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Abstract
We propose an optimally regularized Bayesian estimator of multilevel latent variable models that aims to
outperform traditional maximum likelihood (ML) estimation in mean squared error (MSE) performance.
We focus on the between-group slope in a two-level model with a latent covariate. Our estimator combines
prior information with data-driven insights for optimal parameter estimation. We present a “proof of
concept” by computer simulations, involving varying numbers of groups, group sizes, and intraclass
correlations (ICCs), which we conducted to compare the newly proposed estimator with ML. Additionally,
we provide a step-by-step tutorial on applying the regularized Bayesian estimator to real-world data using
our MultiLevelOptimalBayes package.

Encouragingly, our results show that our estimator offers improved MSE performance, especially in
small samples with low ICCs. These findings suggest that the estimator can be an effective means for
enhancing estimation accuracy.

Keywords: intraclass correlation; mean squared error; multilevel latent variable model; regularized estimation; small sample

1. Introduction

Multilevel latent variable models have been widely adopted in psychology, education, and related
sciences to analyze hierarchical data while accounting for unobserved effects (Bollen et al., 2022;
Liidtke et al., 2008; Skrondal & Rabe-Hesketh, 2009; Zitzmann, Wagner, et al., 2022). Unlike traditional
multilevel regression models (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), which rely on
observed variables at each level, multilevel latent variable models introduce latent constructs that
improve measurement accuracy and reduce bias in parameter estimates (Muthén & Asparouhov, 2012;
Zitzmann et al., 2016). These models allow for more precise estimations of relationships at different
levels of analysis by correcting for measurement error and providing a more flexible framework for
capturing complex dependencies in nested data.

Over the past two decades, multilevel latent variable models have been widely applied in educational
research to model student achievement and classroom effects (Liidtke et al., 2008; Marsh, 1987),
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psychological research for latent personality and cognitive processes (Bollen et al., 2022; Muthén
& Asparouhov, 2012), and health sciences for hierarchical patient-reported outcomes (Hamaker &
Klugkist, 2011).

Compared to mixed-effects models (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), which
typically assume that all predictors are observed and measured without error, multilevel latent variable
models provide greater flexibility in handling measurement error and latent constructs. This makes
them particularly valuable in psychological and educational research, where many key variables (e.g.,
cognitive ability, motivation, and instructional quality) cannot be directly observed. Moreover, mul-
tilevel latent variable models allow researchers to separate within-group and between-group variance
more effectively than traditional mixed-effects models, leading to more reliable inferences.

Multilevel models can be classified based on whether variables are assessed at the individual or group
level (Croon & van Veldhoven, 2007; Snijders & Bosker, 2012). One relevant example in education is
the study of student learning outcomes as a function of class-level characteristics such as class size.
The “classic” multilevel models (also called random intercept models) used for this purpose are often
estimated using software, such as HLM (Raudenbush et al., 2011) or Ime4 (Bates et al., 2015).

However, various works (e.g., Asparouhov & Muthén, 2007; Liidtke et al., 2008) have argued that
this type of aggregation can lead to severely biased estimates of the effect of the context characteristic.
One possible solution is to use a specialized multilevel model in which the context variable is formed
through latent rather than manifest aggregation (for a discussion of latent aggregation, see Liidtke et al.,
2008, 2011). Unfortunately, such a model with a latent predictor cannot be specified in HLM or Ime4
and is therefore often estimated using Mplus (Muthén & Muthén, 2012). However, these models place
high demands on the data, and convergence problems or inaccurate estimates of effects at the class level
(accuracy issues) can occur.

Similar methods also play a role in other modeling contexts, such as regression analysis (Hoerl &
Kennard, 1970; Tibshirani, 1996; see also McNeish, 2015) and structural equation models (Yuan &
Chan, 2008; see also Yuan & Chan, 2016). In the latter, a small value is typically added to the estimated
variance, and it has been suggested that a similar effect can be achieved by selecting an appropriate prior
distribution (e.g., Chung et al., 2015; McNeish, 2016; Zitzmann et al., 2016).

Bayesian approaches have gained increasing popularity in multilevel modeling due to their ability to
enhance estimation accuracy by incorporating prior information (Hamaker & Klugkist, 2011; Lidtke
et al,, 2013; Muthén & Asparouhov, 2012; Zitzmann et al., 2015, 2016). The possibility of adding prior
information is a fundamental aspect of Bayesian estimation. It combines information from the data at
hand, captured by the likelihood function, with additional information from prior distribution, resulting
in inferences based on the posterior distribution (Gelman, 2006). However, specifying priors can pose
challenges, particularly in small samples with a low intraclass correlation (ICC), where the choice of
prior is crucial (Hox et al., 2012). Small sample sizes are very common in psychology and related
sciences due to limitations in funding and resource constraints (Browne & Draper, 2006). In such cases,
between-group estimates may approach zero and become unstable, significantly increasing sensitivity to
prior specification. This makes prior misspecification one of the biggest challenges in applying Bayesian
approaches to latent variable models (Natarajan & Kass, 2000; Zitzmann et al., 2015). However, this
effect of the prior can also be exploited. Recent research by Smid et al. (2020) has shed light on the
importance of constructing “thoughtful priors” based on previous knowledge to enhance estimation
accuracy (see also Zitzmann, Liidtke, et al., 2021). In the Bayesian approach proposed in this article, the
prior parameters are determined through a theoretically derived automated procedure that minimizes
the estimated mean squared error (MSE). This removes the need for the user to manually specify a prior,
thereby eliminating the risk of user-induced misspecification.

While Smid et al. (2020) focused on addressing small-sample bias, it has been argued that evaluating
the quality of a method should consider not only bias but also the variability of the estimator,
particularly in small samples with low ICCs (Greenland, 2000; Zitzmann, Liidtke, et al., 2021). In cases
of low ICCs, within-group variability dominates, and small sample sizes lead to unstable group-level
estimates, resulting in higher variance when estimating between-group slopes. This highlights a crucial

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 04:49:32, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Psychometrika 3

point—approaches solely dedicated to minimizing bias may, in fact, perform less optimally than those
focused on reducing variability alone. Thus, it is important to consider both bias and variability in
optimizing analytical strategies. In this regard, alternative suggestions for specifying priors have aimed
at reducing the MSE, which combines both bias and variability (e.g., Zitzmann et al., 2015, 2016). Note
that in cases of small samples and low ICCs, MSE is largely driven by the variability of the estimator.
Therefore, minimizing variability remains an important goal when optimizing MSE.

In the same spirit, in this article, we derive a distribution for the Bayesian estimator of between-
group slopes, building on the model originally established by Liidtke et al. (2008). Specifically, we use
this distribution to develop an optimally regularized Bayesian estimator that automatically selects priors
to minimize MSE, thereby avoiding misspecification caused by user-specified priors. We then report the
results from computational simulations conducted across a broad spectrum of conditions to evaluate the
estimator. They demonstrate the advantages of this approach compared to ML estimation, particularly
in scenarios of small samples and a low ICC.

2. Theoretical derivation

Before delving into detailed aspects, we will briefly summarize Liidtke et al’s (2008) model, which we
use to exemplify our approach. This model was proposed as one way to provide unbiased estimates
of between-group slopes in contextual studies. It proposes predicting the dependent variable Y at the
group level by using a latent variable. This latent variable represents a group’s latent mean, offering a
more reliable alternative than the traditional manifest mean approach. Known as the “multilevel latent
covariate model,” this model allows for the integration of latent group means into the more complex
frameworks of multilevel structural equation models, which are prevalent in psychological research
and related research (see also Zitzmann, Lohmann et al., 2022).

Zitzmann, Lidtke, et al. (2021) have proposed and discussed a Bayesian estimator for the between-
group slope in this model (see also Zitzmann & Helm, 2021). Their approach introduced a method for
incorporating prior information in estimating between-group slopes. However, this method required
manual specification of prior distributions, which could be challenging, particularly in small samples
where misspecified priors may lead to biased or unstable estimates. In contrast, our approach extends
this work by upgrading their Bayesian estimator to a regularized Bayesian estimator that automatically
selects optimal priors, thereby preventing user misspecification and improving estimation stability.

Since our method regularizes the estimator introduced by Zitzmann, Lidtke, et al. (2021), we main-
tain their notation for consistency. More precisely, in the model, it is assumed that the individual-level
predictor X is decomposed into two independent, normally distributed components: X;, representing
the latent group mean, and X, representing individual deviations from Xj. Thus, for an individual
i=1,...nwithin a group j = 1,... ], the decomposition can be stated:

Xij = Xp,j + X 1)
Xy~ N(px,7%) 2)
Xij ~ N(0,0%). (3)

Note that further, we assume that each of J groups includes n persons, therefore the overall sample size
is nj.
Hereafter, we will refer to oy and 7% as the within-group and between-group variances of X,
respectively. Similarly, o3 and 73 are the within-group and between-group variances of Y, respectively.
The individual-level and group-level regressions read:

Level 1: Yz] = /30] +ﬁWXW,ij + eij (4)

Level 2: Boj = a+ B Xy, j + 6. ©)
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Figure 1. A multilevel structural equation model using the within-between framework that decomposes the variables X and Y into
within-group and between-group components.

Note: The within-group components are denoted by subscript w, and the between-group components are denoted by subscript b.
The between-group components (X, and Y,) are connected through a regression, where Y}, serves as the dependent variable and X,
as the predictor. Similarly, the within-group components (X,, and Y,,) are related to each other in an analogous manner. The notation
includes B, for the between-group slope and ,, for the within-group slope.

In Equation (4), f, represents the within-group slope that characterizes the relationship between the
predictor and the dependent variable at the individual level, while fy; describes the random intercept.
Normally distributed residuals are denoted as &; ~ N(0,07).

Moreover, we denote between-group slope in Equation (5) as f8, and the overall intercept as a.
8 ~ N(0,73) represents normally distributed residuals. See Figure 1 for a visual representation of the
model. Note that the between-group component Y} in Figure 1 corresponds to the random intercept fo;
in Equation (4), whereas the within-group component Y,, in Figure 1 corresponds to (B,Xy,j +&;) in
Equation (4).

We focus on the between-group slope f;, which is the most important parameter in numerous
multilevel model applications, such as when analyzing contextual effects. For balanced data (where each
group has an equal number of individuals), the maximum likelihood (ML) estimator of 3, is given by:
Tyx

po- 2

=.
X

(6)

In this equation, #§ and #yx are sample estimators of the group-level variance of X and the group-level
covariance between X and Y, respectively.

While the asymptotic properties of the ML estimator (6) are advantageous, it tends to exhibit bias
in finite sample sizes and displays significant variability, leading to a substantial MSE in such scenarios
(as demonstrated by, e.g., McNeish (2016)). This poses a challenge to the practical utility of the ML
estimator for rather small samples with low ICCs, as results from individual studies could be notably
imprecise. Consequently, researchers have recommended alternative estimators that demonstrate lower
variability, leading to increased accuracy and a reduced MSE, although potentially at the cost of some
more bias compared to the ML estimator. Notable among these are the estimators proposed by Chung
et al. (2013), Zitzmann et al. (2015), and Zitzmann, Liidtke, et al. (2021); see also Zitzmann & Helm
(2021). Next, we will develop a regularized version of Zitzmann, Liidtke, et al’s Bayesian estimator for the
between-group slope, drawing on the so-called indirect strategy approach of constructing the estimator
outlined by Zitzmann, Liidtke, et al. (2021). The details of this development are provided in Appendix A.

Zitzmann, Lidtke, et al’s (2021) Bayesian estimator starts with the prior gamma distribution and its
two parameters, vy and 75 (see Appendix A). A specific choice of prior parameters is not required, as our
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forthcoming Bayesian estimator is designed to find the optimal values to minimize MSE. Combining
priors with the ML estimator, Zitzmann, Liidtke, et al. (2021) derived the Bayesian estimator as
By - Tyx

(1-w)73 + Wi}’

7)

where w is the weighting parameter defined as a function of the gamma-distributed priors. The
denominator in Equation (7) accounts for both the prior variance 72 and the observed between-group
variance 7%, with weights adjusted by w to control the influence of prior information as J increases.

Practically, w € [0,1] can be interpreted as the relative weight given to the prior versus the data-
based estimate: w = 1 corresponds to the standard ML estimator (Equation (6)), w = 0 corresponds to
full shrinkage toward the prior mean, and intermediate values balance the two sources of information.

The derivation of the Bayesian estimator (Equation (7)) is described in detail in Appendix A. Note
that Equation (7) is essentially a Stein-type estimator (Stein, 1956).

We specify the weighting parameter (prior) w in a manner similar to that of Zitzmann, Liidtke, et al.
(2021):

=1
2
BT ©

So w is defined as a function of the gamma-distributed prior vy and the number of groups J. The
weighting factor w is derived such that as ] — oo, w approaches 1, ensuring that the Bayesian estimator
converges to the ML estimator. Note that the weighting parameter w in Equation (8) differs from the one
introduced by Zitzmann, Helm, and Hecht (2021) because we further optimize it (see Appendlx A)!

The Bayesian estimator f3; is not yet regularized. To this end, the two parameters 73 and  need to
be identified. As mentioned, w is defined as a function of sample size and converges to 1 when ]| — oo.
Therefore, the Bayesian estimator 3, is asymptotically unbiased and coincides with the ML estimator /3,
in Equation (6) when samples are sufficiently large. In finite samples, however, the Bayesian estimator
is biased.

To obtain the optimally regularized B, it is essential to find the values for 73 and w based on an
optimality criterion. The MSE serves as the natural choice for this criterion. It is defined as

MSE(By) = Var(By) + (E(By) - Bs)’. ©)

As can be seen from the equation, this measure is simply the sum of the variance and the squared bias
of the estimator. As the ML estimator in Equation (6) is unbiased in theory, its MSE shortens just to
the variance of this estimator. The Bayesian estimator as defined in Equation (7) does not share the
same unbiasedness property. Rather, it reduces the MSE by reducing its variance at the cost of some
bias. We will show how to construct the estimator in such a way that a substantially reduced MSE is
achieved compared to the ML estimator f3, in small samples with low ICCs. In infinite samples, the
MSE of f3; reaches its global minimum of 0 (as both variance and bias converge to 0), and due to the
weighting parameter w, the Bayesian estimator 3, achieves the same outcome.

To find the optimal values of the parameters 73 and w, it is necessary to express the between-group
(co)variance estimators from Equation (7), #% and %3y, in terms of the normal distributions of the
between- and within-group components of the predictor and the dependent variable, namely, X;, X,
Y, and Y,, (see Appendix B for more details). We derived the expression for #% under the restriction
that it should have an easily definable distribution. For the derivation, see Appendix B. This resulted in

#% = HySx VyxAVxSxHx, (10)

where Hx ~ N(0,Ly4j+1). The coefficient matrix A is defined in Equation (E1) of Appendix E
Additionally, matrices Vx and Sx are the matrices of eigenvectors and eigenvalues, respectively. They are

'In this case, optimized stands for w that minimizes the total error of an approximated denominator of the Bayesian
estimator in Equation (7).
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defined in Equation (B.30) of Appendix B. The internal part of Equation (10), Sx VxAVxSx, is a diagonal
coefficient matrix. This means that in Equation (10), we express 7y as a weighted sum of squares of
independent normally distributed random variables, that is, a weighted sum of y{-distributed random
variables, which are transformed from X;, X,,, Y}, and Y.

To express Tyx, we use a similar transformation as for %)2(. This transformation is described in detail
in Appendix C. The result is

tyx = H3Su Vi QVuSuHa, (11)

where Hy ~ N(0,I,(,74+1)) is a multivariate standard normally distributed random vector. Coefficient
matrix Q is computed in Equation (C.15) of Appendix C. Matrices Vy and Sy are the matrices
of eigenvectors and eigenvalues, respectively. They are defined in Equation (C.12) of Appendix C.
Furthermore, the internal part of Equation (11), Sg V5QVySy, is a diagonal coeflicient matrix. With
Equation (11), the estimator of the group-level covariance Tyx is represented as a weighted sum of
squares of independent normally distributed random variables, that is, a weighted sum of y{-distributed
random variables.

As a consequence, we express each of the estimators of group-level (co)variances 5 and tyx as
a sum of squares of independent and identically distributed normal random variables in Equations
(10) and (11), respectively. Every term of these sums is y; -distributed, thus following the Gamma( %,2)
distribution. Notice that a gamma distribution can be scaled: if a variable y follows the Gamma(k,6)
distribution, then ¢ * v is Gamma(k,c » 8)-distributed. Therefore, we can represent the estimators of
group covariances, 7% and %yx, as gamma-distributed random variables:

~ Gamma(ksuml B esuml )

(Z,ﬁx,»)z Zie}z(i
ksum = . 765um = ’ 12
! 2210;1. ! >i0x,i (12)
‘i’YX ~ Gamma(ksuMZ,esuMZ)
(Zifvx)’ it
Kesum s Osum . 13
27 2%, GYX ; 2 i 9YX,: (13

The scales f,; and Oyx,; are the elements of the diagonal matrices Sx VxAVxSx (for #%+)and Sy V;QVySH
(for tyx) in Equations (10) and (11).

In the next step, we make use of the distributions of the sample covariances TX and Tyx to calculate the
distributions of the ML estimator 3, and the Bayesian estimator ;. The estimators 3, and j3; are defined
using an F distribution, because ratios of gamma-distributed random variables follow F distributions.
The full procedures of deriving the distributions of /3;, and f3; are presented in Appendix D. The results
of these derivations are the following distributions:

M/}’b ~F(2Kkeuma, 2kum1 ) (14)
ksum26$um2
Wﬁ ~F(2Koumz, 2k (0,75) ), (15)
sum2Ysum?2

where the coefficients Ksum1, Osum1, ksum2, Osumz, ks, and 0p are defined and fully described in Equations
(D.3), (D.4), (D.9), and (D.10) of Appendix D. Note that k and 6p are functions of the prior parameters
w and 73. Using these distributions, we compute the variances and expected values of both estimators
and combine them into the final formulas for their MSEs:

sumZ eszumZ (ksuml + ksum2 - 1) ksumZ 95147112 2
_ ﬂb

MSE(B,) = n
(By) = 02,1 (ke = 1)2 (ksum1 = 2)  \ (ksum1 — 1) Ot

(16)
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kSWHZ eszumZ (kB (w T(%) + ksumZ -1 ) ( ksumZ 6sumZ )2
MSE(By) = + - (17)
)= Gt ko )~ s ) 2) *\ Glad) - Do) "
As a byproduct, we obtain their standard errors from the estimators’ distributions as
A 65um2 \/ sum2 (ksuml + ksum2 - 1)
SE 18
(ﬁb) Osuml (ksuml - 1) ksuml - ( )
Osum ksumz (kg(w,75) + ksumz — 1
SE(Ps) = o 2oty e 1) 19)
Os(w,12) (kg(w,13)-1) kg(w,73) -2

Using these standard errors, one can describe the uncertainty associated with the estimation or
use them for statistical testing. However, when samples are rather small, we recommend to use
resampling procedures for obtaining standard errors, such as the delete-d jackknife (Shao & Wu, 1989;
for applications in multilevel modeling, see Zitzmann, 2018; Zitzmann et al., 2022; Zitzmann et al., 2023,
2024).

Having obtained the MSE of [3’1, (Equation (17)), we can minimize it with respect to the parameters
w and 73 in order to obtain our regularized Bayesian estimator. To find the optimal choices for the
prior parameters, we employ a numerical approach, which is algorithmic in nature, making it well-
suited for implementation in software platforms like R or MATLAB. The algorithm is a grid search over
the parameters, with 0 < w < 1 and 0 > 75 > d * #}. Since it is impossible to find the global minimum
in the general case (Lakshmanan, 2019), the algorithm we implement performs only a local optimum
search. We propose to choose parameter d to be at least five times the standard deviation of the estimated
group-level variance of X, that is, 5 * \/Var(#%). The value of Var(#%) may be obtained from the derived
distribution of % in Equation (D.3) of Appendix D, or even more exactly, by using the procedures of
Mathai (1993) or Fateev et al. (2016). This 5-sigma region guarantees that the minimum estimated MSE
falls inside this region with high probability. The probability of the minimum estimated MSE being
within this interval is at least 0.9857 for J = 3, 0.9996 for J = 5, and > 0.99998 for J > 7. In this case, our
grid search will find the inner solution for the optimal values of w and 7; that minimize the estimated
MSE. Note that the grid search algorithm minimizes the estimated MSE but not the unknown true MSE.

It is important to note that the MSE in Equations (16) and (17) incorporates the unknown between-
group coeflicient f8,. We propose using its ML estimate, Bb, as a substitute, thereby giving our technique
an empirical Bayes flavor. Such uses of “plug-in estimates” are not uncommon in statistics and often
very useful (Liang & Tsou, 1992; see also Zitzmann et al., 2024).

We have demonstrated an approach for minimizing the MSE of the between-group parameter,
leading to what we refer to as the optimally regularized Bayesian estimator f3;, for this parameter. Notice
that our estimator uses the ML estimator [31, during MSE optimization and even includes ML as a special
case when w = 1. This means, in small samples, we can do better than the ML estimator in terms of MSE.
However, when working with large sample sizes, the costs due to using approximate distributions and
the plug-in procedure to compute the regularized Bayesian estimator may be larger than the benefits.
Such a scenario is likely to occur with larger group sample sizes combined with high levels of the ICC
of the predictor. In the next section, we demonstrate some of these properties using simulated data.

3. Simulation studies

We begin with the description of the data-generating mechanism, including its parameters, such as
group size n, number of groups J, ICC coeflicient ICCy, and the coeflicients f, and f3,,. We utilized the
generated data to compute estimates using both the proposed optimally regularized Bayesian estimator
and, for benchmarking purposes, also the ML estimator. The full algorithm used to actually yield 3,
is detailed in Appendix E. Finally, we present the results graphically. Detailed results can be found
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in Appendix G, which allows for a more comprehensive evaluation of the estimation accuracy under
varying input parameters.

3.1. Data generation

Next, we detail the data generation process and outline the specifics of our simulation setup. We
base our simulations on the data-generating process used by Zitzmann, Helm, and Hecht (2021) and
Zitzmann, Lidtke, et al. (2021). Specifically, we conducted simulations for each unique combination of
the following parameters:

o ICCy: Intraclass Correlation (0.05, 0.1, 0.3, 0.5).
o J: Number of groups (5, 10, 20, 30, 40).

 n: Number of individuals per group (5, 15, 30).
o Bp: Between-group parameter (0.2, 0.5, 0.6).

o Bw: Within-group parameter (0.2, 0.5, 0.7).

In total, this resulted in 4 x 5 x 3 x 3 x 3 = 540 scenarios, each of which was replicated 5,000 times.
The relatively small number of groups was chosen to reflect reasonable two-level scenarios in the social
sciences (i.e., typically < 30 students per class, < 30 schools per district), and to align with examples from
Gelman & Hill (2006).

The values of 8, and S, follow ranges used in prior simulation studies on the multilevel latent
covariate framework and related models. For example, Liidtke et al. (2008) used values {0.2,0.7}, Grilli
& Rampichini (2011) considered values including {0.25,0.5,0.75,1,1.5}, and Zitzmann & Helm (2021)
used the value of 0.7. The combination 8, = B, = 0.7 is infeasible under our fixed ICCy = 0.2 design,
so B, was reduced to 0.6 in that case. Similarly, near-zero 3, values were not included because for
ICCy = 0.2, they would violate ICC constraints:

I 1-1I
ﬁ>ICCX>1—%.

B
The ICC of the dependent variable, denoted as ICCy, was preset to 0.2 within the code to study scenarios
with ICC values that lie at the center of the typical ICC range observed in empirical studies (Gulliford

et al., 1999). Additionally, we incorporated another validity check in order to identify and exclude
incorrectly specified inputs, such as non-integer values for J or n.

(20)

3.2. Evaluation criteria

The goal of our simulations was to assess how well the regularized Bayesian estimator can estimate the
true parameter value f3j, across various scenarios. To this end, we assessed its performance in terms of
the MSE and bias. Note that in addition to the presented estimator, a variant thereof was studied. Both
variants were compared against the ML estimator.

We consider the following variants of the regularized Bayesian estimator: our proposed Bayesian
estimator with the MSE optimization based on plugged-in ML-estimate /3’;,; Bayesian estimator with
MSE optimization based on the true value of f3;.

It is important to note that only the variant-1 Bayesian estimator (with MSE optimization based
on the ML estimate Bb) and the ML estimator are practically applicable to real data. In contrast, the
second Bayesian estimator (with MSE optimization based on the true f3;) serves only as a theoretical
benchmark.

Further, as evaluation measures, we use the square root of the MSE, denoted as RMSE, and the relative
bias. First, MSE is computed as the mean of the squared differences between the estimated parameter
and the true between-group parameter, ;. Second, the square root is taken to obtain RMSE from MSE.
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Figure 2. Log of root MSE (RMSE) in estimating the between-group slope f, for the ML and the two Bayesian estimators as a function
of the sample size at the group level (J) and the ICC of the predictor ICCy.

Note: The scale of the y-axis differs between the four subplots. Results are shown for n = 15 people per group, and constant within-
group and between-group slopes of B, = 0.5 and f3, = 0.2, respectively.

RMSE then allows for comparisons similar to those made with MSE’ while presenting the error in
the original units of measurement. Our preference for RMSE over MSE stems from its scalability and
straightforward interpretability. These attributes enhance the visualization of our analysis, facilitating
clearer insights into the estimators’ performance. The RMSE describes the overall accuracy of parameter
estimation, indicating the proximity of estimated values to the true parameter values. Relative bias, in
contrast, assesses the average deviation of the estimated parameters from the true value. It is computed as
the ratio of the mean difference between the estimated parameter and the true between-group parameter
to the true between-group parameter, f3;,. The mean difference is calculated over repeated replications of
each scenario in our simulation study. A small relative bias indicates that the estimator produces results

that, on average, are closer to the true parameter value, while a larger relative bias suggests systematic
overestimation or underestimation.

3.3. Simulation results

Here, we report the results of our simulation study, focusing on the characteristics of the simulated data,
their alignment with theoretical expectations, and the comparisons between our proposed estimator, the
variant thereof, and the ML estimator. To facilitate a better understanding, we present visual analyses in
Figures 2-4, which illustrate the differential behaviors of the estimators as a function of the group-level

2The method with the smallest MSE also has the smallest RMSE, and the reverse is also true.
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Figure 3. Log of root MSE (RMSE) in estimating the between-group slope f3, for the two Bayesian estimators as a function of the sample
size at the group level (J) and the ICC of the predictor ICCy.

Note: The scale of the y-axis differs between the four subplots. Results are shown for n = 15 people per group, and constant within-
group and between-group slopes of 8, = 0.5 and 8, = 0.2, respectively.

sample size and the ICC. For a better differentiation between methods, we chose to show the logged
RMSE in Figures 2 and 3. Note that log is a monotone increasing function for RMSE > 0.

For more details about the RMSE and relative bias across 540 unique scenarios, see Tables 2-9 (see
Appendix G).

Figure 2 provides a visual representation of the log of the RMSE patterns for the three estimators
of the slope. The first line (blue dashed line) in Figure 2 is from the second alternative variant of the
Bayesian estimator; that is, the Bayesian estimator based on the true value of 8, and thus the direct
implementation of Equation (17). As mentioned, this estimator cannot be used on the real data, as the
By is unknown, but it works as a benchmark for comparison with our proposed Bayesian estimator. This
latter estimator (red solid line) is the Bayesian estimator with the plug-in ML estimate /3b in place of f3;.
The third estimator (black dash-dot line) is the ML estimator. Recall that among the three estimators,
only the second and third are applicable to the real data.

Our theoretical expectations align with the observed trends, as both Bayesian estimators exhibit
lower RMSE compared to the ML estimator. This RMSE reduction is more pronounced for smaller
group sizes (J), with the effect amplified by lower intraclass correlations (ICCx). Additionally, RMSE
consistently decreases with increasing J for all methods and ICC levels. However, an exception is
observed for the ML estimator in the upper left plot of Figure 2, where RMSE does not follow this
expected trend. At low ICCx and small J, between-group variance 7% is often estimated near zero,
causing the ML estimator (Equation (6)) to inflate and produce occasional extreme values. This yields
a finite-sample distribution that mixes regular estimates with such extremes. Because RMSE is highly
sensitive to these rare events, the population RMSE can display non-monotonic patterns across adjacent
J values even with very large numbers of replications. In contrast, the regularized Bayesian estimators
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Figure 4. Relative bias in estimating the between-group slope §, for the ML and the two Bayesian estimators as a function of the

sample size at the group level (J) and the ICC of the predictor ICCy.
Note: The scale of the y-axis differs between the four subplots. Results are shown for n = 15 people per group, and constant within-

and between-group slopes of 8, = 0.5 and 3, = 0.2, respectively.

replace 1% with (1-w)1g + wty in the denominator, bounding it away from zero and producing smooth,
strictly decreasing RMSE curves. Despite this, the overall comparison remains valid, as ML consistently
underperforms the regularized Bayesian estimators across all analyzed scenarios in Figure 2.

Figure 3 further adds to the understanding of the performance differences. This figure demonstrates
that the differences in RMSE between Bayesian estimators based on inserting the true versus estimated
values of 8, are only negligible, speaking for the usefulness of the Bayesian estimator with the plugged-in
ML estimate of f3;.

Figure 4 shows the behavior of the estimators with respect to the relative bias. The first thing
to mention is that both variants of the Bayesian estimator (blue dashed and red solid lines) do not
converge to a bias of zero with an increasing, but finite number of groups J, while the ML estimator
does (black dash-dot line). This bias is not due to misspecified priors but is the intended result of
MSE-optimal shrinkage in the Bayesian estimator (Equation (7)), where bias is deliberately traded for
reduced variability. However, as ] — oo and w — 1, the regularized Bayesian estimator converges to ML,
and the bias disappears. Secondly, with an increasing intraclass correlation ICCx, the relative bias of
all three estimators decreases (plots 1-4 of Figure 4). Thirdly, despite being asymptotically unbiased,
the ML estimator exhibits small-sample bias, especially for small ICC values (see upper left plot in
Figure 4). This bias is inherent to ML estimation and results from denominator instabilities when 5
(Equation (6)) is estimated near zero under low ICC, which can lead to sporadic extreme values and a
heavy-tailed error distribution. This effect occurs only with the ML estimator, whereas the regularized
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Table 1. Average RMSE and relative bias values of the ML (RMSEy, and Biasyy, respectively), the Bayesian
estimator with 8, (RMSEgay and Biasgay, respectively), and the Bayesian estimator with ﬁb (RMSEgy. and
BiasgwmL, respectively) for different values of n and J. Values in bold indicate the smallest RMSE and the
smallest relative bias for each combination of n and J

n J RMSEmL RMSEgay RMSEgwL Biasu, Biasgay BiasgmL
5 5 138.948 2.165 2.139 —541.286 —85.861 —85.565
5 10 65.035 1.230 1.231 20.007 —79.511 -77.130
5 20 101.584 0.771 0.781 253.325 —67.544 —64.531
5 30 20.412 0.602 0.611 33.315 —59.854 —-56.847
5 40 25.685 0.519 0.526 —60.882 —57.754 —-54.792
15 5 456.334 1.131 1.129 —2815.721 -31.872 —31.855
15 10 107.527 0.653 0.662 —-564.371 -51.219 —48.227
15 20 19.847 0.443 0.451 —79.606 -54.971 —51.664
15 30 7.720 0.362 0.368 —5.551 —55.591 —52.659
15 40 3.561 0.315 0.320 —4.161 —55.796 -53.163
30 5 84.649 0.949 0.950 —88.566 —20.531 —20.521
30 10 19.940 0.546 0.556 16.845 —52.950 —49.524
30 20 4.110 0.341 0.347 -12.779 —57.784 -54.571
30 30 0.473 0.279 0.283 —1.565 —57.588 -54.760
30 40 0.386 0.257 0.260 -1.737 —56.888 -54.412

Bayesian approaches remain stable across all scenarios because the denominator uses the weighted sum
(1-w)75 + wty (Equation (7)).

Table 1 presents RMSE and relative bias values computed across all 540 scenarios and averaged
within each combination of group size n and number of groups J. It consolidates information from
Tables 2-9 in Appendix G. Specifically, Table 1 compares three estimators: maximum likelihood (ML),
regularized Bayesian with 8, and regularized Bayesian with j3;. Highlighted cells identify the estimator
with the smallest RMSE (and therefore the smallest MSE) and the smallest relative bias. Results clearly
illustrate that, across all examined cases, the regularized Bayesian estimators consistently provide lower
RMSE values compared to the ML approach. However, as both group size and the number of groups
increase, the relative bias of the ML estimator approaches zero, as it is a consistent estimator. At the
same time, the relative bias of the regularized Bayesian estimators remains around 60%. Consequently,
for larger n, the ML estimator often has the smallest highlighted relative bias. Nevertheless, even when
the ML estimator exhibits less bias than both regularized Bayesian estimators, the regularized Bayesian
estimators achieve a substantial reduction in MSE and RMSE values, especially when 7 and J are small.
Thus, Table 1 emphasizes that, according to our simulation studies, regularized Bayesian estimation—
where only the regularized Bayesian estimator with f;b is applicable in the real world—may deliver more
biased estimations, compared to ML, but is highly preferable in terms of MSE, especially in scenarios
with small # and J.

In conclusion, our optimally regularized Bayesian estimator with the ML estimate plugged in
demonstrates its power to refine the accuracy of estimators for the between-group slope f3, in small
samples. While acknowledging inherent bias (see Table 3 in Appendix G for details), this estimator
generated through our approach demonstrates enhanced accuracy when juxtaposed with the ML
estimator, particularly in situations characterized by a finite sample size. Next, we provide a summary
of our introduced approach, reflect on the theoretical advancements, highlight new findings, address
limitations, and offer insights into the broader implications of our work.
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4. Step-by-step tutorial using MLOB R package

To illustrate the practical application of the newly developed estimator, we created the
MultiLevelOptimalBayes (MLOB) package, which includes the estimation function mlob (). In this
section, we provide step-by-step instructions on using the regularized Bayesian estimator with the MLOB
package in R. The estimator is applied to the PASSNYC dataset—a real-world dataset on educational
equity in New York City that includes data from 1,272 schools across 32 districts.

4.1. Loading MLOB package
First, install and load the MLOB package, which is available on CRAN:

install.packages ("MultilLevelOptimalBayes")
Alternatively, the development version can be installed from GitHub:

install.packages ("devtools")
devtools::install github ("MLOB-dev/MLOB")
library ("MultiLevelOptimalBayes™")

4.2. Loading and preparing the dataset

As mentioned earlier, we demonstrate how to use the MLOB package based on the PASSNYC dataset.
The PASSNYC dataset is available on Kaggle.” In the next step, load, clean, and convert the relevant
variables of the PASSNYC dataset to numeric values:

# Load data (set up the correct folder in R using setwd())
data <- read.table("2016 School Explorer.csv", sep = ',’',
header = TRUE)

# Create a subset excluding N/A values in Average.Math.Proficiency
data_subset <- dataldata$Average.Math.Proficiency != 'N/A’, ]

# Convert the Average Math Proficiency variable to numeric
data_subset$math <- as.numeric(data_subset$Average.Math.Proficiency)

# transform variable Economic.Need.Index to numeric variable ENI
data_subset$SENI = as.numeric(data subset$Economic.Need.Index)

4.3. Estimating the between-group effect

We seek to obtain the contextual effect of economic need on average math proficiency using the
regularized Bayesian estimator. For user convenience, the mlob () function follows a similar notation
and works as simply as the linear regression function 1m () in R. We specify District as the grouping
variable. To ensure reproducibility, we set a random seed before processing the dataset. Since the dataset
is unbalanced (i.e., the number of individuals per group varies), our procedure balances the data by
randomly removing entities from larger groups to achieve equal group sizes. Setting a seed ensures that
the same entities are removed each time the procedure is run, making the results fully replicable.

3https://www.kaggle.com/datasets/passnyc/data-science-for-good/data
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# Set seed for reproducibility
set.seed (123)

# Apply the mlob function
result <- mlob(math ™ ENI, data = data subset, group = ’'District’,
balancing.limit = 0.35)

Warnings may indicate that the data are unbalanced and that a balancing procedure has been applied.
The function also alerts the user if estimates may be unreliable due to a highly unbalanced structure.
By default, if more than 20% of the data would need to be deleted to achieve balance (threshold
adjustable via the balancing.limit parameter), the function stops and issues a warning. While this
procedure preserves the estimator’s assumptions, removing many observations or groups may affect
the generalizability of the results.

4.4. Summary of results

The output of the customized summary () function follows the format of the summary (1m())
function and provides the estimated between-group effect () obtained with the regularized Bayesian
estimator. For comparison, the summary () function also includes ML estimation results:

summary (result)

Call:
mlob(math ~ ENI, data = data_subset, group = "District",
balancing.limit = 0.35)

Summary of Coefficients:

Estimate Std. Error Lower CI (95%) Upper CI (95%) Z value Pr(>|z]|)
Significance beta b -1.0379 0.0183 -1.0737 -1.0020 -56.6769
0.00e+00 **=*

For comparison, summary of coefficients from unoptimized

analysis (ML) :

Estimate Std. Error Lower CI (95%) Upper CI (95%) Z value Pr(>|z]|)
Significance beta b -1.7415 0.7580 -3.2271 -0.2560 -2.2977 0.0216 *

Signif. codes: 0 *** (0.001 ** 0.01 * 0.05. 0.1 1

4.5. Interpretation

The results indicate that the regularized Bayesian estimator provides an estimate with a significantly
lower standard error compared to the ML estimator. Notably, the between-group coefficient estimated
by the regularized Bayesian estimator (B}, = —1.0379) is smaller in absolute terms than the one estimated
by ML (f, = —1.7415). The reduction in absolute magnitude suggests that ML may overestimate the
effect due to its higher variance, whereas the regularized Bayesian estimator produces more reliable
estimates, particularly in small samples. The between-group effect in this context represents how
economic need, averaged at the district level, influences math proficiency across the districts of New
York City. The negative coefficient suggests that districts with higher economic need tend to have
lower average math proficiency. Given that the PASSNYC dataset is relatively small, containing 1,272
schools across 32 districts, the primary small-sample issue arises from the limited number of districts
rather than the total number of schools. Since hierarchical models rely on the number of groups to
estimate between-group effects, a small number of districts leads to increased variance in the estimated

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 04:49:32, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Psychometrika 15

between-group coeflicient. In this setting, the lower variance of the Bayesian estimator is particularly
beneficial, as it enhances the reliability of the estimates. This highlights the advantages of the regularized
Bayesian estimator in two-level latent variable models, especially with small datasets such as PASSNYC.

To draw a parallel with the previous section, we refer to Table 1, which summarizes the average
RMSE and relative bias across different n and J and illustrates when regularized Bayesian or ML
estimation is the preferable choice. A green color code is used to indicate the superior estimator for
each scenario. Notably, in all analyzed cases, the newly developed estimator outperformed ML in terms
of RMSE, further demonstrating its reliability in multilevel latent variable modeling. Therefore, even
when the sample is sufficiently large, we recommend using our MLOB package, which offers both ML
and regularized Bayesian estimations, allowing users to select the most appropriate method for their
data. It is also important to consider degenerate cases where either the between-group or within-group
effect is zero. In such cases, themlob () function recommends using simpler models, such as ordinary
least squares (OLS) or ML.

5. Discussion and conclusion

In this article, we thoroughly described and analyzed a regularized Bayesian estimator for multilevel
latent variable models, which we optimized with respect to MSE performance, using the multilevel latent
covariate model as an example. In addition, we derived an analytical expression for the standard error.

However, given our specific focus on small sample size, rather than using this standard error, it might
be more reasonable to employ a resampling technique for accurately determining the standard error. As
mentioned, one such effective method is a delete-d jackknife procedure. The main achievement lies
in deriving an optimally regularized Bayesian estimator by seamlessly integrating the minimization of
MSE with respect to the parameters of the prior distribution. Through graphical representations of the
results, we highlighted the pronounced improvements that our approach garners over ML estimation,
particularly in small samples.

The following contributions to the theoretical landscape are noteworthy. Primarily, we derived a
distribution of the Bayesian estimator, enabling us to achieve further optimization of the MSE with
respect to the parameters of the prior distribution for this estimator. Moreover, we proposed an
algorithm to construct our optimally regularized Bayesian estimator. These theoretical achievements are
mirrored by the results from our simulation study as detailed in the previous section. In a nutshell, from
these results, significant performance improvements emerged for the optimally regularized Bayesian
estimator compared to the ML estimator, particularly in situations characterized by small sample sizes
and low ICCs. These advantages can be attributed to the way the estimator is constructed, which allows
for some bias while actively minimizing the MSE.

Although our work focuses on Bayesian estimation, the utilization of prior information to enhance
estimation is not exclusive to Bayesian methods. Similar means are taken by frequentist approaches. For
example, the Bayesian estimator’s weighting parameter w in Equation (8) achieves an effect analogous
to the penalty in regularized structural equation modeling, as seen in Jacobucci et al. (2016). Similarly,
the weighting parameter in the denominator of Equation (7) aligns with the concept of regularized
consistent partial least squares estimation (e.g., Jung & Park, 2018).

While our research offers significant contributions, we also acknowledge limitations. The advantages
of our method over ML estimation become less pronounced with larger sample sizes, indicating that
our approach may be most beneficial in contexts with smaller samples. Another limitation of our
approach lies in the locality of the search for the optimal MSE. Our optimization strategy withina 5x ¢
region ensures that the minimum MSE falls within this region with almost 100% probability, although
this is not guaranteed. Additionally, since the true MSE remains unknown, we rely on the estimated
MSE, which provides a reliable approximation within the defined bound. However, the extrema of
the real and estimated MSE do not always coincide. As a result, misspecification of the regularized
Bayesian estimation is possible but extremely unlikely. Moreover, by reducing the 5 » ¢ search region,
we can control bias and select an optimal estimator within the reduced region. While this decreases the
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probability of finding the globally optimal MSE, it ensures that the estimator has a relative bias within
a predefined threshold. In the degenerate case where the search region is zero, we obtain an exact ML
estimator. This is a potential area for future research.

One more limitation is the assumption of equal group sizes, which simplifies the statistical problem.
However, in practice, group sizes often vary (e.g., the number of students in classes). While our current
approach does not directly account for unequal group sizes, one possible solution would be to average
the group sizes and apply our estimator. It is important to note that our regularized Bayesian estimator
formulas extend to non-integer values of #, allowing for this flexibility. This is also a potential area for
future research. Nevertheless, our MLOB R package includes a built-in data-balancing mechanism that
provides a practical solution for handling unequal group sizes. Notably, if more than 20% of the data
would need to be deleted to achieve balance, the function stops and alerts the user.

Beyond these limitations, the regularized Bayesian estimator can be extended to three- and higher-
level models. While our estimator has not yet been fully developed for such multilevel structures, these
models could be implemented through an iterative application of the two-level estimator. One approach
is to iteratively apply the regularized Bayesian estimator by reducing the model to two levels at a time,
computing estimates, and then proceeding to the next pair of levels.

An extension for future simulation work is to explore a broader range of between-group parameter
values, including near-zero f3, settings, to more fully assess performance under weak between-group
effects. Future designs could also relax the constraints on ICCy to investigate the estimator’s behavior
in such scenarios.

Another possible extension is incorporating time as a predictor, enabling a longitudinal modeling
framework for analyzing time-related trends. For example, the application of our regularized Bayesian
estimator to the longitudinal dataset ChickWeight is included as a standard example in the MLOB
R package. Such extensions provide promising directions for future research and further refinement of
the regularized Bayesian estimator.

To conclude, our optimized Bayesian estimator, which sophistically balances bias reduction and
variance minimization, offers improved precision in parameter estimation, particularly in small sam-
ples. Thus, our findings hold promising implications for multilevel latent variable modeling, and the
demonstrated accuracy improvements due to optimized regularization underscore the practical value
of our estimator. We aspired to empower researchers in psychology and related fields to utilize the
benefits of our proposed estimator and use the newly developed mlob package in R, as demonstrated
in the Section Step-by-Step Tutorial when dealing with small samples in fitting multilevel latent variable
models.

By highlighting the efficacy of Bayesian strategies, we hope to inspire a paradigm shift in estimation
techniques for small-sample scenarios. This shift could lead to more robust and informed modeling
practices in the research community.

Funding statement. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—471861494.

Competing interests. The authors declare none.

References

Asparouhov, T., & Muthén, B. O. (2007). Constructing covariates in multilevel regression. Technical Report 11, version 2,
Mplus Web Notes.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using Ime4. Journal of Statistical
Software, 67(1), 1-48.

Bollen, K. A, Fisher, Z., Lilly, A., Brehm, C., Luo, L., Martinez, A., & Ye, A. (2022). Fifty years of structural equation modeling:
A history of generalization, unification, and diffusion. Social Science Research, 107, 102769.

Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models.
Bayesian Analysis, 1(3), 473-514.

Chung, Y., Gelman, A., Rabe-Hesketh, S., Liu, J., & Dorie, V. (2015). Weakly informative prior for point estimation of covariance
matrices in hierarchical models. Journal of Educational and Behavioral Statistics, 40(2), 136-157.

Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., & Liu, J. (2013). A nondegenerate penalized likelihood estimator for
variance parameters in multilevel models. Psychometrika, 78(4), 685-709.

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 04:49:32, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

Psychometrika 17

Croon, M. A., & van Veldhoven, M. J. P. M. (2007). Predicting group-level outcome variables from variables measured at the
individual level: A latent variable multilevel model. Psychological Methods, 12(1), 45-57.

Fateev, Y. L., Shaidurov, V. V,, Garin, E. N., Dmitriev, D. D., & Tyapkin, V. N. (2016). Probability distribution functions of
the sum of squares of random variables in the non-zero mathematical expectations. Journal of Siberian Federal University.
Mathematics & Physics, 9(2), 173-179.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by browne and
draper). Bayesian Analysis, 1(3), 515-534.

Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models, Analytical Methods for Social
Research. Cambridge University Press.

Greenland, S. (2000). Principles of multilevel modelling. International Journal of Epidemiology, 29(1), 158-167.

Grilli, L., & Rampichini, C. (2011). Multilevel models for ordinal data. In R. Kenett, & S. Salini (Eds.), Modern analysis of
customer surveys: With applications using R (pp. 391-411). Wiley.

Gulliford, M., Ukoumunne, O., & Chinn, S. (1999). Components of variance and intraclass correlations for the design of
community-based surveys and intervention studies: Data from the health survey for England 1994. American Journal of
Epidemiology, 149(9), 876-883.

Hamaker, E., & Klugkist, I. (2011). Bayesian estimation of multilevel models. In J. Hox, & J. K. Roberts (Eds.), Handbook of
advanced multilevel analysis (pp. 137-161). Routledge.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1),
55-76.

Horn, R. A., & Johnson, C. R. (2013). Matrix analysis. (2" ed.) Cambridge University Press.

Hox, J. ], van de Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a Bayesian
perspective. Survey Research Methods, 6(2), 87-93.

Jacobucci, R., Grimm, K. J., & McArdle, J. J. (2016). Regularized structural equation modeling. Structural Equation Modeling:
A Multidisciplinary Journal, 23(4), 555-566.

Jung, S., & Park, J. (2018). Consistent partial least squares path modeling via regularization. Frontiers in Psychology, 9, 174.

Lakshmanan, K. (2019). Global optima is not limit computable. Preprint.

Liang, K.-Y., & Tsou, D. (1992). Empirical Bayes and conditional inference with many nuisance parameters. Biometrika, 79(2),
261.

Lidtke, O., Marsh, H. W,, Robitzsch, A., & Trautwein, U. (2011). A 2 x 2 taxonomy of multilevel latent contextual models:
Accuracy-bias trade-offs in full and partial error correction models. Psychological Methods, 16(4), 444-467.

Lidtke, O., Marsh, H. W,, Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate
model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13(3), 203-229.
Lidtke, O., Robitzsch, A., Kenny, D. A., & Trautwein, U. (2013). A general and flexible approach to estimating the social

relations model using Bayesian methods. Psychological Methods, 18(1), 101-119.

Marsh, H. W. (1987). The big-fish-little-pond effect on academic self-concept. Journal of Educational Psychology, 79(3),
280-295.

Mathai, A. M. (1993). On noncentral generalized laplacianness of quadratic forms in normal variables. Journal of Multivariate
Analysis, 45(2), 239-246.

McNeish, D. (2015). Using lasso for predictor selection and to assuage overfitting: A method long overlooked in behavioral
sciences. Multivariate Behavioral Research, 50(5), 471-483.

McNeish, D. (2016). On using Bayesian methods to address small sample problems. Structural Equation Modeling:
A Multidisciplinary Journal, 23(5), 750-773.

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive
theory. Psychological Methods, 17(3), 313-335.

Muthén, L. K., & Muthén, B. O. (2012). Mplus user’ guide. (7™ ed.) Muthén & Muthén.

Natarajan, R., & Kass, R. E. (2000). Reference Bayesian methods for generalized linear mixed models. Journal of the American
Statistical Association, 95(449), 227-237.

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society, 51(3),
406-413.

Raudenbush, S. W,, & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. (2" ed.) Volume
I of Advanced Quantitative Techniques in the Social Sciences. Sage Publications.

Raudenbush, S. W, Bryk, A. S., Cheong, Y. E, Congdon, R. T., & du Toit, M. (2011). HLM 7: Hierarchical linear and nonlinear
Modeling user manual. Scientific Software International, Inc.

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110.

Shao, J., & Wu, C. E J. (1989). A general theory for jackknife variance estimation. The Annals of Statistics, 17(3), 1176-1197.

Skrondal, A., & Rabe-Hesketh, S. (2009). Some applications of generalized linear latent and mixed models in epidemiology:
Repeated measures, measurement error and multilevel modeling. Norsk Epidemiologi, 13(2), 265-278.

Smid, S. C., McNeish, D., Miocevi¢, M., & van de Schoot, R. (2020). Bayesian versus frequentist estimation for structural
equation models in small sample contexts: A systematic review. Structural Equation Modeling: A Multidisciplinary Journal,
27(1), 131-161.

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 04:49:32, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

18 Dashuk et al.

Snijders, T. A. B., & Bosker, R.J. (2012). Muitilevel analysis: An introduction to basic and advanced multilevel Modeling. (2" ed.)
Sage Publications.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In J. Neyman (Ed.),
Proceedings of the third Berkeley symposium on mathematical statistics and probability, volume 1: Contributions to the theory
of statistics (Vol. 1, pp. 197-206). Statistical Laboratory of the University of California.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1), 267-288.

Welch, B. L. (1947). The generalization of ‘student’s’ problem when several different population variances are involved.
Biometrika, 34(1-2), 28.

Yuan, K.-H., & Chan, W. (2008). Structural equation modeling with near singular covariance matrices. Computational Statistics
and Data Analysis, 52(9), 4842-4858.

Yuan, K.-H., & Chan, W. (2016). Structural equation modeling with unknown population distributions: Ridge generalized
least squares. Structural Equation Modeling, 23(2), 163-179.

Zitzmann, S. (2018). A computationally more efficient and more accurate stepwise approach for correcting for sampling error
and measurement error. Multivariate Behavioral Research, 53(5), 612-632.

Zitzmann, S., & Helm, C. (2021). Multilevel analysis of mediation, moderation, and nonlinear effects in small samples, using
expected a posteriori estimates of factor scores. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 529-546.

Zitzmann, S., Helm, C., & Hecht, M. (2021). Prior specification for more stable Bayesian estimation of multilevel latent variable
models in small samples: A comparative investigation of two different approaches. Frontiers in Psychology, 11, 1-11.

Zitzmann, S., Lohmann, J. E, Krammer, G., Helm, C., Aydin, B., & Hecht, M. (2022). A Bayesian eap-based nonlinear extension
of Croon and Van Veldhoven’s model for analyzing data from micro-macro multilevel designs. Mathematics, 10(5), 842.

Zitzmann, S., Ludtke, O., & Robitzsch, A. (2015). A Bayesian approach to more stable estimates of group-level effects in
contextual studies. Multivariate Behavioral Research, 50(6), 688-705.

Zitzmann, S., Lidtke, O., Robitzsch, A., & Hecht, M. (2021). On the performance of Bayesian approaches in small samples:
A comment on Smid, McNeish, Miocevic, and van de Schoot (2020). Structural Equation Modeling: A Multidisciplinary
Journal, 28(1), 40-50.

Zitzmann, S., Liidtke, O., Robitzsch, A., & Marsh, H. W. (2016). A bayesian approach for estimating multilevel latent contextual
models. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 661-679.

Zitzmann, S., Nagengast, B., Hiibner, N., & Hecht, M. (2024). A simple solution to heteroscedasticity in multilevel nonlinear
structural equation modeling. Manuscript submitted for publication.

Zitzmann, S., Wagner, W.,, Hecht, M., Helm, C., Fischer, C., Bardach, L., & Géllner, R. (2022). How many classes and students
should ideally be sampled when assessing the role of classroom climate via student ratings on a limited budget? An optimal
design perspective. Educational Psychology Review, 34(2), 511-536.

Zitzmann, S., Weirich, S., & Hecht, M. (2023). Accurate standard errors in multilevel modeling with heteroscedasticity:
A computationally more efficient jackknife technique. The Psychiatrist, 5(3), 757-769.

Appendix A

To derive a Bayesian estimator following Zitzmann, Helm, and Hecht (2021) indirect strategy, we start by adopting a gamma
prior distribution for the inverse of the group-level variance of the predictor variable 7%:

1

— ~Gamma(a,b), (A1)
X

where a and b are the parameters of the Gamma distribution. For better interpretability, we employ a reparameterization of

2
_wn _ T, .
a= 3 and b= —* leading to

1 2
=~ Gamma(ﬁ, L) ) . (A.2)
% 272
Similarly, the likelihood for the inverse of the group-level variance is
1 (5
=~ Gamma(l,&) (A.3)
T 202

with %% being an estimate of the group-level variance. To get an inverse-gamma posterior, we combine Equations (A.2) and
(A.3) and yield

1 + 212
—ZNGamma(VO2 ]7M)_ (A.4)

Ty 2
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As demonstrated by Zitzmann, Liidtke, et al. (2021) in Appendix C, an approximation for the mean of this distribution can be
derived as follows:

T~ (1-w)1g + iy (A.5)

With Equation (A.5), the Bayesian expected a posteriori (EAP) estimate is defined. We specify the weighting parameter w from
Equation (A.5) as

we—2 (A6)

This formula minimizes the total error of the approximation of 7% from Equation (A.5), making it optimal.
Note that w is defined in Equation (A.6) as a function of sample size, or more precisely, as a function of the number of
groups J.
Asymptotically, when J — oo, w converges to 1. Thus, 7% becomes equal to %% in this case.
To derive the new estimator, we take Equation (6) and replace %)2(, with its Bayesian EAP as defined in Equation (A.5). This
gives
P Tyx

By=————. (A7)

1-w)12 +wt?
( b twiy

Appendix B

To compute an estimate of the group-level covariances, we apply the formulas from Zitzmann, Liidtke, et al. (2021), starting
from the decompositions:

Xij:Xb,j+Xw,ij (B~1)
Y,‘j = Yb,j + Yw, ij- (BZ)

We assume that Xj, j and X,,, ;; are uncorrelated and both independently identically normally distributed. The same assumptions
are considered for Y
Next, we define (manifest) group means for both X and Y as

_ 1
Xoj= " Z(ij + X)) = Xpj+ = ZXW i (B3)
i=1
—_ 1
Yoj= ;Z(de-*—Yw,]) Yy i+ — ZYW,,, (B.4)
i=1 i=1
Then, the overall means are
1 J.n ] 1 J.xn
Xeo == D > (Xpj+Xu,ij) = be,j ZZXW iis (B.5)
] isis j: ”‘]—111
_ 1 J n ] n
Yoo = — > > (Yo, + Yus) = Z Y+ ZZYWJ- (B.6)
M j=1i=1 ] n] i3

The sums of squared deviations of the group means from the overall mean (SSA) and of the individual values from the group
means (SSD) for X are

I _ I _ _
SSA =1 (Xej~Xee)? =13 Xo;~nJXos (B.7)
j=1 j=1
n - J n ) J —
SSD = Z(Xij—x.,-) =D > Xi-ny X, (B.8)
j=1i=1 j=1i=1 j=1
The same equations hold for Y. And the cross products of Y and X are
Jo_ J o _ o
SPA=nY " (Yoj—Yee)(Xej—Xee) =) YoiXej =]V eeXee (B.9)
= =
J n J n
=2 2 (V= Yop) (X = Xoj) = 3 > ViX; _nZYWX‘/‘ (B.10)
j=li=1 j=li=1
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Zitzmann, Liidtke, et al. (2021) derived the relations between the sum of squared deviations of X and the within- and between-
group variances as

SSA=n(J-1)1%—(J-1)6% (B.11)
SSD = (n—1)]6%. (B.12)

Combining Equations (B.11) and (B.12) with Equations (B.7) and (B.8), we yield an estimate of the group-level variance of X:

2 U 1 Lz ] =
T =- Y2 X; +7ZX.].——X“. (B.13)

n(n_l)]]:l i=1 1)(] 1)]j 1 J-1

Note that this estimator may not be optimal, because estimates may not be positive. To address this issue, Chung et al.
(2013) introduced a maximum penalized likelihood (MPL) approach for estimating this parameter. This method mitigates
the problem of boundary estimates, specifically preventing the occurrence of negative estimated group-level variances. In our
approach, we used the estimator from Equation (B.13), due to the transformation in the further steps and no anomalies were
found during the extensive simulations.

Zitzmann, Liidtke, et al. (2021) also derived how the sum of squared deviations of cross products of X and Y can be
expressed in terms of their within- and between-group covariances:

SPAZI’[(]*I)%yx+(]*1)6'YX (B.14)
SPD = (i’l*l)]é’yx, (B.15)
This means that the estimator for the group-level covariance yx can be obtained from Equations (B.9), (B.10), (B.14), and
(B.15) as
1 ] n nJ—1 J J — —
TYx —WZI:!ZYU ij mjzl: .]X.] -1 ——YeeXoo- (B.16)

So far, we have derived both the numerator and the denominator of the ML estimator and, partly, of the Bayesian estimator in
Equation (7). But how can we use these derivations? Our aim is to minimize the MSE of the Bayesian estimator, and to do this,
we need to know the mean and the variance of the estimator. One way to find them is to compute the estimator’s distribution.

We begin with the derivation of the distributions of group-level variance of X and the group-level covariance between X
and Y. To this end, two new variables are defined. The Zx merges all the elements of predictor sample together with its means
into one vector of length (nJ +J+ 1), and Zy combines all the elements of the dependent variable and its means:

Zx = X1ty Xut, X12, .. Xy, Xot, ... Xoj, Xaa ) (B.17)

Zy= (Y11, Yu, Y1z, .. Yo, Yar,... Yap, Yao ). (B.18)

Using these newly defined variables, we can rewrite the estimators for the group-level variance and the covariance 7yx in matrix
form:

% = ZyAZx (B.19)

Tyx = ZyAZy. (B.20)

With the same coefficient matrix A for both defined in Equation (F.1) of Appendix F. Note that matrix A is diagonal.

Thus, #yx and #% are quadratic forms of the sample elements and their means. If the equations consist only of second-order
terms of normally distributed random variables, we can interpret yx and %)2( as the weighted sums of )(2, and thus gamma-
distributed random variables. However, the distribution of such a quadratic form is highly complicated in the general case.
Therefore, we apply a transformation to yield weighted sum of squares (without interaction terms) of iid normal random
variables.

Firstly, we compute the distribution of Zy and Zy, using the previously made assumptions about X and Y:

~ N(Lyjage1 *pix, Zx) (B.21)
Zy ~N(1n1+/+1*‘lzly,z¥). (B.22)

Where 1,741 is a vector of ones of size (n] +] +1). Also, note the following important facts:

« each element of Zy and Zy has the same mean;
o the sum of coefficients defined by matrix A in Equation (F.1) of Appendix F is zero.
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As a result, when we demean Equations (B.19) and (B.20), these means sum up to zero. To demonstrate it, define Z;( and
Z, and all their elements as the demeaned counterparts of Zx and Zy, respectively:

Zx = Zx + Lyjpy1 * px

. (B.23)
Zy =Zy+ Ly * py.
Show that Z;(' *A* Lpj4y+1 and Z;,’ * A* 14741 are both zeros:
. 1 J nj—1 J .
ZI*A*1, =— Xb ————— Y X,.-
x P n(n- 1)122’ (n—l)(/—l)u; i
J — J *( 1 nJ-1 ] )
——Xee = Xi| - + - = B.24
J-1 J;,;f n(n-1)] n(n-1)J-1)] nJ(J-1) (B.24)
J I 1+ -1-n]+]
X,—,
D) P Ty
* Y3y Ly,
ZI*A*1, = Yyt 3V,
v (H—I)I] S0 (-n-1yy 5
(B.25)

. Jonoo _
L?-FEZY@( L, nj-1 1 ):

J-1 = n(n-1)] n(n-1)(J-1)] nj(J-1)

Plug the expressions from Equation (B.23) into Equations (B.19) and (B.20), and remind that the sum of coefficients of matrix
A is zero:

= ZyAZx = (Zy+ Lupsre * x) A(Zx + Lupar *px) = Z x' AZy+
ZYA* Lpagar px +ix * Ly AZy x> Ly ALy px — B26
— N N (B.26)
=l =0 =0

iy =7 YAZy

tyx = ZxAZy = (Zx + Lt * ) A(Zy + Lopayir *py) = Z x' AZy +
ZYA* Laapan iy +x* Ly AZy +px Lo ALy "y — (B.27)
| S —— .
=0 =0 =0

tyx = Z Y AZy.

Hence, it is irrelevant for ‘232( and 7yx whether Zx and Zy have non-zero means or not, they always cancel out. So, we do
not lose generality by assuming yx = 0 and py = 0.

Yx and Xy are defined in Equations (E3) and (F4) of Appendix F. These matrices are symmetric and positive semi-definite
as covariance matrices. Therefore, their square roots will have only real entries (Horn & Johnson, 2013). Using the matrices,
we can transform #% to

5125 1/2 /25 —1/2

= Z3AZx = 743 AsY = Wis2As wy. (B.28)

Where Wx = E;l/ ?Zx ~ N(0,Ly4/41) follows the standard (multivariate) normal distribution, which has the identity matrix I
as the covariance matrix. Following the rationale that led to Equation (B.28), we define a square root of the covariance matrix
Yy by using its spectral decomposition as

Sx = VxDxVy. (B.29)
Where Vy is a matrix of eigenvectors and it is orthogonal (V = V'), because Zx is a real symmetric matrix by its nature
(Horn & Johnson, 2013). Matrix Dy is a diagonal matrix of eigenvalues. These eigenvalues are non-negative, because Xy is

positive-semidefinite (Horn & Johnson, 2013). Thus, we may denote the square root of Dy as Sx, which is just a diagonal
matrix with real square roots of each element of Dyx. This helps us to define the matrix Z)l(/ 2,

23/ = VeSx Vg (B.30)
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Indeed, we have

=1 -

—_ P
Y252 Sy VIV Sx Vi = Vx SxSx Vi = VxDx Vi = % (B.31)
X “~x T VXOX VxVXOXVy = VXOXox Vx = VXUXVy = &X. B

The eigenvalues of Zx are as follows:

o 1i=0, (J+1) eigenvalues;
Xi = 0%, ((n—1)]) eigenvalues;
« di=(n+1) (3 +10}), (J-1) eigenvalues;

o Ayjije1 = ”“1”1 (t% +L0}), 1 eigenvalue.

Dy, a diagonal matrix, is composed of the eigenvalues in this order. Matrix Vx = V is presented in Equation (F.2) of Appendix E
Due to its bulkiness, we provide Vy for the case n = 3 and J = 4, but it could be expanded upon demand.
We can now plug the decomposition of 2y into Equation (B.28) so that it becomes

1 = Wis2AZY 2 Wy = Wi VSx VAV Sx Vi Wy (B.32)
% = HySx V4 AVxSxHx, (B.33)

where Hx = V{Wx ~ N(0, V{14741 Vx) = N(0,Lyy174+1). Thus, the orthogonality of matrix Vx kept the standard normal
distribution of the new variable Hy. Since the internal right-hand side of Equation (B.33), Sx V3 AVx Sy, is diagonal, we indeed
managed to represent 7% as a weighted sum of squares of independent normally distributed random variables, that is, a
weighted sum of y?-distributed random variables.

Appendix C

Similarly to the transformation of the group-level variance of X, which was introduced in Appendix B, we continue with
the description of the transformation of the group-level covariance of X and Y as this is partially similar. We start from
Equation (B.20) in Appendix B and use the previously defined covariance matrices Xx and Xy (Equations (B.21) and (B.22) in
Appendix B):

tyx = ZYAZy = 243 PR ASY 5 0 2 7y = WS ASY P Wy, (1)

where Wy = Z;l/ 2Zy ~N(0,Lyy47+1) is a new random vector that follows the multivariate standard normal distribution. For
further transformation, we also introduce the spectral decomposition of covariance matrix £y and its square root as

Sy =VyDyVy (C2)
22 = vy Sy vy, (C3)

where Vy is a matrix of eigenvectors of Zy. It turns out to be equal to VY, therefore sharing its property of orthogonality. We
will further refer to them as V = Vx = Vy (see Equation (E2) in Appendix F).

Matrix Dy consists of (non-negative) eigenvalues of Xy on the diagonal (because of the positive-semidefiniteness of £y). Its
square root matrix, Sy, is also diagonal, with non-negative square roots of eigenvalues on the main diagonal. We can compute
the eigenvalues of Xy in closed form and thus define matrix Dy by

e 1i=0, (J+1) eigenvalues;

« Li=0%, ((n—1)]) eigenvalues;

e Ai=(n+1) (3 + i(’%)’ (J—1) eigenvalues;

L (
7

o Apjaj1 = 7+ %0’%,), 1 eigenvalue.

For the next step, we plug in the decompositions Equation (B.30) of Appendix B and Equation (C.3) into Equation (C.1) and

obtain
tyx = WEEV2ASP Wy = WL VSV AVSy V! Wy (C4)
tyx = HySx V' AVSy Hy, (C5)

where Hy = V'Wy ~ N(0,V'Lj141V) = N(0,Lyj4y+1). Thus, the distribution of the new variable Hy is standard normal
because of the orthogonality of the matrix V. Additionally, the inner right-hand side of Equation (C.5), Sx V' AVSy, is diagonal
due to its construction. Comparing Equations (B.33) and (C.5), one might be inclined to see the distinct similarities and the
claim to also represent 7yy as a weighted sum of squares of independent normally distributed random variables. However, this
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is not true. Hx and Hy are different random vectors, and thus, we continue the transformation by defining a new aggregated
variable:

H- (HX) (C.6)

with the distribution of H being N(0,Z). Its covariance matrix X is defined as follows:

[ Var(Hx) Cov(Hx,Hy)
Xy = (CDV(Hx,HY) Vllr(Hy) ) (C.7)

We already showed that Var(Hx) = Lyjj+1 and Var(Hy) = Lyjj+1 as well. Before calculation of Cov(Hx,Hy ), we additionally
define Eyy in Equation (E.5) of Appendix F in a manner similar to Equations (F.3) and (E4). Then, the spectral decomposition
of Zyx becomes

Syx = VDyx V' (C.8)

U2 = VS V7, (C9)

where matrix V is the same as in decompositions of Xx in Equation (B.29) from Appendix B and 2y in Equation (C.2). Matrix
Dyy is diagonal with non-negative eigenvalues of positive-semidefinite matrix Zyx (Horn & Johnson, 2013). Thus, the square
root matrix, Sy, is diagonal with non-negative square roots of eigenvalues on the main diagonal. The eigenvalues of Xyx that
define matrix Dyy are in the closed form:

o 1i=0, (J+1) eigenvalues;
o Ai =oyx, ((n-1)]) eigenvalues;
e di=(n+1) (TYX + io'yx), (J—1) eigenvalues;

1
o Anpager = "H]H

1 .
(T YX+ o, (Tyx), 1 eigenvalue.

Next, we use the generalized inverses of matrices Sx and Sy, as described by Penrose (1955), since they include zero eigenvalues
and are not invertible. These matrices are denoted as S}, and S} and include the inverse of diagonal elements that are invertible
and zeros otherwise.

Using all this, the covariance Cov(Hx,Hy) is computed as

COV(Hx,Hy) = COV(V,Wx,V’Wy) = V/COV(Wx, Wy)V =
V' Cov(25 2 2x, 25 2 2y )V = V'3 Cov(2x, 2y ) 571V =
— —
Zyx
V'S PS5 PV = VIVSEV VD VI VSE VTV -
COV(Hx,Hy) = S;Dyxs¢ (C.IO)

This result is used to fully define the covariance matrix of H:

~ I SiDwSt
Z”‘(s;Dyxs; I (€11

and its spectral decomposition:
Sy = VuDu Vi, (C.12)

where the closed-form solutions for both the matrix of eigenvalues Dy and the orthogonal matrix of eigenvectors V. Dy is

_ I+S§Dyxs; 0
D”‘( 0 1-S;DyxS; ) (C.13)

Matrix Vy is defined in Equation (E.6) of Appendix F. Both matrices follow the same properties as their predecessor: Dy is
diagonal with non-negative eigenvalues, and Vy is orthogonal.

After exposing the new composite vector H and its covariance matrix Xy, we can rewrite Equation (C.5) as

tyx = HQH (C.14)
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with coefficient matrix Q defined as

0 Loy V' AVSyY
— 2
Q (;SXV’AVSY 0 ’ .

Note that Q is designed to keep the symmetry of Equation (C.14). Including the square root of the covariance matrix leads to
tyx = H'QH = H's;'*s12Qs?s P H = H3)/* Q3 Hy, (C.16)

where H, = Z;,l/ H~N (0,I3(nj474+1)) is a vector of independent normally distributed variables. Using the decomposition of

>y from Equation (C.12), denoting a square root of Dy as Sy, and plugging both terms into Equation (C.16) yields:

tyx = H{Z? QY Hy = H] ViiSu ViyQViSu Vi Hy (C.17)
tyx = HiSuV;QViSyH, (C.18)

with Hy = VHy ~ N(0,I5(4741))—a multivariate standard normally distributed random vector, as Vy is orthogonal.
Furthermore, since matrix Sy V{;QVySy is diagonal, the estimator of the group-level covariance #yx is now represented as
a weighted sum of squares of independent normally distributed random variables, that is, a weighted sum of y?-distributed
random variables. Thus, at this point, we achieved our aim of transforming 7yx.

Appendix D

Here, we derive the distributions of the ML and the Bayesian estimator. To this end, we start by calculating the distributions
of sample group-level covariances 7x* and tyx in Equations (10) and (11), respectively. According to Welch (1947) and

Satterthwaite (1946), we can approximate these sums as a generic Gamma distribution with parameters:

1 0ik:)?
ksum = (ZZ::’TI() (Dl)
Gsum = Zklelkl . (D2)

Notice that each element in the sums i')z( and yx is scaled. The scales are defined by diagonal matrices Sx V{AVxSx (for %}2()
and Sy V};,QVySy (for yx). Let us denote their diagonal elements as 0x,; and fyx, i, respectively. Then, we can express the
distributions of % and #yx as

%)2( ~ Gamma (Ksum1, Osum1 ) (D.3)
P (X;6x,1)° _ 0%
suml = 22’.9?{‘[ s Usuml = Zi9x7i
%YX ~ Gamma(ksum27 esuml) (D4)
k (X60vx,)° 0%
sum2 = s Usum2 = .
221'6%/)(7,‘ ZiGYX,i

Using these distributions, we can find the distribution of the ML estimator. It is well known that the ratio of two
independent gamma-distributed random variables follows F distribution. The independence of #% and #yx is not directly
clear, but it follows from the approximation of the sum of Gamma-distributions. Therefore, the ML estimator’s distribution is

Ksum1 Osumn 5
! . ﬁb ~ F(stum272ksuml)- (DS)
ksumZ 6sumZ

Next, we derive the distribution of the Bayesian estimator. Since it includes the two parameters 77 and , we need to adjust
the process of derivation and find the distribution of the denominator first.

The denominator is (1 — )73 + w1% and consists of a stochastic part w#% and deterministic part (1 — w)73. To sum them
up, we replace the deterministic part with the sequence of random variables t,,, which converges (in probability) to this
deterministic part:

1
tm ~ Gamma (mré, — ) . (D.6)
m
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Further, we substitute 77 with t,, and yield a sum of gamma-distributed random variables. Using once more the approach
from Welch (1947) and Satterthwaite (1946), we compute a sum as a new sequence of random variables that follows a Gamma
distribution with parameters kg, ,, and g, :

(wesumlksuml + (1 - w)TZ)Z

kp,m = P, K (- w) a2 (D.7)
0. - “’95“’"1"”’;;;(1 w3 (03)
The limit is the Gamma(kg,605) distribution with parameters:
kn= lim kg, = _ {Bhum ke + (1~ W)’ (D.9)
w202, Ksum
8 = W}L“; O8.m = w@sum(:)k::;n: Zulmi w)7} ’ (D.10)

Using the derived distribution of the denominator, similarly to the ML estimator, we yield the total distribution of the Bayesian
estimator:

ks

ksumz Bsumz

Bb ~ F(stumlysz) (Dll)

After computing the distributions of the ML estimator (Equation (D.5)) and the Bayesian estimator (Equation (D.11)), we
use them to calculate biases and variances of the estimators and thus their MSEs as

sum 02 (ksuml + ksumz - 1) ( ksumz esumz )2
MSE 2 sum2 + - (D.12)
(ﬂh) suml (ksuml - 1) (ksuml _2) (ksuml - 1)95um1 ﬁb
% sum 0 k ksum -1 ksum esum :
MSE(By) = =2 buna (K + Koz ~1) B, (D.13)
eé(kB—l)z(kB—Z) (kB—l)GB

Appendix E: Estimation algorithm

Finally, we introduce a novel and practical algorithm based on the theoretical investigations made in the main part of the
article. This algorithm aims to provide an efficient and effective solution for computing the regularized Bayesian estimator:

1. Input data: n, J, Xj, and Yj;,

2. Define matrix A from Equation (E1) of Appendix E

3. Calculate the (manifest) group means: Xa; of X from Equation (B.3) in Appendix B and Y; of Y from Equation (B.4)
in Appendix B.

4. Calculate the overall means: Xee of X from Equation (B.5) in Appendix B and Yee of Y from Equation (B.6) in
Appendix B.

5. Compute #% from Equation (B.13) in Appendix B and 12 from Equation (B.16) in Appendix B as well as

== Syl vy Ly (E.1)

! n(n NSg " m-ng-yyg Y gt '

J n ]

5% = X2 - X2 E2
%= 1)11221,; = I)JJZ o (E2)
. 1 Le
Oyx = mj=l ;X,JYU ( 1)] ZXOJY',I (E3)

J n n 172
Y Y, E4
<n—1)f]§§ EEVPIRC B4

2
Oy
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12.
13.
14.

15.

16.

17.
18.
19.

Dashuk et al.

. Find the ML estimator B;, from Equation (6).
. Compute diagonal matrices of eigenvalues Dy (page 44), Dy (page 46), Dyx (page 48), and matrix of eigenvectors V

from Equation (F.2) of Appendix E

. Calculate the square root matrices Sx = /Dx and Sy = \/Dy.
. Compute the diagonal matrix of coefficients L, = Sx V' AVSx.
10.
11.

Calculate matrix Q from Equation (C.15) in Appendix C.

Compute the diagonal matrix of eigenvalues Dy from Equation (C.13) of Appendix C and eigenvectors matrix Vi
from Equation (F.6) of Appendix F.

Calculate the square root matrix Sy = /Dp.

Compute the diagonal matrix of coefficients L, = Sy V{;QVrSH.

Compute the coefficients ksum1, Osum1> ksumz, and Osm (note that 1 is a vector of ones):

1V, L)
Ksum1 = M (E.5)
2L L,
L
7 L

nJ+J+1

2

1’ L,
o (k) )
2051,

LL

1;(”}+]+1)L2

(E.6)

esuml =

(E.8)

95um2 =

Define vectors W and T, with the values of w and 72 that specify grid search region. For example, W goes from 0 to
1 by steps of 0.01, and T, goes from 0.1 to 10 by steps of 0.1
Compute the MSE for each value of W and To,, whereby S, should be substituted with f3,. The final formula is
delineated as
MSEML(i»j) = {ksuml sumz(kmmz + 1) ((1 - W(l) ) To2 (]) + W(’) 1;/+/+1L1 )}
H =W (@) Toa () + WD) Ly yaLe)* =2W (@) (L1L1)) *
(A=W (@@))Toa(j) + W(i) Ly yir L1)> —4W(i)*(L1'L1) ) } - (E.9)
2By ks Oz (1= W (i) Toa () + W (i) 1, L ) B
b
(A=W Toa () + W(D) 1, 1 L1)? = W(i)2- (LIL1))
Find the minimum MSE and indexes i and j* that provide this minimum.

Define the optimal parameters w" = W(i") and 73" = To, (j').
Compute the optimally regularized Bayesian estimator as

- Tyx

fo= (1-w)F +w'il’

(E.10)

Appendix F: Matrices

0
0
1
L 0
n(n—1)J 1
(n=-1)J-1)J ***
0

N S
n(n—1)] """

(=}
S o o O

S

(E1)

: 0
nj—1

0 GO0

0 0

o oo o o
o oo
‘\oooooo

~
|
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Table 2. RMSE values of the ML (RMSEy,) and the Bayesian estimators (RMSEg.y represents the Bayesian with 8, and

RMSEgu represents the Bayesian with Bb) for ICCy = 0.05 and different values of n, J, 8, and S8,

n J Bb Pw  RMSEm. RMSEgay RMSEgw. n J Bb Bw  RMSEm.  RMSEpyy  RMSEgwL
5 5 0.2 0.2 57.587  2.725 2.667 15 20 05 0.7 6.992 0.913 0.913
5 5 0.2 05 529.69  3.065 3.036 15 20 06 02 24.893 0.868 0.872
5 5 0.2 0.7 93.937  3.475 3.462 15 20 06 05 31.363 0.863 0.864
5 5 0.5 0.2 29.285 2.644 2.613 15 20 06 0.7 271.245 0.883 0.883
5 5 0.5 0.5 32.474  3.07 3.043 15 30 02 02 24704 0.67 0.676
5 5 0.5 0.7 108.22  3.458 3.426 15 30 02 05 14.967 0.702 0.707
5 5 0.6 0.2 37.614 279 2.755 15 30 02 07 66.872 0.769 0.775
5 5 0.6 0.5 38.324  3.036 3.002 15 30 05 02 85611 0.679 0.681
5 5 0.6 0.7 246.624 34 3.393 15 30 05 05 17.079 0.703 0.704
5 10 0.2 0.2 103585 1.868 1.862 15 30 05 0.7 18.208 0.749 0.748
5 10 02 05 18.639 2.121 2.133 15 30 06 02 15.823 0.744 0.743
5 10 02 0.7 68.983  2.348 2.346 15 30 06 05 11.853 0.72 0.719
5 10 05 02 21.904 1.881 1.872 15 30 06 07 9818 0.741 0.739
5 10 05 05 172495 2.051 2.039 15 40 02 0.2 6.608 0.516 0.525
5 10 05 0.7 85.472  2.383 2.392 15 40 02 05 3.685 0.546 0.551
5 10 06 0.2 65.174 1911 1.894 15 40 02 0.7 18.378 0.585 0.593
5 10 06 05 19.356  2.129 2.124 15 40 05 02 15.753 0.61 0.611
5 10 0.6 0.7 553141 2315 2.313 15 40 05 05 5.633 0.607 0.605
5 20 02 02 323 137 1.364 15 40 05 0.7 25.081 0.606 0.603
5 20 0.2 0.5 186452 1.486 1.491 15 40 06 0.2 9.669 0.652 0.648
5 20 02 0.7 31.417 1.633 1.652 15 40 06 05 6.565 0.61 0.607
5 20 05 0.2 528303 1.302 1.313 15 40 06 0.7 13.398 0.632 0.629
5 20 05 05 15.767 1.38 1.376 30 5 0.2 0.2 346.81 1.549 1.554
5 20 05 0.7 81.714 1.614 1.612 30 5 02 0.5 697.82 1.646 1.649
5 20 06 0.2 84.956  1.347 1.347 30 5 0.2 0.7 841537 1.734 1.732
5 20 06 05 22.968 1.379 1.378 30 5 0.5 0.2 44781 1.552 1.554
5 20 06 0.7 70.052  1.57 1.58 30 5 0.5 0.5 41.708 1.557 1.56
5 30 02 02 25439 1.087 1.098 30 5 0.5 0.7 116.407 1.712 1.718
5 30 02 05 39.795 1.142 1.14 30 5 06 0.2 89971 1.519 1.523
5 30 0.2 0.7 157449 1.337 1.343 30 5 06 0.5 51.606 1.591 1.593
5 30 05 02 17.714  1.107 1.113 30 5 0.6 0.7 111.256 1.604 1.611
5 30 05 05 65.436  1.175 1.169 30 10 0.2 02 12574 1.067 1.072
5 30 05 07 20.967  1.249 1.248 30 10 0.2 05 44729 1.087 1.091
(Continued)
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Table 2. Continued

Dashuk et al.

n J Bp  Bw  RMSEm. RMSEgsy RMSEgy. n J Bo Pw RMSEw. RMSEgy  RMSEgu.
5 30 06 0.2 112352 1.104 1.109 30 10 02 0.7 28.094 1.133 1.136
5 30 0.6 0.5 24.527 1.181 1.183 30 10 05 0.2 11.672 1.057 1.061
5 30 0.6 0.7 31.858 1.241 1.25 30 10 05 05 251 1.076 1.078
5 40 0.2 0.2 42185 0.979 0.983 30 10 05 0.7 164174 113 1.131
5 40 0.2 0.5 53.56 1.054 1.053 30 10 0.6 0.2 40.09 1.044 1.045
5 40 0.2 0.7 15.499 1.082 1.086 30 10 06 0.5 68118 1.047 1.05
5 40 05 0.2 115.685 0.987 0.987 30 10 0.6 0.7 122.808 1.088 1.092
5 40 05 05 32.061 0.998 0.994 30 20 02 0.2 408 0.587 0.597
5 40 05 0.7 28321 1.161 1.166 30 20 0.2 05 6.69% 0.561 0.571
5 40 06 0.2 34.223 0.973 0.97 30 20 02 0.7 871 0.587 0.597
5 40 0.6 0.5 107.287 1.018 1.016 30 20 05 0.2 6.382 0.647 0.646
5 40 0.6 0.7 41.419 1.044 1.047 30 20 05 05 66.702 0.642 0.642
15 5 0.2 0.2 205.555 1.676 1.667 30 20 05 0.7 612 0.647 0.644
15 5 0.2 05 290.677 1777 1.762 30 20 06 0.2 9591 0.693 0.689
15 5 0.2 0.7 89.916 1.946 1.942 30 20 06 05 11.39 0.669 0.665
15 5 0.5 0.2 96.434 1.599 1.597 30 20 06 0.7 2793 0.705 0.702
15 5 0.5 05 61309 1.747 1.742 30 30 02 0.2 00981 0.342 0.353
15 5 0.5 0.7 83573 1.936 1.926 30 30 02 05 0.79% 0.322 0.333
15 5 06 0.2 34357 1.622 1.61 30 30 02 07 2281 0.331 0.341
15 5 06 05 111.232 1.742 1.739 30 30 05 02 0973 0.503 0.499
15 5 0.6 0.7 328599 1.904 1.903 30 30 05 05 2255 0.476 0.472
15 10 0.2 0.2 216.574 1.186 1.184 30 30 05 0.7 1.147 0.494 0.491
15 10 0.2 05 291.914 1.25 1.249 30 30 06 02 0815 0.558 0.55
15 10 0.2 0.7 93.279 1.271 1.278 30 30 06 0.5 0.745 0.541 0.533
15 10 0.5 0.2 30459 1.195 1.195 30 30 06 0.7 1736 0.564 0.558
15 10 0.5 0.5 120.55 1.208 1.209 30 40 0.2 0.2 0.621 0.231 0.24
15 10 0.5 0.7 19.802 1.288 1.291 30 40 0.2 05 3.259 0.241 0.252
15 10 0.6 0.2 135.805 1.178 1.181 30 40 0.2 0.7 0.651 0.261 0.272
15 10 0.6 0.5 40.038 1.221 1.226 30 40 05 0.2 0.708 0.443 0.435
15 10 0.6 0.7 35817 1.265 1.268 30 40 05 05 0572 0.441 0.435
15 20 02 0.2 24678 0.878 0.883 30 40 05 0.7 1.291 0.432 0.427
15 20 0.2 0.5 166.166 0.875 0.878 30 40 06 0.2 1.29% 0.522 0.514
15 20 0.2 0.7 19.525 0.936 0.939 30 40 06 05 0.731 0.509 0.502
15 20 05 0.2 43.648 0.899 0.903 30 40 06 0.7 0475 0.508 0.501
15 20 05 05 62277 0.879 0.878
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Table 3. RMSE values of the ML (RMSEy.) and the Bayesian estimators (RMSEg,y, represents the Bayesian with f, and
RMSEgy represents the Bayesian with Bb) for ICCx = 0.1 and different values of n, J, 8, and f3,,

n J Bb Bw  RMSEm RMSEgsy  RMSEgu. N J Bb Bw  RMSEm.  RMSEga,  RMSEgwL
5 5 02 02 33.935 2.436 2.383 15 20 05 0.7 2.45 0.511 0.51
5 5 02 05 612.83 2.858 2.853 15 20 06 0.2 24.405 0.578 0.578
5 5 02 07 258.045 3.069 3.057 15 20 06 05 1.927 0.551 0.548
5 5 05 02 46.967 2.389 2.341 15 20 0.6 0.7 3.717 0.547 0.544
5 5 05 05 61.524 2.63 2.607 15 30 02 02 1.268 0.257 0.271
5 5 05 07 41.284 2.988 2.976 15 30 02 05 0.733 0.265 0.28
5 5 06 02 38.72 2.449 2.383 15 30 02 0.7 0.807 0.308 0.321
5 5 06 05 346.286 2.657 2.625 15 30 05 02 0.723 0.42 0.416
5 5 06 07 58.937 3.06 3.049 15 30 05 05 3.031 0.417 0.413
5 10 02 0.2 176.892 1.591 1.571 15 30 05 0.7 1.083 0.421 0.418
5 10 02 05 20.44 1.737 1.736 15 30 06 0.2 0.657 0.478 0.472
5 10 02 07 49.498 1.994 1.99 15 30 06 05 1.69 0.475 0.47
5 10 05 0.2 55.096 1.52 1.509 15 30 06 0.7 0.588 0.47 0.464
5 10 05 0.5 230.062 1.618 1.613 15 40 02 0.2 0.577 0.19 0.202
5 10 05 0.7 62.571 1.865 1.86 15 40 02 05 1.869 0.207 0.22
5 10 06 0.2 17.002 1.57 1.565 15 40 02 0.7 15.892 0.229 0.24
5 10 06 05 20.908 1.661 1.663 15 40 05 0.2 1.213 0.381 0.376
5 10 06 0.7 180.241 1.756 1.742 15 40 05 05 0.391 0.383 0.378
5 20 0.2 0.2 728.749 1.06 1.063 15 40 05 0.7 0.373 0.382 0.378
5 20 02 05 105.743 1.088 1.085 15 40 0.6 0.2 0.396 0.439 0.433
5 20 02 07 108.22 1.278 1.273 15 40 06 05 0.339 0.44 0.435
5 20 05 02 26.338 1.017 1.01 15 40 06 0.7 0.34 0.441 0.437
5 20 05 05 11.918 1.018 1.022 30 5 02 02 25.285 1.216 1.216
5 20 05 0.7 58.23 1.206 1.208 30 5 02 05 38.692 1.278 1.286
5 20 06 0.2 1378.614 1.001 1.005 30 5 02 0.7 135292 1.247 1.248
5 20 06 05 39.003 1.061 1.057 30 5 05 02 20.224 1.135 1.136
5 20 06 0.7 123.476 1.104 1.11 30 5 05 05 40.565 1.21 1.212
5 30 02 02 52.669 0.793 0.801 30 5 05 07 46.002 1.159 1.163
5 30 02 05 20.106 0.836 0.832 30 5 06 02 124.16 1.127 1.129
5 30 02 07 14.304 0.926 0.928 30 5 06 05 12.079 1.129 1.13
5 30 05 02 11.626 0.769 0.763 30 5 06 07 46.667 1.198 1.201
5 30 05 05 18.425 0.789 0.786 30 10 0.2 0.2 4.575 0.61 0.621
5 30 05 07 33.711 0.792 0.8 30 10 0.2 05 4.977 0.628 0.64
5 30 06 02 14.777 0.789 0.793 30 10 0.2 0.7 29.187 0.651 0.664
5 30 06 05 14.068 0.82 0.819 30 10 05 0.2 2.935 0.629 0.63
5 30 06 0.7 50.97 0.858 0.854 30 10 05 05 12.047 0.665 0.665
(Continued)
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Table 3. Continued

n J Bo  Bw  RMSEm RMSEgy ~ RMSEgw. 1 J Bp  PBw RMSEm.  RMSEgy  RMSEgwL

5 40 0.2 0.2 13.05 0.616 0.625 30 10 05 0.7 6.835 0.68 0.681
5 40 0.2 05 6.66 0.655 0.661 30 10 06 0.2 3.711 0.684 0.684
5 40 0.2 0.7 322.906 0.757 0.759 30 10 0.6 0.5 10.482 0.679 0.676
5 40 05 0.2 12.974 0.642 0.642 30 10 0.6 0.7 6.904 0.667 0.667
5 40 05 0.5 12.791 0.662 0.655 30 20 0.2 0.2 0.505 0.227 0.243
5 40 05 0.7 8.006 0.711 0.712 30 20 0.2 0.5 0.479 0.223 0.242
5 40 0.6 0.2 35.647 0.693 0.699 30 20 0.2 0.7 0.592 0.235 0.252
5 40 0.6 0.5 13.025 0.661 0.66 30 20 05 0.2 0.441 0.395 0.391
5 40 0.6 0.7 25.894 0.703 0.701 30 20 05 0.5 0.6 0.4 0.395
15 5 02 02 32.744 1.411 1.402 30 20 05 0.7 0.437 0.394 0.39
15 5 02 05 823.55 1.494 1.497 30 20 0.6 0.2 18.717 0.458 0.452
15 5 02 07 1346232 1.654 1.651 30 20 0.6 0.5 0.577 0.466 0.46
15 5 05 02 100.543 1.402 1.394 30 20 0.6 0.7 0.451 0.462 0.456
15 5 05 05 12.623 1.392 1.388 30 30 02 0.2 0.344 0.162 0.174
15 5 05 07 238948 1.459 1.458 30 30 02 05 0.345 0.163 0.176
15 5 06 02 169.018 1.356 1.359 30 30 0.2 0.7 0.347 0.168 0.181
15 5 06 05 97.213 1.343 1.343 30 30 05 0.2 0.341 0.369 0.363
15 5 06 07 25.553 1.525 1.519 30 30 05 05 0.511 0.375 0.37
15 10 02 0.2 30.52 0.852 0.855 30 30 05 0.7 0.326 0.372 0.368
15 10 02 0.5 37.813 0.877 0.884 30 30 06 0.2 0.332 0.43 0.424
15 10 02 0.7 17.617 0.9 0.901 30 30 06 0.5 0.319 0.433 0.428
15 10 05 0.2 8.591 0.842 0.846 30 30 06 0.7 0.308 0.433 0.429
15 10 05 0.5 28.307 0.863 0.866 30 40 02 0.2 0.292 0.16 0.167
15 10 05 0.7 16.876 0.838 0.84 30 40 02 0.5 0.292 0.159 0.165
15 10 06 0.2 12.698 0.84 0.842 30 40 0.2 0.7 0.293 0.16 0.168
15 10 06 0.5 18.314 0.833 0.833 30 40 05 0.2 0.279 0.359 0.354
15 10 06 0.7 17.259 0.834 0.835 30 40 05 0.5 0.272 0.36 0.356
15 20 02 0.2 4.809 0.437 0.449 30 40 05 0.7 0.269 0.362 0.358
15 20 02 05 14.818 0.448 0.459 30 40 06 0.2 0.266 0.421 0.418
15 20 02 0.7 5.329 0.486 0.498 30 40 0.6 05 0.268 0.421 0.417
15 20 05 0.2 1.404 0.525 0.524 30 40 06 0.7 0.261 0.423 0.42
15 20 05 0.5 1.637 0.518 0.517
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Table 4. RMSE values of the ML (RMSEy.) and the Bayesian estimators (RMSEg,y represents the Bayesian with 8, and

RMSEgy represents the Bayesian with Z?b) for ICCx = 0.3 and different values of n, J, 8, and f3,,

n J Bp  Pw RMSEw. RMSEgsy RMSEgw. n J Bp Pw RMSEm.  RMSEgs,  RMSEgwL
5 5 02 02 42506 1.716 1.658 15 20 05 0.7 0.202 0.255 0.261
5 5 02 05 18.529 1.853 1.828 15 20 06 0.2 0.196 0.282 0.287
5 5 02 07 19.436 1.959 1.943 15 20 06 0.5 0.188 0.283 0.288
5 5 05 02 17.082 1.664 1.634 15 20 06 0.7 0.177 0.284 0.291
5 5 05 05 150.933 1.746 1.725 15 30 0.2 0.2 0.19 0.128 0.141
5 5 05 07 30.333 1.858 1.821 15 30 0.2 05 0.186 0.13 0.142
5 5 06 02 15.691 1.594 1.555 15 30 0.2 0.7 0.189 0.13 0.142
5 5 06 05 171.09 1.616 1.592 15 30 05 0.2 0.166 0.23 0.236
5 5 06 07 122525 1.71 1.69 15 30 05 0.5 0.157 0.231 0.238
5 10 02 0.2 20.815 0.758 0.761 15 30 05 0.7 0.155 0.231 0.237
5 10 02 0.5 36.747 0.844 0.835 15 30 0.6 0.2 0.153 0.261 0.266
5 10 02 0.7 38.392 0.883 0.878 15 30 0.6 05 0.142 0.262 0.267
5 10 05 0.2 8.447 0.699 0.697 15 30 06 0.7 0.135 0.263 0.268
5 10 05 0.5 13.505 0.713 0.705 15 40 0.2 0.2 0.161 0.122 0.131
5 10 05 0.7 12.165 0.799 0.796 15 40 0.2 05 0.16 0.125 0.134
5 10 06 0.2 15.714 0.763 0.75 15 40 0.2 0.7 0.16 0.125 0.134
5 10 06 0.5 6.207 0.675 0.674 15 40 05 0.2 0.14 0.22 0.227
5 10 06 0.7 22.794 0.74 0.728 15 40 05 0.5 0.135 0.219 0.225
5 20 02 0.2 1.301 0.325 0.344 15 40 05 0.7 0.129 0.219 0.225
5 20 02 0.5 0.905 0.315 0.343 15 40 0.6 0.2 0.129 0.252 0.258
5 20 02 0.7 4.667 0.371 0.386 15 40 0.6 0.5 0.12 0.251 0.256
5 20 05 0.2 6.983 0.368 0.374 15 40 0.6 0.7 0.117 0.253 0.258
5 20 05 0.5 0.504 0.366 0.37 30 5 02 02 2.041 0.705 0.706
5 20 05 0.7 0.866 0.367 0.376 30 5 02 05 2.276 0.707 0.708
5 20 06 0.2 2.347 0.39 0.396 30 5 02 07 57.25 0.727 0.727
5 20 06 0.5 0.58 0.365 0.37 30 5 05 02 2.991 0.579 0.579
5 20 06 0.7 2.782 0.368 0.372 30 5 05 05 4.882 0.583 0.584
5 30 02 0.2 1.821 0.176 0.201 30 5 05 07 5.315 0.658 0.66
5 30 02 05 0.34 0.184 0.21 30 5 06 02 2.366 0.54 0.54
5 30 02 0.7 0.337 0.192 0.216 30 5 06 05 1.13 0.542 0.543
5 30 05 02 0.346 0.282 0.288 30 5 06 0.7 126.33 0.525 0.525
5 30 05 05 0.618 0.277 0.283 30 10 0.2 0.2 0.422 0.165 0.199
5 30 05 0.7 0.284 0.281 0.287 30 10 0.2 05 0.366 0.184 0.218
5 30 06 02 0.861 0.309 0.315 30 10 0.2 0.7 0.347 0.16 0.198
5 30 06 05 2.374 0.307 0.314 30 10 05 0.2 0.309 0.294 0.299
5 30 06 0.7 0.316 0.302 0.308 30 10 0.5 05 0.322 0.29 0.295
(Continued)
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Table 4. Continued

n J fBb Pw RMSEw. RMSEgsy RMSEgm. n J B, Bw RMSEw. RMSEgy  RMSEgw
5 40 02 0.2 0.248 0.145 0.164 30 10 05 0.7 0.541 0.3 0.305
5) 40 0.2 0.5 0.239 0.143 0.165 30 10 0.6 0.2 0.273 0.324 0.328
5) 40 0.2 0.7 0.283 0.144 0.166 30 10 0.6 05 1.181 0.327 0.331
5) 40 05 0.2 0.54 0.249 0.255 30 10 0.6 0.7 0.253 0.331 0.336
5 40 05 0.5 0.232 0.257 0.264 30 20 0.2 0.2 0.218 0.133 0.149
5) 40 0.5 0.7 0.196 0.254 0.261 30 20 0.2 05 0.214 0.134 0.149
5 40 06 0.2 0.222 0.279 0.286 30 20 0.2 0.7 0.211 0.134 0.15
5 40 0.6 0.5 0.195 0.28 0.287 30 20 05 0.2 0.186 0.243 0.249
5 40 0.6 0.7 0.175 0.282 0.289 30 20 05 05 0.178 0.243 0.249
15 5 02 02 12.929 0.902 0.898 30 20 05 0.7 0.174 0.246 0.253
15 5 02 05 24.547 0.906 0.913 30 20 06 0.2 0.165 0.277 0.282
15 5 02 07 23651 0.925 0.926 30 20 06 05 0.156 0.276 0.281
15 5 05 02 5.145 0.802 0.8 30 20 0.6 0.7 0.156 0.278 0.283
15 5 05 05 33.086 0.776 0.776 30 30 02 0.2 0.172 0.126 0.135
15 5 05 07 11.948 0.795 0.794 30 30 02 05 0.171 0.126 0.135
15 5 06 02 15.276 0.732 0.731 30 30 0.2 0.7 0.168 0.126 0.135
15 5 06 05 3.845 0.742 0.74 30 30 05 0.2 0.146 0.228 0.234
15 5 06 07 12.678 0.736 0.737 30 30 05 05 0.143 0.226 0.232
15 10 02 0.2 1.994 0.291 0.315 30 30 05 0.7 0.14 0.227 0.233
15 10 02 05 0.616 0.284 0.313 30 30 06 0.2 0.129 0.259 0.263
15 10 02 0.7 0.95 0.287 0.314 30 30 0.6 0.5 0.123 0.26 0.265
15 10 05 0.2 1.122 0.345 0.351 30 30 06 0.7 0.12 0.26 0.264
15 10 05 05 0.693 0.342 0.348 30 40 02 0.2 0.146 0.12 0.126
15 10 05 0.7 1.563 0.34 0.345 30 40 0.2 05 0.144 0.122 0.128
15 10 06 0.2 13.285 0.367 0.373 30 40 0.2 0.7 0.143 0.12 0.126
15 10 06 05 2.519 0.36 0.366 30 40 05 0.2 0.123 0.215 0.221
15 10 06 0.7 1.467 0.361 0.365 30 40 05 05 0.118 0.215 0.221
15 20 02 0.2 0.245 0.135 0.156 30 40 05 0.7 0.118 0.217 0.223
15 20 0.2 05 0.344 0.139 0.161 30 40 06 0.2 0.111 0.251 0.254
15 20 02 0.7 0.245 0.141 0.163 30 40 0.6 0.5 0.105 0.25 0.253
15 20 05 0.2 0.213 0.251 0.257 30 40 0.6 0.7 0.101 0.251 0.255
15 20 05 05 0.206 0.254 0.259
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Table5. RMSE values of the ML (RMSEy ) and the Bayesian estimators (RMSEg,y represents the Bayesian with 8, and RMSEgy.
represents the Bayesian with ﬁb) for ICCy = 0.5 and different values of n, J, B, and B

n J Bo Bw RMSEm. RMSEgsy RMSEgu. N J Bp Bw RMSEw.  RMSEgay  RMSEpwL
5 5 0.2 02 25163 1.146 1.126 15 20 05 07 0122 0.161 0.175
5 5 02 05 10.82 1.242 1.221 15 20 06 02 0.1 0.17 0.177
5 5 0.2 0.7 1591.347 1.281 1.257 15 20 0.6 05 0.093 0.173 0.181
5 5 0.5 0.2 35852 1.098 1.086 15 20 0.6 07 0.08 0.175 0.182
5 5 0.5 05 9.419 1.04 1.023 15 30 02 02 0.136 0.103 0.12
5 5 0.5 0.7 10.523 1.092 1.077 15 30 02 05 0137 0.103 0.121
5 5 0.6 02 16.765 1.05 1.028 15 30 0.2 07 0.136 0.104 0.121
5 5 0.6 05 27.568 1.048 1.033 15 30 05 02 0.103 0.137 0.149
5 5 0.6 0.7 14273 1.031 1.023 15 30 05 05 0.097 0.139 0.151
5 10 02 0.2 3749 0.334 0.371 15 30 05 07 0.094 0.139 0.151
5 10 02 05 1869 0.356 0.383 15 30 0.6 02 0.079 0.154 0.161
5 10 0.2 0.7 41.055 0.396 0.428 15 30 06 05 0.072 0.154 0.159
5 10 05 0.2 1281 0.345 0.359 15 30 0.6 07 0.067 0.154 0.16
5 10 05 05 2041 0.323 0.337 15 40 0.2 02 0.115 0.093 0.108
5 10 05 0.7 12.806 0.344 0.358 15 40 0.2 05 0.114 0.094 0.108
5 10 0.6 0.2 179.541 0.346 0.363 15 40 0.2 07 0.113 0.094 0.109
5 10 06 0.5 0.501 0.323 0.334 15 40 05 02 0.088 0.128 0.138
5 10 06 0.7 2179 0.311 0.322 15 40 05 05 0.084 0.128 0.138
5 20 02 02 024 0.134 0.172 15 40 05 0.7 0.082 0.129 0.14
5 20 02 05 0242 0.136 0.177 15 40 0.6 02 0.068 0.143 0.148
5 20 02 0.7 0273 0.148 0.185 15 40 0.6 05 0.062 0.144 0.15
5 20 05 0.2 0.208 0.194 0.213 15 40 0.6 0.7 0.058 0.145 0.149
5 20 05 05 0.186 0.19 0.208 30 5 0.2 02 3.068 0.519 0.517
5 20 05 0.7 0.179 0.197 0.215 30 5 02 05 1.998 0.521 0.521
5 20 06 0.2 0212 0.209 0.224 30 5 02 07 1.584 0.519 0.519
5 20 06 05 0.167 0.206 0.22 30 5 0.5 02 1417 0.365 0.365
5 20 06 0.7 0.156 0.21 0.223 30 5 0.5 05 1.486 0.366 0.366
5 30 02 02 0.181 0.117 0.144 30 5 0.5 07 0.624 0.357 0.358
5 30 02 05 0177 0.118 0.144 30 5 06 02 1.038 0.282 0.283
5 30 02 07 0178 0.119 0.145 30 5 06 05 0.281 0.247 0.247
5 30 05 02 0157 0.163 0.181 30 5 06 07 0434 0.247 0.247
5 30 05 05 0.145 0.164 0.182 30 10 0.2 0.2 0.261 0.135 0.174
5 30 05 0.7 0.136 0.166 0.182 30 10 02 05 025 0.13 0.169
5 30 06 02 0.142 0.172 0.185 30 10 0.2 0.7 0.258 0.137 0.175
5 30 06 05 0125 0.173 0.185 30 10 05 0.2 0.181 0.2 0.213
5 30 06 07 0117 0.178 0.19 30 10 05 05 0.174 0.203 0.216
(Continued)
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Table 5. Continued

n J Bp  Bw RMSEw. RMSEg, RMSEgw. n J Bp  PBw RMSEm.  RMSEgs,  RMSEgw.
5 40 02 0.2 0.153 0.109 0.13 30 10 05 0.7 0.171 0.204 0.216
5 40 02 05 0.155 0.111 0.133 30 10 06 0.2 0.131 0.214 0.219
5 40 02 o0.7 0.152 0.111 0.133 30 10 06 05 0.116 0.215 0.221
5 40 05 0.2 0.13 0.144 0.16 30 10 06 0.7 0.113 0.217 0.224
5 40 05 05 0.123 0.148 0.166 30 20 0.2 0.2 0.158 0.112 0.132
5 40 05 0.7 0.115 0.149 0.164 30 20 0.2 05 0.158 0.111 0.131
5 40 06 0.2 0.119 0.157 0.169 30 20 02 0.7 0.159 0.113 0.132
5 40 06 05 0.106 0.162 0.173 30 20 05 0.2 0.11 0.152 0.164
5 40 06 0.7 0.097 0.162 0.172 30 20 05 05 0.109 0.152 0.164
15 5 02 02 4.898 0.637 0.637 30 20 05 0.7 0.106 0.156 0.168
15 5 02 05 1.439 0.601 0.602 30 20 06 0.2 0.077 0.168 0.173
15 5 02 07 1.517 0.618 0.613 30 20 06 05 0.073 0.17 0.175
15 5 05 0.2 0.851 0.466 0.467 30 20 06 0.7 0.071 0.171 0.176
15 5 05 05 2.01 0.456 0.46 30 30 02 0.2 0.127 0.099 0.115
15 5 05 07 17 0.475 0.477 30 30 02 05 0.126 0.1 0.114
15 5 06 0.2 1.784 0.41 0.411 30 30 02 0.7 0.125 0.1 0.115
15 5 06 05 2.641 0.396 0.395 30 30 05 0.2 0.088 0.136 0.146
15 5 06 0.7 3.921 0.372 0.374 30 30 05 05 0.088 0.139 0.149
15 10 02 0.2 0.291 0.155 0.195 30 30 05 0.7 0.086 0.137 0.146
15 10 02 0.5 0.284 0.15 0.193 30 30 06 0.2 0.062 0.154 0.157
15 10 02 0.7 0.281 0.145 0.189 30 30 06 05 0.057 0.153 0.157
15 10 05 0.2 0.209 0.21 0.225 30 30 06 0.7 0.055 0.155 0.158
15 10 05 0.5 0.21 0.216 0.229 30 40 02 0.2 0.108 0.089 0.103
15 10 05 0.7 0.197 0.216 0.23 30 40 02 05 0.106 0.09 0.103
15 10 06 0.2 0.26 0.227 0.236 30 40 02 0.7 0.107 0.091 0.105
15 10 06 0.5 0.782 0.226 0.235 30 40 05 0.2 0.077 0.128 0.137
15 10 06 0.7 2.011 0.228 0.237 30 40 05 05 0.076 0.128 0.136
15 20 02 0.2 0.176 0.115 0.139 30 40 05 0.7 0.074 0.127 0.135
15 20 02 05 0.172 0.117 0.141 30 40 06 0.2 0.052 0.145 0.148
15 20 0.2 0.7 0.172 0.115 0.138 30 40 06 05 0.05 0.147 0.15
15 20 05 0.2 0.131 0.155 0.169 30 40 0.6 0.7 0.048 0.146 0.15
15 20 05 0.5 0.124 0.16 0.174
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Table 6. Relative bias in % of the ML (Biasw.) and the Bayesian estimators (Biasga, represents the Bayesian with 3, and
Biasgw, represents the Bayesian with /S’b) for ICCx = 0.05 and different values of n, J, B, and S,

n J Bp Pw  BiasmL Biasgay BiasgwL n J Bo  PBw  BiaswL Biasgay BiasguL

5 5 0.2 0.2 939.706 -175.218 -177.665 15 20 0.5 0.7 -23.76 —67.163 —65.211
5 5 0.2 05 -2576.35 —344.055 -340.826 15 20 0.6 0.2 -102.766 —32.639 —31.891
5 5 0.2 0.7 1012501 -456.048 —-461978 15 20 06 0.5 -151.732 -52.393 —50.838
5 5 0.5 0.2 -108.197 -84.818 —81.633 15 20 06 0.7 -639.383 -63.361 -61.91

5 5 0.5 05 09.274 -162.483 -163.005 15 30 0.2 0.2 -200.772 —65.025 —62.464
5 5 0.5 0.7 -526.117 -210.689 —210.87 15 30 02 05 -167.176 -104.229 -100.129
5 5 0.6 0.2 -173.361 —90.041 -87.431 15 30 0.2 0.7 18.683 -137.57 —133.024
5 5 0.6 0.5 49.158 —135.665 —-134.478 15 30 0.5 0.2 161.756 —47.165 —45.048
5 5 0.6 0.7 -699.459 -178.635 -—-179.595 15 30 05 0.5 47.962 —62.547 —60.248
5 10 0.2 0.2 1064.461 —-128.863 —-127.003 15 30 05 0.7 -75.302 —76.234 —73.687
5 10 0.2 0.5 203.735 —-207.413 -208.761 15 30 0.6 0.2 67.323 —43.167 —41.534
5 10 0.2 0.7 -94.878 —-297.133 -296.062 15 30 0.6 0.5 —-19.332 —59.943 —-58.139
5 10 05 0.2 -93.408 —77.668 —76.457 15 30 06 07 -17.13 -63.18 —-61.173
5 10 05 05 -654471 -102.57 -103.688 15 40 0.2 0.2 36.969 —72.628 —69.546
5 10 05 0.7 332931 -144.312 -146.785 15 40 0.2 0.5 -15.178 —101.716 —98.562
5 10 06 0.2 -169.053 -59.41 -59.602 15 40 0.2 0.7 -103.122 -122.674 -119.056
5 10 06 0.5 63.505 —-109.252 -108.353 15 40 0.5 0.2 54.952 —56.233 —53.458
5 10 06 0.7 -1353.22 -122.199 -123.637 15 40 0.5 0.5 14.505 —71.001 —68.306
5 20 0.2 0.2 313.298 -94.42 -90.214 15 40 05 0.7 31.637 —74.519 —T71.875
5 20 0.2 05 143549 -175.674 —-172.445 15 40 0.6 0.2 3.904 —55.525 —53.487
5 20 0.2 0.7 -104.246 -207.484 -206.478 15 40 0.6 0.5 15.277 —66.395 —64.375
5 20 05 0.2 1695914 -54.03 -54.491 15 40 0.6 0.7 —28.682 —71.796 —69.65

5 20 05 05 -43.633 —84.151 —84.021 30 5 0.2 0.2 -1394.99 -57.697 —57.462
5 20 05 0.7 321.686 -101.773 -101.497 30 5 0.2 0.5 —-6438.42 -92.174 —91.853
5 20 06 0.2 -216.689 -54.383 -55.371 30 5 0.2 0.7 6188.805 -107.343 -107.263
5 20 06 05 -51.553 -75.3 —74.366 30 5 0.5 0.2 -177.108 —33.585 —32.785
5 20 06 0.7 -26.749 -96.432 —96.959 30 5 0.5 0.5 —-128.246 —48.822 —49.195
5 30 02 02 21324 —87.631 —87.895 30 5 0.5 0.7 -37.675 —63.07 —63.138
5 30 02 05 -83.263 —133.207 -128.895 30 5 0.6 0.2 -192.766 —26.28 —26.152
5 30 0.2 07 1292766 —-168.866 —164.89 30 5 0.6 0.5 —-226.727 —49.149 —49.239
5 30 05 02 -87.437 —48.346 —48.156 30 5 0.6 0.7 244.26 —50.056 —50.014
5 30 05 05 114.345 —75.708 —73.846 30 10 0.2 0.2 887.138 —40.248 —38.253
5 30 05 0.7 129.019 —89.891 —88.584 30 10 0.2 05 91978 —90.081 —86.919
5 30 0.6 02 203.25 —47.662 —47.134 30 10 0.2 0.7 -48.618 —-107.919 -104.33
5 30 0.6 05 26482 —68.369 —67.769 30 10 05 0.2 43356 —35.66 —34.49

5 30 06 07 -48.218 —79.373 —79.442 30 10 05 05 134341 —48.188 —46.45

(Continued)
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Table 6. Continued

n J B» Pw Biasw Biasgay BiasgwL n J B» Pw Biasw Biasgay BiasgmL
5 40 0.2 0.2 -28.181 —70.438 -71.177 30 10 05 0.7 -572.786 —59.396 —57.443
5 40 0.2 05 -47.091 —-141.974 -137.019 30 10 0.6 0.2 180.012 —30.446 —29.172
5 40 0.2 0.7 169.648 —-166.692 -159.894 30 10 0.6 0.5 262.174 —42.491 —41.197
5 40 0.5 0.2 232466 —41.92 —41.522 30 10 0.6 0.7 -—221.584 —49.66 —48.066
5 40 05 05 -50.815 —71.833 —70.561 30 20 0.2 0.2 17.57 —70.202 —68.437
5 40 05 0.7 -65.781 —88.633 —87.188 30 20 0.2 0.5 -76.648 —87.522 —83.764
5 40 0.6 0.2 95.755 —41.248 —41.131 30 20 0.2 0.7 -102.031 -105.512 -102.991
5 40 0.6 05 -337.021 -62.363 —61.601 30 20 0.5 0.2 -25.786 —64.208 —61.509
5 40 0.6 0.7 137.401 —75.084 —73.927 30 20 0.5 0.5 -—195.755 —68.995 —65.967
15 5 0.2 0.2 1382.23 —66.236 —65.608 30 20 0.5 0.7 -12.808 —75.91 —72.546
15 5 0.2 05 -311431 -1233 —-124703 30 20 0.6 0.2 36.709 —60.133 —57.464
15 5 0.2 0.7 -762.222 -180.02 —-177.251 30 20 0.6 0.5 -—28.893 —68.769 —66.26
15 5 0.5 0.2 312494 —45.271 —45.203 30 20 0.6 0.7 -8.648 —T74.745 —72.346
15 5 0.5 05 -158.832 -73.883 —73.922 30 30 0.2 0.2 -16.632 —83.612 —80.43
15 5 0.5 0.7 -176.129 -89.463 —88.718 30 30 0.2 0.5 —4.256 —84.067 —81.135
15 5 0.6 0.2 —47.277 —48.753 —50.276 30 30 0.2 0.7 -22.266 —88.912 —85.758
15 5 0.6 05 -—285.822 -61.179 —61.678 30 30 0.5 0.2 12.282 —75.513 —72.03
15 5 0.6 0.7 —40.838 —83.226 —82.861 30 30 05 05 -12.309 —79.911 —76.956
15 10 0.2 0.2 1266.762 —41.67 —41.652 30 30 05 07 -2186 —80.325 —77.784
15 10 0.2 0.5 -21970.6 —-106.428 -104.369 30 30 0.6 0.2 9.385 —74.856 —71.836
15 10 0.2 0.7 330.852 —127.641 -125988 30 30 0.6 05 1.032 —78.497 —75.826
15 10 05 0.2 61867 —30.545 —-30.122 30 30 06 07 -866 —80.323 —77.907
15 10 05 0.5 -108.936 —-50.674 —49.646 30 40 0.2 0.2 1.012 —83.597 —79.347
15 10 05 0.7 -55.614 —64.946 —64.667 30 40 0.2 05 -35.467 —86.099 —83.287
15 10 0.6 0.2 311.448 —32.714 -32.54 30 40 0.2 07 -22.23 —89.364 —86.915
15 10 06 0.5 -19.852 —49.811 —49.947 30 40 05 0.2 2428 —80.059 —76.881
15 10 06 0.7 -67.793 —60.111 —59.945 30 40 05 05 -0.828 —82.002 —79.127
15 20 0.2 0.2 -354.039 -57.176 —54.656 30 40 05 07 -1.092 —81.837 —79.248
15 20 0.2 05 -1217.28 -109.289 -105.68 30 40 0.6 0.2 2463 —78.273 —75.699
15 20 0.2 0.7 163.248 —142.24 -136.652 30 40 06 0.5 1.436 —79.898 —77.626
15 20 05 0.2 -61.2% -38.271 —36.857 30 40 06 07 -131 —80.875 —78.575
15 20 05 0.5 -205.614 -57.65 —55.776
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Table 7. Relative bias in % of the ML (Biasw.) and the Bayesian estimators (Biasgay) represents the Bayesian with 8, and
BiasguL represents the Bayesian with [Sb) for ICCx = 0.1 and different values of n, J, 8, and f3,,

n J B Bw  BiasuL Biasgay BiasgwL n J Bo fw  Biasw Biasgay BiasgwL

5 5 0.2 0.2 -180.425 -97.729 —97.848 15 20 05 0.7 -1779 —68.523  —65.365
5 5 0.2 05 —4085.79 —296.848 —-296.841 15 20 0.6 0.2 —-44.621 -55.605 -52.813
5 5 0.2 0.7 —1867.08 —353.484 349919 15 20 0.6 05 3.034 —-60.238 -57.617
5 5 0.5 0.2 50.618 —49.194 —-50.365 15 20 06 0.7 5119 —64.958 —62.425
5 5 0.5 05 —-112.359 -99.353 -100.261 15 30 0.2 0.2 6.011 —74.512 -69.163
5 5 0.5 0.7 20.548 —149.938 -151.061 15 30 0.2 05 —-14.988 —-81.933 -T77.68

5 5 0.6 0.2 —20.156 —42.548 —41.06 15 30 02 0.7 -21.005 —88.347  —85.029
5 5 0.6 05 738.784 —86.14 —86.637 15 30 05 0.2 2785 —68.067 —64.702
5 5 0.6 0.7 209.891 -137.535 -137512 15 30 05 05 7.305 —70.079  —-66.955
5 10 0.2 0.2 702919 —82.189 —81.101 15 30 05 0.7 -6.319 —72.935 -70.103
5 10 0.2 05 209.136 —-182.931 -184313 15 30 0.6 0.2 8.127 —-65.341 -62.491
5 10 0.2 0.7 396.677 —-250.645 -246.332 15 30 0.6 0.5 5.803 —67.464 —-65.019
5 10 05 0.2 -213951 -31.923 -32.773 15 30 06 07 -1.144 —-69.318 —66.917
5 10 05 05 -608.719 -70.512 —72.082 15 40 0.2 0.2 1.56 —76.63 —71.004
5 10 05 0.7 292.342 —107.28 —-106.708 15 40 0.2 05 -27.766 —-80.567 —76.371
5 10 06 0.2 -114348 -31.499 —33.501 15 40 0.2 0.7 -132.798 -82.327 -77.86

5 10 06 05 37.868 —60.978 —60.269 15 40 05 0.2 6.269 —70.345 —67.259
5 10 0.6 0.7 322.257 —86.07 —84.107 15 40 05 05 0.227 —71.222 —68.422
5 20 0.2 0.2 5140.523 —74.28 —73.683 15 40 05 0.7 -2.364 —72.428 —69.788
5 20 02 05 -73835 -—136.74 —131.187 15 40 0.6 0.2 3.306 —68.78 —66.52

5 20 02 0.7 -973.423 -193.073 -183.85 15 40 06 05 -0.237 —70.115 -68.227
5 20 05 0.2 33357 —26.839 —26.188 15 40 06 0.7 -1.657 —-70.571 -68.814
5 20 05 05 -29.743 —56.85 —55.812 30 5 0.2 0.2 -T71.264 -30.015 -30.151
5 20 05 0.7 -293.616 —80.078 —78.315 30 5 0.2 0.5 203.093 —47.948 —48.552
5 20 06 0.2 3064.897 —23.056 —22.691 30 5 0.2 0.7 -162961 -57.815 —57.962
5 20 06 0.5 —-141.048 —-49.363 —48.477 30 5 0.5 0.2 -65.295 —-11.699 -11.46

5 20 06 0.7 -—-183.525 -64.047 —63.43 30 5 0.5 05 33.614 —-27.163  —27.075
5 30 02 0.2 -63.151 —54.592 —50.382 30 5 0.5 0.7 -52.018 —-27.074 -27.23

5 30 02 05 -88.897 —115.98 -108.684 30 5 0.6 0.2 -296.281 -7.696 —7.805

5 30 02 07 -74222 —156.856 —147.408 30 5 06 05 -20.843 -17.36 —17.523
5 30 05 02 -5832 —28.231 —27.638 30 5 0.6 0.7 67.838 —27.974 -27.849
5 30 05 05 -90.982 —51.166 —49.514 30 10 0.2 0.2 15486 -56.606 —52.52

5 30 05 07 56225 —65.307 —63.523 30 10 0.2 05 -25161 —77.947 -T74.029
5 30 06 02 25728 —26.956 —26.756 30 10 0.2 0.7 -—287.394 -97.207 —92.745
5 30 06 05 -76.56 —47.217 -46.01 30 10 05 02 23314 —49.55 —45.933
5 30 06 07 -18.263 —57.962 —-56.192 30 10 05 0.5 64.459 —55.552 -52.107

(Continued)
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Table 7. Comtinued

n J Bp  PBw  Biasu Biasgay BiasgwL n J Bo  Pw  Biasw Biasgay BiasguL

5 40 0.2 0.2 59.795 —57.455 —52.962 30 10 0.5 0.7 4539 -62.899 -59.47

5 40 0.2 05 -104.315 -101.762 —94.837 30 10 06 0.2 20.208 —48.932 —46.516
5 40 0.2 0.7 —2423.67 -146.467 -137.357 30 10 0.6 0.5 23.429 -57.004 -54.44

5 40 05 0.2 71.194 —34.808 -33.115 30 10 0.6 0.7 20.733 —-61.414 -58.784
5 40 05 05 17.511 —56.792 —54.364 30 20 0.2 0.2 3.856 —77.33 —71.309
5 40 0.5 0.7 -9.612 —68.39 —66.062 30 20 0.2 05 -9.562 —-79.292 -74.84

5 40 0.6 0.2 42379 —30.542 —29.469 30 20 0.2 0.7 -16.742 —-82.423 —-78.538
5 40 06 05 -7.197 —48.516 —46.937 30 20 05 0.2 0.587 —72.727 —69.369
5 40 0.6 0.7 80.748 —59.465 —57.386 30 20 05 0.5 0.29 —73.087 —69.506
15 5 0.2 0.2 -490.349 -40.138 —39.193 30 20 05 0.7 -1.527 —-73.836 —70.474
15 5 0.2 05 -2803.13 -93.016 —95.135 30 20 0.6 0.2 -40.58 -70.874 —68.019
15 5 0.2 0.7 -94231.7 -118.795 118882 30 20 06 0.5 245 —-71.272 —68.618
15 5 0.5 0.2 —-446.312 -20.598 —20.48 30 20 0.6 0.7 -0.147 —72.023 —69.408
15 5 0.5 05 -8.249 —39.589 —39.418 30 30 0.2 0.2 -3493 —77.961 —-72.732
15 5 0.5 0.7 -686.354 -50.31 —50.278 30 30 02 05 -1.877 —77.558 —72.005
15 5 0.6 0.2 —472.988 -14.685 —15.161 30 30 0.2 0.7 -6.558 —78.139 -73.528
15 5 0.6 0.5 187.689 —26.937 —27.048 30 30 05 0.2 1787 —72.357 —69.404
15 5 0.6 07 27.892 —51.789 —51.997 30 30 05 05 -1615 —72.959 -70.207
15 10 0.2 0.2 230.013 —35.213 —31.963 30 30 05 07 -2106 —72.922 -70.443
15 10 0.2 0.5 —344.476 —82.708 —78.286 30 30 06 02 339 -70.612 -68.31

15 10 0.2 0.7 15321 -111.873 -106.684 30 30 06 05 0.584 —70.95 —68.985
15 10 05 0.2 -22.65 —28.692 —27.291 30 30 06 07 -0.895 —71.066 —69.293
15 10 05 0.5 64.502 —41.437 —39.689 30 40 0.2 02 -3.362 —77.598 —T72.447
15 10 05 0.7 -2.906 —54.824 —52.782 30 40 0.2 05 0.231 -76.673 —-T71.081
15 10 06 0.2 —-39.196 —23.171 —22.183 30 40 0.2 07 -7.209 —77.56 —72.785
15 10 0.6 0.5 44.949 —39.477 —38.189 30 40 0.5 0.2 2468 -70.765 —-68.271
15 10 06 0.7 —32.648 —43.632 —41.748 30 40 05 05 -0.038 —70.983 —-68.802
15 20 02 0.2 -39.603 —64.419 —58.788 30 40 05 0.7 -0.553 -71.21 —69.095
15 20 02 0.5 -114.491 -90.242 —86.207 30 40 0.6 02 0.738 -69.428 -68.01

15 20 02 0.7 -81.633 -97.36 —92.204 30 40 06 05 1.48 -69.411 -67.777
15 20 05 0.2 11.16 —57.031 -53.31 30 40 0.6 07 -0.532 -69.658 —68.31

15 20 05 05 -4.442 —63.884 —60.681
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Table 8. Relative bias in % of the ML (Biasw.) and the Bayesian estimators (Biasgay represents the Bayesian with $, and
Biasgw, represents the Bayesian with /S’b) for ICCx = 0.3 and different values of n, J, 8, and 8,

n J B Bw  BiasuL Biasgay BiasgwL n J Bo fw  Biasw Biasgay BiasgwL
5 5 0.2 02 -380.903 -7.31 -5.4 15 20 05 0.7 -0.998 —-46.918 —45.141
5 5 02 05 -297.1 —95.193 —-90.933 15 20 06 0.2 1.699 —44.539  —43.227
5 5 0.2 0.7 150.267 —-143.281 -141.121 15 20 0.6 0.5 0.883 —44.362 —-43.218
5 5 0.5 0.2 -56.277 46.127 44.998 15 20 06 0.7 -051 —44.749  —43.928
5 5 0.5 0.5 432617 0.206 0.453 15 30 02 0.2 1117 -56.168 —47.821
5 5 0.5 0.7 61.206 —27.888 -27.918 15 30 02 05 -2359 -57.306 -50.176
5 5 0.6 0.2 -13.767 43.107 40.977 15 30 02 0.7 -2578 -56.83 —49.285
5 5 0.6 0.5 —485.798 10.824 10.598 15 30 05 0.2 0.554 —43.555  —42.309
5 5 0.6 0.7 —247.168 -1.55 -1.634 15 30 05 05 -0.128 —43.808 —42.703
5 10 0.2 02 -131.468 —-35.023 —27.847 15 30 05 0.7 043 —43.752  -42.498
5 10 0.2 05 185621 —89.478 —77.998 15 30 06 0.2 1457 —41.903 —-41.005
5 10 0.2 07 -—-248.119 -108.161 -97.15 15 30 06 0.5 0.287 —-41.945 -41.364
5 10 05 0.2 -31.098 —-11.137 -8.976 15 30 0.6 0.7 -0.033 —42.031 —41.507
5 10 05 05 -26.568 —27.84 —25.328 15 40 0.2 0.2 1.409 —-54.164 —46.953
5 10 05 0.7 -50.187 —40.606 —37.555 15 40 0.2 05 -3.353 —55.342  —-49.136
5 10 06 0.2 -50.377 —4.481 —4.542 15 40 0.2 0.7 —4.992 —55.617 —49.763
5 10 06 0.5 25482 —23.963 —22.808 15 40 05 0.2 -0.053 —42.134 —-41.392
5 10 06 0.7 25378 —35.246 —33.298 15 40 05 05 0.659 —42.045 —41.048
5 20 02 0.2 10.828 —51.717 —41.437 15 40 05 0.7 -0.279 —42.07 —41.399
5 20 02 05 -21.449 —68.64 —61.552 15 40 06 0.2 -0.027 —40.787  —40.45
5 20 02 0.7 -63.852 —83.751 —76.923 15 40 06 05 0.108 —40.644 —40.275
5 20 05 0.2 8.852 —40.682 —36.675 15 40 06 0.7 -0.034 —40.829 —40.452
5 20 05 05 0.077 —46.392 —43.033 30 5 0.2 0.2 -4.067 —0.005 0
5 20 05 0.7 -4.033 —50.636 —47.69 30 5 0.2 05 6.026 —8.355 —8.332
5 20 06 02 713 —-37.517 —35.116 30 5 0.2 0.7 —-381.519 -18.351 —18.252
5 20 06 05 2671 —41.089 —38.967 30 5 0.5 0.2 4.964 5.906 5.869
5 20 06 0.7 -11.56 —45.502 —43.638 30 5 05 05 -7.468 3.082 3.014
5 30 02 0.2 13341 —59.329 —49.672 30 5 0.5 0.7 -15.179 —0.386 —0.457
5 30 02 05 -17.9% —64.693 —58.182 30 5 0.6 0.2 -4.802 8.471 8.463
5 30 02 07 -18 —65.289 —58.525 30 5 0.6 05 3.508 4.313 4.291
5 30 05 02 5.034 —45.253 -41.916 30 5 0.6 0.7 —289.118 2.066 2.117
5 30 05 05 -l1e61 —47.406 —44.776 30 10 0.2 02 4.031 —60.499 -50.403
5 30 05 07 -3.027 —48.702 —46.545 30 10 02 05 -5741 —64.16 —56.034
5 30 06 02 2359 —42.974 —41.05 30 10 0.2 0.7 -6.347 —62.99 —55.608
5 30 06 05 -4.503 —44.644 —43.32 30 10 05 0.2 1.843 -51.672 —-48.263
5 30 06 07 -1.451 —45.244 —43.908 30 10 05 05 1.684 —-51.568 —48.275
(Continued)
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Table 8. Continued

Dashuk et al.

n J Bp  Bw  Biasu Biasgay BiasgwL n J Bp  Pw Biasw.  Biasgay Biasgu

5 40 0.2 0.2 -0.984 -58.17 -49.658 30 10 05 0.7 -2506 -53.068 -50.129
5 40 0.2 05 -7.897 —-59.238 -51.948 30 10 06 0.2 1.695 —49.025 —47.103
5 40 0.2 0.7 -9.097 —-60.041 -53.542 30 10 06 0.5 3.728 —49.251 —-47.491
5 40 05 0.2 1.26 —45.072 -42.743 30 10 0.6 0.7 -0.072 —-49.626 —48.056
5 40 05 05 -0.797 —46.11 —-44267 30 20 0.2 0.2 1.105 -58.467 —49.686
5 40 0.5 0.7 -1.807 —-46.459 -44.731 30 20 0.2 05 -1.151 -58.733 -50.616
5 40 0.6 0.2 2136 —43.252 -41836 30 20 0.2 0.7 -3.356 —-59.335 -51.794
5 40 0.6 05 0.334 —43.83 —42.83 30 20 05 0.2 1.165 —45.931 —44.21

5 40 0.6 0.7 -1.045 —44.088 —-43.199 30 20 05 0.5 0.869 —45.997 —44.415
15 5 0.2 02 -74931 4.84 5.798 30 20 05 0.7 -0.619 -46.582 —-45.336
15 5 0.2 05 323.87 —15.23 —-15.118 30 20 0.6 0.2 0.58 —44.207 —43.462
15 5 0.2 0.7 59.503 —40.264 -40.218 30 20 06 0.5 0.216 —44.112 —-43.436
15 5 0.5 0.2 7.849 15.234 15.098 30 20 0.6 0.7 -0.147 —-44.297 -43.668
15 5 0.5 0.5 120.525 6.303 6.248 30 30 0.2 0.2 -0.07 —-56.129 —48.75

15 5 0.5 0.7 -12943 -2.154 —-2.174 30 30 02 05 -0.044 -56.139 —48.759
15 5 0.6 0.2 52143 18.306 18.276 30 30 0.2 0.7 -0.794 -55.821 -—48.806
15 5 0.6 05 8.054 9.334 9.369 30 30 05 0.2 -0.122 -43.627 -—-42.777
15 5 0.6 07 —-2.29 3.754 3.712 30 30 05 05 0.392 —43.329 —-42.388
15 10 02 0.2 4432 -59.604 -51.105 30 30 0.5 0.7 -0.284 43495 —42.701
15 10 02 05 -953 —63.083 55401 30 30 0.6 0.2 0.448 —-41.879 —-41.398
15 10 02 0.7 —-22.137 -68.075 -60.897 30 30 06 05 -0.18 —42.106 —-41.816
15 10 05 0.2 8999 —-46.317 -42.314 30 30 0.6 0.7 0.22 —42.095 —-41.672
15 10 05 05 -0.416 —49.214 -45.6 30 40 0.2 0.2 0.946 —53.592 —-47.014
15 10 05 0.7 2784 —51.402 -48.068 30 40 0.2 05 -2535 -54.666 —48.894
15 10 06 0.2 33381 —44.3 —42.08 30 40 0.2 07 -0.731 -53.616 —47.618
15 10 06 05 6.384 —45.365 —-43426 30 40 05 02 03 -41.79 -41.174
15 10 06 0.7 -6.388 —47.913 -45969 30 40 0.5 05 0.022 -41.822 -41.29

15 20 02 0.2 287 -58.865 —-49.359 30 40 05 0.7 -0.688 —-42.035 —-41.65

15 20 02 05 -3.719 -58.974 -50.509 30 40 0.6 02 0.717 -40.913  -40.456
15 20 02 0.7 -6431 -60.174 -52.351 30 40 0.6 05 0.548 —40.653  —40.245
15 20 05 0.2 00911 -46.634 -44514 30 40 0.6 0.7 0.013 -40.976  —40.722
15 20 05 05 0.735 —-46.989 —-44.938
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Table 9. Relative bias in % of the ML (Biasw.) and the Bayesian estimators (Biasg,y represents the Bayesian with 8, and
BiasguL represents the Bayesian with Z?b) for ICCx = 0.5 and different values of n, J, 8, and f3,,

n J Bb Bw  BiasuL Biasgay BiasgwL n J Bb fw  Biasw Biasgay BiasgwL
5 5 0.2 0.2 -164.985 30.853 30.064 15 20 05 0.7 -0.22 —27.013 -26.284
5 5 0.2 05 -91.398 —2.688 —-0.009 15 20 06 0.2 0573 —24.739  -24.365
5 5 0.2 0.7 —-11249.1 -39.249 -35.45 15 20 06 0.5 0.168 —24.833 -24.536
5 5 0.5 0.2 96.408 56.089 56.06 15 20 06 0.7 -0221 —25.053 -24.896
5 5 0.5 05 22581 36.746 36.707 15 30 02 0.2 -0.123 —38.818 -31.516
5 5 0.5 0.7 -18.976 28.04 28.119 15 30 02 05 -0.124 -38.316 -31.104
5 5 0.6 0.2 —45.493 54.128 53.045 15 30 02 0.7 -1.024 —38.757 -31.716
5 5 0.6 05 85.638 38.771 37.987 15 30 05 0.2 0.389 —23.985 -23.405
5 5 0.6 0.7 34.784 31.698 32.092 15 30 05 05 -0.225 —24.225 -23.839
5 10 0.2 0.2 3.087 —-44.882 -34.243 15 30 05 0.7 -0.651 —24.334 -24.132
5 10 0.2 05 -2456 -54.504 -45425 15 30 0.6 0.2 0.225 —-22.859 -22.637
5 10 0.2 0.7 26416 -65.759 -56.246 15 30 0.6 05 0.318 —-22.779  -22.525
5 10 05 0.2 4413 —25.214 -21.39 15 30 0.6 0.7 0.038 —22.842 -22.671
5 10 05 05 -1.164 -30.273 -27.212 15 40 0.2 0.2 0.72 -35.116 —-29.072
5 10 05 0.7 25381 —-35.121 -32.221 15 40 0.2 0.5 0.026 —-35.599 -29.691
5 10 06 0.2 431.493 —22.177 -20.11 15 40 0.2 07 -0.6 —-35.434 -29.604
5 10 06 0.5 0.409 —26.339 -24864 15 40 05 0.2 0.182 —22.687 —22.291
5 10 06 0.7 -5418 —29.331 -27.934 15 40 05 0.5 -0.056 —22.669 —22.337
5 20 02 02 2174 —45.461 -33.726 15 40 05 0.7 -0.256 —22.893 -22.621
5 20 02 05 -5226 —47.175 -37.32 15 40 06 0.2 0.251 —-21.605 —-21.404
5 20 02 0.7 -13.597 —-50.043 —-42.321 15 40 0.6 05 -0.315 —-21.726  —-21.707
5 20 05 0.2 2.893 —29.868 -27.276 15 40 0.6 0.7 0.027 —-21.818 —-21.687
5 20 05 05 0.702 —30.204 -28.086 30 5 0.2 0.2 3227 12.072 12.191
5 20 05 0.7 -1059 —31.021 -29.332 30 5 0.2 05 -13.866 -2.04 —2.062
5 20 06 0.2 2823 —27.324 -25.747 30 5 0.2 0.7 —-2.588 -3.011 —2.939
5 20 06 05 0.358 —27.984 -27.006 30 5 0.5 0.2 6.004 8.522 8.553
5 20 06 0.7 -0.622 —28.591 -27.808 30 5 05 05 -1.864 6.028 6.046
5 30 02 02 -1118 —43.94 —34.55 30 5 0.5 07 -2.62 3.931 3.91
5 30 02 05 -338 —43.802 -35.125 30 5 06 02 7.629 7.837 7.829
5 30 0.2 07 -5405 —-44.419 -36.288 30 5 06 05 0.18 7.132 7.124
5 30 05 02 1.063 —-27.096 -25.587 30 5 0.6 0.7 1.126 6.588 6.579
5 30 05 05 -0.26 -27.139 -26.052 30 10 0.2 02 -1.672 -50.254  —40.083
5 30 05 07 -0.879 -27.124 -26.169 30 10 0.2 05 -2.743 —49.396 —39.691
5 30 06 02 1631 —-24.597 -23649 30 10 0.2 07 -3.732 -50.118 —-40.716
5 30 06 05 0.801 —-24.669 -23933 30 10 05 0.2 0.676 —33.464 -31.932
5 30 06 07 -0.025 —-25.092 -24539 30 10 05 05 -0.757 —33.783  -32.615
(Continued)
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Table 9. Continued
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n J Bp  Bw  Biasu Biasgay BiasgwL n J Bp  Pw Biasw.  Biasgay Biasgu

5 40 0.2 0.2 -0.286 —-40.655 -32.185 30 10 0.5 0.7 -0.746 -33.947 -32.733
5 40 0.2 05 -3.114 —-41.373 -33.552 30 10 06 0.2 1.361 -30.333  —-29.705
5 40 0.2 0.7 —4.552 —-41.592 -34315 30 10 06 0.5 0.315 -30.791  -30.359
5 40 0.5 0.2 1.022 —-24.608 -23.518 30 10 0.6 0.7 -0.227 -31.065 —30.802
5 40 05 05 -0.904 —25.201 -24.685 30 20 0.2 0.2 -0.194 —42.537 -34.137
5 40 0.5 0.7 -0.611 —25.064 -24452 30 20 0.2 0.5 0.387 —42.302 —-33.956
5 40 0.6 0.2 1.223 —23.036 —22.307 30 20 0.2 0.7 -0.726 —43.307 —34.829
5 40 0.6 05 0.086 —23.63 —23293 30 20 05 0.2 -0.087 —-26.456 —25.927
5 40 0.6 0.7 0.067 —23.325 -22934 30 20 05 0.5 0.069 —26.524  -25.956
15 5 0.2 0.2 —49.017 5.309 5.33 30 20 05 0.7 -0.521 -27.079 -26.677
15 5 0.2 05 9.856 5.713 5.599 30 20 0.6 0.2 0.183 —-25.035 —24.861
15 5 0.2 0.7 -10.242 -4.097 —3.765 30 20 06 0.5 -0.256 —25.187 —-25.141
15 5 0.5 0.2 3.634 16.041 16.119 30 20 06 07 0.1 —-25.282 -25.079
15 5 0.5 05 -1.772 11.103 10.99 30 30 0.2 0.2 0.905 —37.67 —30.916
15 5 0.5 0.7 -10.997 8.54 8.541 30 30 0.2 05 -0.626 —38.138 -31.72

15 5 0.6 0.2 9.453 15.968 16.075 30 30 02 0.7 -1574 -38.38 —-32.473
15 5 0.6 05 5.909 11.696 11.82 30 30 05 0.2 0.045 —24.436 —24.089
15 5 0.6 0.7 9.654 9.399 9.34 30 30 05 05 -0509 -24.798 -—24.617
15 10 0.2 0.2 2597 —48.549 -36.968 30 30 0.5 0.7 -0.194 -24.503 —24.226
15 10 02 05 -6.183 -50.589 -41.012 30 30 0.6 0.2 0.457 —23.322 -23.08

15 10 0.2 0.7 -3.402 —49.337 39467 30 30 0.6 05 0.064 —23.224 -23.114
15 10 05 0.2 2188 —-32.991 -30.545 30 30 0.6 07 -0.076 —-23.545 2349

15 10 05 0.5 0.793 —33.708 -31.654 30 40 0.2 0.2 1.383 —34.375 -28.764
15 10 05 0.7 0.025 —34.526 -32.589 30 40 0.2 05 -0.421 -35.044 -30.064
15 10 06 0.2 1822 —-30.649 -29.834 30 40 0.2 0.7 -1.567 -35718 —31.128
15 10 06 05 1872 —-31.295 -30.632 30 40 05 02 -0.076 —-23.337 -23.095
15 10 06 0.7 4392 —-31.398 -30911 30 40 05 05 -0.053 -23412 -23.18

15 20 02 0.2 0.533 —42.985 -33471 30 40 05 0.7 -0.066 -23.021 -22.781
15 20 02 05 -3.369 —44.04 -35.625 30 40 06 0.2 0.231 —22.45 —22.297
15 20 0.2 0.7 0.616 —-42.699 33427 30 40 0.6 05 0.028 -22.813 -22.734
15 20 05 0.2 00972 —26.057 -24.997 30 40 0.6 0.7 -0.202 -22.456 —-22.436
15 20 05 05 -0437 -26.877 —-26.243
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