 2) given by [s : t] �→ [s2 : st : st3 : t4]
(this is the map in Example 2.1). Applying Proposition 3.2 with �= 2 implies that ϕW is a
closed immersion. Indeed, we have a commutative diagram

P1
|O(4)|

ϕW

P4

P(1, 1, 2, 2)

where the vertical arrow is given by [x0 : x1 : x2 : x3] �→ [x20 : x0x1 : x
2
1 : x2 : x3].

Proposition 3.5. Let W be a weighted series with basis si ∈H0(Z, Ldi) for 0≤ i≤ n and
f : S→⊕

i≥0H
0(Z, Li) the ring homomorphism given by xi �→ si. If ϕW is a closed immersion

then IZ = ker(f).

Proof. The ideal IZ is the unique homogeneous prime ideal P ⊆ S such that Z = V (P ), where
V (−) is the assignment that sends any homogeneous ideal in S to its associated subvariety in
P(d) (see e.g. [CLS11, Section 5.2]). Since

⊕
i≥0H

0(Z, Li) is a domain, ker(f) is prime, and
clearly V (ker(f)) =Z. �

Definition 3.6. A closed immersion Z ⊆ P(d) is nondegenerate (respectively degenerate) if the
defining ideal IZ is (respectively is not) contained in m2.
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Let Z ⊆ P(d) be a closed immersion with defining ideal IZ ⊆ S. Since any basis of m/m2

can be lifted to give algebra generators for S, the immersion Z ⊆ P(d) is degenerate if and
only if IZ contains an element in some minimal generating set for m. For instance, by exam-
ining their defining ideals, one can see that the curves in Examples 2.1 and 2.2 are both
nondegenerate.

Example 3.7. Suppose that Z = P1, L=O(1), and W =H0(P1,O(1))⊕H0(P1,O(2)). This is
a fairly naive way to generalize a complete linear series, as we have simply taken all sections
of degrees 1 and 2. The map ϕW : P1→ P(12, 23) given by [s : t] �→ [s : t : s2 : st : t2] is a closed
immersion, by Proposition 3.2. In this case, Z ⊆ P(12, 23) is degenerate since IZ contains z2 − z20 ,
z3 − z0z1, and z4 − z21 .

3.2 Log complete series

We now ask: What is a weighted projective analogue of a complete linear series? Before we state
our proposed definition, we fix the following notation: given a divisor L and an effective divisor
D on a variety Z, we write H0(Z, L)D for the subspace of sections that vanish along D.

Definition 3.8. Let Z be a smooth projective variety, L a line bundle on Z, D an effective
divisor on Z, and d≥ 2. A weighted series W is a log complete series of type (D, d) if W1 =
H0(Z, L)D, H

0(Z, Ld) =Wd ⊕ im(Symd(W1)→H0(Z, Ld)), and Wi = 0 for i �= 1, d.

Example 3.9. Let us revisit Example 2.1, where C = P1, D= [0 : 1], and d= 2. In this case,
W1 = 〈s2 : st〉 are the sections of L vanishing at D; and W2 = 〈st3 : t4〉.
Remark 3.10. While a log complete series provides a strong analogue of a complete linear series
in the weighted setting, we do not claim that this is a comprehensive analogue. In fact, one
could easily imagine minor variants of our setup that would be generated in 3 or more distinct
degrees. As with analogues of linear resolutions, we expect that there are distinct analogues of
a complete linear series that lead in different directions. We restrict attention to log complete
series because they strike a good balance. On one hand, they are sufficiently rich to allow for a
wide range of new applications and for our overarching goal of investigating the extent to which
Green’s results hold in nonstandard graded settings. On the other hand, they yield embeddings
into fairly simple weighted projective spaces of the form P(1a, db), thus avoiding some of the
pathologies of arbitrary weighted spaces.

When D= 0, Definition 3.8 recovers the usual notion of a complete linear series. A log
complete series W of type (D, d) is unique up to isomorphism of graded vector spaces; we will
therefore refer to the log complete series of type (D, d). Observe that, when Ld is base-point free,
the intersection of the zero loci of the sections in W is empty, so that W induces a well-defined
morphism ϕW : Z→ P(d).

Lemma 3.11. Let Z be a curve, L a line bundle on Z, and D an effective divisor on Z. There
is an isomorphism H0(Z, La)bD ∼=H0(Z, La ⊗O(−bD)) for all a, b∈Z.
Proof. Since ObD is the structure sheaf of a zero-dimensional scheme, L⊗ObD

∼=L. Twisting the
short exact sequence 0→O(−bD)→O→ObD→ 0 by L, we therefore arrive at the short exact
sequence 0→La ⊗O(−bD)→La→ObD→ 0. The long exact sequence in cohomology yields
H0(Z, La)bD := ker(H0(Z, La)→H0(Z,ObD))∼=H0(Z, La ⊗O(−bD)). �

Proposition 3.12. Let Z, L, D, and d be as in Definition 3.8 and W the log complete series
of type (D, d). Assume that Ld is very ample. The following assertions hold.
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(1) The canonical map Sd→H0(Z, Ld) is surjective.

(2) The induced map ϕW :Z→ P(d) is a nondegenerate closed immersion.

(3) The log complete series W is maximal in the following sense: any weighted series concen-
trated in degrees 1 and d that properly contains W is degenerate.

Proof. Part (1) follows from the definition of a log complete series. We may apply
Proposition 3.2, with �= d, to conclude that ϕW is a closed immersion. Nondegeneracy holds
since the image of the map W⊗d

1 →H0(Z, Ld) intersects Wd trivially. This proves (2). If we were
to add a section of Symd(W1) toWd then it would be in the image of the mapW⊗d

1 →H0(Z, Ld),
forcing degeneracy. Similarly, if we were to add a section s of H0(Z, L) to W1, the image of
W⊗d

1 →H0(Z, Ld) would intersect Wd nontrivially; this gives (3). �

For explicit examples of log complete series, see Examples 2.1 and 2.2 above.

3.3 A weighted analogue of normal generation

Classically, a closed immersion of a variety Z in Pn is projectively normal if the coordinate ring
S/IZ of the immersion is integrally closed [Har77, Example I.3.18]. If Z is normal, and the closed
immersion is induced by the line bundle L, then the integral closure of S/IZ is the section ring⊕

i∈ZH
0(Z, Li), and so the immersion is projectively normal if and only if the canonical map

S→⊕
i∈ZH

0(Z, Li) is surjective. In this case, the line bundle L is said to be normally generated
[Mum70]. Since we have a short exact sequence

0→ S/IZ ↪→
⊕
i∈Z

H0(Z, Li)→H1
m(S/IZ)→ 0

of graded S modules, one concludes that L is normally generated if and only if H1
m(S/IZ) = 0.

With this in mind, we make the following definition.

Definition 3.13. Let Z be a variety and Z ⊆ P(d) a closed immersion defined by a weighted
series W . We say W is normally generated if H1

m(S/IZ) = 0.

Remark 3.14. Let Z ⊆ P(d) be a closed immersion induced by a weighted seriesW . The following
hold.

(1) The weighted series W is normally generated if and only if the depth of the S-module S/IZ
is at least 2. In particular, if Z is a smooth curve then W is normally generated if and only
if S/IZ is a Cohen–Macaulay ring.

(2) Let T = S/IZ . Since IZ is prime, H0
m(T ) = 0, and so, by [Eis95, Theorem A4.1], we have a

short exact sequence of graded S modules

0→ T ↪→
⊕
i∈Z

H0(Z, T̃ (i))→H1
m(T )→ 0.

Thus,W is normally generated if and only if the canonical map Si→H0(Z, T̃ (i)) is surjective
for all i, echoing the classical definition. �

Remark 3.15. Unlike the classical case, normal generation of W is not equivalent to S/IZ being
integrally closed, even when Z is normal. For instance, it follows from Theorem 1.4 that the
weighted series from Example 2.1 is normally generated. However, using the notation of that
example, the ring S/IC = k[s2, st, st3, t4]⊆ k[s, t] is not integrally closed. Indeed, t2 = st3/st is in
the field of fractions of S/IC but not in S/IC , and it is a root of the polynomial z2 − t4 ∈ (S/IC)[z].
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Example 3.16. As mentioned in the introduction, many weighted series fail to be normally gen-
erated. For instance, take a weighted series W such that W1 is a base-point free, incomplete
linear series that yields an embedding Z→ P(W1). We have H1

m(S/IZ)1 �= 0, and thus, W fails
to be normally generated. We thus see that, for a very positive linear series to have any hope of
normal generation, adding a base locus toW1 is necessary; this observation was a key motivation
for our definition of a log complete series.

4. Linearity of free resolutions in the weighted setting

There are multiple ways to extend the definition of a linear free resolution to the weighted
setting, each with its advantages and disadvantages. We consider three such notions.

(1) Perhaps the most obvious definition of linearity in the weighted setting is strong linearity ,
which requires all differentials in the resolution to be expressible as k-linear combinations
of the variables; see Definition 4.1 below. This notion was defined and studied in our pre-
vious paper [BE22], and it is closely related to the multigraded generalization of the BGG
correspondence [HHW12].

(2) We often find that strong linearity is too restrictive for our purposes. There is a weaker, and
more well-known, notion of linearity based on a weighted analogue of the Castelnuovo–
Mumford regularity and arising from invariant theory [Ben04, Sym11], which we call
weighted regularity . It is determined by the number of rows in the Betti table of the
resolution; see Definition 4.7 for details.

(3) Weighted regularity, however, is too weak of a condition for us; we therefore introduce in
this paper an intermediate notion between (1) and (2) called Koszul linearity (Definition
4.12). Roughly speaking, a free resolution is Koszul linear if its Betti numbers grow no faster
than those of the Koszul complex. Our definition of weighted Np conditions (Definition 1.2)
is based on Koszul linearity.

Each of (1)–(3) will be used in the proofs of our main results. In the standard graded case, each
notion gives an alternative but equivalent way to view linear resolutions; Example 4.16 below
illustrates how these notions diverge in the general weighted case. To briefly explain, while
weighted regularity only depends on the number of rows in the Betti table of the resolution,
Koszul linearity involves more granular information about the Betti numbers. Moreover, strong
linearity cannot be detected from the Betti numbers of the resolution at all, as one can see from
Example 4.2 below. See also [BE23], which explores the relationship between these notions in
greater detail.

4.1 Strong linearity

Our most restrictive notion of linearity for nonstandard graded free resolutions is the following.

Definition 4.1 [BE22, Definition 1.1]. A complex F of graded free S modules is strongly linear
if there exists a choice of basis of F with respect to which its differentials may be represented
by matrices whose entries are k-linear combinations of the variables.

In the nonstandard graded setting, strong linearity of a free complex F cannot be detected
by the degrees of its generators, as the following simple example illustrates.

Example 4.2. Suppose that S = k[x0, x1], where the variables have degrees 1 and 2. Consider the

complexes S
x2
0←− S(−2) and S x1←− S(−2); only the second complex is strongly linear.
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The main goal of our previous paper [BE22] was to establish a theory of linear strands of
free resolutions in the nonstandard graded context, culminating in a generalization of Green’s
linear syzygy theorem [Gre99]: that circle of ideas will play a key role in this paper. Before we
recall the details, we briefly discuss some background on (a weighted analogue of) the BGG
correspondence. We refer the reader to [BE21, Section 2.2] for a detailed introduction to the
multigraded BGG correspondence, following the work of [HHW12].

4.1.1 The weighted BGG correspondence. Let E =
∧

k(e0, . . . , en) be an exterior algebra,
equipped with the Z2 grading given by deg(ei) = (− deg(xi);−1). Denote by Com(S) the category
of complexes of graded S modules and DM(E) the category of differential E modules, i.e. Z2-
graded E-modules D equipped with a degree (0;−1) endomorphism that squares to 0. The
weighted BGG correspondence is an adjunction

L : DM(E)�Com(S) :R

that induces an equivalence on derived categories. We will only be concerned in this paper with
the functor L applied to E modules: if N is a Z2-graded E module, the complex L(N) has terms
and differential given by

L(N)j =
⊕
a∈Z

S(−a)⊗k N(a;j) and s⊗ n �→
n∑

i=0

xis⊗ ein.

The complex L(N) is strongly linear, and in fact, every strongly linear complex of Z-graded S
modules is of the form L(N) for some E-module N [BE22].

4.1.2 Strongly linear strands.

Definition 4.3 [BE22]. Let M be a graded S module such that there exists a∈Z with Ma �= 0
andM<a = 0. We set E∗ =Homk(E, k), considered as an E module via contraction. The strongly
linear strand of the minimal free resolution of M is L(K), where L is the BGG functor defined
above, and

K = ker

(
Ma ⊗k E

∗(−a; 0)
∑n

i=0 xi⊗ei−−−−−−−→
n⊕

i=0

Ma+di
⊗k E

∗(−a− di;−1)
)
.

In the standard graded case, Definition 4.3 recovers the classical notion of the linear strand
of a free resolution [Eis05, Corollary 7.11]. When M is generated in a single degree, the strongly
linear strand of the minimal free resolution F of M may be alternatively defined as follows. it
is the unique maximal strongly linear subcomplex F ′ of F such that F ′ is a summand (as an S
module, but not necessarily as a complex) of F [BE22].

A main result of [BE22] is a multigraded generalization of Green’s Linear Syzygy Theorem
[Gre99]. We recall the statement of this theorem in the nonstandard Z-graded case.

Theorem 4.4 [BE22, Theorem 6.2]. LetM be a finitely generated Z-graded S module and F its
minimal free resolution. Suppose that M0 �= 0, and Mi = 0 for i < 0. The length of the strongly
linear strand of F is at most max{dimM0 − 1, dimR0(M)}, where R0(M) is the variety of rank
one linear syzygies of M , i.e.

R0(M) = {w⊗m∈W ⊗kM0 : wm= 0 in M}.
The following geometric consequence of Theorem 4.4 plays a crucial role in all of our main

results. It extends to weighted projective spaces a result originally proven by Green [Gre84a]
over projective space; see also [Eis05, Corollary 7.4].
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Theorem 4.5. Let Z be a variety, L a line bundle on Z, and W a weighted series associated
to L such that the associated map ϕW :Z→ P(d) is a nondegenerate closed embedding. Let V
be a vector bundle on Z and M the S-module

⊕
i∈ZH

0(Z, V ⊗Li). Assume that M0 �= 0, and
Mi = 0 for i < 0. The strongly linear strand of the minimal S-free resolution of M has length at
most dimM0 − 1.

While Theorem 4.5 follows directly from ideas in our previous paper [BE22] (cf. [BE22,
Corollary 1.5]), we include a detailed proof here.

Proof. This follows from essentially the same argument as in [Eis05, Corollary 7.4] (see also
the proof of [BE22, Corollary 1.5]). Let m∈M0 and w ∈W ; recall that W ⊆ S is the k-vector
subspace of S generated by the variables. Note that m⊗w ∈R0(M) if and only if m⊗wi ∈
R0(M) for all homogeneous components wi of w. Assume that m⊗w ∈R0(M) and that w is
homogeneous; by Theorem 4.4, it suffices to show that this syzygy is trivial, i.e. either m= 0 or
w= 0. Suppose that m �= 0, and let Q be a maximal ideal of S such that the image mQ of m in
the localization MQ is nonzero. Let IZ be the defining ideal of Z in P(W ); since Z is integral,
IZ is prime. Let wQ denote the image of w in (S/IZ)Q. Note that MQ is a free RQ-module,
where R is the ring

⊕
i∈ZH

0(Z, Li). Since R is a domain, and the natural map S/IZ→R is
injective by Proposition 3.5, the relation wQmQ = 0 forces wQ = 0, which implies that w ∈ P .
By the nondegeneracy of the embedding, P does not contain a homogeneous linear form; we
conclude that w= 0. �

We need one additional result concerning strongly linear strands.

Lemma 4.6. Let 0→M ′→M →M ′′→ 0 be a short exact sequence of S modules. Assume that
M ′

a and Ma are nonzero, and M ′
i =Mi = 0 for i < a. Moreover, assume that M ′′

a = 0. There is a
natural isomorphism between the strongly linear strands of M ′ and M .

Proof. We assume, without loss, that a= 0. Let L be the Z2-graded E-module
⊕n

i=0Mdi
⊗k

E∗(−di;−1), and define L′ and L′′ similarly. We have a commutative diagram

0 M ′
0 ⊗k E∗ ∼=

M0 ⊗k E∗ 0 0

0 L′ L L′′ 0

of Z2-graded E modules, where the rows are exact, and the vertical maps are given by multi-
plication on the left by

∑n
i=0 xi ⊗ ei. Let K (respectively K ′) denote the kernel of the middle

(respectively left-most) vertical map. By the Snake lemma, the natural map K ′→K is an
isomorphism, and hence, the natural map L(K ′)→L(K) is as well. �

4.2 Weighted regularity

Benson introduced in [Ben04] an analogue of the Castelnuovo–Mumford regularity for nonstan-
dard Z-graded polynomial rings, which we call ‘weighted regularity’ to emphasize its connection
with weighted projective space.5

Definition 4.7. Let M be a finitely generated graded S module. For each i≥ 0, set

ai(M) = sup{j ∈Z : H i
m(M)j �= 0}.

5This is also a special case of the notion of multigraded regularity defined by Maclagan and Smith [MS04].
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The weighted regularity of M is sup{i≥ 0 : ai(M) + i}.
Remark 4.8. By a result of Symonds [Sym11, Proposition 1.2], if M has weighted regularity
r, and F is the minimal free resolution of M , then Fj is generated in degree at most r+ j +∑n

i=0(deg(xi)− 1). Equivalently, the kth row of the Betti table of any such module vanishes for
k > r+

∑n
i=0(deg(xi)− 1).

Example 4.9. Let us revisit the two resolutions from Example 4.2. Recall that S = k[x0, x1],
where the variables have degrees 1 and 2. Both S/(x20) and S/(x1) have weighted regularity 0,
and their Betti tables are both as follows.

0 1
0 1 .
1 . 1

In particular, while S/(x20) has weighted regularity 0, its minimal free resolution is not strongly
linear. By contrast, any module that is generated in degree 0 and has a strongly linear free
resolution is weighted 0-regular (see Remark 4.13(1) and Proposition 4.14 below).

Example 4.10. In Corollary 6.6, we prove that, under Setup 1.3, the weighted regularity of S/IC
is 2 if g > 0 and 1 if g= 0. For instance, consider the genus 2 curve from Example 2.3 embedded
in P(18, 22). Its coordinate ring has weighted regularity 2, and so, by Remark 4.8, the Betti table
has 2 +

∑9
i=0(deg(xi)− 1) = 2= 2+ 2= 4 rows.

4.3 Koszul linearity

We fix the following.

Notation 4.11. Let wi (respectively wi) be the sum of the i largest (respectively smallest) degrees
of the variables: that is, wi :=

∑n
j=n−i+1 dj and wi :=

∑i−1
j=0 dj . �

If K =K0←K1← · · · is the Koszul complex on x0, . . . , xn then wi is the smallest degree of
a generator of Ki, and w

i is the largest such degree.

Definition 4.12. A minimal free complex [F0
ϕ1← F1

ϕ2← F2 · · · ] of graded S modules is Koszul
a-linear if each Fi is generated in degrees <wi+1 + a; by minimal we mean ϕi(Fi)⊆mFi−1. We
sometimes abbreviate Koszul 0-linear to simply ‘Koszul linear’.

Remark 4.13. We observe the following.

(1) If M is as in Definition 4.12, and the free resolution of F is Koszul a-linear, then it follows
from Remark 4.8 that M is weighted a-regular. The converse is false; see Example 4.16.

(2) The weighted Np condition from Definition 1.2 is equivalent to normal generation of the
weighted series and Koszul 1-linearity of the complex [F0← · · ·← Fp]. �

Of course, the Koszul complex on x0, . . . , xn is Koszul 0-linear. More generally, we have the
following proposition.

Proposition 4.14. Let M be a graded S module that is generated in a single degree a. If the
minimal free resolution F of M is strongly linear then it is Koszul a-linear.

Proof. Since F is strongly linear andM is generated in a single degree, F is equal to its strongly
linear strand L(K), where K is as in Definition 4.3. It therefore follows from the definition of
K that F is a summand (as an S module, but not as a complex) of a direct sum of copies
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of L(E∗(−a; 0)). Finally, observe that L(E∗(−a; 0)) is the Koszul complex with the 0th term
generated in degree a; the result immediately follows. �

Example 4.15. The converse of Proposition 4.14 is false. Returning Example 4.2, the complex

S
x2
0←− S(−2) is Koszul 0-linear but not strongly linear.

Example 4.16. Let C = P1, L=OC(5), and D the divisor [0 : 1] + [1 : 0]. The associated log
complete seres induces an embedding P1 ⊆ P(14, 24) given by

[s : t] �→ [s4t : s3t2 : s2t3 : st4 : s9t : s10 : st9 : t10].

The Betti table is as follows.

0 1 2 3 4 5 6
total: 1 21 70 105 84 35 6
0 : 1 . . . . . .
1 : . 3 2 . . . .
2 : . 12 24 12 . . .
3 : . 6 36 54 24 . .
4 : . . 8 36 48 20 .
5 : . . . 3 12 15 6

From this Betti table, one can check that this resolution is Koszul 1-linear. For instance, F1 has
generators of degree < 5 =w2 + 1, F2 has generators of degree < 7 =w3 + 1, and so on.

The defining ideal IC is given by the 2× 2 minors of the matrix
(

x0 x1 x2 x4 x5 x2
3 x6

x1 x2 x3 x2
0 x4 x6 x7

)
. It

follows that the minimal free resolution of S/IC is the Eagon–Northcott complex of this matrix.
Since this matrix includes the entries x23 and x20, this minimal free resolution is not strongly
linear. Thus, even in the case of a rational curve, strong linearity is too restrictive to capture
the linearity of the free resolution of the coordinate ring.

Finally, let us analyze the example from the perspective of weighted regularity. By Remark
4.13(1), S/IC is 1-regular; by Remark 4.8, this states precisely that the kth row of the Betti
table vanishes for k > 5. Thus, for instance, the weighted regularity computation would imply
that F1 is generated in degree at most 6. We therefore see that weighted regularity is too weak
to fully describe the situation.

5. Proof of Theorem 1.7

We begin by establishing several technical results. The first is a simple calculation.

Lemma 5.1. Let S be as in Theorem 1.7 and M be a finitely generated S module. Assume that
M0 �= 0 but Mi = 0 for i < 0. The following assertions hold.

(1) If the Betti number βi,j(M) is nonzero then j ≥wi (see Notation 4.11).

(2) Suppose that there is a variable x� ∈ S that is a nonzero divisor on M . Define

w′
i =

{
wi, i < �,

wi+1 − deg(x�), i≥ �.
If βi,j(M) �= 0 then j ≥w′

i.

Proof. If K is the Koszul complex on the variables x0, . . . , xn then the minimal degree of an
element of Tori(M, k) =Hi(M ⊗S K) is wi. This proves (1). For (2), let F denote the minimal
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S-free resolution of M . Since x� is a nonzero divisor on M , F/x�F is the minimal S/(x�)-free
resolution of M/x�M . Now apply (1) to the S/(x�)-module M/x�M . �

The following lemma is an analogue of a well-known result in the standard graded case and
is proven in the same way as its classical counterpart.

Lemma 5.2. Let C, L, R, S, W , and f : C→ P(W ) be as in Theorem 1.7. The following hold.

(1) The graded S-module R has depth 2. In particular, R is a Cohen–Macaulay S module and
a maximal Cohen–Macaulay S/IC module.

(2) Let ωR =
⊕

i∈ZH
0(C, ωC ⊗Li), and denote by |d| the sum of the degrees of the variables

in S. We have Extn−1
S (R, S(−|d|))∼= ωR.

Proof. We observe that the canonical map R→⊕
i∈ZH

0(P(W ), R̃(i)) is an isomorphism, i.e.
R is m saturated. By [Eis95, Theorem A4.1], we have an exact sequence

0→H0
m(R)→R

∼=−→
⊕
i∈Z

H0(P(W ), R̃(i))→H1
m(R)→ 0,

and isomorphisms

Hj+1
m (R)∼=

⊕
i∈Z

Hj(P(W ), R̃(i)) =
⊕
i∈Z

Hj(C, Li), (5.3)

for j > 0. In particular, we have H i
m(R) = 0 for i= 0, 1; that is, R has depth 2. Part (1) now

follows from the observation that dim S/IC = 2. As for (2), given a Z-graded k-vector space V ,
let V ∗ denote its graded dual. We have Extn−1

S (R, S(−|d|))∼=H2
m(R)

∗ ∼=⊕
i∈ZH

1(C, Li)∗ ∼= ωR,
where the first isomorphism follows from local duality, the second from (5.3), and the third from
Serre duality. �

Next, we need the following strengthening of Theorem 4.5.

Lemma 5.4. Suppose we are in the setting of Theorem 4.5, and assume that dimW1 > dimM0.
Let F be the minimal S-free resolution of M . Any summand of Fi generated in degree j for some
j <wi+1 (see Notation 4.11) lies in the strongly linear strand of F . In particular, if βi,j(M) �= 0
for some j <wi+1 then i≤ dimM0 − 1.

In the standard graded case, the first statement in Lemma 5.3 is tautological: it says that,
if a summand of Fi is generated in degree i then it is in the linear strand. However, in the
weighted setting, the strongly linear strand cannot be interpreted in terms of Betti numbers
(see, for instance, Example 4.2), and so Lemma 5.3 is not at all obvious in general; indeed, our
proof is a bit delicate.

Proof of Lemma 5.4. The second statement follows immediately from the first, by Theorem 4.5.
Let K be the Koszul complex on the variables of S. We consider classes in TorS∗ (k,M)
as homology classes in K ⊗S M ∼=

∧
W ⊗k M , and we fix once and for all an embedding

TorS∗ (k,M) ↪→Z(
∧
W ⊗k M) of Z2-graded k-vector spaces, where the target denotes the cycles

in
∧
W ⊗k M . In this proof, we identify classes in TorS∗ (k,M) with cycles in

∧
W ⊗k M via this

embedding. We may decompose any element σ ∈∧W ⊗k M as
∑

i≥0 σi, where σi ∈
∧
W ⊗k Mi.

Let W>1 =
⊕

i>1Wi, so that
∧
W =

∧
W1 ⊗k

∧
W>1. We may write any σ ∈∧W ⊗k M as∑

α⊗ β ⊗mα,β , where the sum ranges over all pairs (α, β) such that α is an exterior prod-
uct of basis elements of W1, and β is an exterior product of basis elements of W>1; here, each
mα,β is an element ofM . We call each nonzero α⊗ β ⊗mα,β in this sum a term of σ. It is possible
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that α (respectively β) is an empty product of basis elements, in which case α (respectively β)
is 1∈∧0W1 (respectively 1∈∧0W>1). Given a nonzero element σ ∈∧W ⊗k M , we define

ν(σ) =max

{
m : a term of σ lies in

dimW1−m∧
W1 ⊗k

∧
W>1 ⊗k M

}
.

The function ν measures the maximal number of degree 1 elements that do not appear in one of
the exterior forms α. For instance, if ν(σ) = 0 then, for every term α⊗ β ⊗mα,β of σ, α is the
product of all of the degree 1 variables. Let us now prove the following.

Claim. If σ is a nonzero class in TorS∗ (k,M) then ν(σ) �= 0.

Proof of Claim. Indeed, let xi be a degree 1 variable, W the quotient of W by the span of xi,
and M the corresponding module M/(xi) over S = S/(xi). Since xi is a regular element on M ,

the surjection
∧
W ⊗k M �

∧
W ⊗k M induces an isomorphism θ : TorS∗ (k,M)

∼=−→TorS∗ (k,M)
on homology. Since θ(σ) �= 0, ν(σ) must be nonzero; this proves the claim. �

Now, let σ be a nonzero class in TorSi (k,M)j , where j <wi+1. It suffices to show that σ= σ0;
this implies that σ lies in the strongly linear strand. Assume, toward a contradiction, that σ� �= 0
for some � > 0. Since σ� ∈

∧iW ⊗M�, we have wi + �≤ j <wi+1. Recalling that wi+1 −wi =
di+1 := deg(xi+1), this implies that di+1 > �≥ 1. We conclude that

i≥ dimW1. (5.5)

There are two cases to consider.

Case 1: ν(σ�)> 0 for some � > 0. In this case, σ� has some term α⊗ β ⊗mα,β such that α is not
divisible by a degree 1 variable; without loss of generality, let us say α is not divisible by x0. It
follows that deg(α⊗ β)≥ deg(x1x2 · · · xi) =wi+1 − 1. Thus,

deg(σ�) = deg(α⊗ β) + �≥wi+1 − 1 + �≥wi+1.

This is impossible, since deg(σ�) = deg(σ)<wi+1.

Case 2: ν(σ�) = 0 for all � > 0. For every term α⊗ β ⊗mα,β of σ� for � > 0, we have β ∈∧i−dimW1 W>1. On the other hand, it follows from the claim above that there must be some
term α′ ⊗ β′ ⊗mα′,β′ of σ0 such that β′ ∈∧i−dimW1+tW>1 for some t > 0; recall that, by (5.5),
i− dimW1 ≥ 0. Let E =

∧
W ∗, and note that

∧
W ⊗k M is an E module via the contraction

action of E on
∧
W . We may choose f ∈∧i−dimW1+1W ∗

>1 ⊆E such that fσ0 �= 0; note, however,
that fσ� = 0 for all � > 0. Thus, fσ= fσ0 = (fσ)0 ∈

∧
W ⊗M0. Moreover, since σ ∈∧W ⊗k M

is a cycle, fσ is also a cycle, as the Koszul differential on
∧
W ⊗k M is E-linear. Thus,

since fσ= (fσ)0, it follows from the definition of the strongly linear strand (Definition 4.3)
that fσ determines a summand of the strongly linear strand of F . But fσ has homological
degree i− (i− dimW1 + 1) = dimW1 − 1, and so dimW1 − 1≤ dimM0 − 1, by Theorem 4.5.
This contradicts our assumption that dimW1 > dimM0. �

In the standard graded case, the proof of Green’s Theorem (Theorem 1.1) via the linear
syzygy theorem (cf. [Eis05, Theorem 8.8.1]) makes use of numerous statements about linear
strands that rely on degree arguments. These break down in the nonstandard graded situation,
and Lemmas 5.1–5.3 act to fill that gap. Thus, with these lemmas in hand, we can now turn to
the proof of Theorem 1.7.

Proof of Theorem 1.7. Recall that d0, . . . , dn are the degrees of the variables x0, . . . , xn in
S, and we assume that d0 ≤ d1 ≤ · · · ≤ dn. As in Lemma 5.2(2), we let |d|=∑n

i=0 di and
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ωR =
⊕

i∈ZH
0(C, ωC ⊗Li). We remark, for later use, that dim(ωR)0 =H0(C, ωC) = g. By

Lemma 5.2(2), we have Extn−1
S (R, S(−|d|))∼= ωR. Letting F be the minimal S-free resolution of

R and F∨ =HomS(F, S), it follows that F
∨(−|d|)[−n+ 1] is the minimal free resolution of ωR. In

particular, we have βi,j(R) = βn−1−i,|d|−j(ωR). Now, suppose that βi,j(R) = βn−1−i,|d|−j(ωR) �= 0,
and assume that j >wi+1. We now compute

|d| −wn−i =

n∑
j=0

dj −
n−1−i∑
j=0

dj =

n∑
j=n−i

dj =wi+1 < j.

Rearranging this inequality, we have |d| − j <wn−i. There are now two cases to consider.

Case 1: g= 0. In this case, (ωR)1 �= 0, and (ωR)i = 0 for i < 1. Every variable xi ∈ S is a
nonzero divisor on ωR. In particular, x0 has this property; recall that deg(x0) = 1. Applying
Lemma 5.1(2), with �= 0, we arrive at the inequality |d| − j ≥wn−i, a contradiction. We
therefore conclude that if βi,j(R) �= 0 then j ≤wi+1.

Case 2: g > 0. We now have (ωR)0 �= 0, and (ωR)i = 0 for i < 0. Applying Lemma 5.3 to ωR

implies that n− 1− i < dim(ωR)0 = g, i.e. i > n− 1− g=dimW − g− 2. �

Let us illustrate the proofs of both Theorem 1.7 and Lemma 5.3 via an example.

Example 5.6. Suppose we are in the setting of Theorem 1.7, and assume that g= 2 and P(W ) =
P(16, 24). Let ωR be as in Lemma 5.2(2). To prove Theorem 1.7 in this example, we must
show that the columns of the Betti table of ωR are bounded above by the dots in the diagram
below.6

0 1 2 3 4 5 6 7 8
0 : • • . . . . . . .
1 : . . • • • • † . .
2 : . . . . . . • . .
3 : . . . . . . . • .
4 : . . . . . . . . .
5 : . . . . . . . . .
6 : . . . . . . . . •

For degree reasons alone, entries in the 0th row must lie in the strongly linear strand of the
minimal free resolution of ωR, and the length of that strand is ≤ g− 1 = 1 by [BE22, Corollary
1.4]. So the first entry that could potentially pose an issue is the one in the position marked by
a †, as we cannot conclude, for purely degree reasons, that such an entry lies in the strongly
linear strand. Let us use the argument in the proof of Lemma 5.3 to show this entry must be 0.

We adopt the notation of the proof of Lemma 5.3. Say we have a cycle σ ∈∧6W ⊗ ωR

corresponding to a nonzero syzygy in position †. For degree reasons, we have σi = 0 for i �= 0, 1;
and ν(σ1) = 0. In particular, we have σ1 = x0x1 · · · x5 ⊗ y for some y ∈ (ωR)1. It follows that, for
every f ∈W ∗

2 , we have fσ1 = 0. The claim in the proof of Lemma 5.3 implies that ν(σ) �= 0, and
thus, σ0 must be nonzero and satisfy ν(σ0)> 0. In particular, every term of σ0 must involve at
least one variable from W>1. We can thus choose an element f ∈W ∗

>1 such that fσ0 �= 0. We
therefore have fσ= fσ0 + fσ1 = fσ0 �= 0, which means fσ corresponds to a summand of the
strongly linear strand that lies in the position of the entry marked 
 below.

6We are using here the fact that the kth row in the Betti table of R must vanish for k > 6. One sees this by
combining Remark 4.8 with the fact that the weighted regularity of R is 2, which we prove in Corollary 6.6.
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0 1 2 3 4 5 6 7 8
0 : • • . . . 
 . . .
1 : . . • • • • † . .
2 : . . . . . . • . .
3 : . . . . . . . • .
4 : . . . . . . . . .
5 : . . . . . . . . .
6 : . . . . . . . . •

This is impossible, because the strongly linear strand has length at most g− 1 = 1.

6. Normal generation and the weighted Np results

We use the notation/assumptions in Setup 1.3 throughout this entire section. Recall that
ϕW : C→ P(d) is a closed embedding, by Proposition 3.12(2). As above, we denote by R the
section ring

⊕
i∈ZH

0(C, Li), and we write H0(C, La)bD for the space of sections of La that
vanish along the divisor bD. We begin with several technical results.

Lemma 6.1. We have (S/IC)�d ∼=R�d for all �≥ 0.

Proof. By Proposition 3.5, we need only show that the ring map α : S→⊕
iH

0(C, Li) given
by xi �→ si induces surjections α�d : S�d �H0(C, L�d) for all �≥ 0. By Proposition 3.12(1), αd

is surjective. Let V =H0(C, Ld), f0, . . . , fr a basis of V , and F0, . . . , Fr ∈ Sd elements such
that αd(Fi) = fi. Let �≥ 0. By our assumption on deg(L⊗O(−D)), the embedding C ↪→ P(V )
determined by |Ld| is normally generated, and so the induced map h : Sym�(V )→H0(C, L�d) is
surjective. Let s∈H0(C, L�d), and choose p∈ Sym�(V ) such that h(p) = s, i.e. p(f0, . . . , fr) = s.
We have α�d(p(F0, . . . , Fr)) = s. �

Lemma 6.2. Let e≥ 0, and write e= qd+ e′ for 0≤ e′ < d. The following assertions hold.

(1) The natural map H0(C, Lqd)⊗H0(C, Le′ ⊗O(−e′D))→H0(C, Le ⊗O(−e′D)) is surjec-
tive.

(2) The image of the injection (S/IC)e ↪→H0(C, Le) is given by the sections that vanish with
multiplicity ≥ e′ along D.

Proof. Part (1) is immediate from [Gre84a, Corollary 4.e.4]. As for (2): let ι denote the injec-
tion (S/IC)e ↪→H0(C, Le). Because C is embedded by a log complete series of type (D, d), the
variables of S = k[x0, . . . , xn] have degrees 1 and d. Say x0, . . . , xr are the variables of degree 1.
Every element of Se, and hence (S/IC)e, lies in (x0, . . . , xr)

e′ . It follows that every section in the
image of g vanishes with multiplicity ≥ e′ alongD; that is, im(ι)⊆H0(C, Le)e′D. By Lemma 3.11,
there is a natural isomorphism H0(C, Le)e′D ∼=H0(C, Le ⊗O(−e′D)). Since deg(L⊗O(−D))≥
2g+ 1, the complete linear series on L⊗O(−D) induces a normally generated embedding into
projective space, i.e. the natural mapH0(C, L⊗O(−D))⊗a→H0(C, La ⊗O(−aD)) is surjective
for all a≥ 0.

We first consider the case where e < d, so that e= e′ and q= 0. We have isomor-
phisms (S/IC)1 =H0(C, L)D ∼=H0(C, L⊗O(−D)) and H0(C, Le ⊗O(−eD))∼=H0(C, Le)eD.
Combining these identifications with the surjection H0(C, L⊗O(−D))⊗e �H0(C, Le ⊗
O(−eD)) yields a surjection π : (S/IC)

⊗e
1 �H0(C, Le)eD. We have a commutative diagram
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(S/IC)⊗e
1

π

(S/IC)e
ι

H0(C, Le)

H0(C, Le)eD

where the vertical map is the inclusion, and the left-most horizontal map is given by multiplica-
tion. This proves (2) when e < d. Finally, suppose that e≥ d. By Lemma 6.5, we have (S/IC)�d ∼=
R�d =H0(C, L�d) for all �≥ 0, and we have shown above that (S/IC)e′ ∼=H0(C, Le′ ⊗O(−e′D)).
Part (1) yields a surjection

H0(C, Lqd)⊗H0(C, Le′ ⊗O(−e′D))�H0(C, Le ⊗O(−e′D))∼=H0(C, Le)e′D.

Combining these observations, we see that there is a surjection π : (S/IC)qd ⊗ (S/IC)e′ �
H0(C, Le)e′D such that the diagram

(S/IC)qd ⊗ (S/IC)e′

π

(S/IC)e
ι

H0(C, Le)

H0(C, Le)e′D

commutes, where the vertical map is the inclusion, and the left-most horizontal map is
multiplication. The result follows. �

Proposition 6.3. Let Q denote the cokernel of the injection S/IC ↪→R. The following hold.

(1) We have Qqd = 0 for all q≥ 0. In particular, if 0≤ j < d then any element of Sd−j annihilates
any element of Qqd+j .

(2) For all e≥ 0, we have dimQe =dimQe+d.

(3) The support of the sheaf Q̃ is the set of points in D. In particular, Q̃ is a zero-dimensional
sheaf on P(W ), and Q is a one-dimensional S module.

(4) We have Hj
mQ= 0 for j �= 1, and (H1

mQ)e = 0 for e≥ 0. In particular, Q is a Cohen–
Macaulay S module, and its weighted regularity (Definition 4.7) is at most 0.

Before beginning the proof, we discuss a simple example.

Example 6.4. Consider Example 2.1, where S/IC ∼= k[s2, st, st3, t4] and R∼= k[s2, st, t2], so that
Q= t2 · k[t4]. In other words, letting M = S/(x0, x1, x2), we have Q∼=M(−1). Observe that Q
is concentrated in positive odd degrees, and each of its nonzero homogeneous components is
a one-dimensional k-vector space. Its support is the point V (x0, x1, x2) in P(W ), which is the
point in D. Clearly, H0

mQ= 0 because x3 is a nonzero divisor on Q. A local duality argument
implies that H1

mQ= t−2 · k[t−4], which is zero in nonnegative degrees.

Proof of Proposition 6.3. Part (1) is clear from Lemma 6.5, and part (3) is immediate from
Lemma 6.2(2). For part (2), we write e= qd+ e′ with 0≤ e′ < d and q≥ 0. When e= 0, this is
clear from part (1). Assume e > 0. We have

dimQe =dimH0(C, Le)− dimH0(C, Le ⊗O(−e′D)) = e′ · degD,
where the first equality follows from Lemmas 3.11 and 6.2(2), and the second follows from the
Riemann–Roch Theorem. In particular, we see that dimQe only depends on the remainder of e
modulo d; this proves part (2). Finally, we consider part (4). The inclusion D⊆C yields a short
exact sequence

0→OC(−D)→OC→OD→ 0.
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Twisting by Ld, and noting that OD ⊗Ld =OD because D is zero dimensional, we obtain a
short exact sequence

0→Ld ⊗OC(−D)→Ld→OD→ 0.

Noting that H1(C, Ld ⊗O(−D)) = 0 since deg(Ld ⊗O(−D))≥ deg(L⊗O(−D))≥ 2g+ 1, this
short exact sequence induces a surjection

(S/IC)d ∼=H0(C, Ld)�H0(D,OD). (6.5)

Since D is a finite collection of points, it is an affine scheme, and so H0(D,OD) contains a unit.
Choose a degree d element u∈ Sd such that the surjection

Sd � (S/IC)d
(6.5)−−−→H0(D,OD)

sends u to a unit. This implies that the map Q→Q(d) given by multiplication by u does not
alter the multiplicity of vanishing along D and, thus, induces an isomorphism Qe→Qe+d for
all e≥ 0. In particular, any nonzero element of Qe with 0< e< d cannot be annihilated by the
entire maximal ideal m, and so H0

mQ= 0. Since dimQ= 1, we also have H i
mQ= 0 for i > 1. It

remains to consider H1
mQ. Using the fact that H0

mQ= 0, [Eis95, Theorem A4.1] yields a short
exact sequence

0→Qe→H0(P(W ), Q̃(e))→ (H1
mQ)e→ 0.

We know dimQe =dimQe+d for all e≥ 0. In fact, since the map Q(e)
u−→Q(e+ d) is injective and

has a finite-dimensional cokernel for all e∈Z, we have Q̃(e)∼= ˜Q(e+ d) for all e∈Z. It follows
that (H1

mQ)e ∼= (H1
mQ)e+d for all e≥ 0. However, (H1

mQ)e = 0 for e� 0, and so we must have
(H1

mQ)e = 0 for all e≥ 0. �

Proof of Theorem 1.4. From the short exact sequence 0→ S/IC→R→Q→ 0, we get a long
exact sequence in local cohomology. Since H0

mQ= 0 by Proposition 6.3, and H1
mR= 0 by

Lemma 5.2(1), we conclude that H1
m(S/IC) = 0. Thus, S/IC is normally generated, and it follows

from Remark 3.14(1) that S/IC is a Cohen–Macaulay ring. �

Corollary 6.6. The weighted regularity of S/IC and R is 2 if g > 0 and 1 if g= 0.

Proof. By Theorem 1.4, S/IC is a Cohen–Macaulay ring, and so H0
m(S/IC) =H1

m(S/IC) = 0.
Since R is a Cohen–Macaulay S module by Lemma 5.2(1), and Q is a one-dimensional S module
by Proposition 6.3(3), the short exact sequence 0→ S/I→R→Q→ 0 yields the short exact
sequence 0→H1

mQ→H2
m(S/IC)→H2

mR→ 0. Proposition 6.3(4) implies that (H1
mQ)e = 0 for

e≥ 0, and (5.3) implies that (H2
mR)e

∼=H1(C, Le). We have H1(C, Le) = 0 if and only if e > 0
(respectively e≥ 0) when g > 0 (respectively g= 0). The statement immediately follows. �

Proof of Theorem 1.5. Normal generation follows from Theorem 1.4. Let us record the following
computation:

dimW =dimW1 +dimWd

=dimH0(C, L⊗O(−D)) + dimH0(C, Ld)− dimH0(C, Ld ⊗O(−dD))

= deg(L⊗O(−D))− g+ 1+ d deg(D)

≥ g+ 2+ q+ d deg(D).

Here the first two equalities follows from the definition of a log complete series along with
Lemma 3.11, the third from the Riemann–Roch Theorem, and the inequality by hypothesis.
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Also,

dimW1 =dimH0(C, L⊗O(−D)) = deg(L⊗O(−D))− g+ 1≥ g+ 2+ q > g,

and so the assumption dim S1 > g in Theorem 1.7 holds here.
Let Q be as in Proposition 6.3. By Theorem 1.4, Lemma 5.2(1), and Proposition 6.3(4),

we have a short exact sequence 0→ S/IC→R→Q→ 0 of Cohen–Macaulay S modules of
dimensions 2, 2, and 1, respectively. Recall that S = k[x0, . . . , xn] and |d|=

∑n
i=0 deg xi. Write

ωR :=Extn−1
S (R, S(−|d|)), ωS/IC :=Extn−1

S (S/IC , S(−|d|)), and ωQ :=ExtnS(Q, S(−|d|)) for
the Matlis duals of these modules. We have a short exact sequence

0→ ωR→ ωS/IC → ωQ→ 0.

Just as in our proof of Theorem 1.7, we must consider the g= 0 and g > 0 cases separately.

Case 1: g= 0. While we argue as in the proof of Theorem 1.7, we recapitulate the details
for completeness. Since S/IC is a Cohen–Macaulay ring of dimension 2, we have βi,j(S/IC) =
βn−1−i,|d|−j(ωS/IC ) for all i, j. Now, suppose that βi,j(S/IC) = βn−1−i,|d|−j(ωS/IC ) �= 0, and
assume that j >wi+1. We have

|d| −wn−i =

n∑
j=0

dj −
n−1−i∑
j=0

dj =

n∑
j=n−i

dj =wi+1 < j.

Rearranging, we get |d| − j <wn−i. Corollary 6.6 (along with local duality) implies that
(ωS/IC )1 �= 0 and (ωS/IC )<1 = 0. Since IC is prime, every variable xi ∈ S is a nonzero divi-
sor on ωS/IC . In particular, x0 has this property. Applying Lemma 5.1(2), with �= 0, we
get |d| − j ≥wn−i, a contradiction. Thus, if βi,j(S/IC) �= 0 then j ≤wi+1. It follows that the
embedding C ⊆ P(W ) satisfies the weighted Np condition for all p≥ 0.

Case 2: g > 0. We first prove that

TorSi (ωR, k)j =TorSi (ωS/IC , k)j (6.7)

for all j <wi+1. Proposition 6.3(4) (along with local duality) implies that (ωQ)i = 0 for i≤ 0,
while Corollary 6.6 (along with local duality) implies that (ωS/IC )0 �= 0 and (ωS/IC )<0 = 0, and
similarly for ωR. Lemma 4.6 therefore implies that the strongly linear strands of the minimal
free resolutions of ωR and ωS/IC are isomorphic. The identification (6.7) now follows by apply-
ing Lemma 5.3 to both ωR and ωS/IC . (Note that dim(ωR)0 =dim(ωS/IC )0 = g, and so, since
dimW1 > g, the assumption ‘dimW1 >M0’ in Lemma 5.3 holds for both M = ωR and M =
ωS/IC .) Finally, as in the proof of Theorem 1.7 (and Case 1), we have βi,j(R) = βn−1−i,|d|−j(ωR),
and similarly for S/IC . The equality (6.7) implies that Tori(R, k)j =Tori(S/IC , k)j whenever
|d| − j <wn−i, i.e. j > |d| −wn−i =wi+1. Applying Theorem 1.7, we therefore conclude that
if i≤ dimW − g− 2 and βi,j(S/IC) �= 0, then j ≤wi+1. Since dimW − g− 2≥ q+ d deg(D), it
follows that the embedding C ⊆ P(W ) satisfies the weighted Nq+d deg(D) property. �

Proof of Corollary 1.6. Immediate from Theorem 1.5. �

7. Questions

7.1 Higher-dimensional varieties

Mumford famously showed that any high degree Veronese of a projective variety is ‘cut out
by quadrics’ [Mum70]; see also the generalization in [SS11]. Corollary 1.6 is an analogue of
Mumford’s result for curves in weighted projective spaces; it is natural to ask if this result can
be extended to other varieties in weighted projective spaces.
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Question 7.1. Can one prove results like Corollary 1.6 for higher-dimensional varieties embedded
in weighted projective spaces? �

We can also ask about normal generation and the Np conditions for higher-dimensional
varieties. Here, the central results are those of [EL93], which prove Np results for embeddings
by line bundles of the form KX +Ld +B, where KX is the canonical bundle, L is very ample,
and B is effective.

Question 7.2. Can one obtain Np conditions for higher-dimensional varieties embedded by a log
complete series, under hypotheses similar to those in [EL93]? �

Embeddings into weighted spaces also provide an intermediate case for investigating
asymptotic syzygy-type questions, as in [EL12].

Question 7.3. With notation as in Question 7.1, can one prove asymptotic nonvanishing results,
similar to what happens in the main results of [EL12]? At the other extreme, can one prove
asymptotic vanishing results as in [Par21]? �

7.2 Scrolls and the gonality conjecture

There is a rather trivial sense in which curves embedded via log complete series of high degree
satisfy an analogue of Green–Lazarsfeld’s gonality conjecture. Recall that a high degree curve
in Pr has regularity 2, and so the Betti table looks as follows.

⎛⎝
0 1 2 · · · a a + 1 · · · b b + 1 · · ·

0 ∗ − − · · · − − · · · − − · · ·
1 − ∗ ∗ · · · ∗ ∗ · · · ∗ − · · ·
2 − − − · · · − ∗ · · · ∗ ∗ · · ·

⎞⎠
The Np conditions are about the moment we first get nonzero entries in row 2, i.e. column a+ 1
in the picture. In [GL88], Green–Lazarsfeld conjectured that the moment where we first get a
zero entry in row 1, i.e. column b+ 1 in the picture, is determined by the gonality gon(C) of the
curve. This is the Green–Lazarsfeld gonality conjecture, and it was proven in [EL15], utilizing
techniques originally developed by Voisin [Voi02].

In the standard graded setting, b is the maximal index such that Fi has a minimal generator of
degree i+ 1. In the weighted setting, a natural analogue of the invariant b would be to let b(C) :=
max{i : Fi has a generator of degree wi + 1}. However, the main result of [EL15] immediately
implies that, with notation as in Theorem 1.5, we have b(C) = dimW1 − 2− gon(C) for deg L�
0. Since this only depends on the degree 1 part ofW , it tells us nothing new about the relationship
between the geometry of curves and the algebraic properties of syzygies. So if we want to find
a meaningful weighted analogue of the gonality conjecture, we will need to look in a different
direction.

The Green–Lazarsfeld gonality conjecture is one of a series of conjectures about the extent
to which the syzygies of a curve C are determined by embeddings of C into special varieties such
as scrolls or other varieties of minimal degree (or minimal regularity). To develop a meaningful
weighted analogue of the Green–Lazarsfeld gonality conjecture, a natural first question to tackle
would be as follows.

Question 7.4. Can we develop a weighted theory of rational normal scrolls, or varieties of minimal
degree, or varieties of minimal regularity? More specifically, can one develop such theories for
the weighted spaces P(1a, db) that arise in Theorem 1.5? �
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There is a famous classical connection between varieties of minimal degree and the Np con-
dition: a variety has minimal degree if and only if it satisfies the Np condition for the maximal
possible p, i.e. if and only if its resolution is purely linear. If one can answer parts of Question
7.4, it would be interesting to then investigate how that answer is related to the weighted Np

conditions explored in this paper.
In a different direction, a famous result of Gruson, Lazarsfeld and Peskine [GLP83] bounds

the regularity of any nondegenerate irreducible curve C ⊆ Pr in terms of its degree. It would be
interesting to explore an analogue of such a theorem.

Question 7.5. Let C be a smooth (or irreducible) curve in P(d0, . . . , dn). Can one bound the
regularity of IC via a Gruson–Lazarsfeld–Peskine-type formula? �

7.3 ML bundles

Green, Lazarsfeld and others have used positivity ofML bundles to obtain Np results for syzygies
of a curve C embedded by a line bundle L [AKL19, EL93, GL88, GLP83, KL19, Par00, Par21].
Let C ⊆ Pn be a curve embedded by the complete linear series for L. The vector bundle ML

is defined by the short exact sequence 0←L←H0(C, L)⊗k OC←ML← 0. Vanishing results
about exterior powers of ML can be used to obtain Np results about syzygies of the embedding
C ↪→ Pr by the complete linear series |L|.

In the nonstandard graded case, the setup is more subtle, as the linear series involves sections
of different degrees. This would require altering the basic framework, and it would be interesting
to see whether Np results for varieties could be proven via weighted analogues of this approach.

7.4 Stacky curves

Stacky curves have arisen in recent work on Gromov–Witten theory, mirror symmetry, the study
of modular curves and more; see [VZB22] and the references therein. In [VZB22], Voigt and
Zureick-Brown prove analogues of classical results like Petri’s Theorem for stacky curves; in fact,
their results can be viewed as showing that the canonical embeddings satisfy our weighted N1

condition. Stacky curves cannot generally be embedded into standard projective space; rather,
they embed into weighted projective stacks. The only relevant Np conditions for such curves are
therefore in the weighted projective setting.

Question 7.6. Prove an analogue of Theorem 1.5 for stacky curves embedded into weighted
projective stacks by high degree line bundles. �

We highlight one aspect where stacky curves differ from smooth curves. For a line bundle
of high enough degree on a smooth curve, the rank of the global sections depends only on the
degree of the line bundle. This is not the case for stacky curves, as the space of global sections
also depends on the behavior of the corresponding divisor at the stacky points. So instead of
simply fixing the degree of the line bundle, a more natural setup for a stacky curve might be to
follow the recipe from Ein and Lazarsfeld [EL93] and focus on Np conditions for divisors of the
form K +Ld +B, where K is the canonical divisor, L is very ample, and B is effective.

In a slightly different direction, one could focus on canonical embeddings. Green’s Conjecture
relates classical Np conditions to the intrinsic geometry of a canonical curve, specifically to its
Clifford index. The canonical embedding of a stacky curve lands in a weighted projective stack,
and thus, our weighted Np conditions provide a natural setting for considering a stacky analogue
of Green’s Conjecture.
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Question 7.7. Can one use weightedNp conditions to articulate an analogue of Green’s conjecture
for stacky curves? �

7.5 Nonstandard Koszul rings

Koszul rings were defined by Priddy [Pri70] and now play a fundamental role within commutative
algebra [AE92, AP01, ACI15, Con00]. One rich source of Koszul rings comes from high degree
Veronese embeddings. Let X ⊆ Pr be a smooth variety embedded by a complete linear series
for Ld, where L is very ample and d� 0; it is known that the homogeneous coordinate ring of
X ⊆ Pr is a Koszul ring [Bac86, ERT94].

It would be interesting to know if high degree embeddings into weighted spaces (via a log
complete series) can provide more exotic examples of Koszul rings, or related concepts. The
following example shows some of the subtle behavior that might arise.

Example 7.8. Let P1→ P(13, 22) be the map [s : t] �→ [s3 : s2t : st2 : st5 : t6] be the map determined
by the log complete series for OP1(3) with d= 2 and deg(D) = 1. Let S = k[x0, x1, x2, y0, y1]
be the Cox ring of P(13, 22). The defining ideal of the image is I = 〈x21 − x0x2, x2y0 −
x1y1, x1y0 − x0y1, x32 − x0y1, x1x22 − x0y0, y20 − x22y1〉. The ring S/IC is isomorphic to the sub-
algebra k[s3, s2t, st2, st5, t6], and it is a variant of a Veronese subring; for instance, it contains
the degree 6 Veronese subring. The ring T = S/IC does not satisfy the standard definition of
a graded Koszul ring, as the minimal free resolution of the residue field has the form [T ←
T (−1)3 ⊕ T (−2)2← · · · ]. However, if we consider the grevlex order with y0 > y1 >x0 >x1 >x2
then the initial ideal is in(I) = 〈x21, x1y1, x1y0, x0y1, y0x0, y20〉. Thus, I has a quadratic Gröbner
basis; if S were standard graded then this would imply that S/IC is G quadratic and, therefore,
Koszul [Con00]. Given the nonstandard grading, it implies that S/IC is a sort of nonstandard
graded deformation of a Koszul ring.

Question 7.9. Let X be a smooth variety, and consider an embedding X ↪→ P(W ) given by a log
complete series for Le, where L is very ample and e� 0. Let IX ⊆ S be the defining ideal in the
corresponding nonstandard graded polynomial ring. Does IX admit a quadratic Gröbner basis?
What sort of Koszul-type properties are satisfied by S/IX? �

7.6 Np conditions for curves in other toric varieties

Another natural direction is to ask whether smooth curves in other toric varieties also satisfy
Np conditions. To approach this, one must consider the following.

Question 7.10. Let S be the Zr-graded Cox ring of a simplicial toric variety X and B the
corresponding irrelevant ideal.

(1) What is a good analogue of a complete, or log complete, linear series?

(2) What is a good analogue of normal generation?

(3) What is the appropriate analogue of the Np conditions in this setting?

(4) Does the answer to (1) or (2) depend only on the grading of S, or does it also depend on
the choice of the irrelevant ideal B?

(5) When defining the Np conditions, should one focus on minimal free resolutions or on virtual
resolutions? �

Even for a product of projective spaces, some of these questions are open.
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Question 7.11. Can one develop analogues of the main results of this paper for a smooth curve
in a product of projective spaces? �
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BCN22 L. Busé, M. Chardin and N. Nemati, Multigraded Sylvester forms, duality and elimination

matrices , J. Algebra 609 (2022), 514–546.

BE21 M. K. Brown and D. Erman, Tate resolutions on toric varieties , J. Eur. Math. Soc. (JEMS)

(2021), to appear.

941

https://doi.org/10.1112/S0010437X25007092 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X25007092


M. K. Brown and D. Erman

BE22 M. K. Brown and D. Erman, Linear strands of multigraded free resolutions , Preprint
(2022), arXiv:2202.00402.

BE23 M. K. Brown and D. Erman, Positivity and nonstandard graded Betti numbers , Preprint
(2023), arXiv:2302.07403.

Ben04 D. Benson, Dickson invariants, regularity and computation in group cohomology , Illinois
J. Math. 48 (2004), 171–197.

BES20 C. Berkesch, D. Erman and G. G. Smith, Virtual resolutions for a product of projective
spaces , Algebraic Geom. 7 (2020), 460–481.

BH13 P. Banagere and K. Hanumanthu, Syzygies of surfaces of general type, Geom. Dedicata
167 (2013), 123–149.

BHS21 J. Bruce, L. C. Heller and M. Sayrafi, Characterizing multigraded regularity on products of
projective spaces, Preprint (2021), arXiv:2110.10705.

BHS22 J. Bruce, L. C. Heller and M. Sayrafi, Bounds on multigraded regularity , Preprint (2022),
arXiv:2208.11115.

BKLY21 C. Berkesch, P. Klein, M. C. Loper and J. Yang, Homological and combinatorial aspects of
virtually Cohen-Macaulay sheaves , Trans. London Math. Soc. 8 (2021), 413–434.

BR86 M. Beltrametti and L. Robbiano, Introduction to the theory of weighted projective spaces ,
Exposition. Math. 4 (1986), 111–162.

BS22 M. K. Brown and M. Sayrafi, A short resolution of the diagonal for smooth projective toric
varieties of Picard rank , Preprint (2022), arXiv:2208.00562.

Cas93 G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenente ad una
curva algebrica, Red. Circ. Mat. Palermo 7 (1893), 89–110.

CH22 M. Chardin and R. Holanda, Multigraded Tor and local cohomology , Preprint (2022),
arXiv:2211.14357.

Chi19 S. Chintapalli, On syzygies of projective bundles over abelian varieties , J. Pure Appl.
Algebra. 223 (2019), 2413–2424.

CLS11 D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties , vol. 124 (American Mathematical
Society, Providence, RI, 2011).

CN20 M. Chardin and N. Nemati, Multigraded regularity of complete intersections , Preprint
(2020), arXiv:2012.14899.

Con00 A. Conca, Universally Koszul algebras , Math. Ann. 317 (2000), 329–346.
DE22 H. Dao and D. Eisenbud, Linearity of free resolutions of monomial ideals , Res. Math. Sci.

9 (2022), 35.
EES15 D. Eisenbud, D. Erman and F.-O. Schreyer, Tate resolutions for products of projective

spaces , Acta Math. Vietnam. 40 (2015), 5–36.
EG84 D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity , J. Algebra 88

(1984), 89–133.
EGHP05 D. Eisenbud, M. Green, K. Hulek and S. Popescu, Restricting linear syzygies: algebra and

geometry , Compos. Math. 141 (2005), 1460–1478.
Eis05 D. Eisenbud, The geometry of syzygies: a second course in algebraic geometry and

commutative algebra, vol. 229 (Springer Science & Business Media, New York, 2005).
Eis95 D. Eisenbud, Commutative algebra, with a view toward algebraic geometry , Graduate Texts

in Mathematics, vol. 150 (Springer-Verlag, New York, 1995).
EL18 L. Ein and R. Lazarsfeld, Syzygies of projective varieties of large degree: recent progress

and open problems , in Algebraic geometry: Salt Lake City 2015 (American Mathematical
Society, Providence, RI, 2018), 223–242.

EL20 L. Ein and R. Lazarsfeld, Tangent developable surfaces and the equations defining algebraic
curves , Bull. Amer. Math. Soc. (N.S.) 57 (2020), 23–38.

EL12 L. Ein and R. Lazarsfeld, Asymptotic syzygies of algebraic varieties , Invent. Math. 190
(2012), 603–646.

EL15 L. Ein and R. Lazarsfeld, The gonality conjecture on syzygies of algebraic curves of large
degree, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 301–313.

942

https://doi.org/10.1112/S0010437X25007092 Published online by Cambridge University Press

https://arxiv.org/abs/2202.00402
https://arxiv.org/abs/2302.07403
https://arxiv.org/abs/2110.10705
https://arxiv.org/abs/2208.11115
https://arxiv.org/abs/2208.00562
https://arxiv.org/abs/2211.14357
https://arxiv.org/abs/2012.14899
https://doi.org/10.1112/S0010437X25007092


Linear syzygies of curves in weighted projective space

EL93 L. Ein and R. Lazarsfeld, Syzygies and Koszul cohomology of smooth projective varieties
of arbitrary dimension, Invent. Math. 111 (1993), 51–67.

ENP20 L. Ein, W. Niu and J. Park, Singularities and syzygies of secant varieties of nonsingular
projective curves , Invent. Math. 222 (2020), 615–665.

ERT94 D. Eisenbud, A. Reeves and B. Totaro, Initial ideals, Veronese subrings, and rates of
algebras , Adv. Math. 109 (1994), 168–187.

Far17 G. Farkas, Progress on syzygies of algebraic curves , in Moduli of curves (Springer, Cham,
2017), 107–138.

Fuj77 T. Fujita, Defining equations for certain types of polarized varieties , in Complex analysis
and algebraic geometry (Iwanami Shoten, Tokyo, 1977), 165–173.

GL86 M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an
algebraic curve, Invent. Math. 83 (1986), 73–90.

GL88 M. Green and R. Lazarsfeld, Some results on the syzygies of finite sets and algebraic curves,
Compositio Math. 67 (1988), 301–314.

GLP83 L. Gruson, R. Lazarsfeld and C. Peskine, On a theorem of Castelnuovo, and the equations
defining space curves , Invent. Math. 72 (1983), 491–506.

GP96 F. J. Gallego and B. P. Purnaprajna, Higher syzygies of elliptic ruled surfaces, J. Algebra
186 (1996), 626–659.

GP98 F. J. Gallego and B. P. Purnaprajna, Very ampleness and higher syzygies for Calabi-Yau
threefolds, Math. Ann. 312 (1998), 133–149.

GP99 F. J. Gallego and B. P. Purnaprajna, Projective normality and syzygies of algebraic
surfaces , J. Reine Angew. Math. 506 (1999), 145–180.

Gre84a M. Green, Koszul cohomology and the geometry of projective varieties , J. Differ. Geom. 19
(1984), 125–171.

Gre84b M. L. Green, Koszul cohomology and the geometry of projective varieties. II , J. Differ.
Geom. 20 (1984), 279–289.

Gre99 M. Green, The Eisenbud-Koh-Stillman conjecture on linear syzygies , Invent. Math. 136
(1999), 411–418.

GS15 A. Geraschenko and M. Satriano, Toric stacks I: The theory of stacky fans, Trans. Amer.
Math. Soc. 367 (2015), 1033–1071.

Har77 R. Hartshorne, Algebraic geometry , Graduate Texts in Mathematics, vol. 52 (Springer-
Verlag, New York–Heidelberg, 1977).

HHW12 F. T. Hawwa, J. W. Hoffman and H. Wang, Koszul duality for multigraded algebras , Eur.
J. Pure Appl. Math. 5 (2012), 511–539.

HNVT22 M. Harada, M. Nowroozi and A. Van Tuyl, Virtual resolutions of points in, P1 × P1, J. Pure
Appl. Algebra 226 (2022), 107140.

HS04 M. Haiman and B. Sturmfels, Multigraded Hilbert schemes , J. Algebraic Geom. 13 (2004),
725–769.

HSS06 M. Hering, H. Schenck and G. G. Smith, Syzygies, multigraded regularity and toric
varieties , Compositio Math. 142 (2006), 1499–1506.

HT13 J.-M. Hwang andW.-K. To, Syzygies of compact complex hyperbolic manifolds , J. Algebraic
Geom. 22 (2013), 175–200.
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Algebra Geom. 47 (2006), 67–87.
Sym10 P. Symonds, On the Castelnuovo-Mumford regularity of the cohomology ring of a group,

J. Amer. Math. Soc. 23 (2010), 1159–1173.
Sym11 P. Symonds, On the Castelnuovo-Mumford regularity of rings of polynomial invariants ,

Ann. Math. (2) 174 (2011), 499–517.
Voi02 C. Voisin,Green’s generic syzygy conjecture for curves of even genus lying on a, K3 surface,

J. Eur. Math. Soc. (JEMS) 4 (2002), 363–404.
Voi05 C. Voisin, Green’s canonical syzygy conjecture for generic curves of odd genus , Compositio

Math. 141 (2005), 1163–1190.
VZB22 J. Voight and D. Zureick-Brown, The canonical ring of a stacky curve, Mem. Amer. Math.

Soc. 277 (2022), 1362.
Yan21 J. Yang, Virtual resolutions of monomial ideals on toric varieties , Proc. Amer. Math. Soc.

Ser. B. 8 (2021), 100–111.

Michael K. Brown mkb0096@auburn.edu
Department of Mathematics, Auburn University, Auburn, AL 36849, USA

Daniel Erman erman@hawaii.edu
Department of Mathematics, University of Hawai’i, Honolulu, HI 96822, USA

944

https://doi.org/10.1112/S0010437X25007092 Published online by Cambridge University Press

https://arxiv.org/abs/2110.12419
http://stacks.math.columbia.edu/
mailto:mkb0096@auburn.edu
mailto:erman@hawaii.edu
https://doi.org/10.1112/S0010437X25007092

	
	Introduction
	Notation

	Examples
	Closed immersions into weighted projective spaces
	Weighted series
	Log complete series
	A weighted analogue of normal generation

	Linearity of free resolutions in the weighted setting
	Strong linearity
	The weighted BGG correspondence
	Strongly linear strands

	Weighted regularity
	Koszul linearity

	Proof of Theorem 1.7
	Normal generation and the weighted Np results
	Questions
	Higher-dimensional varieties
	Scrolls and the gonality conjecture
	 M L bundles
	Stacky curves
	Nonstandard Koszul rings
	N p conditions for curves in other toric varieties



