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Abstract

We study randomized generation of sequences of test inputs to a system using Prolog. Prolog
is a natural fit to generate test sequences that have complex logical interdependent structure.
To counter the problems posed by a large (or infinite) set of possible tests, randomization is a
natural choice. We study the impact that randomization in conjunction with SLD resolution have
on the test performance. To this end, this paper proposes two strategies to add randomization
to a test-generating program. One strategy works on top of standard Prolog semantics, whereas
the other alters the SLD selection function. We analyze the mean time to reach a test case and
the mean number of generated test cases in the framework of Markov chains. Finally, we provide
an additional empirical evaluation and comparison between both approaches.

KEYWORDS: software testing, randomization, Prolog

1 Introduction

The need for software testing is well established. The idea to auto-generate tests is

a constant theme in the field of software testing, stretching back many decades (e.g.

Miller and Melton 1975; Pesch et al . 1985; Ince 1987; Meyer et al . 2007). Automatically

generating software tests can be done in a number of ways, depending on the specific test-

goal: In the past, tests have been generated from UML specifications (Kim et al . 1999),

based on natural language (Xu et al. 2022), and, more recently, using large-language

models (Gu 2023; Siddiq et al . 2024). But tests have also been generated according to

formal or semi-formal specifications (Zeng et al . 2002; Dewey et al. 2014). Particularly

when formal methods are used, one often has to deal with a very large, even infinite,
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number of test cases. Exploring such a large set of tests in a randomized fashion is a

natural approach and has been used extensively in various different ways and contexts

for a long time (see e.g. Duran and Ntafos 1984; Miller et al . 1990; Miller et al . 1990;

Ramler et al . 2012; Ramler et al . 2012; Casso et al . 2019).

Prolog is a natural fit to generate test cases that follow a logical pattern (as opposed

to unstructured testing, as is done, e.g.,, in many forms of Fuzzing (Miller et al . 1990).

Generating test cases using Prolog has been studied in the past (Pesch et al . 1985;

Hoffman and Strooper 1991; Denney 1991; Casso et al . 2019). It has been applied to

software-testing in general, but also to specialized areas, such as security testing (Dewey

et al . 2014; Zech et al . 2019). Some approaches also use randomization to explore the

space of test cases (Casso et al . 2019). Randomization solves some of the problems

inherent in the SLD resolution algorithm – particularly the fact that it is not complete

when the resolution works in a depth-first manner. It may also yield a more diverse

set of test cases, because it permits exploring distant parts of an infinite SLD tree.

Randomization seems to be a logical fit in the context of test-case generation using

Prolog.

In the light of its apparent utility, it is natural to study randomization itself and its

properties. What are the possible strategies to implement randomized search strategies

for test cases in Prolog running on current state-of-the-art implementations? What is the

probability of hitting a particular test case, and how long will it take? To our surprise,

we only found very few papers dealing with the properties of randomization itself (see

also Related Work below).

In this paper, we study randomized test-case generation using Prolog. Our main contri-

butions are threefold: (i) We propose strategies to implement randomized search in both

unmodified Prolog runtimes, and via specific modifications to the usual SLD implemen-

tations. (ii) We show how adding randomness naturally turns the SLD resolution into

an infinite discrete-time Markov chain and propose to use this framework to study the

runtime-effects. We do this for our proposed scheme and give tight asymptotic bounds on

the expected time to hit a particular test case. (iii) Finally, we study the effect that various

Prolog implementations have on the efficiency of randomizing test-case generation.

We present two ways of adding randomization to Prolog programs. The first way

works without altering the semantics of standard Prolog and thus works on existing

implementations. It works by adding a predicate, called a guard , that randomly fails to

every rule. Crucially, failure is determined by an independent event for every successive

call to the same rule. We refer to this strategy as the guard approach. In a second strategy,

we propose a modification to the resolution algorithm: Given a goal and a set of matching

rules, drop an indeterminate number of rules from the set and permute the remaining

ones. Again, we do this in an independent fashion every time a goal is resolved with the

input program. This second modification is reminiscent of that proposed in Casso et al .

(2019), but differs in that it also drops a random number of rules from the set. This, in

effect, prevents an infinite recursion with probability 1. We refer to the second strategy

as the drop-and-shuffle approach.

In the following we study the effects on randomizing the resolution in this way. We give

a detailed description of the resulting Markov chain and analyze its probability structure.

We show that, provided the parameters are chosen appropriately, the number of test cases
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produced is finite and given by a simple equation in terms of the selected probabilities.

This is true for both approaches to randomization. We also show that, if we repeat the

initial query infinitely many times, we will reach each test case after a finite number

of steps on average. This hitting time is a well-known concept in the study of Markov

chains. We again give a closed formula representation and accompanying asymptotic

bound in the depth of the given test case in the SLD resolution tree. Again, this is done

for both approaches, though the drop-and shuffle approach permits for a narrower set of

parameters to ensure the computed quantities are finite.

Finally, we study the randomization procedures from an empirical perspective and

provide comparisons between the two aforementioned approaches. We implement the

guard approach to randomization in SWI-Prolog (Wielemaker et al . 2012) and the drop-

and-shuffle approach in Go-Prolog ichiban/Prolog (2024). We chose Go-Prolog for its

accessible and simple code-base, which lends itself to experimental modifications. We

then compare the number of test cases produced before a specific test-goal is seen and

the number of iterations that were required to do so.

1.1 Related work

Some early works on test-case generation using Prolog are Pesch et al . (1985), Bougé

et al . (1985),Hoffman and Strooper (1991) and Denney (1991). Automated test-case

generation in Prolog was described by Pesch et al . (1985). The authors state how to test

individual syscalls with logic programming. The used specifications state a set of pre-

conditions then the actual invocation of the respective syscall and afterwards what the

expected post-conditions are. This paper demonstrates that test-case generation using

Prolog is very beneficial to test systems in a structured manner. This problem domain

does not deal with any problems of recursion since the authors only test input sequences

of length one. This means that this paper does not deal with recursion problems that are

witnessed for many other test scenarios.

Another approach showcasing Prolog’s capabilities used in test case generation was

shown by Hoffman and Strooper (1991). The authors automated the generation procedure

of tests for modules written in C with Prolog.

Bougé et al . (1985) start the testing procedure with the definition of a Σ-algebra

and respective axioms. The aim of this testing procedure is based on the regularity and

uniformity testing hypothesis. Prolog is used to generate test cases and to partition

the test cases into test classes following the uniformity hypothesis. The authors also

recognize the problems of recursion in Prolog test case generation and apply different

search strategies to solve them. Since the paper enforces a length limit on the generated

solution, it will not find any test case that exceeds that length.

Denney (1991) also researches test-case generation based on specifications written in

Prolog. In his paper, he implements a meta-interpreter in Prolog to be able to track

which rules, generated from the specification, were already applied. This is done by

constructing a finite automaton. Each arc between states corresponds with respective

rules in the Prolog database. Final states in this automaton are test cases produced

in the test-case generation process. With this solution, he addresses the problems of

recursion, evaluable predicates, and ordering, which are challenging aspects of test-case
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generation using Prolog. However, the recursion problem is only addressed heuristically,

which means that a user has to specify a threshold of how often an arc can be traversed

during the execution of test case generator. We argue that the estimation of the threshold

is an error-prone task and, if not set correctly, could miss important test cases.

Gorlick et al . (1990) also introduce a methodology for formal specifications. For this

task, they use constraint logic programming to describe the system under test’s behavior.

With this approach, the authors also recognize that they both have a test oracle and a

test case generator at the same time. One challenge the authors addressed is, yet again,

the recursion problem. To solve this challenge they used a randomization approach. This

feature enables the proposed framework to pick probabilistically from the predicates.

However, they do not provide any statements about test case duplication or infinite

looping.

Casso et al . (2019) approach assertion-based testing of Prolog programs with random

search rules. They rely on the Ciao model and its capabilities to specify pre- and post-

conditions for static analysis and the runtime checker. Further, the authors develop a

test-case generator based on these conditions. For randomizing the test case search, Casso

et. al. use a selection function that randomly chooses clauses to be resolved. The authors

do not study the randomization itself, nor its properties. We will revisit this paper and

its randomization strategy in section 3, where we will also explain the differences from

our approach in more detail.

Prolog was also used in security testing. For web applications, Zech et al . (2013, 2019)

first build an expert system to filter test cases according to some attack pattern and later

apply this risk analysis to filter test cases in the generation process. Since the paper, yet

again, only addresses single input sequences, it effectively circumvents the problem of

recursion. Prolog was also used in Fuzzing by Dewey et al . (2014) to use CLP in order

to produce fuzzing inputs to compilers.

2 Preliminaries

Given a (usually finite) set Σ of elements, we write Σ∗ for the set of all finite

length sequences w1 · · ·wl with wi ∈Σ and l ∈N0 = {0, 1, 2, 3, . . .}=N∪ {0}. The empty

sequence is denoted by ε. We write Σ+ =Σ∗ \ {ε}. If Σ = {x} is a singleton, we write x∗ or
x+ instead of {x}∗. Concatenation is denoted by (u1 · · · ul) · (v1 · · · vr) = u1 · · · ulv1 · · · vr.
We write |w|= |w1 · · ·wl|= l ∈N0.

We use the theory of Markov chains. For a detailed introduction and proofs of the

following claims, the reader is referred to standard literature on the subject, for example,

Norris (1998). We revisit the concepts, notation, and central results from the theory of

Markov chains that we will use throughout this paper for convenience.

We consider a countable set S of states , a mapping p : S × S → [0, 1] that assigns

transition probabilities to pairs of states with the property that for all s∈ S it holds that∑
s′∈S p(s, s′) = 1, and an initial state1 Init∈ S. Let (Xn)n∈N0

be an infinite sequence of

1 In the literature one usually considers initial distributions to model uncertainty about the initial state.
We do not need this capability in the present paper and consider initial distributions whose support is
a single state of probability 1.
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random variables Xn ∈ S. The tuple (S, (Xn)n∈N0
, p, Init) is a Markov chain, if Pr[X0 =

Init] = 1 and for all n∈N and all s1, . . . , sn ∈ S:
Pr[Xn = sn |X0 = s0 = Init, . . . , Xn−1 = sn−1]

= Pr[Xn = sn |Xn−1 = sn−1] = p(sn−1, sn)

For two states s, s′ we write s� s′, if Pr[Xn = s′ for some n]> 0 in the Markov chain

(S, (Xn)n∈N, p, s). Intuitively, there is a way to get from s to s′. A set A⊆S is absorbing ,

if for every s∈A and every s′ ∈ S with s� s′ it holds that s′ ∈A. If A= {s} is a singleton,
the state s is said to be absorbing. If any two states are reachable from one-another (s� s′

for any s, s′ ∈ S), the Markov chain is irreducible.

Let A⊆S be a non-empty set of states and let HA = inf{n∈N0 |Xn ∈A} ∈N0 ∪ {∞}
denote the random variable such that XH ∈A visits A for the first time. HA is the hit-

ting time of A. Then conditioned on HA <∞ and XH = s, the sequence (XH+n)n∈N0

is a Markov chain with initial state s and is independent of X0, . . . , XH . This is

called the strong Markov property . It is sometimes useful to consider the hitting times

for initial states other than Init. Write HA
s for the hitting time of A with starting

state s.

The expected value hA def
= E[HA] is known as the mean hitting time. Given any state

s∈ S, we define hA
s = E[HA

s ] for the mean hitting time of A from initial state s. The mean

hitting times are then the unique minimal positive solution to the equations

hA
s = 0 if s∈A

hA
s = 1+

∑
s′∈S p(s, s′)hA

s′ if s /∈A
(1)

A state s∈ S is recurrent , if Pr[
∑∞

n=0 1Xn=s =∞] = 1 (where 1A is the indicator ran-

dom variable for event A). Otherwise, it is transient . It can be shown that a state is

recurrent iff Pr[Xm = s for some m≥ 1] = 1 in the chain (S, (Xn)n∈N0
, p, s) (the proba-

bility of returning s, once visited, is 1). One can show that if a Markov chain is irreducible

and contains one recurrent state, then all states are recurrent. In the case we call the

chain itself recurrent (or transient).

3 Randomized test generation with prolog

In this paper, we view a test as a sequence of inputs to a system. For example, given

a web-application with a REST-interface, we could think of a test as a sequence of

HTTP-Requests using various methods (GET, POST and so forth) against different API-

endpoints (e.g. /login, /items/{USERID}/list). Since our focus is on randomization,

we do not explicitly model a concept of “valid” test cases. We also do not model the test-

oracle which determines the success or failure of the test (e.g. “requests are processed in

< 700 ms”).

At a very abstract level, such a sequence of test inputs could be generated with the

Prolog program shown in listing 1. All valid substitutions for X in the query t(X) are input

sequences to our fictional system. Since this program will only ever output test sequences

of the type [command1, command1, command1, . . .], a straightforward approach is to

add guard clauses of the form shown in listing 2. Note that the symbols p cont, p 1,. . .are

meant to represent float constants between 0 and 1, and can be adjusted as needed.
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1 t([]).
2 t([H|T]) :- command(H), t(T).
3 command(X) :- command1(X); /* ... */ ; commandr(X).
4 command1(X) :- /* ... */ .
5 % ...

Listing. 1. A program generating randomized sequences of test inputs.

1 guard_t :- random(X), X < p_cont.
2 guard_1 :- random(X), X < p_1.
3 % ...
4 t([H|T]) :- guard_t , command(H), t(T)
5 command1(X) :- guard_1 , /* ... */ .
6 % ...

Listing. 2. Guard clauses.

In effect, some sub-trees of the SLD-tree are then randomly left unexplored. We refer to

this as the guard approach.

Another, superficially similar strategy was proposed by Casso et al . (2019). Their

randomization is presented as a modification to the Prolog interpreter; equivalently, it

can be implemented using meta-predicates. Essentially, Casso et. al. shuffle the list of

input clauses whose head unifies with the current goal, instead of iterating over it in the

usual left-to-right fashion. They do not drop rules. The termination of the program is

instead enforced via depth-control. It is thus not difficult to see that the random approach

itself merely alters the order of test cases, but not their number. As such, the questions

concerning the number of test cases (that we study here) do not make sense for their

approach.

However, one can augment the shuffling approach due to Casso et al. by additionally

dropping several items from the set of unifying rules prior to shuffling. We do this with

an independent Bernoulli trial for each rule (i.e. the number of dropped rules follows a

Binomial). The resulting algorithm shares many properties with our scheme above (in

particular, the results from the next section apply). We refer to this approach as the

drop-and-shuffle strategy. We proceed to study both approaches below.

3.1 Guard strategy

3.1.1 Number of generated tests

The program P shown in listings 1 and 2 gives rise to a probabilistic number of test

cases. We study the questions: Is this number finite? If so, what is the expected number

of test case?

The program P gives rise to an infinite Markov chain, which is based on the SLD-

tree corresponding to P. Recall that P is governed by some probabilities p cont, p 1,

. . ., which we will denote by pc, p1, . . . , pr. The Markov chain is depicted in Figure 1.

Note that we model choice points via the states si. This is necessary, because P will

backtrack when a call to command1 fails, and proceed to command2 with probability p2.

Double-circles denote output states – that is, whenever such a state is visited, a test case

terminating in that state is generated. Node � corresponds to the empty list. ⊥ is the

only absorbing state. It corresponds a termination of the resolution algorithm.
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Fig. 1. The Markov chain corresponding to P with Init= � and blocks α∈ {1, . . . , r}∗
surrounded by blue boxes.

The blue boxes denote areas that share a common structure. We call these areas

blocks . We can uniquely identify each block by a finite sequence α∈ {1, . . . , r}∗. For any
state s in the Markov chain, we denote by Block(x) the unique block that contains it.

For any label occurring in a block (s1, s2, . . . , sr and c1, . . . , cr) and a block α, write

sα1 , c
α
1 , . . .for the unique state with that label in block α. In this way, we can identify

any state in the Markov chain. Put differently, the Markov chain is given by a state

space S = {sαi , cαi | 1≤ i≤ r, α∈ {1, . . . , r}∗} ∪ {⊥, �} and transition probabilities p(s, s′)
for s, s′ ∈ S:

p(�, sε1) = pc

p(�,⊥) = 1− pc

p(sαi , s
α
i+1) = 1− pi 1≤ i < r

p(cαi , s
α
i+1) = 1− pc 1≤ i < r

p(cαi , s
α·i
1 ) = pc 1≤ i≤ r

p(sαi , c
α
i ) = pi 1≤ i≤ r

The dashed upward arrows (which correspond to backtracking to a lower-recursion level)

are somewhat more technical to define. Those arrows originate in states of the form sαr
or cαr . There are several cases to consider:

a) α∈ {1, . . . , r}∗ · i for some 1≤ i < r

b) α∈ {1, . . . , r}∗ · i · r+ for some 1≤ i < r

c) α∈ r∗
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This motivates the following transition probabilities

p(sα·ir , sαi+1) = 1− pr 1≤ i < r case a)

p(cα·ir , sαi+1) = 1− pc 1≤ i < r case a)

p(sα
′·i·r···r

r , sα
′

i+1) = 1− pr 1≤ i < r case b)

p(cα
′·i·r···r

r , sα
′

i+1) = 1− pc 1≤ i < r case b)

p(sr···rr ,⊥) = 1− pr case c)

p(cr···rr ,⊥) = 1− pc case c)

We call edges from a block β · α to a state in block β or from any block to ⊥ an upward

edge. They correspond precisely to the dashed arrows in Figure 1. If the Markov chain

follows such an edge, we say block β · α is left upward or that the chain traverses upward

at that point. A block that has been left upward, is never visited again.

It is immediate that every state is visited at most once. There are no two states that

can be reached from one-another. Note further that if we omit the dashed arrows and

the state ⊥, the resulting graph structure is an infinite, finitely branching tree. Yet,

it is conceivable that the terminal state ⊥ is never reached, because the sequence of

states visited from � is infinite. The following proposition shows that this is not the case,

provided pc < 1.

Proposition 1.

Let s∈ S be any state. If pc < 1, then all sequences originating in s eventually leave

Block(s) upward. In particular, ⊥ is visited eventually.

Proof.

Let α=Block(s). It is sufficient to show the result for s= sα1 . We first study the special

case that there is an infinite path that never traverses upward. Pick an infinite path

s0s1s2 · · · through the chain that never traverses upward. For every n, the prefix s0 · · · sn
must traverse at least tn

def
= 1+ � n

2r � edges of the form (cβi , s
β·i
1 ) (for correspondingly

many distinct blocks β). This is because inside a block, there are only 2r states and no

cycles. Hence, the probability of such a prefix is at most ptnc which tends to 0 as n→∞.

As a result, the probability of any path that never traverses upward is 0.

Now for any i, consider the sub-tree of nodes below cαi that are visited. Since every

node in the Markov chain can be visited at most once, the only option to remain in

this tree indefinitely is for the tree to be infinite. However, the Markov chain is finitely

branching. Therefore, the sub-tree of visited nodes below cαi is finitely branching. By

König’s lemma, this tree contains an infinite path and hence has probability 0.

Corollary 1.

Let α be any block. The probability of reaching α from sε1 (i.e. from the initial block) is:

Pr[Hα <∞] = p|α|c ·
|α|∏
i=1

pαi
<∞
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Consequently, the probability of reaching α from � is p
|α|+1
c ·∏|α|

i=1 pαi
.

Let s∈ S. We denote by N(s) the random variable that counts the total number

of states visited from s (including those in downstream blocks), before Block(s) is left

upward. A useful observation is that N(s) =HE
s can also be expressed as a hitting time,

where E = {sβi | β ≺Block(s), 1≤ i≤ r} ∪ {⊥}. Note that it would suffice to take the

subset of E which contains sβαi+1 for any β = α1 · · · αi−1 ≺ α. To define this set, we would

have to work around the case αi = r – indeed, if α∈ r∗, then E = {⊥}. So we define E

as larger than needed purely to simplify notation. Note moreover that E depends on

α=Block(s). Since α is usually clear from context, we simply write E, but also use the

notation Eα when needed.

Lemma 1.

Let s∈ S and write pmax =max{p1, . . . , pr}. If pc < 1 and η
def
= r · pmax · pc < 1, then

E[N(s)] is finite.

Proof.

Let α=Block(s). It is obvious that N(xα)≤N(sα1 ) for all x∈ S with Block(x) = α. It

therefore suffices to show that N(sα1 ) is finite. In the remainder of this proof, we write

ŝ= sα1 .

Let now β be any block and let Mβ denote the number of states visited in block β from

sβ1 . Clearly Mβ ≤ 2r. Let furthermore Iβ = 1Hβ
ŝ <∞ denote the indicator random-variable

of the event that β is visited from ŝ. Note that both random-variables are independent

because the underlying random events in P are independent and we count by Mβ only

states that are visited once β is entered. We have:

N(ŝ) =
∑

β∈α·{1,...,r}∗
Iβ ·Mβ

There are precisely rl blocks that have distance l ∈N from α. For each such block β = α ·
β1 · · · βl, the probability of reaching it from α is Pr[Iβ = 1] = plc ·

∏l
i=1 pβi

by Corollary 1

(if l= 0 then β = α and the probability is 1). Then Pr[Iβ = 1]≤ (pmax · pc)l for all β. This
gives (using linearity of expectation and that Iβ is independent from Mβ for all β):

E[N(ŝ)] =
∑

β∈α·{1,...,r}∗
E[Iβ ] · E[Mβ ]≤

∞∑
l=0

rl · (plc · plmax) · 2r

= 2r ·
∞∑
l=0

ηl =
2r

1− η

Let s∈ S. Denote by O(s) the number of output states that are visited from s before

Block(s) is left upward. Clearly O(s)≤N(s).

Theorem 1.

Let pc < 1 and pc · r ·max{p1, . . . , pr}< 1. Then for any block α

E[O(sα1 )] =

∑
pi

1− pc
∑

pi
and E[N(sα1 )] =

r+
∑

pi
1− pc

∑
pi
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Proof.

C
def
= E[N(sα1 )] is finite by Lemma 1. Note that C is independent of α by the strong

Markov property. We recall that N(sα1 ) =HA
sα1

is a hitting time, where A= {sβi | β ≺
α} ∪ {⊥}. In the remainder of the proof, we drop the superscript Greek letter for all

states in α; that is, s1 is understood to mean sα1 .

Every path from s1 to A must visit s2, . . . , sr. Thus, by the strong Markov property,

N(s1) =
(∑r−1

i=1H
si+1
si

)
+HA

sr . By linearity of expectation and Eq. (1)

C = E[N(s1)] =
r−1∑
i=1

hsi+1
si + hA

sr =
r−1∑
i=1

1 + pi · hsi+1
ci + (1+ pr · hA

cr )

=

r−1∑
i=1

1 + pi

⎛
⎜⎝1 + pc · hsi+1

sα·i
1︸ ︷︷ ︸
C

⎞
⎟⎠+

⎛
⎜⎝1 + pr

⎛
⎜⎝1 + pc · hA

sα·r
1︸ ︷︷ ︸
C

⎞
⎟⎠
⎞
⎟⎠

= r+

r∑
i=1

pi +Cpc

r∑
i=1

pi (∗)

Solving for C proves the second claim of the theorem.

The proof for E[O(s1)] is similar. We first make a slight modification to Eq. (1) to

count only output states:

hA
s = 0 if s∈A

hA
s =

⎧⎨
⎩1 +

∑
s′∈S p(s, s′)hA

s′ s is an output state

0 +
∑

s′∈S p(s, s′)hA
s′ s is not an output state

if s /∈A

This can be shown in exactly the same way as equations (1) (see e.g. Norris (1998) for

the proof of the classical theorem; the adaption is straightforward). Alternatively, the

following intuition can be turned into a formal proof:

Observe that in counting only output states O⊆S, we are effectively studying a second

Markov chain, whose state set consists only of output states (and ⊥). For s, s′ ∈ S write

P(s, s′) for the set of all simple paths (without repeating vertices) from s to s′ that do

not visit O. The transition probabilities p′ of this second chain are given by the relation

p′(s, s′) =
∑

w∈P(s,s′)

|w|−1∏
i=1

p(wi−1, wi)

So our modified formulas are simply a different way to write Eq. (1) for this modified

chain in an iterative fashion.

With these modifications, we see that (∗) becomes:

C ′ =
r∑

i=1

pi +C ′pc
r∑

i=1

pi

Again, solving for C ′ establishes the claim.

Note that for any given state sα1 , the mean hitting time h
sα1
� =

∑
n≥1 Pr[H

sα1
� ≥ n]≥∑

n≥1 1− pc =∞ (where we use E[X] =
∑

n≥1 Pr[X ≥ n] for any random variable that
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only takes on positive integer values). So although we have a non-zero probability of

selecting every test, we won’t, informally speaking, do so on average. Naturally, this is

solved by repeating the experiment a sufficient number of times. This is the content of

the next section.

3.1.2 Infinite looping and time-to-hit

As shown in Lemma 1, the program in listing 1 terminates eventually. As a result, every

state except ⊥ in the Markov chain we studied above is transient and, moreover, the

number of produced test cases is always finite. In testing, one aims at a high test coverage,

and the number of test cases we produce in this fashion, though free of duplicates, has a

low chance of visiting tests in deep blocks. A natural approach is to loop on the predicate

t/1 like so:

repeat , t(X).main_loop(X) :-

With respect to our Markov chain this amounts to removing ⊥ and to instead redirect

any arc into ⊥ to �. The resulting chain is recurrent (indeed positive recurrent) and

we compute the mean hitting time of any state. In what follows, we will assume p1 =

p2 = · · ·= pr
def
= p such that r · p · pc < 1 (as in Theorem 1). Moreover, we assume that

p(�, sε1) = 1, so that the empty list is never selected as an output. This simplifies the

formulas below slightly, but has otherwise no effect on the line of reasoning we give here.

Given the conditions of Theorem 1, there is a constant C =N(sα1 ) that is independent

of the value of α. As noted before, C = hEα
sα1

is a mean hitting time where Eα = {sβi | β ≺
α, 1≤ i≤ r} ∪ {�} (note that we modified the definition of E used in the previous section

by replacing ⊥ by �). Recall that we usually drop the subscript α, because it is clear from

context.

If we hop from one state sαi to its neighbor sαi+1 we might traverse the tree below sα·i1

with probability p · pc. That step will visit C states. This means (by Eq. (1)):

h
sαi+1

sαi
= 1+ p(1 + pcC)

def
= Δ

More generally the mean hitting time within a block is again independent of α and

can be computed as:

h
sαi
sα1

= h
sα2
sα1

+ h
sα3
sα2

+ · · ·+ h
sαi
sαi−1

= (i− 1)Δ (2)

We define the leave upward time Usαi
= hE

sαi
where E =Eα as above. Note that the

value Usαi
∈N∪ {∞} does not actually depend on α. This justifies writing Ui =Usαi

. It

is obvious that C =U1. Moreover, by using the same derivation as that in Eq. (2):

Ui = (r− i+ 1)Δ 1≤ i≤ r (3)

We already noted that C =U1. A related quantity is the hitting time of � from any sαi ,

α= α1 · · · αt, which we may compute using the intermediate leave upward times:

h�
sαi

=Ui +Uαt+1 + · · ·Uα1+1

Note that we abuse notation: Equation (3) gives Ur+1 = 0. While sαr+1 does not exist and

hence the corresponding hitting time is not defined, it is convenient to allow such terms

and exploit that Uαj+1 = 0 whenever αj = r (1≤ j ≤ t).
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With this, we may compute:

h�
sαi

=Ui +

t∑
k=1

Uαk+1 =Δ ·
(
(r− i+ 1) +

t∑
k=1

(r− (αk + 1) + 1)

)

=Δ ·
(
1 +

t∑
k=0

r− αk

)
where α0

def
= i (4)

Note again that the formula works correctly, if i= r+ 1: Say α= rrr. Then we are in the

process of falling back to � and the equation gives 0. While the hitting time is again not

defined for the non-existent state sr+1, we will sometimes have to compute the hitting

time of � from the “right neighbor” of si+1. In these situations, abusing notation in

this way is useful because we need not distinguish between cases where i < r and those

where i= r.

Finally, we may now compute the hitting time of an arbitrary state in terms of hitting

times in intermediate blocks, again using Eq. (1). Let α= β · j.

h
sα1
� = h

sβj
� + 1

+ (1− p)

(
h�

sβj+1

+ h
sαi
�

)
(fall through to sβj+1)

+ p

(
1 + (1− pc)

(
h�

sβj+1

+ h
sαi
�

))
(no visit to next block α)

= h
sβj
� + 1+ p+

(
h�

sβj+1

+ h
sαi
�

)
(1− ppc)

This gives

h
sα1
� =

h
sβj
� + 1+ p+ (1− ppc)h

�

sβj+1

ppc

and together with Eq. (2) and Eq. (4), recalling that α|α| = j, we have:

h
sαi
� =

h
sβj
� + 1+ p+ (1− ppc)h

�

sβj+1

ppc
+ (i− 1)Δ

=
h
sβj
�

ppc
+

1

ppc

⎛
⎝1 + p+ (1− ppc)

⎛
⎝ |α|∑

k=1

r− αk

⎞
⎠Δ

⎞
⎠+ (i− 1)Δ (5)

The following theorem gives a closed formula:

Theorem 2.

Let sαi for some α= α1 · · · αt. Let ν = ppc and ν · r < 1. Then

h
sαi
� = ν−t + (i− 1)Δ+

t∑
k=1

1 + p+ (αk − 1)Δ+ (1− ν)
∑k

s=1(r− αs)Δ

νt+1−k
(6)

Proof.

By induction on t. If t= 0, then α= ε and by Eq. (2), we have h
sεi
� = 1+ (i− 1)Δ.

Moreover the empty sum in Eq. (6) equates to 0 establishing the induction base.
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Now let t > 0 and assume the statement holds for t− 1. By induction, we may replace

h
sβj
� in Eq. (5) with Eq. (6):

1

ν

(
ν−(t−1) + (αt − 1)Δ+

t−1∑
k=1

1 + p+ (αk − 1)Δ+ (1− ν)
∑k

s=1(r− αs)Δ)

νt−k

)

+
1

ν

(
1 + p+ (1− ν)

(
t∑

s=1

r− αs

)
Δ

)
+ (i− 1)Δ

= ν−t +

t−1∑
k=1

1 + p+ (αk − 1)Δ+ (1− ν)
∑k

s=1(r− αs)Δ)

νt+1−k

+
(1+ p+ (αt − 1)Δ+ (1− ν)(

∑t
s=1 r− αs)Δ)

νt+1−t
+ (i− 1)Δ

= ν−t + (i− 1)Δ+

t∑
k=1

1 + p+ (αk − 1)Δ+ (1− ν)
∑k

s=1(r− αs)Δ

νt+1−k

Corollary 2.

Let ν = p · pc with ν · r < 1. Then h
sαi
� ∈Θ(ν−t) for any α= α1 · · · αt.

Proof.

Write Eq. (6) as

ν−t +A+ ν−t−1
t∑

k=1

Bk +
∑k

s=1 Ds

ν−k

for suitable constants (in t) A≥ 0, Bk ≥ 0, and Ds ≥ 0, whereby h
sαi
� ∈Ω(ν−t).

Choose suitable largest values B ≥Bk for all t∈N, 1≤ k≤ t, and D≥Ds for all 1≤
s≤ t. Bound Eq. (6) from above by

ν−t +A+ ν−t−1
t∑

k=1

B +D · k
ν−k

≤ ν−t +A+ ν−t−1(B +D) ·
t∑

k=1

k

ν−k

A well-known calculation via derivatives gives
∑t

k=1 k · νk = ν
∑t

k=1 kν
k−1 ≤ ν

∑∞
k=1

kνk−1 = ν · d
dν

∑∞
k=0 ν

k = ν
(1−ν)2 . With that we have

ν−t +A+ ν−t−1
t∑

k=1

B +D · k
ν−k

≤ ν−t +A+ (B +D)
ν−t

(1− ν)2
∈O(ν−t)

3.2 Drop-and-Shuffle strategy

3.2.1 Number of generated tests

To study the number of generated tests in this context, we again have to define a Markov

chain. The Markov chain in the shuffle and drop scenario is significantly more complicated

than the one we studied previously in subsection 3.1.1. This is because there are now

multiple ways a given test case can be output. To distinguish between those, we need

to use a larger and more complex state set. We will illustrate this, before defining the

Markov chain formally.
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Consider again the program in listing 1. When the current goal is command(H), we

have a set R of rules whose head unifies with this goal. In this case, R= {command(H) :-

command1(H), . . . , command(H) :- commandr(H)}. Recall this is meant to represent r ∈N

distinct rules. In standard SLD-resolution, we would select the first rule that occurs in the

input program P, namely command(H) :- command1(H) first, and push the remaining

r− 1 rules on the stack from right to left. During backtracking, we would then eventually

explore each of those rules in the order given in the input program (except in case of an

infinite recursion).

In the drop-and-shuffle strategy, we first perform an independent Bernoulli trial for

each rule ρ∈R: With probability pd, we remove ρ from R. We refer to pd as the drop

probability . In this way, a set R′ ⊆R is computed. The random variable |R′| follows a

Binomial distribution: Pr[|R′|= k] =
(|R|

k

)
p
|R|−k
d (1− pd)

k. Next, we shuffle the set R′. To
this end, we select a permutation π ∈ S(R′), where S(M) denotes the symmetric group

on a given set M . Conceptually, any probability distribution on S(R′) is conceivable. In
this paper, we follow a simpler approach and select π uniformly at random from S(R′).
In this way, we obtain an ordered tuple of elements of R without any repetitions.

The result of these two random processes is a tuple (ρi1 , . . . , ρik) where k= |R′| and
ρij ∈R. To simplify notation, we identify R′ with this tuple in what follows. Since both

random events – dropping and shuffling – are independent, the probability of each such

tuple R′ = (ρi1 , . . . , ρik) is precisely Pr[R′] = pn−k
d (1−pd)

k

k! .

Remark 1.

Note that this random process is different from the classical “drawing without replace-

ment”, where the number of elements that are drawn is usually a fixed parameter.

These observations motivate the following Markov chain M= (S, (Xn)n∈N0
, p, ε). The

state set S now consists of stacks of choice-points – in loosely the same way a Prolog

runtime would maintain them. Before formally defining the state set and transition proba-

bilities, we invite the reader to consider a simplified graphical representation of the chain,

as given in Figure 2.

Figure 2 gives an overview of the chain. Some details have been omitted or simplified

to avoid cluttering the picture. Probabilities are not shown. We have omitted choice

points from a higher layer: A state/stack of the form [H|T ][](1, 5, 2, 3)[H|T ](1, 2, 3) is thus
simply represented as (1, 2, 3), omitting the “lower” parts of the stack. Note that these

items are implicitly clear from the path to a given node. Moreover, most backtracking

arrows have been omitted. Finally, at any given depth, both the node [H|T ][] and the node

[H|T ] each have
∑r

k=0

(
r
k

) · k! = �r! · e� children.2 These have also mostly been omitted.

We describe the state set via (the language defined by) a regular expression. First we

need two auxiliary languages:

SSel = {[], [H|T ], [][H|T ], [H|T ][]}
SCom = {(y1, . . . , yl) | 1≤ l≤ r, yi ∈ {1, . . . , r}, yi �= yj for all i �= j}

The set SCom corresponds to all ordered subsets of command rules, that is, subsets

of {1, . . . , r}. Note that the empty subset is excluded, that is, () /∈ SCom. The set SSel

2 We have
∑r

k=0

(r
k

)
k! = r!

∑r
k=0

1
k!

≈ r! · e with error term
∑∞

k=r+1
1
k!

∈ (0, 1), because r≥ 1.
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Fig. 2. The Markov chain corresponding to P in the Drop-and-Shuffle approach. Dashed
arrows represent backtracking. Double circled nodes produce an output. Hatched nodes are
recursive sub-tree roots, which start an entire infinite sub-tree with the same structure as the

whole chain (shown as gray triangles).

corresponds to the five probabilistic options the drop-and-shuffle algorithm gives us for

resolving goals of the form t(X), including potential choice-points for backtracking. Note

that, again, the “empty selection” () /∈ SSel is not included.

We can now define the state set S = (SSel ×SCom)
∗ · (SSel + ε). The “empty state” ε∈ S

is the initial state of the chain; that is, Init= ε. We write the pairs 〈x, y〉 ∈ SSel ×SCom in

angular brackets in order to visually distinguish them and improve readability.

Given a state ε �= s∈ S, we may write it as s=w · x or s=w · 〈x, y〉 with w ∈ S, x∈
SSel, and y ∈ SCom. Because ε /∈ SSel and also ε /∈ SCom, this factorization is unique. We

make liberal use of this observation when defining the transition probabilities. We first

define transitions that descend further into the tree. These correspond to solid arrows in

Figure 2. For any l≥ 1, w ∈ S, and x∈ SSel:

p(w, w · x) = (1− pd)
2

2
x∈ {[H|T ][], [][H|T ]}

p(w, w · x) = (1− pd)pd x∈ {[], [H|T ]}

p(w · x, w · 〈x, (y1, . . . , yl)〉) = pr−l
d (1− pd)

l

l!
x∈ {[H|T ][], [H|T ]}

Next, we define transitions that correspond to backtracking . These correspond to

dashed arrows in Figure 2. To this end we define the operation Pop : S →S. Intuitively,
this operation pops from the stack until we arrive at a previously unpursued choice

point. Looking back at Figure 2, it identifies the target of the backtracking arrow. It may

be necessary to remove multiple layers of pairs 〈x, y〉 when backtracking. For example

Pop(〈[H|T ][], (1, 3)〉〈[H|T ][], (3)〉〈[H|T ], (1)〉) = 〈[H|T ][], (1, 3)〉[]. Formally, we define Pop

recursively with Pop(ε) =⊥ and:

Pop(w · [][H|T ]) =w · [H|T ] Pop(w · [H|T ][]) =w · []
Pop(w · []) = Pop(w) Pop(w · [H|T ]) = Pop(w)

Pop(w · 〈x, (y1)〉) = Pop(w · x) Pop(w · 〈x, (y1, y2, . . . , yl)〉) =w · 〈x, (y2, . . . , yl)〉
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We can now define all backtracking transitions as follows:

p(w · x, Pop(w · x)) = 1 x= [] or x= [][H|T ]
p(w · x, Pop(w · x)) = prd x= [H|T ] or x= [H|T ][]

p(w, Pop(w)) = p2d w=w′ · 〈x, y〉 or w= ε

The last two model the event that all matching rules are dropped when unifying

command(X) or t(X), respectively.

Note the recursive structure of M: Any state of the form w · 〈x, y〉 (x∈ SSel, y ∈ SCom)

is the root of an infinite sub-tree that has a structure identical to that of M. We call

such states recursive sub-tree roots or simply sub-tree roots . These states are drawn with

hatched background in Figure 2.

To each recursive sub-tree root s corresponds a unique state Exits that is visited when

the chain leaves that sub-tree (via backtracking). In other words: All paths that exit the

sub-tree below s must traverse Exits. For example, consider the left-most gray sub-tree in

Figure 1 (with the large gray triangle in the background) below s= 〈[H|T ][], (1, 2, . . . , r)〉.
Its exit-state is the next node to the right: Exits = 〈[H|T ][], (2, . . . , r)〉. In general, if s

is of the form w〈x, y〉, then Exits = Pop(w · 〈x, y〉). Note that Exits may be at the same

depth as s or at a lower depth than s. It is never at a higher depth.

We can now compute the average number of generated tests as before. It is again

the mean hitting time h⊥
ε . By an argument identical to Proposition 1, the chain will

reach ⊥ eventually with probability 1, if pd > 0. But that does not imply that the hit-

ting time – an expected value – converges for all such values of pd. Indeed, the hitting

time is finite only for a subset of possible choices for pd > 0, as the following theorem

shows:

Theorem 3.

Let pd ∈ (1− 1√
r
, 1]. Then the expected number h⊥

ε of states visited from ε is finite and

given by:

h⊥
ε =

1+ 2(1− pd)

1− r(1− pd)2

Moreover this hitting time is identical to hExits
s for any recursive sub-tree root s and

its corresponding exit state Exits. We define C
def
= h⊥

ε and remark that it is a constant

property of the chain.

Proof.

The fact that h⊥
ε = hExits

s for any recursive sub-tree root s is apparent from the definition

of the chain: The transition probabilities are prefix invariant. So p(x · a, x · b) = p(a, b)

for all factorizations s= xa with x∈ S. h⊥
ε is the unique minimal positive solution to the

equations Eq. (1). Now, letting C
def
= h⊥

ε :

C = 1+ pd(1− pd) · 1 + p2d · 0

+ pd(1− pd) ·
(
1 +

r∑
k=0

pr−k
d (1− pd)

k

k!
· k! ·

(
r

k

)
· k ·C

)
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+
1

2
· (1− pd)

2 ·
(
2 +

r∑
k=0

pr−k
d (1− pd)

k

k!
· k! ·

(
r

k

)
· k ·C

)

+
1

2
· (1− pd)

2 ·
(
1 +

r∑
k=0

pr−k
d (1− pd)

k

k!
· k! ·

(
r

k

)
· (k ·C + 1)

)

We recall that (x+ y)r =
∑r

k=0

(
r
k

)
xkyr−k. Differentiation and subsequent mul-

tiplication by x gives rx(x+ y)r−1 =
∑r

k=0 k
(
r
k

)
xkyr−k. Moreover, recall that∑r

k=0

(
r
k

)
pr−k
d (1− pd)

k = 1. With this, the above simplifies to

C = 1+ 2(1− pd) +Cr(1− pd)
2

Now if pd ≤ 1− 1√
r
, then this implies C ≥ 1 + 2√

r
+C, which is possible only if C =∞.

On the other hand, if pd ∈ (1− 1√
r
, 1] then solving for C establishes the claim. Note that

on this interval, the formula has no singularities and is positive.

3.2.2 Infinite looping and time-to-hit

We again construct a recursive analysis of the mean-hitting-time. Recall that in

subsection 3.1.2 we analyzed the hitting time of the unique state corresponding to

τ = (τ1, . . . , τl) (with τi ∈ {1, . . . , r}) by first considering the hitting time of the unique

state corresponding to τ (l−1) = (τ1, . . . , τl−1), and then constructing the full hitting time

from that number “bottom-up”. This recursive argument works less well in the present

scenario, where many different states correspond to τ (l−1). Computing the overall hitting

time as a sum of those intermediate hitting times is challenging, as we explain below. We

therefore develop an approach to compute the hitting time “top-down”.

First, we need to add looping to the Markov chain, as in subsection 3.1.2. Recall that

there we merged the two states � and ⊥. We do not do that here. Instead, we add an

edge from ⊥ to ε with probability 1. This is for technical reasons, and we will justify this

choice further below.

When running the program P in the drop-and-shuffle strategy, first we randomly select

and permute a subset of the two rule-heads t([]) and t([H–T]). To proceed, we need

to visit [H|T ] or [H|T ][] at depth 0. Once that happens, there are two options: With

probability pd, the next state does not contain τ1, and thus we cannot visit τ in this

loop iteration (i.e. before returning to ε first). We call such a sub-tree root unproductive.

Conversely, with probability (1− pd), the next state does contain τ1 somewhere within its

stack (though not necessarily at the top). Those sub-tree roots and their corresponding

sub-trees are called productive (shown in green in Figure 3). If a productive or unpro-

ductive state does not have τ1 at its top, there is an infinite tree below it that will we be

explored, but cannot yield the desired test case. We also call such a sub-tree unproductive

(shown in gray in Figure 3). Note that productive sets of size k > 0 give rise to precisely

k− 1 unproductive sub-trees, though not all of those are traversed before the sub-tree

containing τ is visited. Let Aτ denote the set of states that output τ :

Fact 1.

If the chain arrives at an unproductive state, it must first visit ε before visiting Aτ .
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Fig. 3. Recursive sub-tree roots are connected to all ordered subsets of {1, . . . , r} (most
arrows omitted for readability). Each subset of size k starts chain of k subsets. One element
(here 1) is the desired next item of the test sequence, and each chain contains at most one

state with the desired item at the top (depicted in green).

Note that we are only talking about depth 0 for now, so this fact is obvious. At higher

depths, we would need to adjust the definition of “productive” to ensure that all prefixes

at lower depths have τ1, τ2, . . . at the top.

If the chain arrives at a productive state, the situation is more complex: The chain

needs to traverse a number of unproductive sub-trees, depending on the position of τ1
in the ordered set. For example, in the second branch shown in Figure 3, there are two

unproductive sub-trees to be traversed before reaching productive sub-tree (and several,

indicated by the dots, after). Below the productive state, we find a tree of recursive

structure: The goal now is to reach a test case of length l− 1, or to return to ε and start

from scratch (cf. Fact 1).

Starting from a productive state s of sizem≤ r with item τ1 at position k ∈ {0, . . . , m},
the hitting time is thus kC + hAτ

x , where C is the quantity from Theorem 3 and x∈ S is

the state arising from s after k items have been popped (e.g. the green state in the lower

branch in Figure 3).

We stress that hAτ
x depends not only on the remaining test-case suffix (τ2, . . . , τl),

but also on the number of (unproductive) backtracking steps – at least (m− k− 1)C –

before returning to ε. The chain may arrive at an unproductive step at some point, and

by Fact 1, it first needs to visit ε before reaching Aτ . Note that this may happen at

depth > 1 as well! This prevents us from applying induction in a straightforward way.

We thus need the following lemma, which allows us to reduce the hitting time hAτ
x to

three quantities we may compute individually and inductively:

Lemma 2.

For any recurrent Markov chain, let A⊆S and x, y ∈ S \A with x �= y. Then:

hA
x = hA∪{y}

x +Pr[Hy
x <HA

x ] · hA
y
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We prove the lemma at the end of this section, as it is purely Markov theoretic. In our

immediate setting, the consequence is that

hAτ
ε = hAτ∪{⊥}

ε + q · hAτ

⊥ = hAτ∪{⊥}
ε + q(1 + hAτ

ε )

⇐⇒ hAτ
ε =

h
Aτ∪{⊥}
ε + q

1− q
(7)

for some probability q that depends on τ . We shall see below that q in fact only depends

on the length l of the test case. Note that by not merging ⊥ and ε, we fulfill the “x �= y

premise” of the lemma. By choosing pd ∈ (1− 1√
r
, 1), we obtain a recurrent chain.

It is thus sufficient to compute q and h
Aτ∪{⊥}
ε . We have “widened” the set Aτ by

including ⊥, which means we no longer have to worry about looping back to ε. This

effectively allows us to compute the desired hitting-time inductively, applying Lemma 2

iteratively. We first turn to computing q as a function of τ .

Let s= 〈x1, y1〉 · · · 〈xm, ym〉 ∈ S be any recursive sub-tree root, where yi =

(yi,1, . . . , yi,ni
)∈ SCom for 1≤ i≤m. Then the sequence y1,1 · · · ym,1 is the prefix of s.

It corresponds to the sequence that would be output if state s · [] is reached.
Proposition 2.

1. Let s be a recursive sub-tree root with prefix ρ and τ = (τ1, . . . , τl). Then

Pr[HAρτ
s >HExits

s ] = 1− (1− pd)
2l+1 def

= q(l)

In particular, this probability depends only on l and not on the values τi or ρ.

2. Let s be a recursive sub-tree root with prefix ρ and let τ be any test case. Then:

h
A

ρτ∪{Exits}
s = h

A
τ∪{⊥}

ε

Informally, the stated mean hitting time is “translation invariant”.

Proof.

1. If l= 0, then Pr[H
Aρ
s >HExits

s ] = (1− pd)pd + p2d = pd, which is the probability of

not selecting [], [H|T ][] or [][H|T ], each of which would eventually output the prefix

ρ. This depends only on l= 0, so write q(0) = pd.

Now let l > 0: We reach Exits without visiting the next deeper state by backtracking

to it immediately with probability p2d, or by visiting [] with probability (1− pd)pd
which sums up to pd. Otherwise we reach the next deeper state with probability

(1− pd). Here we either select τ1 and apply induction using Fact 1, or we do not

select τ1. This gives:

Pr[HAρτ
s >HExits

s ] = pd + (1− pd)((1− pd) · q(l−1) + pd)

which is of the form A · q(l−1) +B with A= (1− pd)
2 and B = pd(2− pd). This

gives rise to a polynomial (in A), namely: q(0) ·Al +B ·∑l−1
k=0 A

k. Computing the

geometric sum and simplifying the term proves the first claim.

2. This follows immediately from the definition of Exits and the recursive structure

of the chain.
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In what follows, we write τ (i) = (τ1, . . . , τi). So τ = τl and τ0 = () is the empty test

sequence. Write Ai for the set of states that output τ (i). For simplicity, we write hi =

h
Ai∪{⊥}
ε .

Lemma 3.

Let pd ∈ (1− 1√
r
, 1) and i∈ {0, . . . , l} and let C denote the constant from Theorem 3.

Then

hi = (1− pd)
2i

(
1 +

(1− p2d)(1 +C)

2
− C(1− pd)

2(r− 1)

pd(2− pd)

− (1− p)(1 + p) + (1− p)3

2pd(2− pd)
− i · (1− pd)

2 · 1 +C(r− 1)

2

)

+

(
C(1− pd)

2(r− 1)

pd(2− pd)
+

(1− p)(1 + p) + (1− p)3

2pd(2− pd)

)
Proof.

For h0 we need the hitting time of the set of four states ⊥, [], [H|T ][], and [][H|T ]. By
Eq. (1) we have

h0 = 1+ (1− pd)pd(1 +C) +
1

2
(1− pd)

2(1 +C) = 1+
1

2
(1− p2d)(1 +C)

To compute hi+1, we first look at the hitting time starting from the states [H|T ],
[H|T ][], and [][H|T ]. We select a productive state with probability (1− pd) and an unpro-

ductive one with probability pd. In either case we traverse some number 0≤ k≤ r− 1 of

unproductive sub-trees, each of which adds C steps. In case of a productive state, the

number depends on the position of τ1 in the set of k+ 1 elements:

h
A

i+1∪{⊥}
[H|T ] = pd ·

r−1∑
k=0

(
r− 1

k

)
pr−1−k
d (1− pd)

k · kC (unproductive)

+ (1− pd) ·
r−1∑
k=0

(
r− 1

k

)
pr−1−k
d (1− pd)

k

k+ 1
(productive)

·
k∑

m=0

mC + hi + q(i)(m− k)C (proposition 2 and lemma 2)

Note the denominator k+ 1 accounts for the probability of placing τi at position m=

0, 1, . . . , k. At position m, there are mC unproductive sub-trees before reaching τ1 and

(m− k) after. In the third line, we split the recursive hitting time using Lemma 2. Note

that the exit state Exits of each recursive sub-tree root s reached in this way is either

⊥ (if k=m) or the adjacent unproductive recursive sub-tree root (cf. Figure 3). By

Proposition 2 Item 1 we may use recursion.

Computing the inner sum and canceling out the denominator k+ 1 from the second

line, we get:

h
A

i+1∪{⊥}
[H|T ] = pd ·

r−1∑
k=0

(
r− 1

k

)
pr−1−k
d (1− pd)

k · kC
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+ (1− pd) ·
r−1∑
k=0

(
r− 1

k

)
pr−1−k
d (1− pd)

k ·
(
kC

2
+ hi + q(i)

kC

2

)

= pd(1− pd)(r− 1)C + (1− pd)

(
hi + (1+ q(i))

(r− 1)(1− pd)C

2

)
where the Binomial sums are computed as in the proof of Theorem 3. The formulas

for the remaining states are completely analogous, but we have additional steps for the

intermediate detours over []. It is thus convenient to express them in terms of h
A

i+1∪{⊥}
[H|T ] :

h
A

i+1∪{⊥}
[][H|T ] = 1+ h

A
i+1∪{⊥}

[H|T ]

h
A

i+1∪{⊥}
[H|T ][] = h

A
i+1∪{⊥}

[H|T ] + (1− pd)q
(i) (∗)

For the second identity, note that visits to [] are counted only in case of failure and are

thus weighted by q(i).

We can now turn to hi+1. By Eq. (1):

hi+1 = p2d · 0 + (1− pd)pd + (1− pd)pd · h
A

i+1∪{⊥}
[H|T ]

+
(1− pd)

2

2
·
(
h
A

i+1∪{⊥}
[][H|T ] + h

A
i+1∪{⊥}

[H|T ][]

)
which, after substitution of (∗) and straightforward simplification becomes

hi+1 =
1

2

(
1− p2d + (1− pd)

3q(i)
)
+ (1− pd)h

A
i+1∪{⊥}

[H|T ]

We substitute h
Ai+1

[H|T ] and Proposition 2 Item 2, then simplify, isolating the terms that

are dependent on i:

hi+1 = (1− pd)
2hi − 1 +C(r− 1)

2
· (1− pd)

2i+4

+C(1− pd)
2(r− 1) +

(1− p)(1 + p) + (1− p)3

2

With α= (1− pd)
2, β =− 1+C(r−1)

2 · (1− pd)
4, and γ =C(1− pd)

2(r− 1) +
(1−p)(1+p)+(1−p)3

2 we get the following formula (e.g. by iterative substitution):

hi+1 = αi+1h0 + (i+ 1)βαi + γ
1− αi+1

1− α
(8)

Its correctness is easily shown by induction on i≥ 0.

Substituting h0, α, β, and γ into Eq. (8) gives:

hi = (1− pd)
2ih0 − i · (1− pd)

2(i−1)+4 · 1 +C(r− 1)

2

+

(
C(1− pd)

2(r− 1) +
(1− p)(1 + p) + (1− p)3

2

)
1− (1− pd)

2i

1− (1− pd)2

which simplifies to the desired formula.

Substituting into Eq. (7) gives the following theorem:
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Theorem 4.

Let pd ∈ (1− 1√
r
, 1), r ∈N. Denote by C the constant from Theorem 3. Let τ be a test

case of length l and Aτ ⊆S the set of states that output τ . Then:

hAτ
ε =

1+
(

C(1−pd)
2(r−1)

pd(2−pd)
+ (1−p)(1+p)+(1−p)3

2pd(2−pd)

)
(1− pd)2l+1

+
(1+ pd)(1 +C)

2
− C(1− pd)(r− 1)

pd(2− pd)
− (1 + pd) + (1− pd)

2

2pd(2− pd)

− l · (1− pd) · 1 +C(r− 1)

2
− (1− pd) +

1

(1− pd)

All that remains is to prove Lemma 2:

Proof of Lemma 2.

hA
x =

∞∑
n=0

n ·Pr[HA
x = n, HA

x <Hy
x ] +

∞∑
n=0

n−1∑
k=0

n ·Pr[HA
x = n, HA

x >Hy
x , H

y
x = k]

Using Fubini’s theorem, the second sum becomes

∞∑
k=0

Pr[Hy
x = k, HA

x >Hy
x ]

∞∑
n=k+1

n ·Pr[HA
x = n|Hy

x = k, HA
x >Hy

x ]

=

∞∑
k=0

Pr[Hy
x = k, HA

x >Hy
x ]

∞∑
m=1

(m+ k) Pr[HA
y =m]

and since Pr[HA
y = 0], because y /∈A, and moreover M is recurrent (so Pr[HA

y <∞] = 1)

this is equal to

∞∑
k=0

Pr[Hy
x = k, HA

x >Hy
x ]
(
k+ hA

y

)

=

( ∞∑
k=0

Pr[Hy
x = k, HA

x >Hy
x ]k

)
+ hA

y ·Pr[HA
x >Hy

x ].

Because y /∈A, we haveHA
x �=Hy

x and so Pr[Hy
x = k, HA

x >Hy
x ] + Pr[HA

x = k, HA
x <Hy

x ] =

Pr[H
A∪{y}
x = k]. Hence the remaining two infinite sums add up to h

A∪{y}
x .

4 Evaluation

In the following section, we empirically evaluate the randomization approaches outlined

in section 3. We implement the strategy via guards using SWI-Prolog (Wielemaker et al .

2012). To implement the drop-and-shuffle strategy, we choose Go-Prolog ichiban/Prolog

(2024). Go-Prolog has a small and easily modifiable code-base, which simplifies exper-

iments of this kind. We benchmark these approaches with various choices for the

configurable probabilities.

For the benchmarks, we use two programs: a slightly altered version of the program

from listing 1 and a program generating basic arithmetic expressions, shown in listing
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(a) (b)

(c) (d)

Fig. 4. Iterations and results until test case [second, . . ., second] is reached.

3. In both cases, we count the number of iterations , which is defined as the number of

times the program needs to be re-run to obtain the target result, and the results , which

is the number of outputs of the program before we obtain the target result.

4.1 Benchmark 1: Command sequences

The first benchmark is based on listing 1 with two adjustments We limited the number

of available commands to three. Moreover, each command/1 predicate simply unifies its

argument with a corresponding constant (in our case first, second, and third). We

executed each benchmarks 1000 times. The results are shown in Figure 4.

The goal length each benchmark lists on its x-axis is the length of a list consisting solely

of the constant symbol second the respective number of times. This guarantees that we

would not find this test case with the standard depth-first, left-first search behavior,

but also that is not the path that would be picked last with depth-first search. For our

implementation, we relied on Janus Andersen and Swift (2023) for SWI as the Python-

Prolog bridge to gather the results.
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Guard-Approach Benchmarks: Every command/1 predicate had an equal probability of 1
3

for the steady probability. The different plots mark different continuation probabilities

pc used for the respective queries.

Figure 4a shows the number of results until a specific target test case is found. As

expected, the number of results drastically increases with the target list size. Further,

only a continuation probability of 0.9 has a higher number of results. Figure 4b shows

how many iterations were necessary until the determined target was found. Similar to

the number of results, the number of iterations also grows with increasing list size of

the expected outcome. As the continuation probability increases the total number of

iterations decreases.

Drop-and-Shuffle Benchmarks: As described above, for the Go-Prolog variant we imple-

mented a drop-probability as discussed in section 3. Otherwise, the benchmarks are still

conducted using the same pattern as described above for increasing goal lengths. Figure 4c

shows the number of produced results whereas Figure 4d shows the number of iterations.

Note that dropping a clause with probability 0.1 is the same as proceeding to explore

it with probability 0.9. Hence, the probabilities in Figures 4c and 4d are dual to those

above. But note that in this way they do not fulfill the premise of Theorem 3: They

are below 1− 1√
r
≈ 0.423. The mean hitting time C is thus infinite. And yet, we obtain

results! This might seem paradoxical, but is due to the fact that we return to ⊥ with

probability 1, even if there is no finite mean. Indeed, this makes these measurements

particularly interesting, because they have no defined mean to converge to – the law of

large numbers applies only if the distribution has finite mean!

Note that the drop-and-shuffle randomization strategy is much more coarse than the

guard strategy by design: The 0.1 drop probability applies to both the t predicate as well

as the command{1,2,3} predicates. This is quite different from the previous scenario,

where pc = 0.9� p1 = · · ·= pr = 0.33 were distinct. Consequently, both the number of

iterations and the number of results are notably higher for the drop-and-shuffle approach:

A probability of 0.1 to drop a clause produces significantly more solutions until a specified

goal is found. The drop probabilities of 0.14 and 0.18 are rather similar for all specified

goal lengths. On the other hand, the number of iterations signals that the number of

iterations rises with a higher dropping probability. In Figure 4c, the probability 0.14

outperforms both 0.10 and 0.18.

In Gelderie et al . (2024), we conjectured that this is due to an inflection point. But the

results of section 3.2 now show that this reasoning is not verifiable: An undefined function

cannot have an inflection point. It seems impossible to know whether this is an artifact of

the inherent randomness of the measurements (that, we know, cannot converge to a non-

existent mean), or some other effect. In any case, it underscores that the drop-and-shuffle

approach is unwieldy and difficult to analyze.

4.2 Benchmark 2: Arithmetic expressions

In this section, we provide the results of another benchmark to showcase the behavior

of both approaches in a more complicated setting. This time, our goal is to show the

behavior of the two randomization approaches in settings other than those considered in

the previous sections. We use the program in listing 3, which generates basic arithmetic
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1 expr(X) :- const(X).
2 expr([Operator , Operands ]) :- unpack(Operator , Operands).
3

4 const (1).
5 const (2).
6 const (3).
7

8 unpack(plus , [A, B]) :- expr(A), expr(B).
9 unpack(times , [A, B]) :- expr(A), expr(B).

10 unpack(minus , [A]) :- expr(A).

Listing. 3. A program generating arithmetic expressions.

Table 1. Example expressions of
smallest possible size for the target

values (in Polish notation)

Target Value Shortest Expression

4 +(1,3)

−4 −(+(1,3))

6 ×(2,3)

−12 −(×(3,+(2,2)))

15 ×(3,+(2,3))

expressions build from the two binary operators + and ×, as well as the unary operator −.

Note that only the numbers 1, 2, and 3 can be used within an expression. Expressions have

the form [minus, [plus, [1,3]]]. In the text below, we use the more readable symbolic

representation −(+(1,3)) (Polish notation). The value of the previous expression is −4.

Our benchmark counts the iterations and number of results (defined as above in section

4.1) until an expression that evaluates to a specific target value is found. The target values,

along with example expressions of shortest length, are provided in Table 1. As before,

we repeat our experiment 1000 times. Clearly, for any target integer value x, there are

infinitely many expressions that evaluate to x. However, some values can be reached with

relatively simple expressions, whereas others require more complex, nested expressions

that can only be found at lower depths in the SLD-tree.

Note that the results from the preceding sections do not directly extend to the program

that we study here: The program is different (though similar in structure), and we now

investigate the number of steps needed to reach any output from an infinite set of target

outputs. The second point, in particular, is a major difference from the previous setting.

Consider, for example, the target value 15. Expressions with value 15 are ubiquitous.

Suppose during resolution, we arrive at a partially expanded expression +(a,X), where

X is yet to be derived and where the value of a is an arbitrary integer. Then there are

infinitely many expressions for X that will give the value 15. The only partial expression

that cannot ever be completed to a full expression evaluating to 15 is of the form ×(a,X)
for an expression a with a value that is not a divisor of 15. This means, that we have a

much larger probability of arriving at a “desired” output than before.
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(a) (b)

(c) (d)

Fig. 5. Iterations and results until the generated expression has a specific value.

Guard-Approach Benchmarks: For the guard approach, we used the continuation prob-

abilities pc = 0.3 to pc = 0.45 in increments of 0.05. The continuation probability pc was

used only for the clause in line 2 of listing 3. All other clauses, including the facts in lines

4–6, were guarded with a fixed probability of 0.33.

The results of the guard-approach benchmark is shown in Figures 5a and 5b. The first

observation is that lower continuation-probabilities result in a larger number of results

until a target clause is reached. This is in contrast to the previous benchmark (cf. section

4.1), where higher probabilities lead to a large number of results. This is likely because we

now try reach any one expression from an infinite set of expressions. If the continuation

probability is higher, we reach deeper into the SLD tree. Unlike before, however, we are

quite likely to find our target that way.

Note that expressions with a negative sign require both more iterations and produce

more unwanted results, before being reached. Target values requiring more com-

plex expressions take longer to reach, as expected. There is significant increase in

the time required to produce a target result, if three or more sub-expressions are

needed (i.e. for −12 and 15). Note also that there is a small peak for expression −4.

This is likely, because −4 requires on additional operator if compared with 4 = 2+ 2

and 6= 2 · 3.
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Drop-and-Shuffle Benchmarks: We used a drop-probability p ranging from 0.4 to 0.55

(in increments of 0.05). Values of p > 0.55 took excessively longer to benchmark, and we

could not complete 1000 test-runs within four days of running the benchmark for such

values of p. The results of the benchmarks are shown in Figures 5c and 5d.

First, we note that the numbers are orders of magnitude larger than for the guard

approach. While the numbers are difficult to compare (unlike section 4.1 probabilities

are not completely dual), there appears to be a significant increase in runtime and unin-

teresting results that do not evaluate to the target value. As we have noted before, the

shuffle-and-drop strategy is more coarse and the drop probability affects all clauses, not

just the one in line 2 of listing 3. This is the most likely explanation for the excessive

runtime.

Next, note that the metrics for target value 15 are consistently lower than for target

value −12. We do not observe this effect for the guard approach in Figures 5a and 5b.

In absence of mathematical rigor, we can, again, only conjecture as to the cause. There

are two ways of reading this result: It shows that 15 is intrinsically easier to reach in

the shuffle-and-drop approach than −12, or that −12 is intrinsically harder to reach,

when using the shuffle-and-drop approach. We conjecture that the second interpretation

is correct. The lowest test case that can produce −12 is at a greater depth than 15

(see Table 1). Moreover, the number −12 it requires even greater depth to reach if the

outermost operator is not ‘−’. Looking back to Theorem 4 in subsection 3.2.2, we see

that the runtime grows exponentially in twice the depth of the test case. This result does

not extend to our present setting, but it seems likely that the runtime must grow at

least exponentially in the depth of the shortest possible derivation of the desired output,

governed by a similar growth-function to that given in Theorem 4. If that is the case,

reaching −12 becomes much more difficult than reaching 15. While a similar argument

would seem to apply to the guard approach as well, where we don’t see this effect, the

base of the exponential is smaller and the exponent is not scaled by two (see Corollary 2).

It is quite possible that the relatively short expressions yielding −12 are dominated by

other factors in the guard approach setting, due to the smaller base and exponent.

5 Conclusion

We have presented two approaches to randomize the SLD derivation of test cases in

Prolog and studied their performance in terms of expected time to hit a test case, and

mean number of test cases produced. To this end, we presented a detailed analysis of the

random behavior of test-case generation using Prolog and Markov chains. Our theorems

allow a precise calibration of the probabilities to adjust the expected number of test cases

per query. When looping on such a query, the rate of growth of the mean-hitting time for

a given test case is exponential in its depth, where the base is the product of the involved

probabilities. We then compared both strategies and various sets of values for the involved

probabilities empirically. We find that the guard approach that uses an unmodified Prolog

implementation provides a very fine-grained control over the randomization and thus

produces test cases quicker.

In future work, we plan to study the semantics of this approach when negation-

as-failure is involved. In particular, randomization may lead to a false refutation of
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q(t 1,. . .,t k) in the goal \+ q(t 1,. . ., t k). However, this may be acceptable, if

it occurs with low probability. In a similar vein, the treatment of negation as failure

might require randomization strategies entirely different from those we have presented

here, which is another interesting topic for future research.
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Bougé, L., Choquet, N., Fribourg, L. and Gaudel, M.-C. 1985. Application of prolog to test
sets generation from algebraic specifications. In International Joint Conference on Theory and
Practice of Software Development . Springer, 261–275.
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