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Abstract

We propose an optimally regularized Bayesian estimator of multilevel latent variable models that aims to
outperform traditional maximum likelihood (ML) estimation in mean squared error (MSE) performance.
We focus on the between-group slope in a two-level model with a latent covariate. Our estimator combines
prior information with data-driven insights for optimal parameter estimation. We present a “proof of
concept” by computer simulations, involving varying numbers of groups, group sizes, and intraclass
correlations (ICCs), which we conducted to compare the newly proposed estimator with ML. Additionally,
we provide a step-by-step tutorial on applying the regularized Bayesian estimator to real-world data using
our MultiLevelOptimalBayes package.

Encouragingly, our results show that our estimator offers improved MSE performance, especially in
small samples with low ICCs. These findings suggest that the estimator can be an effective means for
enhancing estimation accuracy.

Keywords: intraclass correlation; mean squared error; multilevel latent variable model; regularized estimation; small sample

1. Introduction

Multilevel latent variable models have been widely adopted in psychology, education, and related
sciences to analyze hierarchical data while accounting for unobserved effects (Bollen et al., 2022;
Lüdtke et al., 2008; Skrondal & Rabe-Hesketh, 2009; Zitzmann, Wagner, et al., 2022). Unlike traditional
multilevel regression models (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), which rely on
observed variables at each level, multilevel latent variable models introduce latent constructs that
improve measurement accuracy and reduce bias in parameter estimates (Muthén & Asparouhov, 2012;
Zitzmann et al., 2016). These models allow for more precise estimations of relationships at different
levels of analysis by correcting for measurement error and providing a more flexible framework for
capturing complex dependencies in nested data.

Over the past two decades, multilevel latent variable models have been widely applied in educational
research to model student achievement and classroom effects (Lüdtke et al., 2008; Marsh, 1987),
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psychological research for latent personality and cognitive processes (Bollen et al., 2022; Muthén
& Asparouhov, 2012), and health sciences for hierarchical patient-reported outcomes (Hamaker &
Klugkist, 2011).

Compared to mixed-effects models (Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), which
typically assume that all predictors are observed and measured without error, multilevel latent variable
models provide greater flexibility in handling measurement error and latent constructs. This makes
them particularly valuable in psychological and educational research, where many key variables (e.g.,
cognitive ability, motivation, and instructional quality) cannot be directly observed. Moreover, mul-
tilevel latent variable models allow researchers to separate within-group and between-group variance
more effectively than traditional mixed-effects models, leading to more reliable inferences.

Multilevel models can be classified based on whether variables are assessed at the individual or group
level (Croon & van Veldhoven, 2007; Snijders & Bosker, 2012). One relevant example in education is
the study of student learning outcomes as a function of class-level characteristics such as class size.
The “classic” multilevel models (also called random intercept models) used for this purpose are often
estimated using software, such as HLM (Raudenbush et al., 2011) or lme4 (Bates et al., 2015).

However, various works (e.g., Asparouhov & Muthén, 2007; Lüdtke et al., 2008) have argued that
this type of aggregation can lead to severely biased estimates of the effect of the context characteristic.
One possible solution is to use a specialized multilevel model in which the context variable is formed
through latent rather than manifest aggregation (for a discussion of latent aggregation, see Lüdtke et al.,
2008, 2011). Unfortunately, such a model with a latent predictor cannot be specified in HLM or lme4
and is therefore often estimated using Mplus (Muthén & Muthén, 2012). However, these models place
high demands on the data, and convergence problems or inaccurate estimates of effects at the class level
(accuracy issues) can occur.

Similar methods also play a role in other modeling contexts, such as regression analysis (Hoerl &
Kennard, 1970; Tibshirani, 1996; see also McNeish, 2015) and structural equation models (Yuan &
Chan, 2008; see also Yuan & Chan, 2016). In the latter, a small value is typically added to the estimated
variance, and it has been suggested that a similar effect can be achieved by selecting an appropriate prior
distribution (e.g., Chung et al., 2015; McNeish, 2016; Zitzmann et al., 2016).

Bayesian approaches have gained increasing popularity in multilevel modeling due to their ability to
enhance estimation accuracy by incorporating prior information (Hamaker & Klugkist, 2011; Lüdtke
et al., 2013; Muthén & Asparouhov, 2012; Zitzmann et al., 2015, 2016). The possibility of adding prior
information is a fundamental aspect of Bayesian estimation. It combines information from the data at
hand, captured by the likelihood function, with additional information from prior distribution, resulting
in inferences based on the posterior distribution (Gelman, 2006). However, specifying priors can pose
challenges, particularly in small samples with a low intraclass correlation (ICC), where the choice of
prior is crucial (Hox et al., 2012). Small sample sizes are very common in psychology and related
sciences due to limitations in funding and resource constraints (Browne & Draper, 2006). In such cases,
between-group estimates may approach zero and become unstable, significantly increasing sensitivity to
prior specification. This makes prior misspecification one of the biggest challenges in applying Bayesian
approaches to latent variable models (Natarajan & Kass, 2000; Zitzmann et al., 2015). However, this
effect of the prior can also be exploited. Recent research by Smid et al. (2020) has shed light on the
importance of constructing “thoughtful priors” based on previous knowledge to enhance estimation
accuracy (see also Zitzmann, Lüdtke, et al., 2021). In the Bayesian approach proposed in this article, the
prior parameters are determined through a theoretically derived automated procedure that minimizes
the estimated mean squared error (MSE). This removes the need for the user to manually specify a prior,
thereby eliminating the risk of user-induced misspecification.

While Smid et al. (2020) focused on addressing small-sample bias, it has been argued that evaluating
the quality of a method should consider not only bias but also the variability of the estimator,
particularly in small samples with low ICCs (Greenland, 2000; Zitzmann, Lüdtke, et al., 2021). In cases
of low ICCs, within-group variability dominates, and small sample sizes lead to unstable group-level
estimates, resulting in higher variance when estimating between-group slopes. This highlights a crucial
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point—approaches solely dedicated to minimizing bias may, in fact, perform less optimally than those
focused on reducing variability alone. Thus, it is important to consider both bias and variability in
optimizing analytical strategies. In this regard, alternative suggestions for specifying priors have aimed
at reducing the MSE, which combines both bias and variability (e.g., Zitzmann et al., 2015, 2016). Note
that in cases of small samples and low ICCs, MSE is largely driven by the variability of the estimator.
Therefore, minimizing variability remains an important goal when optimizing MSE.

In the same spirit, in this article, we derive a distribution for the Bayesian estimator of between-
group slopes, building on the model originally established by Lüdtke et al. (2008). Specifically, we use
this distribution to develop an optimally regularized Bayesian estimator that automatically selects priors
to minimize MSE, thereby avoiding misspecification caused by user-specified priors. We then report the
results from computational simulations conducted across a broad spectrum of conditions to evaluate the
estimator. They demonstrate the advantages of this approach compared to ML estimation, particularly
in scenarios of small samples and a low ICC.

2. Theoretical derivation

Before delving into detailed aspects, we will briefly summarize Lüdtke et al.’s (2008) model, which we
use to exemplify our approach. This model was proposed as one way to provide unbiased estimates
of between-group slopes in contextual studies. It proposes predicting the dependent variable Y at the
group level by using a latent variable. This latent variable represents a group’s latent mean, offering a
more reliable alternative than the traditional manifest mean approach. Known as the “multilevel latent
covariate model,” this model allows for the integration of latent group means into the more complex
frameworks of multilevel structural equation models, which are prevalent in psychological research
and related research (see also Zitzmann, Lohmann et al., 2022).

Zitzmann, Lüdtke, et al. (2021) have proposed and discussed a Bayesian estimator for the between-
group slope in this model (see also Zitzmann & Helm, 2021). Their approach introduced a method for
incorporating prior information in estimating between-group slopes. However, this method required
manual specification of prior distributions, which could be challenging, particularly in small samples
where misspecified priors may lead to biased or unstable estimates. In contrast, our approach extends
this work by upgrading their Bayesian estimator to a regularized Bayesian estimator that automatically
selects optimal priors, thereby preventing user misspecification and improving estimation stability.

Since our method regularizes the estimator introduced by Zitzmann, Lüdtke, et al. (2021), we main-
tain their notation for consistency. More precisely, in the model, it is assumed that the individual-level
predictor X is decomposed into two independent, normally distributed components: Xb, representing
the latent group mean, and Xw, representing individual deviations from Xb. Thus, for an individual
i = 1, . . .n within a group j = 1, . . . J, the decomposition can be stated:

Xij = Xb,j+Xw,ij (1)

Xb,j ∼N(μX,τ2
X) (2)

Xw,ij ∼N(0,σ2
X). (3)

Note that further, we assume that each of J groups includes n persons, therefore the overall sample size
is nJ.

Hereafter, we will refer to σ2
X and τ2

X as the within-group and between-group variances of X,
respectively. Similarly, σ2

Y and τ2
Y are the within-group and between-group variances of Y, respectively.

The individual-level and group-level regressions read:

Level 1: Yij = β0j+βwXw,ij+ εij (4)

Level 2: β0j = α+βbXb,j+δj. (5)

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 04:49:32, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


4 Dashuk et al.

Figure 1. A multilevel structural equation model using the within-between framework that decomposes the variables X and Y into

within-group and between-group components.

Note: The within-group components are denoted by subscript w, and the between-group components are denoted by subscript b.

The between-group components (Xb and Yb) are connected through a regression, where Yb serves as the dependent variable and Xb

as the predictor. Similarly, the within-group components (Xw and Yw) are related to each other in an analogous manner. The notation

includes βb for the between-group slope and βw for the within-group slope.

In Equation (4), βw represents the within-group slope that characterizes the relationship between the
predictor and the dependent variable at the individual level, while β0j describes the random intercept.
Normally distributed residuals are denoted as εij ∼N(0,σ2

ε ).
Moreover, we denote between-group slope in Equation (5) as βb and the overall intercept as α.

δj ∼N(0,τ2
δ) represents normally distributed residuals. See Figure 1 for a visual representation of the

model. Note that the between-group component Yb in Figure 1 corresponds to the random intercept β0j
in Equation (4), whereas the within-group component Yw in Figure 1 corresponds to (βwXw,ij + εij) in
Equation (4).

We focus on the between-group slope βb, which is the most important parameter in numerous
multilevel model applications, such as when analyzing contextual effects. For balanced data (where each
group has an equal number of individuals), the maximum likelihood (ML) estimator of βb is given by:

β̂b =
τ̂YX

τ̂2
X
. (6)

In this equation, τ̂2
X and τ̂YX are sample estimators of the group-level variance of X and the group-level

covariance between X and Y, respectively.
While the asymptotic properties of the ML estimator (6) are advantageous, it tends to exhibit bias

in finite sample sizes and displays significant variability, leading to a substantial MSE in such scenarios
(as demonstrated by, e.g., McNeish (2016)). This poses a challenge to the practical utility of the ML
estimator for rather small samples with low ICCs, as results from individual studies could be notably
imprecise. Consequently, researchers have recommended alternative estimators that demonstrate lower
variability, leading to increased accuracy and a reduced MSE, although potentially at the cost of some
more bias compared to the ML estimator. Notable among these are the estimators proposed by Chung
et al. (2013), Zitzmann et al. (2015), and Zitzmann, Lüdtke, et al. (2021); see also Zitzmann & Helm
(2021). Next, we will develop a regularized version of Zitzmann, Lüdtke, et al.’s Bayesian estimator for the
between-group slope, drawing on the so-called indirect strategy approach of constructing the estimator
outlined by Zitzmann, Lüdtke, et al. (2021). The details of this development are provided in Appendix A.

Zitzmann, Lüdtke, et al.’s (2021) Bayesian estimator starts with the prior gamma distribution and its
two parameters, ν0 and τ2

0 (see Appendix A). A specific choice of prior parameters is not required, as our
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forthcoming Bayesian estimator is designed to find the optimal values to minimize MSE. Combining
priors with the ML estimator, Zitzmann, Lüdtke, et al. (2021) derived the Bayesian estimator as

β̃b =
τ̂YX

(1−ω)τ2
0 +ωτ̂2

X
, (7)

where ω is the weighting parameter defined as a function of the gamma-distributed priors. The
denominator in Equation (7) accounts for both the prior variance τ2

0 and the observed between-group
variance τ2

X , with weights adjusted by ω to control the influence of prior information as J increases.
Practically, ω ∈ [0,1] can be interpreted as the relative weight given to the prior versus the data-

based estimate: ω = 1 corresponds to the standard ML estimator (Equation (6)), ω = 0 corresponds to
full shrinkage toward the prior mean, and intermediate values balance the two sources of information.

The derivation of the Bayesian estimator (Equation (7)) is described in detail in Appendix A. Note
that Equation (7) is essentially a Stein-type estimator (Stein, 1956).

We specify the weighting parameter (prior) ω in a manner similar to that of Zitzmann, Lüdtke, et al.
(2021):

ω =
J−1

2
ν0
2 +

J
2 −1

. (8)

So ω is defined as a function of the gamma-distributed prior ν0 and the number of groups J. The
weighting factor ω is derived such that as J→∞, ω approaches 1, ensuring that the Bayesian estimator
converges to the ML estimator. Note that the weighting parameter ω in Equation (8) differs from the one
introduced by Zitzmann, Helm, and Hecht (2021) because we further optimize it (see Appendix A).1

The Bayesian estimator β̃b is not yet regularized. To this end, the two parameters τ2
0 and ω need to

be identified. As mentioned, ω is defined as a function of sample size and converges to 1 when J →∞.
Therefore, the Bayesian estimator β̃b is asymptotically unbiased and coincides with the ML estimator β̂b
in Equation (6) when samples are sufficiently large. In finite samples, however, the Bayesian estimator
is biased.

To obtain the optimally regularized β̃b, it is essential to find the values for τ2
0 and ω based on an

optimality criterion. The MSE serves as the natural choice for this criterion. It is defined as

MSE(β̃b) =Var(β̃b)+(E(β̃b)−βb)2. (9)

As can be seen from the equation, this measure is simply the sum of the variance and the squared bias
of the estimator. As the ML estimator in Equation (6) is unbiased in theory, its MSE shortens just to
the variance of this estimator. The Bayesian estimator as defined in Equation (7) does not share the
same unbiasedness property. Rather, it reduces the MSE by reducing its variance at the cost of some
bias. We will show how to construct the estimator in such a way that a substantially reduced MSE is
achieved compared to the ML estimator β̂b in small samples with low ICCs. In infinite samples, the
MSE of β̂b reaches its global minimum of 0 (as both variance and bias converge to 0), and due to the
weighting parameter ω, the Bayesian estimator β̃b achieves the same outcome.

To find the optimal values of the parameters τ2
0 and ω, it is necessary to express the between-group

(co)variance estimators from Equation (7), τ̂2
X and τ̂2

YX , in terms of the normal distributions of the
between- and within-group components of the predictor and the dependent variable, namely, Xb, Xw,
Yb, and Yw (see Appendix B for more details). We derived the expression for τ̂2

X under the restriction
that it should have an easily definable distribution. For the derivation, see Appendix B. This resulted in

τ̂2
X =H′XSXV′XAVXSXHX, (10)

where HX ∼ N(0,InJ+J+1). The coefficient matrix A is defined in Equation (F.1) of Appendix F.
Additionally, matrices VX and SX are the matrices of eigenvectors and eigenvalues, respectively. They are

1In this case, optimized stands for ω that minimizes the total error of an approximated denominator of the Bayesian
estimator in Equation (7).
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defined in Equation (B.30) of Appendix B. The internal part of Equation (10), SXV′XAVXSX , is a diagonal
coefficient matrix. This means that in Equation (10), we express τ2

X as a weighted sum of squares of
independent normally distributed random variables, that is, a weighted sum of χ2

1-distributed random
variables, which are transformed from Xb, Xw, Yb, and Yw.

To express τ̂YX , we use a similar transformation as for τ̂2
X . This transformation is described in detail

in Appendix C. The result is

τ̂YX =H′2SHV′HQVHSHH2, (11)

where H2 ∼N(0,I2(nJ+J+1)) is a multivariate standard normally distributed random vector. Coefficient
matrix Q is computed in Equation (C.15) of Appendix C. Matrices VH and SH are the matrices
of eigenvectors and eigenvalues, respectively. They are defined in Equation (C.12) of Appendix C.
Furthermore, the internal part of Equation (11), SHV′HQVHSH , is a diagonal coefficient matrix. With
Equation (11), the estimator of the group-level covariance τ̂YX is represented as a weighted sum of
squares of independent normally distributed random variables, that is, a weighted sum of χ2

1-distributed
random variables.

As a consequence, we express each of the estimators of group-level (co)variances τ̂2
X and τ̂YX as

a sum of squares of independent and identically distributed normal random variables in Equations
(10) and (11), respectively. Every term of these sums is χ2

1-distributed, thus following the Gamma( 1
2,2)

distribution. Notice that a gamma distribution can be scaled: if a variable ψ follows the Gamma(k,θ)
distribution, then c⋆ψ is Gamma(k,c⋆ θ)-distributed. Therefore, we can represent the estimators of
group covariances, τ̂2

X and τ̂YX , as gamma-distributed random variables:

τ̂2
X ∼Gamma(ksum1,θsum1)

ksum1 =
(∑i θX,i)2

2∑i θ2
X,i

,θsum1 =
∑i θ2

X,i

∑i θX,i
(12)

τ̂YX ∼Gamma(ksum2,θsum2)

ksum2 =
(∑i θYX,i)2

2∑i θ2
YX,i

,θsum2 =
∑i θ2

YX,i

∑i θYX,i
. (13)

The scales θX,i and θYX,i are the elements of the diagonal matrices SXV′XAVXSX (for τ̂2
X) and SHV′HQVHSH

(for τ̂YX) in Equations (10) and (11).
In the next step, we make use of the distributions of the sample covariances τ̂2

X and τ̂YX to calculate the
distributions of the ML estimator β̃b and the Bayesian estimator β̂b. The estimators β̃b and β̂b are defined
using an F distribution, because ratios of gamma-distributed random variables follow F distributions.
The full procedures of deriving the distributions of β̂b and β̃b are presented in Appendix D. The results
of these derivations are the following distributions:

ksum1θsum1

ksum2θsum2
β̂b ∼F(2ksum2,2ksum1) (14)

kB(ω,τ2
0)θB(ω,τ2

0)
ksum2θsum2

β̃b ∼F(2ksum2,2kB(ω,τ2
0)), (15)

where the coefficients ksum1, θsum1, ksum2, θsum2, kB, and θB are defined and fully described in Equations
(D.3), (D.4), (D.9), and (D.10) of Appendix D. Note that kB and θB are functions of the prior parameters
ω and τ2

0 . Using these distributions, we compute the variances and expected values of both estimators
and combine them into the final formulas for their MSEs:

MSE(β̂b) =
ksum2θ2

sum2(ksum1+ksum2−1)
θ2

sum1(ksum1−1)2(ksum1−2) +(
ksum2θsum2

(ksum1−1)θsum1
−βb)

2

(16)
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MSE(β̃b) =
ksum2θ2

sum2(kB(ω,τ2
0)+ksum2−1)

θ2
B(ω,τ2

0)(kB(ω,τ2
0)−1)2(kB(ω,τ2

0)−2) +(
ksum2θsum2

(kB(ω,τ2
0)−1)θB(ω,τ2

0)
−βb)

2

. (17)

As a byproduct, we obtain their standard errors from the estimators’ distributions as

SE(β̂b) =
θsum2

θsum1 (ksum1−1)

√
ksum2 (ksum1+ksum2−1)

ksum1−2
(18)

SE(β̃b) =
θsum2

θB(ω,τ2
0)(kB(ω,τ2

0)−1)

�
���ksum2 (kB(ω,τ2

0)+ksum2−1)
kB(ω,τ2

0)−2
. (19)

Using these standard errors, one can describe the uncertainty associated with the estimation or
use them for statistical testing. However, when samples are rather small, we recommend to use
resampling procedures for obtaining standard errors, such as the delete-d jackknife (Shao & Wu, 1989;
for applications in multilevel modeling, see Zitzmann, 2018; Zitzmann et al., 2022; Zitzmann et al., 2023,
2024).

Having obtained the MSE of β̃b (Equation (17)), we can minimize it with respect to the parameters
ω and τ2

0 in order to obtain our regularized Bayesian estimator. To find the optimal choices for the
prior parameters, we employ a numerical approach, which is algorithmic in nature, making it well-
suited for implementation in software platforms like R or MATLAB. The algorithm is a grid search over
the parameters, with 0 ≤ ω ≤ 1 and 0 > τ2

0 > d⋆ τ̂2
X . Since it is impossible to find the global minimum

in the general case (Lakshmanan, 2019), the algorithm we implement performs only a local optimum
search. We propose to choose parameter d to be at least five times the standard deviation of the estimated
group-level variance of X, that is, 5⋆

√
Var(τ̂2

X). The value of Var(τ̂2
X)may be obtained from the derived

distribution of τ̂2
X in Equation (D.3) of Appendix D, or even more exactly, by using the procedures of

Mathai (1993) or Fateev et al. (2016). This 5-sigma region guarantees that the minimum estimated MSE
falls inside this region with high probability. The probability of the minimum estimated MSE being
within this interval is at least 0.9857 for J = 3, 0.9996 for J = 5, and > 0.99998 for J ≥ 7. In this case, our
grid search will find the inner solution for the optimal values of ω and τ2

0 that minimize the estimated
MSE. Note that the grid search algorithm minimizes the estimated MSE but not the unknown true MSE.

It is important to note that the MSE in Equations (16) and (17) incorporates the unknown between-
group coefficient βb. We propose using its ML estimate, β̂b, as a substitute, thereby giving our technique
an empirical Bayes flavor. Such uses of “plug-in estimates” are not uncommon in statistics and often
very useful (Liang & Tsou, 1992; see also Zitzmann et al., 2024).

We have demonstrated an approach for minimizing the MSE of the between-group parameter,
leading to what we refer to as the optimally regularized Bayesian estimator β̃b for this parameter. Notice
that our estimator uses the ML estimator β̂b during MSE optimization and even includes ML as a special
case when ω = 1. This means, in small samples, we can do better than the ML estimator in terms of MSE.
However, when working with large sample sizes, the costs due to using approximate distributions and
the plug-in procedure to compute the regularized Bayesian estimator may be larger than the benefits.
Such a scenario is likely to occur with larger group sample sizes combined with high levels of the ICC
of the predictor. In the next section, we demonstrate some of these properties using simulated data.

3. Simulation studies

We begin with the description of the data-generating mechanism, including its parameters, such as
group size n, number of groups J, ICC coefficient ICCX , and the coefficients βb and βw. We utilized the
generated data to compute estimates using both the proposed optimally regularized Bayesian estimator
and, for benchmarking purposes, also the ML estimator. The full algorithm used to actually yield β̃b
is detailed in Appendix E. Finally, we present the results graphically. Detailed results can be found
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in Appendix G, which allows for a more comprehensive evaluation of the estimation accuracy under
varying input parameters.

3.1. Data generation
Next, we detail the data generation process and outline the specifics of our simulation setup. We
base our simulations on the data-generating process used by Zitzmann, Helm, and Hecht (2021) and
Zitzmann, Lüdtke, et al. (2021). Specifically, we conducted simulations for each unique combination of
the following parameters:

• ICCX : Intraclass Correlation (0.05, 0.1, 0.3, 0.5).
• J: Number of groups (5, 10, 20, 30, 40).
• n: Number of individuals per group (5, 15, 30).
• βb: Between-group parameter (0.2, 0.5, 0.6).
• βw: Within-group parameter (0.2, 0.5, 0.7).

In total, this resulted in 4× 5× 3× 3× 3 = 540 scenarios, each of which was replicated 5,000 times.
The relatively small number of groups was chosen to reflect reasonable two-level scenarios in the social
sciences (i.e., typically < 30 students per class, < 30 schools per district), and to align with examples from
Gelman & Hill (2006).

The values of βb and βw follow ranges used in prior simulation studies on the multilevel latent
covariate framework and related models. For example, Lüdtke et al. (2008) used values {0.2,0.7}, Grilli
& Rampichini (2011) considered values including {0.25,0.5,0.75,1,1.5}, and Zitzmann & Helm (2021)
used the value of 0.7. The combination βb = βw = 0.7 is infeasible under our fixed ICCY = 0.2 design,
so βb was reduced to 0.6 in that case. Similarly, near-zero βb values were not included because for
ICCY = 0.2, they would violate ICC constraints:

ICCY

β2
b
> ICCX > 1− 1− ICCY

β2
w

. (20)

The ICC of the dependent variable, denoted as ICCY , was preset to 0.2 within the code to study scenarios
with ICC values that lie at the center of the typical ICC range observed in empirical studies (Gulliford
et al., 1999). Additionally, we incorporated another validity check in order to identify and exclude
incorrectly specified inputs, such as non-integer values for J or n.

3.2. Evaluation criteria
The goal of our simulations was to assess how well the regularized Bayesian estimator can estimate the
true parameter value βb across various scenarios. To this end, we assessed its performance in terms of
the MSE and bias. Note that in addition to the presented estimator, a variant thereof was studied. Both
variants were compared against the ML estimator.

We consider the following variants of the regularized Bayesian estimator: our proposed Bayesian
estimator with the MSE optimization based on plugged-in ML-estimate β̂b; Bayesian estimator with
MSE optimization based on the true value of βb.

It is important to note that only the variant-1 Bayesian estimator (with MSE optimization based
on the ML estimate β̂b) and the ML estimator are practically applicable to real data. In contrast, the
second Bayesian estimator (with MSE optimization based on the true βb) serves only as a theoretical
benchmark.

Further, as evaluation measures, we use the square root of the MSE, denoted as RMSE, and the relative
bias. First, MSE is computed as the mean of the squared differences between the estimated parameter
and the true between-group parameter, βb. Second, the square root is taken to obtain RMSE from MSE.
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Figure 2. Log of root MSE (RMSE) in estimating the between-group slope βb for the ML and the two Bayesian estimators as a function

of the sample size at the group level (J) and the ICC of the predictor ICCX .

Note: The scale of the y-axis differs between the four subplots. Results are shown for n = 15 people per group, and constant within-

group and between-group slopes of βw = 0.5 and βb = 0.2, respectively.

RMSE then allows for comparisons similar to those made with MSE2 while presenting the error in
the original units of measurement. Our preference for RMSE over MSE stems from its scalability and
straightforward interpretability. These attributes enhance the visualization of our analysis, facilitating
clearer insights into the estimators’ performance. The RMSE describes the overall accuracy of parameter
estimation, indicating the proximity of estimated values to the true parameter values. Relative bias, in
contrast, assesses the average deviation of the estimated parameters from the true value. It is computed as
the ratio of the mean difference between the estimated parameter and the true between-group parameter
to the true between-group parameter, βb. The mean difference is calculated over repeated replications of
each scenario in our simulation study. A small relative bias indicates that the estimator produces results
that, on average, are closer to the true parameter value, while a larger relative bias suggests systematic
overestimation or underestimation.

3.3. Simulation results
Here, we report the results of our simulation study, focusing on the characteristics of the simulated data,
their alignment with theoretical expectations, and the comparisons between our proposed estimator, the
variant thereof, and the ML estimator. To facilitate a better understanding, we present visual analyses in
Figures 2–4, which illustrate the differential behaviors of the estimators as a function of the group-level

2The method with the smallest MSE also has the smallest RMSE, and the reverse is also true.
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Figure 3. Log of root MSE (RMSE) in estimating the between-group slope βb for the two Bayesian estimators as a function of the sample

size at the group level (J) and the ICC of the predictor ICCX .

Note: The scale of the y-axis differs between the four subplots. Results are shown for n = 15 people per group, and constant within-

group and between-group slopes of βw = 0.5 and βb = 0.2, respectively.

sample size and the ICC. For a better differentiation between methods, we chose to show the logged
RMSE in Figures 2 and 3. Note that log is a monotone increasing function for RMSE > 0.

For more details about the RMSE and relative bias across 540 unique scenarios, see Tables 2–9 (see
Appendix G).

Figure 2 provides a visual representation of the log of the RMSE patterns for the three estimators
of the slope. The first line (blue dashed line) in Figure 2 is from the second alternative variant of the
Bayesian estimator; that is, the Bayesian estimator based on the true value of βb and thus the direct
implementation of Equation (17). As mentioned, this estimator cannot be used on the real data, as the
βb is unknown, but it works as a benchmark for comparison with our proposed Bayesian estimator. This
latter estimator (red solid line) is the Bayesian estimator with the plug-in ML estimate β̂b in place of βb.
The third estimator (black dash-dot line) is the ML estimator. Recall that among the three estimators,
only the second and third are applicable to the real data.

Our theoretical expectations align with the observed trends, as both Bayesian estimators exhibit
lower RMSE compared to the ML estimator. This RMSE reduction is more pronounced for smaller
group sizes (J), with the effect amplified by lower intraclass correlations (ICCX). Additionally, RMSE
consistently decreases with increasing J for all methods and ICC levels. However, an exception is
observed for the ML estimator in the upper left plot of Figure 2, where RMSE does not follow this
expected trend. At low ICCX and small J, between-group variance τ̂2

X is often estimated near zero,
causing the ML estimator (Equation (6)) to inflate and produce occasional extreme values. This yields
a finite-sample distribution that mixes regular estimates with such extremes. Because RMSE is highly
sensitive to these rare events, the population RMSE can display non-monotonic patterns across adjacent
J values even with very large numbers of replications. In contrast, the regularized Bayesian estimators
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Figure 4. Relative bias in estimating the between-group slope βb for the ML and the two Bayesian estimators as a function of the

sample size at the group level (J) and the ICC of the predictor ICCX .

Note: The scale of the y-axis differs between the four subplots. Results are shown for n = 15 people per group, and constant within-

and between-group slopes of βw = 0.5 and βb = 0.2, respectively.

replace τ̂2
X with (1−ω)τ2

0+ωτ̂2
X in the denominator, bounding it away from zero and producing smooth,

strictly decreasing RMSE curves. Despite this, the overall comparison remains valid, as ML consistently
underperforms the regularized Bayesian estimators across all analyzed scenarios in Figure 2.

Figure 3 further adds to the understanding of the performance differences. This figure demonstrates
that the differences in RMSE between Bayesian estimators based on inserting the true versus estimated
values of βb are only negligible, speaking for the usefulness of the Bayesian estimator with the plugged-in
ML estimate of βb.

Figure 4 shows the behavior of the estimators with respect to the relative bias. The first thing
to mention is that both variants of the Bayesian estimator (blue dashed and red solid lines) do not
converge to a bias of zero with an increasing, but finite number of groups J, while the ML estimator
does (black dash-dot line). This bias is not due to misspecified priors but is the intended result of
MSE-optimal shrinkage in the Bayesian estimator (Equation (7)), where bias is deliberately traded for
reduced variability. However, as J→∞ and ω→ 1, the regularized Bayesian estimator converges to ML,
and the bias disappears. Secondly, with an increasing intraclass correlation ICCX , the relative bias of
all three estimators decreases (plots 1–4 of Figure 4). Thirdly, despite being asymptotically unbiased,
the ML estimator exhibits small-sample bias, especially for small ICC values (see upper left plot in
Figure 4). This bias is inherent to ML estimation and results from denominator instabilities when τ̂2

X
(Equation (6)) is estimated near zero under low ICC, which can lead to sporadic extreme values and a
heavy-tailed error distribution. This effect occurs only with the ML estimator, whereas the regularized
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Table 1. Average RMSE and relative bias values of the ML (RMSEML and BiasML, respectively), the Bayesian

estimator with βb (RMSEBay and BiasBay, respectively), and the Bayesian estimator with β̂b (RMSEBML and

BiasBML, respectively) for different values of n and J. Values in bold indicate the smallest RMSE and the

smallest relative bias for each combination of n and J

n J RMSEML RMSEBay RMSEBML BiasML BiasBay BiasBML

5 5 138.948 2.165 2.139 −541.286 −85.861 −85.565

5 10 65.035 1.230 1.231 20.007 −79.511 −77.130

5 20 101.584 0.771 0.781 253.325 −67.544 −64.531

5 30 20.412 0.602 0.611 33.315 −59.854 −56.847

5 40 25.685 0.519 0.526 −60.882 −57.754 −54.792

15 5 456.334 1.131 1.129 −2815.721 −31.872 −31.855

15 10 107.527 0.653 0.662 −564.371 −51.219 −48.227

15 20 19.847 0.443 0.451 −79.606 −54.971 −51.664

15 30 7.720 0.362 0.368 −5.551 −55.591 −52.659

15 40 3.561 0.315 0.320 −4.161 −55.796 −53.163

30 5 84.649 0.949 0.950 −88.566 −20.531 −20.521

30 10 19.940 0.546 0.556 16.845 −52.950 −49.524

30 20 4.110 0.341 0.347 −12.779 −57.784 −54.571

30 30 0.473 0.279 0.283 −1.565 −57.588 −54.760

30 40 0.386 0.257 0.260 −1.737 −56.888 −54.412

Bayesian approaches remain stable across all scenarios because the denominator uses the weighted sum
(1−ω)τ2

0 +ωτ̂2
X (Equation (7)).

Table 1 presents RMSE and relative bias values computed across all 540 scenarios and averaged
within each combination of group size n and number of groups J. It consolidates information from
Tables 2–9 in Appendix G. Specifically, Table 1 compares three estimators: maximum likelihood (ML),
regularized Bayesian with βb, and regularized Bayesian with β̂b. Highlighted cells identify the estimator
with the smallest RMSE (and therefore the smallest MSE) and the smallest relative bias. Results clearly
illustrate that, across all examined cases, the regularized Bayesian estimators consistently provide lower
RMSE values compared to the ML approach. However, as both group size and the number of groups
increase, the relative bias of the ML estimator approaches zero, as it is a consistent estimator. At the
same time, the relative bias of the regularized Bayesian estimators remains around 60%. Consequently,
for larger n, the ML estimator often has the smallest highlighted relative bias. Nevertheless, even when
the ML estimator exhibits less bias than both regularized Bayesian estimators, the regularized Bayesian
estimators achieve a substantial reduction in MSE and RMSE values, especially when n and J are small.
Thus, Table 1 emphasizes that, according to our simulation studies, regularized Bayesian estimation—
where only the regularized Bayesian estimator with β̂b is applicable in the real world—may deliver more
biased estimations, compared to ML, but is highly preferable in terms of MSE, especially in scenarios
with small n and J.

In conclusion, our optimally regularized Bayesian estimator with the ML estimate plugged in
demonstrates its power to refine the accuracy of estimators for the between-group slope βb in small
samples. While acknowledging inherent bias (see Table 3 in Appendix G for details), this estimator
generated through our approach demonstrates enhanced accuracy when juxtaposed with the ML
estimator, particularly in situations characterized by a finite sample size. Next, we provide a summary
of our introduced approach, reflect on the theoretical advancements, highlight new findings, address
limitations, and offer insights into the broader implications of our work.
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4. Step-by-step tutorial using MLOB R package

To illustrate the practical application of the newly developed estimator, we created the
MultiLevelOptimalBayes (MLOB) package, which includes the estimation function mlob(). In this
section, we provide step-by-step instructions on using the regularized Bayesian estimator with theMLOB
package in R. The estimator is applied to the PASSNYC dataset—a real-world dataset on educational
equity in New York City that includes data from 1,272 schools across 32 districts.

4.1. Loading MLOB package
First, install and load the MLOB package, which is available on CRAN:

install.packages("MultiLevelOptimalBayes")

Alternatively, the development version can be installed from GitHub:

install.packages("devtools")
devtools::install_github("MLOB-dev/MLOB")
library("MultiLevelOptimalBayes")

4.2. Loading and preparing the dataset
As mentioned earlier, we demonstrate how to use the MLOB package based on the PASSNYC dataset.
The PASSNYC dataset is available on Kaggle.3 In the next step, load, clean, and convert the relevant
variables of the PASSNYC dataset to numeric values:

# Load data (set up the correct folder in R using setwd())
data <- read.table("2016 School Explorer.csv", sep = ’,’,

header = TRUE)

# Create a subset excluding N/A values in Average.Math.Proficiency
data_subset <- data[data$Average.Math.Proficiency != ’N/A’, ]

# Convert the Average Math Proficiency variable to numeric
data_subset$math <- as.numeric(data_subset$Average.Math.Proficiency)

# transform variable Economic.Need.Index to numeric variable ENI
data_subset$ENI = as.numeric(data_subset$Economic.Need.Index)

4.3. Estimating the between-group effect
We seek to obtain the contextual effect of economic need on average math proficiency using the
regularized Bayesian estimator. For user convenience, the mlob() function follows a similar notation
and works as simply as the linear regression functionlm() in R. We specify District as the grouping
variable. To ensure reproducibility, we set a random seed before processing the dataset. Since the dataset
is unbalanced (i.e., the number of individuals per group varies), our procedure balances the data by
randomly removing entities from larger groups to achieve equal group sizes. Setting a seed ensures that
the same entities are removed each time the procedure is run, making the results fully replicable.

3https://www.kaggle.com/datasets/passnyc/data-science-for-good/data
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# Set seed for reproducibility
set.seed(123)

# Apply the mlob function
result <- mlob(math ˜ ENI, data = data_subset, group = ’District’,

balancing.limit = 0.35)

Warnings may indicate that the data are unbalanced and that a balancing procedure has been applied.
The function also alerts the user if estimates may be unreliable due to a highly unbalanced structure.
By default, if more than 20% of the data would need to be deleted to achieve balance (threshold
adjustable via the balancing.limit parameter), the function stops and issues a warning. While this
procedure preserves the estimator’s assumptions, removing many observations or groups may affect
the generalizability of the results.

4.4. Summary of results
The output of the customized summary() function follows the format of the summary(lm())
function and provides the estimated between-group effect (βb) obtained with the regularized Bayesian
estimator. For comparison, the summary() function also includes ML estimation results:

summary(result)

Call:
mlob(math ˜ ENI, data = data_subset, group = "District",

balancing.limit = 0.35)

Summary of Coefficients:
Estimate Std. Error Lower CI (95%) Upper CI (95%) Z value Pr(>|z|)
Significance beta_b -1.0379 0.0183 -1.0737 -1.0020 -56.6769
0.00e+00 ***

For comparison, summary of coefficients from unoptimized
analysis (ML):
Estimate Std. Error Lower CI (95%) Upper CI (95%) Z value Pr(>|z|)
Significance beta_b -1.7415 0.7580 -3.2271 -0.2560 -2.2977 0.0216 *

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05. 0.1 1

4.5. Interpretation
The results indicate that the regularized Bayesian estimator provides an estimate with a significantly
lower standard error compared to the ML estimator. Notably, the between-group coefficient estimated
by the regularized Bayesian estimator (β̃b =−1.0379) is smaller in absolute terms than the one estimated
by ML (β̂b = −1.7415). The reduction in absolute magnitude suggests that ML may overestimate the
effect due to its higher variance, whereas the regularized Bayesian estimator produces more reliable
estimates, particularly in small samples. The between-group effect in this context represents how
economic need, averaged at the district level, influences math proficiency across the districts of New
York City. The negative coefficient suggests that districts with higher economic need tend to have
lower average math proficiency. Given that the PASSNYC dataset is relatively small, containing 1,272
schools across 32 districts, the primary small-sample issue arises from the limited number of districts
rather than the total number of schools. Since hierarchical models rely on the number of groups to
estimate between-group effects, a small number of districts leads to increased variance in the estimated
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between-group coefficient. In this setting, the lower variance of the Bayesian estimator is particularly
beneficial, as it enhances the reliability of the estimates. This highlights the advantages of the regularized
Bayesian estimator in two-level latent variable models, especially with small datasets such as PASSNYC.

To draw a parallel with the previous section, we refer to Table 1, which summarizes the average
RMSE and relative bias across different n and J and illustrates when regularized Bayesian or ML
estimation is the preferable choice. A green color code is used to indicate the superior estimator for
each scenario. Notably, in all analyzed cases, the newly developed estimator outperformed ML in terms
of RMSE, further demonstrating its reliability in multilevel latent variable modeling. Therefore, even
when the sample is sufficiently large, we recommend using our MLOB package, which offers both ML
and regularized Bayesian estimations, allowing users to select the most appropriate method for their
data. It is also important to consider degenerate cases where either the between-group or within-group
effect is zero. In such cases, the mlob() function recommends using simpler models, such as ordinary
least squares (OLS) or ML.

5. Discussion and conclusion

In this article, we thoroughly described and analyzed a regularized Bayesian estimator for multilevel
latent variable models, which we optimized with respect to MSE performance, using the multilevel latent
covariate model as an example. In addition, we derived an analytical expression for the standard error.

However, given our specific focus on small sample size, rather than using this standard error, it might
be more reasonable to employ a resampling technique for accurately determining the standard error. As
mentioned, one such effective method is a delete-d jackknife procedure. The main achievement lies
in deriving an optimally regularized Bayesian estimator by seamlessly integrating the minimization of
MSE with respect to the parameters of the prior distribution. Through graphical representations of the
results, we highlighted the pronounced improvements that our approach garners over ML estimation,
particularly in small samples.

The following contributions to the theoretical landscape are noteworthy. Primarily, we derived a
distribution of the Bayesian estimator, enabling us to achieve further optimization of the MSE with
respect to the parameters of the prior distribution for this estimator. Moreover, we proposed an
algorithm to construct our optimally regularized Bayesian estimator. These theoretical achievements are
mirrored by the results from our simulation study as detailed in the previous section. In a nutshell, from
these results, significant performance improvements emerged for the optimally regularized Bayesian
estimator compared to the ML estimator, particularly in situations characterized by small sample sizes
and low ICCs. These advantages can be attributed to the way the estimator is constructed, which allows
for some bias while actively minimizing the MSE.

Although our work focuses on Bayesian estimation, the utilization of prior information to enhance
estimation is not exclusive to Bayesian methods. Similar means are taken by frequentist approaches. For
example, the Bayesian estimator’s weighting parameter ω in Equation (8) achieves an effect analogous
to the penalty in regularized structural equation modeling, as seen in Jacobucci et al. (2016). Similarly,
the weighting parameter in the denominator of Equation (7) aligns with the concept of regularized
consistent partial least squares estimation (e.g., Jung & Park, 2018).

While our research offers significant contributions, we also acknowledge limitations. The advantages
of our method over ML estimation become less pronounced with larger sample sizes, indicating that
our approach may be most beneficial in contexts with smaller samples. Another limitation of our
approach lies in the locality of the search for the optimal MSE. Our optimization strategy within a 5⋆σ
region ensures that the minimum MSE falls within this region with almost 100% probability, although
this is not guaranteed. Additionally, since the true MSE remains unknown, we rely on the estimated
MSE, which provides a reliable approximation within the defined bound. However, the extrema of
the real and estimated MSE do not always coincide. As a result, misspecification of the regularized
Bayesian estimation is possible but extremely unlikely. Moreover, by reducing the 5⋆σ search region,
we can control bias and select an optimal estimator within the reduced region. While this decreases the
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probability of finding the globally optimal MSE, it ensures that the estimator has a relative bias within
a predefined threshold. In the degenerate case where the search region is zero, we obtain an exact ML
estimator. This is a potential area for future research.

One more limitation is the assumption of equal group sizes, which simplifies the statistical problem.
However, in practice, group sizes often vary (e.g., the number of students in classes). While our current
approach does not directly account for unequal group sizes, one possible solution would be to average
the group sizes and apply our estimator. It is important to note that our regularized Bayesian estimator
formulas extend to non-integer values of n, allowing for this flexibility. This is also a potential area for
future research. Nevertheless, our MLOB R package includes a built-in data-balancing mechanism that
provides a practical solution for handling unequal group sizes. Notably, if more than 20% of the data
would need to be deleted to achieve balance, the function stops and alerts the user.

Beyond these limitations, the regularized Bayesian estimator can be extended to three- and higher-
level models. While our estimator has not yet been fully developed for such multilevel structures, these
models could be implemented through an iterative application of the two-level estimator. One approach
is to iteratively apply the regularized Bayesian estimator by reducing the model to two levels at a time,
computing estimates, and then proceeding to the next pair of levels.

An extension for future simulation work is to explore a broader range of between-group parameter
values, including near-zero βb settings, to more fully assess performance under weak between-group
effects. Future designs could also relax the constraints on ICCY to investigate the estimator’s behavior
in such scenarios.

Another possible extension is incorporating time as a predictor, enabling a longitudinal modeling
framework for analyzing time-related trends. For example, the application of our regularized Bayesian
estimator to the longitudinal dataset ChickWeight is included as a standard example in the MLOB
R package. Such extensions provide promising directions for future research and further refinement of
the regularized Bayesian estimator.

To conclude, our optimized Bayesian estimator, which sophistically balances bias reduction and
variance minimization, offers improved precision in parameter estimation, particularly in small sam-
ples. Thus, our findings hold promising implications for multilevel latent variable modeling, and the
demonstrated accuracy improvements due to optimized regularization underscore the practical value
of our estimator. We aspired to empower researchers in psychology and related fields to utilize the
benefits of our proposed estimator and use the newly developed mlob package in R, as demonstrated
in the Section Step-by-Step Tutorial when dealing with small samples in fitting multilevel latent variable
models.

By highlighting the efficacy of Bayesian strategies, we hope to inspire a paradigm shift in estimation
techniques for small-sample scenarios. This shift could lead to more robust and informed modeling
practices in the research community.
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Smid, S. C., McNeish, D., Miočević, M., & van de Schoot, R. (2020). Bayesian versus frequentist estimation for structural

equation models in small sample contexts: A systematic review. Structural Equation Modeling: A Multidisciplinary Journal,
27(1), 131–161.

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 04:49:32, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


18 Dashuk et al.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel Modeling. (2nd ed.)
Sage Publications.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In J. Neyman (Ed.),
Proceedings of the third Berkeley symposium on mathematical statistics and probability, volume 1: Contributions to the theory
of statistics (Vol. 1, pp. 197–206). Statistical Laboratory of the University of California.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1), 267–288.

Welch, B. L. (1947). The generalization of ‘student’s’ problem when several different population variances are involved.
Biometrika, 34(1–2), 28.

Yuan, K.-H., & Chan, W. (2008). Structural equation modeling with near singular covariance matrices. Computational Statistics
and Data Analysis, 52(9), 4842–4858.

Yuan, K.-H., & Chan, W. (2016). Structural equation modeling with unknown population distributions: Ridge generalized
least squares. Structural Equation Modeling, 23(2), 163–179.

Zitzmann, S. (2018). A computationally more efficient and more accurate stepwise approach for correcting for sampling error
and measurement error. Multivariate Behavioral Research, 53(5), 612–632.

Zitzmann, S., & Helm, C. (2021). Multilevel analysis of mediation, moderation, and nonlinear effects in small samples, using
expected a posteriori estimates of factor scores. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 529–546.

Zitzmann, S., Helm, C., & Hecht, M. (2021). Prior specification for more stable Bayesian estimation of multilevel latent variable
models in small samples: A comparative investigation of two different approaches. Frontiers in Psychology, 11, 1–11.

Zitzmann, S., Lohmann, J. F., Krammer, G., Helm, C., Aydin, B., & Hecht, M. (2022). A Bayesian eap-based nonlinear extension
of Croon and Van Veldhoven’s model for analyzing data from micro–macro multilevel designs. Mathematics, 10(5), 842.

Zitzmann, S., Lüdtke, O., & Robitzsch, A. (2015). A Bayesian approach to more stable estimates of group-level effects in
contextual studies. Multivariate Behavioral Research, 50(6), 688–705.

Zitzmann, S., Lüdtke, O., Robitzsch, A., & Hecht, M. (2021). On the performance of Bayesian approaches in small samples:
A comment on Smid, McNeish, Miocevic, and van de Schoot (2020). Structural Equation Modeling: A Multidisciplinary
Journal, 28(1), 40–50.

Zitzmann, S., Lüdtke, O., Robitzsch, A., & Marsh, H. W. (2016). A bayesian approach for estimating multilevel latent contextual
models. Structural Equation Modeling: A Multidisciplinary Journal, 23(5), 661–679.

Zitzmann, S., Nagengast, B., Hübner, N., & Hecht, M. (2024). A simple solution to heteroscedasticity in multilevel nonlinear
structural equation modeling. Manuscript submitted for publication.

Zitzmann, S., Wagner, W., Hecht, M., Helm, C., Fischer, C., Bardach, L., & Göllner, R. (2022). How many classes and students
should ideally be sampled when assessing the role of classroom climate via student ratings on a limited budget? An optimal
design perspective. Educational Psychology Review, 34(2), 511–536.

Zitzmann, S., Weirich, S., & Hecht, M. (2023). Accurate standard errors in multilevel modeling with heteroscedasticity:
A computationally more efficient jackknife technique. The Psychiatrist, 5(3), 757–769.

Appendix A

To derive a Bayesian estimator following Zitzmann, Helm, and Hecht (2021) indirect strategy, we start by adopting a gamma
prior distribution for the inverse of the group-level variance of the predictor variable τ2

X :
1

τ2
X
∼Gamma(a,b), (A.1)

where a and b are the parameters of the Gamma distribution. For better interpretability, we employ a reparameterization of
a = ν0

2 and b = ν0τ2
0

2 leading to

1
τ2

X
∼Gamma( ν0

2
,

ν0τ2
0

2
) . (A.2)

Similarly, the likelihood for the inverse of the group-level variance is

1
τ2

X
∼Gamma( J

2
,

Jτ̂2
X

2
) (A.3)

with τ̂2
X being an estimate of the group-level variance. To get an inverse-gamma posterior, we combine Equations (A.2) and

(A.3) and yield

1
τ2

X
∼Gamma( ν0 + J

2
,

ν0τ2
0 + Jτ̂2

X
2

) . (A.4)
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As demonstrated by Zitzmann, Lüdtke, et al. (2021) in Appendix C, an approximation for the mean of this distribution can be
derived as follows:

τ2
X ≈ (1−ω)τ2

0 +ωτ̂2
X . (A.5)

With Equation (A.5), the Bayesian expected a posteriori (EAP) estimate is defined. We specify the weighting parameter ω from
Equation (A.5) as

ω =
J−1

2
ν0
2 +

J
2 −1

. (A.6)

This formula minimizes the total error of the approximation of τ2
X from Equation (A.5), making it optimal.

Note that ω is defined in Equation (A.6) as a function of sample size, or more precisely, as a function of the number of
groups J.

Asymptotically, when J →∞, ω converges to 1. Thus, τ2
X becomes equal to τ̂2

X in this case.
To derive the new estimator, we take Equation (6) and replace τ̂2

X , with its Bayesian EAP as defined in Equation (A.5). This
gives

β̃b =
τ̂YX

(1−ω)τ2
0 +ωτ̂2

X
. (A.7)

Appendix B

To compute an estimate of the group-level covariances, we apply the formulas from Zitzmann, Lüdtke, et al. (2021), starting
from the decompositions:

Xij = Xb,j +Xw,ij (B.1)

Yij = Yb,j +Yw,ij. (B.2)

We assume that Xb,j and Xw,ij are uncorrelated and both independently identically normally distributed. The same assumptions
are considered for Y.

Next, we define (manifest) group means for both X and Y as

X●j =
1
n

n
∑
i=1
(Xb,j +Xw,ij) = Xb,j +

1
n

n
∑
i=1

Xw,ij, (B.3)

Y●j =
1
n

n
∑
i=1
(Yb,j +Yw,ij) = Yb,j +

1
n

n
∑
i=1

Yw,ij. (B.4)

Then, the overall means are

X●● =
1
nJ

J
∑
j=1

n
∑
i=1
(Xb,j +Xw,ij) =

1
J

J
∑
j=1

Xb,j +
1
nJ

J
∑
j=1

n
∑
i=1

Xw,ij, (B.5)

Y●● =
1
nJ

J
∑
j=1

n
∑
i=1
(Yb,j +Yw,ij) =

1
J

J
∑
j=1

Yb,j +
1
nJ

J
∑
j=1

n
∑
i=1

Yw,ij. (B.6)

The sums of squared deviations of the group means from the overall mean (SSA) and of the individual values from the group
means (SSD) for X are

SSA = n
J
∑
j=1
(X●j −X●●)2 = n

J
∑
j=1

X2
●j −nJX2

●● (B.7)

SSD =
J
∑
j=1

n
∑
i=1
(Xij −X●j)2 =

J
∑
j=1

n
∑
i=1

X2
ij −n

J
∑
j=1

X2
●j. (B.8)

The same equations hold for Y. And the cross products of Y and X are

SPA = n
J
∑
j=1
(Y●j −Y●●)(X●j −X●●) = n

J
∑
j=1

Y●jX●j −nJY●●X●● (B.9)

SPD =
J
∑
j=1

n
∑
i=1
(Yij −Y●j)(Xij −X●j) =

J
∑
j=1

n
∑
i=1

YijXij −n
J
∑
j=1

Y●jX●j. (B.10)
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Zitzmann, Lüdtke, et al. (2021) derived the relations between the sum of squared deviations of X and the within- and between-
group variances as

SSA = n(J−1)τ̂2
X −(J−1)σ̂2

X (B.11)
SSD = (n−1)Jσ̂2

X. (B.12)

Combining Equations (B.11) and (B.12) with Equations (B.7) and (B.8), we yield an estimate of the group-level variance of X:

τ̂2
X = −

1
n(n−1)J

J
∑
j=1

n
∑
i=1

X2
ij +

nJ−1
(n−1)(J−1)J

J
∑
j=1

X2
●j −

J
J−1

X2
●●. (B.13)

Note that this estimator may not be optimal, because estimates may not be positive. To address this issue, Chung et al.
(2013) introduced a maximum penalized likelihood (MPL) approach for estimating this parameter. This method mitigates
the problem of boundary estimates, specifically preventing the occurrence of negative estimated group-level variances. In our
approach, we used the estimator from Equation (B.13), due to the transformation in the further steps and no anomalies were
found during the extensive simulations.

Zitzmann, Lüdtke, et al. (2021) also derived how the sum of squared deviations of cross products of X and Y can be
expressed in terms of their within- and between-group covariances:

SPA = n(J−1)τ̂YX +(J−1)σ̂YX (B.14)
SPD = (n−1)Jσ̂YX. (B.15)

This means that the estimator for the group-level covariance τ̂YX can be obtained from Equations (B.9), (B.10), (B.14), and
(B.15) as

τ̂YX = −
1

n(n−1)J

J
∑
j=1

n
∑
i=1

YijXij +
nJ−1

(n−1)(J−1)J

J
∑
j=1

Y●jX●j −
J

J−1
Y●●X●●. (B.16)

So far, we have derived both the numerator and the denominator of the ML estimator and, partly, of the Bayesian estimator in
Equation (7). But how can we use these derivations? Our aim is to minimize the MSE of the Bayesian estimator, and to do this,
we need to know the mean and the variance of the estimator. One way to find them is to compute the estimator’s distribution.

We begin with the derivation of the distributions of group-level variance of X and the group-level covariance between X
and Y. To this end, two new variables are defined. The ZX merges all the elements of predictor sample together with its means
into one vector of length (nJ+ J+1), and ZY combines all the elements of the dependent variable and its means:

ZX = (X11, . . .Xn1,X12, . . .XnJ,X●1, . . .X●J,X●●)′ (B.17)

ZY = (Y11, . . .Yn1,Y12, . . .YnJ,Y●1, . . .Y●J,Y●●)′ . (B.18)

Using these newly defined variables, we can rewrite the estimators for the group-level variance and the covariance τ̂YX in matrix
form:

τ̂2
X = Z′XAZX (B.19)

τ̂YX = Z′XAZY . (B.20)

With the same coefficient matrix A for both defined in Equation (F.1) of Appendix F. Note that matrix A is diagonal.
Thus, τ̂YX and τ̂2

X are quadratic forms of the sample elements and their means. If the equations consist only of second-order
terms of normally distributed random variables, we can interpret τ̂YX and τ̂2

X as the weighted sums of χ2, and thus gamma-
distributed random variables. However, the distribution of such a quadratic form is highly complicated in the general case.
Therefore, we apply a transformation to yield weighted sum of squares (without interaction terms) of iid normal random
variables.

Firstly, we compute the distribution of ZX and ZY , using the previously made assumptions about X and Y :

ZX ∼N(1nJ+J+1 * μX,ΣX) (B.21)

ZY ∼N(1nJ+J+1 * μY,ΣY). (B.22)

Where 1nJ+J+1 is a vector of ones of size (nJ+ J+1). Also, note the following important facts:

• each element of ZX and ZY has the same mean;
• the sum of coefficients defined by matrix A in Equation (F.1) of Appendix F is zero.
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As a result, when we demean Equations (B.19) and (B.20), these means sum up to zero. To demonstrate it, define Z*
X and

Z*
Y and all their elements as the demeaned counterparts of ZX and ZY , respectively:

ZX = Z*
X +1nJ+J+1 * μX

ZY = Z*
Y +1nJ+J+1 * μY .

(B.23)

Show that Z*′
X * A *1nJ+J+1 and Z*′

Y * A *1nJ+J+1 are both zeros:

Z*′
X * A *1nJ+J+1 =−

1
n(n−1)J

J
∑
j=1

n
∑
i=1

X*
ij +

nJ−1
(n−1)(J−1)J

J
∑
j=1

X*
●j−

J
J−1

X*
●● =

J
∑
j=1

n
∑
i=1

X*
ij(−

1
n(n−1)J

+ nJ−1
n(n−1)(J−1)J

− J
nJ(J−1)

) =

J
∑
j=1

n
∑
i=1

X*
ij
−J+1+nJ−1−nJ+ J

nJ(n−1)(J−1)
= 0

(B.24)

Z*′
Y * A *1nJ+J+1 =−

1
n(n−1)J

J
∑
j=1

n
∑
i=1

Y*
ij +

nJ−1
(n−1)(J−1)J

J
∑
j=1

Y*
●j−

J
J−1

Y*
●● =

J
∑
j=1

n
∑
i=1

Y*
ij(−

1
n(n−1)J

+ nJ−1
n(n−1)(J−1)J

− J
nJ(J−1)

) = 0.
(B.25)

Plug the expressions from Equation (B.23) into Equations (B.19) and (B.20), and remind that the sum of coefficients of matrix
A is zero:

τ̂2
X = Z′XAZX = (Z*

X +1nJ+J+1 * μX)′A(Z*
X +1nJ+J+1 * μX) = Z*

X
′AZ*

X+
Z*′

X A *1nJ+J+1
������������������������������
������������������������������

=0

*μX +μX *1′nJ+J+1AZ*
X

�����������������������
������������������������
=0

+μX *1′nJ+J+1A1nJ+J+1
����������������������������������������
���������������������������������������

=0

*μX →

τ̂2
X = Z*′

XAZ*
X

(B.26)

τ̂YX = Z′XAZY = (Z*
X +1nJ+J+1 * μX)′A(Z*

Y +1nJ+J+1 * μY) = Z*
X
′AZ*

Y+
Z*′

X A *1nJ+J+1
������������������������������
������������������������������

=0

*μY +μX *1′nJ+J+1AZ*
Y

�����������������������
������������������������
=0

+μX *1′nJ+J+1A1nJ+J+1
����������������������������������������
���������������������������������������

=0

*μY →

τ̂YX = Z*′
XAZ*

Y .

(B.27)

Hence, it is irrelevant for τ̂2
X and τ̂YX whether ZX and ZY have non-zero means or not, they always cancel out. So, we do

not lose generality by assuming μX = 0 and μY = 0.
ΣX and ΣY are defined in Equations (F.3) and (F.4) of Appendix F. These matrices are symmetric and positive semi-definite

as covariance matrices. Therefore, their square roots will have only real entries (Horn & Johnson, 2013). Using the matrices,
we can transform τ̂2

X to

τ̂2
X = Z′XAZX = Z′XΣ−1/2

X Σ1/2
X AΣ1/2

X Σ−1/2
X ZX =W′

XΣ1/2
X AΣ1/2

X WX . (B.28)

Where WX = Σ−1/2
X ZX ∼N(0,InJ+J+1) follows the standard (multivariate) normal distribution, which has the identity matrix I

as the covariance matrix. Following the rationale that led to Equation (B.28), we define a square root of the covariance matrix
ΣX by using its spectral decomposition as

ΣX = VXDXV′X . (B.29)

Where VX is a matrix of eigenvectors and it is orthogonal (V′X = V−1
X ), because ΣX is a real symmetric matrix by its nature

(Horn & Johnson, 2013). Matrix DX is a diagonal matrix of eigenvalues. These eigenvalues are non-negative, because ΣX is
positive-semidefinite (Horn & Johnson, 2013). Thus, we may denote the square root of DX as SX , which is just a diagonal
matrix with real square roots of each element of DX . This helps us to define the matrix Σ1/2

X :

Σ1/2
X = VXSXV′X . (B.30)
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Indeed, we have

Σ1/2
X Σ1/2

X = VXSX

=I
�
V′XVX SXV′X = VX

=DX�
SXSX V′X = VXDXV′X = ΣX . (B.31)

The eigenvalues of ΣX are as follows:

• λi = 0, (J+1) eigenvalues;
• λi = σ2

X , ((n−1)J) eigenvalues;
• λi = (n+1)(τ2

X + 1
n σ2

X), (J−1) eigenvalues;
• λnJ+J+1 = nJ+J+1

J (τ2
X + 1

n σ2
X), 1 eigenvalue.

DX , a diagonal matrix, is composed of the eigenvalues in this order. Matrix VX =V is presented in Equation (F.2) of Appendix F.
Due to its bulkiness, we provide VX for the case n = 3 and J = 4, but it could be expanded upon demand.

We can now plug the decomposition of ΣX into Equation (B.28) so that it becomes

τ̂2
X =W′

XΣ1/2
X AΣ1/2

X WX =W′
XVXSXV′XAVXSXV′XWX (B.32)

τ̂2
X =H′XSXV′XAVXSXHX, (B.33)

where HX = V′XWX ∼ N(0,V′XInJ+J+1VX) = N(0,InJ+J+1). Thus, the orthogonality of matrix VX kept the standard normal
distribution of the new variable HX . Since the internal right-hand side of Equation (B.33), SXV′XAVXSX , is diagonal, we indeed
managed to represent τ2

X as a weighted sum of squares of independent normally distributed random variables, that is, a
weighted sum of χ2

1-distributed random variables.

Appendix C

Similarly to the transformation of the group-level variance of X, which was introduced in Appendix B, we continue with
the description of the transformation of the group-level covariance of X and Y as this is partially similar. We start from
Equation (B.20) in Appendix B and use the previously defined covariance matrices ΣX and ΣY (Equations (B.21) and (B.22) in
Appendix B):

τ̂YX = Z′XAZY = Z′XΣ−1/2
X Σ1/2

X AΣ1/2
Y Σ−1/2

Y ZY =W′
XΣ1/2

X AΣ1/2
Y WY, (C.1)

where WY = Σ−1/2
Y ZY ∼ N(0,InJ+J+1) is a new random vector that follows the multivariate standard normal distribution. For

further transformation, we also introduce the spectral decomposition of covariance matrix ΣY and its square root as

ΣY = VY DY V′Y (C.2)

Σ1/2
Y = VY SY V′Y, (C.3)

where VY is a matrix of eigenvectors of ΣY . It turns out to be equal to VX , therefore sharing its property of orthogonality. We
will further refer to them as V = VX = VY (see Equation (F.2) in Appendix F).

Matrix DY consists of (non-negative) eigenvalues of ΣY on the diagonal (because of the positive-semidefiniteness of ΣY ). Its
square root matrix, SY , is also diagonal, with non-negative square roots of eigenvalues on the main diagonal. We can compute
the eigenvalues of ΣY in closed form and thus define matrix DY by

• λi = 0, (J+1) eigenvalues;
• λi = σ2

Y , ((n−1)J) eigenvalues;
• λi = (n+1)(τ2

Y + 1
n σ2

Y), (J−1) eigenvalues;
• λnJ+J+1 = nJ+J+1

J (τ2
Y + 1

n σ2
Y), 1 eigenvalue.

For the next step, we plug in the decompositions Equation (B.30) of Appendix B and Equation (C.3) into Equation (C.1) and
obtain

τ̂YX =W′
XΣ1/2

X AΣ1/2
Y WY =W′

XVSXV′AVSY V′WY (C.4)
τ̂YX =H′XSXV′AVSY HY, (C.5)

where HY = V′WY ∼ N(0,V′InJ+J+1V) = N(0,InJ+J+1). Thus, the distribution of the new variable HY is standard normal
because of the orthogonality of the matrix V. Additionally, the inner right-hand side of Equation (C.5), SXV′AVSY , is diagonal
due to its construction. Comparing Equations (B.33) and (C.5), one might be inclined to see the distinct similarities and the
claim to also represent τYX as a weighted sum of squares of independent normally distributed random variables. However, this
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is not true. HX and HY are different random vectors, and thus, we continue the transformation by defining a new aggregated
variable:

H = (HX
HY

) (C.6)

with the distribution of H being N(0,ΣH). Its covariance matrix ΣH is defined as follows:

ΣH = (
Var(HX) Cov(HX,HY)

Cov(HX,HY) Var(HY)
) . (C.7)

We already showed that Var(HX) = InJ+J+1 and Var(HY) = InJ+J+1 as well. Before calculation of Cov(HX,HY), we additionally
define ΣYX in Equation (F.5) of Appendix F in a manner similar to Equations (F.3) and (F.4). Then, the spectral decomposition
of ΣYX becomes

ΣYX = VDYXV′ (C.8)

Σ1/2
YX = VSYXV′, (C.9)

where matrix V is the same as in decompositions of ΣX in Equation (B.29) from Appendix B and ΣY in Equation (C.2). Matrix
DYX is diagonal with non-negative eigenvalues of positive-semidefinite matrix ΣYX (Horn & Johnson, 2013). Thus, the square
root matrix, SYX , is diagonal with non-negative square roots of eigenvalues on the main diagonal. The eigenvalues of ΣYX that
define matrix DYX are in the closed form:

• λi = 0, (J+1) eigenvalues;
• λi = σYX , ((n−1)J) eigenvalues;
• λi = (n+1)(τYX + 1

n σYX), (J−1) eigenvalues;
• λnJ+J+1 = nJ+J+1

J (τYX + 1
n σYX), 1 eigenvalue.

Next, we use the generalized inverses of matrices SX and SY , as described by Penrose (1955), since they include zero eigenvalues
and are not invertible. These matrices are denoted as S+X and S+Y and include the inverse of diagonal elements that are invertible
and zeros otherwise.

Using all this, the covariance Cov(HX,HY) is computed as

Cov(HX,HY) = Cov(V′WX,V′WY) = V′Cov(WX,WY)V =

V′Cov(Σ−1/2
X ZX,Σ−1/2

Y ZY)V = V′Σ−1/2
X Cov(ZX,ZY)

��������������������������
��������������������������
ΣYX

Σ−1/2
Y V =

V′Σ−1/2
X ΣYXΣ−1/2

Y V = V′VS+X V′VDYXV′VS+Y V′V →

Cov(HX,HY) = S+X DYXS+Y . (C.10)

This result is used to fully define the covariance matrix of H:

ΣH = (
I S+X DYXS+Y

S+X DYXS+Y I ) (C.11)

and its spectral decomposition:

ΣH = VHDHV′H, (C.12)

where the closed-form solutions for both the matrix of eigenvalues DH and the orthogonal matrix of eigenvectors VH . DH is

DH = (
I+S+X DYXS+Y 0

0 I−S+X DYXS+Y
) . (C.13)

Matrix VH is defined in Equation (F.6) of Appendix F. Both matrices follow the same properties as their predecessor: DH is
diagonal with non-negative eigenvalues, and VH is orthogonal.

After exposing the new composite vector H and its covariance matrix ΣH , we can rewrite Equation (C.5) as

τ̂YX =H′QH (C.14)

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 04:49:32, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


24 Dashuk et al.

with coefficient matrix Q defined as

Q = ( 0 1
2 SXV′AVSY

1
2 SXV′AVSY 0 ) . (C.15)

Note that Q is designed to keep the symmetry of Equation (C.14). Including the square root of the covariance matrix leads to

τ̂YX =H′QH =H′Σ−1/2
H Σ1/2

H QΣ1/2
H Σ−1/2

H H =H′1Σ1/2
H QΣ1/2

H H1, (C.16)

where H1 = Σ−1/2
H H ∼ N(0,I2(nJ+J+1)) is a vector of independent normally distributed variables. Using the decomposition of

ΣH from Equation (C.12), denoting a square root of DH as SH , and plugging both terms into Equation (C.16) yields:

τ̂YX =H′1Σ1/2
H QΣ1/2

H H1 =H′1VHSHV′HQVHSHV′HH1 (C.17)
τ̂YX =H′2SHV′HQVHSHH2 (C.18)

with H2 = V′HH1 ∼ N(0,I2(nJ+J+1))—a multivariate standard normally distributed random vector, as VH is orthogonal.
Furthermore, since matrix SHV′HQVHSH is diagonal, the estimator of the group-level covariance τ̂YX is now represented as
a weighted sum of squares of independent normally distributed random variables, that is, a weighted sum of χ2

1-distributed
random variables. Thus, at this point, we achieved our aim of transforming τ̂YX .

Appendix D

Here, we derive the distributions of the ML and the Bayesian estimator. To this end, we start by calculating the distributions
of sample group-level covariances τ̂X

2 and τ̂YX in Equations (10) and (11), respectively. According to Welch (1947) and
Satterthwaite (1946), we can approximate these sums as a generic Gamma distribution with parameters:

ksum =
(∑i θiki)2

∑i θ2
i ki

(D.1)

θsum =
∑i θiki

ksum
. (D.2)

Notice that each element in the sums τ̂2
X and τ̂YX is scaled. The scales are defined by diagonal matrices SXV′XAVXSX (for τ̂2

X)
and SHV′HQVHSH (for τ̂YX). Let us denote their diagonal elements as θX,i and θYX,i, respectively. Then, we can express the
distributions of τ̂2

X and τ̂YX as

τ̂2
X ∼Gamma(ksum1,θsum1) (D.3)

ksum1 =
(∑i θX,i)2

2∑i θ2
X,i

,θsum1 =
∑i θ2

X,i

∑i θX,i

τ̂YX ∼Gamma(ksum2,θsum2) (D.4)

ksum2 =
(∑i θYX,i)2

2∑i θ2
YX,i

,θsum2 =
∑i θ2

YX,i

∑i θYX,i
.

Using these distributions, we can find the distribution of the ML estimator. It is well known that the ratio of two
independent gamma-distributed random variables follows F distribution. The independence of τ̂2

X and τ̂YX is not directly
clear, but it follows from the approximation of the sum of Gamma-distributions. Therefore, the ML estimator’s distribution is

ksum1θsum1

ksum2θsum2
β̂b ∼ F(2ksum2,2ksum1). (D.5)

Next, we derive the distribution of the Bayesian estimator. Since it includes the two parameters τ2
0 and ω, we need to adjust

the process of derivation and find the distribution of the denominator first.
The denominator is (1−ω)τ2

0 +ωτ̂2
X and consists of a stochastic part ωτ̂2

X and deterministic part (1−ω)τ2
0 . To sum them

up, we replace the deterministic part with the sequence of random variables tm, which converges (in probability) to this
deterministic part:

tm ∼Gamma(mτ2
0,

1
m
) . (D.6)
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Further, we substitute τ2
0 with tm and yield a sum of gamma-distributed random variables. Using once more the approach

from Welch (1947) and Satterthwaite (1946), we compute a sum as a new sequence of random variables that follows a Gamma
distribution with parameters kB,m and θB,m:

kB,m =
(ωθsum1ksum1 +(1−ω)τ2

0)2

ω2θ2
sum1ksum1 + (1−ω)2

m2 mτ2
0

(D.7)

θB,m =
ωθsum1ksum1 +(1−ω)τ2

0

kB,m
. (D.8)

The limit is the Gamma(kB,θB) distribution with parameters:

kB = lim
m→∞

kB,m =
(ωθsum1ksum1 +(1−ω)τ2

0)2

ω2θ2
sum1ksum1

(D.9)

θB = lim
m→∞

θB,m =
ω2θ2

sum1ksum1

ωθsum1ksum1 +(1−ω)τ2
0
. (D.10)

Using the derived distribution of the denominator, similarly to the ML estimator, we yield the total distribution of the Bayesian
estimator:

kBθB

ksum2θsum2
β̃b ∼ F(2ksum2,2kB). (D.11)

After computing the distributions of the ML estimator (Equation (D.5)) and the Bayesian estimator (Equation (D.11)), we
use them to calculate biases and variances of the estimators and thus their MSEs as

MSE(β̂b) =
ksum2θ2

sum2(ksum1 +ksum2−1)
θ2

sum1(ksum1−1)2(ksum1 −2)
+( ksum2θsum2

(ksum1−1)θsum1
−βb)

2

(D.12)

MSE(β̃b) =
ksum2θ2

sum2(kB +ksum2 −1)
θ2

B(kB −1)2(kB −2)
+( ksum2θsum2

(kB −1)θB
−βb)

2

. (D.13)

Appendix E: Estimation algorithm

Finally, we introduce a novel and practical algorithm based on the theoretical investigations made in the main part of the
article. This algorithm aims to provide an efficient and effective solution for computing the regularized Bayesian estimator:

1. Input data: n, J, Xij, and Yij.
2. Define matrix A from Equation (F.1) of Appendix F.
3. Calculate the (manifest) group means: X●j of X from Equation (B.3) in Appendix B and Y●j of Y from Equation (B.4)

in Appendix B.
4. Calculate the overall means: X●● of X from Equation (B.5) in Appendix B and Y●● of Y from Equation (B.6) in

Appendix B.
5. Compute τ̂2

X from Equation (B.13) in Appendix B and τ̂2
YX from Equation (B.16) in Appendix B as well as

τ̂2
Y = −

1
n(n−1)J

J
∑
j=1

n
∑
i=1

Y2
ij +

nJ−1
(n−1)(J−1)J

J
∑
j=1

Y2
●j −

J
J−1

Y2
●● (E.1)

σ̂2
X =

1
(n−1)J

J
∑
j=1

n
∑
i=1

X2
ij −

n
(n−1)J

J
∑
j=1

X2
●j (E.2)

σ̂YX =
1

(n−1)J

J
∑
j=1

n
∑
i=1

XijYij −
n

(n−1)J

J
∑
j=1

X●jY●j (E.3)

σ̂2
Y =

1
(n−1)J

J
∑
j=1

n
∑
i=1

Y2
ij −

n
(n−1)J

J
∑
j=1

Y2
●j. (E.4)
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6. Find the ML estimator β̂b from Equation (6).
7. Compute diagonal matrices of eigenvalues DX (page 44), DY (page 46), DYX (page 48), and matrix of eigenvectors V

from Equation (F.2) of Appendix F.
8. Calculate the square root matrices SX =

√
DX and SY =

√
DY .

9. Compute the diagonal matrix of coefficients L1 = SXV′AVSX .

10. Calculate matrix Q from Equation (C.15) in Appendix C.
11. Compute the diagonal matrix of eigenvalues DH from Equation (C.13) of Appendix C and eigenvectors matrix VH

from Equation (F.6) of Appendix F.
12. Calculate the square root matrix SH =

√
DH .

13. Compute the diagonal matrix of coefficients L2 = SHV′HQVHSH .

14. Compute the coefficients ksum1, θsum1, ksum2, and θsum2 (note that 1 is a vector of ones):

ksum1 =
(1′nJ+J+1L1)2

2L′1L1
(E.5)

θsum1 =
L′1L1

1′nJ+J+1L1
(E.6)

ksum2 =
(1′2(nJ+J+1)L2)

2

2L′2L2
(E.7)

θsum2 =
L′2L2

1′2(nJ+J+1)L2
. (E.8)

15. Define vectors W and T02, with the values of ω and τ2
0 that specify grid search region. For example, W goes from 0 to

1 by steps of 0.01, and T02 goes from 0.1 to 10 by steps of 0.1
16. Compute the MSE for each value of W and T02, whereby βb should be substituted with β̂b. The final formula is

delineated as

MSEML(i,j) = {ksum2θ2
sum2(ksum2 +1)((1−W(i))T02(j)+W(i)1′nJ+J+1L1)}

/{(((1−W(i))T02(j)+W(i)1′nJ+J+1L1)2 −2W(i)2(L1′L1))*

(((1−W(i))T02(j)+W(i)1′nJ+J+1L1)2 −4W(i)2(L1′L1))}−
2β̂bksum2θsum2 ((1−W(i))T02(j)+W(i)1′nJ+J+1L1)

(((1−W(i))T02(j)+W(i)1′nJ+J+1L1)2 −W(i)2 ⋅ (L1′L1))
+ β̂b.

(E.9)

17. Find the minimum MSE and indexes i* and j* that provide this minimum.
18. Define the optimal parameters ω* =W(i*) and τ2*

0 = T02(j*).
19. Compute the optimally regularized Bayesian estimator as

β̃b =
τ̂YX

(1−ω*)τ2*
0 +ω*τ̂2

X
. (E.10)

Appendix F: Matrices

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 1
n(n−1)J . . . 0 0 . . . 0 0

0 ⋱ 0 0 . . . 0 0
0 . . . − 1

n(n−1)J 0 . . . 0 0
0 . . . 0 nJ−1

(n−1)(J−1)J . . . 0 0
0 . . . 0 0 ⋱ 0 0
0 . . . 0 0 . . . nJ−1

(n−1)(J−1)J 0
0 . . . 0 0 . . . 0 − J

J−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(F.1)
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V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 1√
n(n+1)

0 0 0 − 1√
(J+J n)(J+J n+1)

−
√

2
2 −

√
6

6 0 . . .

0 0 0 0 0 0 −
√

2
2
√

n+1
−

√
6

6
√

n+1
. . .

− 1√
n(n+1)

0 0 0 − 1√
(J+J n)(J+J n+1)

√
2

2 −
√

6
6 0 . . .

0 − 1√
n(n+1)

0 0 − 1√
(J+J n)(J+J n+1)

0 0 −
√

2
2 . . .

0 − 1√
n(n+1)

0 0 − 1√
(J+J n)(J+J n+1)

0 0
√

2
2 . . .

0 − 1√
n(n+1)

0 0 − 1√
(J+J n)(J+J n+1)

0 0 0 . . .

0 0 − 1√
n(n+1)

0 − 1√
(J+J n)(J+J n+1)

0 0 0 . . .

0 0 − 1√
n(n+1)

0 − 1√
(J+J n)(J+J n+1)

0 0 0 . . .

0 0 − 1√
n(n+1)

0 − 1√
(J+J n)(J+J n+1)

0 0 0 . . .

0 0 0 − 1√
n(n+1)

− 1√
(J+J n)(J+J n+1)

0 0 0 . . .

0 0 0 − 1√
n(n+1)

− 1√
(J+J n)(J+J n+1)

0 0 0 . . .

0 0 0 − 1√
n(n+1)

− 1√
(J+J n)(J+J n+1)

0 0 0 . . .
√

n
n+1 0 0 0 − 1√

(J+J n)(J+J n+1)
0 0 0 . . .

0
√

n
n+1 0 0 − 1√

(J+J n)(J+J n+1)
0 0 0 . . .

0 0
√

n
n+1 0 − 1√

(J+J n)(J+J n+1)
0 0 0 . . .

0 0 0
√

n
n+1 − 1√

(J+J n)(J+J n+1)
0 0 0 . . .

0 0 0 0
√

J+J n
J+J n+1 0 0 . . .

0 0 0 0 −
√

2
2
√

n+1
−

√
6

6
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0 0 0 0 0 −
√

2
2
√

n+1
−

√
6

6
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0 0 0 0 0 −
√

2
2
√

n+1
−

√
6

6
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

−
√

6
6 0 0 0 0

√
2

2
√

n+1
−

√
6

6
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

−
√

6
6 0 0 0 0

√
2

2
√

n+1
−

√
6

6
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1√
2
√

3
3 0 0 0 0

√
2

2
√

n+1
−

√
6

6
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0 −
√

2
2 −

√
6

6 0 0 0
√

6
3
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0
√

2
2 −

√
6

6 0 0 0
√

6
3
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0 0
√

2
√

3
3 0 0 0

√
6

3
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0 0 0 −
√

2
2 −

√
6

6 0 0
√

3
2
√

n+1
1√

J+J n+1

0 0 0
√

2
2 −

√
6

6 0 0
√

3
2
√

n+1
1√

J+J n+1

0 0 0 0
√

2
√

3
3 0 0

√
3

2
√

n+1
1√

J+J n+1

0 0 0 0 0 −
√

2
2
√

n+1
−

√
6

6
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0 0 0 0 0
√

2
2
√

n+1
−

√
6

6
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0 0 0 0 0 0
√

6
3
√

n+1
−

√
3

6
√

n+1
1√

J+J n+1

0 0 0 0 0 0 0
√

3
2
√

n+1
1√

J+J n+1
0 0 0 0 0 0 0 0 1√

J+J n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(F.2)
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ΣX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

τ2
X +σ2

X τ2
X 0 . . . 0 0 τ2

X + 1
n σ2

X 0 1
J τ2

X + 1
nJ σ2

X
. . . . . . . . . . . . . . . . . . . . . . . . . . .

τ2
X τ2

X +σ2
X 0 . . . 0 0 τ2

X + 1
n σ2

X 0 1
J τ2

X + 1
nJ σ2

X
0 0 τ2

X +σ2
X . . . τ2

X 0 0 0 1
J τ2

X + 1
nJ σ2

X
. . . . . . . . . . . . . . . . . . . . . . . . 1

J τ2
X + 1

nJ σ2
X

0 0 τ2
X . . . τ2

X +σ2
X 0 0 0 1

J τ2
X + 1

nJ σ2
X

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 τ2
X +σ2

X 0 τ2
X + 1

n σ2
X

1
J τ2

X + 1
nJ σ2

X
τ2

X + 1
n σ2

X τ2
X + 1

n σ2
X 0 . . . 0 0 τ2

X + 1
n σ2

X 0 1
J τ2

X + 1
nJ σ2

X
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 τ2
X + 1

n σ2
X 0 τ2

X + 1
n σ2

X
1
J τ2

X + 1
nJ σ2

X
1
J τ2

X + 1
nJ σ2

X
1
J τ2

X + 1
nJ σ2

X
1
J τ2

X + 1
nJ σ2

X. . .
1
J τ2

X + 1
nJ σ2

X
1
J τ2

X + 1
nJ σ2

X
1
J τ2

X + 1
nJ σ2

X
1
J τ2

X + 1
nJ σ2

X
1
J τ2

X + 1
nJ σ2

X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(F.3)

ΣY =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

τ2
Y +σ2

Y τ2
Y 0 . . . 0 0 τ2

Y + 1
n σ2

Y 0 1
J τ2

Y + 1
nJ σ2

Y
. . . . . . . . . . . . . . . . . . . . . . . . . . .

τ2
Y τ2

Y +σ2
Y 0 . . . 0 0 τ2

Y + 1
n σ2

Y 0 1
J τ2

Y + 1
nJ σ2

Y
0 0 τ2

Y +σ2
Y . . . τ2

Y 0 0 0 1
J τ2

Y + 1
nJ σ2

Y
. . . . . . . . . . . . . . . . . . . . . . . . 1

J τ2
Y + 1

nJ σ2
Y

0 0 τ2
Y . . . τ2

Y +σ2
Y 0 0 0 1

J τ2
Y + 1

nJ σ2
Y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 τ2
Y +σ2

Y 0 τ2
Y + 1

n σ2
Y

1
J τ2

Y + 1
nJ σ2

Y
τ2

Y + 1
n σ2

Y τ2
Y + 1

n σ2
Y 0 . . . 0 0 τ2

Y + 1
n σ2

Y 0 1
J τ2

Y + 1
nJ σ2

Y
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 τ2
Y + 1

n σ2
Y 0 τ2

Y + 1
n σ2

Y
1
J τ2

Y + 1
nJ σ2

Y
1
J τ2

Y + 1
nJ σ2

Y
1
J τ2

Y + 1
nJ σ2

Y
1
J τ2

Y + 1
nJ σ2

Y. . .
1
J τ2

Y + 1
nJ σ2

Y
1
J τ2

Y + 1
nJ σ2

Y
1
J τ2

Y + 1
nJ σ2

Y
1
J τ2

Y + 1
nJ σ2

Y
1
J τ2

Y + 1
nJ σ2

Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(F.4)

ΣYX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

τYX +σYX τYX 0 . . . 0 0 τYX + 1
n σYX 0 1

J τYX + 1
nJ σYX

. . . . . . . . . . . . . . . . . . . . . . . . . . .

τYX τYX +σYX 0 . . . 0 0 τYX + 1
n σYX 0 1

J τYX + 1
nJ σYX
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Appendix G: Tables

Table 2. RMSE values of the ML (RMSEML) and the Bayesian estimators (RMSEBay represents the Bayesian with βb and

RMSEBML represents the Bayesian with β̂b) for ICCX = 0.05 and different values of n, J, βb, and βw

n J βb βw RMSEML RMSEBay RMSEBML n J βb βw RMSEML RMSEBay RMSEBML

5 5 0.2 0.2 57.587 2.725 2.667 15 20 0.5 0.7 6.992 0.913 0.913

5 5 0.2 0.5 529.69 3.065 3.036 15 20 0.6 0.2 24.893 0.868 0.872

5 5 0.2 0.7 93.937 3.475 3.462 15 20 0.6 0.5 31.363 0.863 0.864

5 5 0.5 0.2 29.285 2.644 2.613 15 20 0.6 0.7 271.245 0.883 0.883

5 5 0.5 0.5 32.474 3.07 3.043 15 30 0.2 0.2 24.704 0.67 0.676

5 5 0.5 0.7 108.22 3.458 3.426 15 30 0.2 0.5 14.967 0.702 0.707

5 5 0.6 0.2 37.614 2.79 2.755 15 30 0.2 0.7 66.872 0.769 0.775

5 5 0.6 0.5 38.324 3.036 3.002 15 30 0.5 0.2 85.611 0.679 0.681

5 5 0.6 0.7 246.624 3.4 3.393 15 30 0.5 0.5 17.079 0.703 0.704

5 10 0.2 0.2 103.585 1.868 1.862 15 30 0.5 0.7 18.208 0.749 0.748

5 10 0.2 0.5 18.639 2.121 2.133 15 30 0.6 0.2 15.823 0.744 0.743

5 10 0.2 0.7 68.983 2.348 2.346 15 30 0.6 0.5 11.853 0.72 0.719

5 10 0.5 0.2 21.904 1.881 1.872 15 30 0.6 0.7 9.818 0.741 0.739

5 10 0.5 0.5 172.495 2.051 2.039 15 40 0.2 0.2 6.608 0.516 0.525

5 10 0.5 0.7 85.472 2.383 2.392 15 40 0.2 0.5 3.685 0.546 0.551

5 10 0.6 0.2 65.174 1.911 1.894 15 40 0.2 0.7 18.378 0.585 0.593

5 10 0.6 0.5 19.356 2.129 2.124 15 40 0.5 0.2 15.753 0.61 0.611

5 10 0.6 0.7 553.141 2.315 2.313 15 40 0.5 0.5 5.633 0.607 0.605

5 20 0.2 0.2 32.3 1.37 1.364 15 40 0.5 0.7 25.081 0.606 0.603

5 20 0.2 0.5 186.452 1.486 1.491 15 40 0.6 0.2 9.669 0.652 0.648

5 20 0.2 0.7 31.417 1.633 1.652 15 40 0.6 0.5 6.565 0.61 0.607

5 20 0.5 0.2 528.303 1.302 1.313 15 40 0.6 0.7 13.398 0.632 0.629

5 20 0.5 0.5 15.767 1.38 1.376 30 5 0.2 0.2 346.81 1.549 1.554

5 20 0.5 0.7 81.714 1.614 1.612 30 5 0.2 0.5 697.82 1.646 1.649

5 20 0.6 0.2 84.956 1.347 1.347 30 5 0.2 0.7 841.537 1.734 1.732

5 20 0.6 0.5 22.968 1.379 1.378 30 5 0.5 0.2 44.781 1.552 1.554

5 20 0.6 0.7 70.052 1.57 1.58 30 5 0.5 0.5 41.708 1.557 1.56

5 30 0.2 0.2 25.439 1.087 1.098 30 5 0.5 0.7 116.407 1.712 1.718

5 30 0.2 0.5 39.795 1.142 1.14 30 5 0.6 0.2 89.971 1.519 1.523

5 30 0.2 0.7 157.449 1.337 1.343 30 5 0.6 0.5 51.606 1.591 1.593

5 30 0.5 0.2 17.714 1.107 1.113 30 5 0.6 0.7 111.256 1.604 1.611

5 30 0.5 0.5 65.436 1.175 1.169 30 10 0.2 0.2 125.74 1.067 1.072

5 30 0.5 0.7 20.967 1.249 1.248 30 10 0.2 0.5 44.729 1.087 1.091

(Continued)
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Table 2. Continued

n J βb βw RMSEML RMSEBay RMSEBML n J βb βw RMSEML RMSEBay RMSEBML

5 30 0.6 0.2 112.352 1.104 1.109 30 10 0.2 0.7 28.094 1.133 1.136

5 30 0.6 0.5 24.527 1.181 1.183 30 10 0.5 0.2 11.672 1.057 1.061

5 30 0.6 0.7 31.858 1.241 1.25 30 10 0.5 0.5 25.1 1.076 1.078

5 40 0.2 0.2 42.185 0.979 0.983 30 10 0.5 0.7 164.174 1.13 1.131

5 40 0.2 0.5 53.56 1.054 1.053 30 10 0.6 0.2 40.099 1.044 1.045

5 40 0.2 0.7 15.499 1.082 1.086 30 10 0.6 0.5 68.118 1.047 1.05

5 40 0.5 0.2 115.685 0.987 0.987 30 10 0.6 0.7 122.808 1.088 1.092

5 40 0.5 0.5 32.061 0.998 0.994 30 20 0.2 0.2 4.08 0.587 0.597

5 40 0.5 0.7 28.321 1.161 1.166 30 20 0.2 0.5 6.696 0.561 0.571

5 40 0.6 0.2 34.223 0.973 0.97 30 20 0.2 0.7 8.71 0.587 0.597

5 40 0.6 0.5 107.287 1.018 1.016 30 20 0.5 0.2 6.382 0.647 0.646

5 40 0.6 0.7 41.419 1.044 1.047 30 20 0.5 0.5 66.702 0.642 0.642

15 5 0.2 0.2 205.555 1.676 1.667 30 20 0.5 0.7 6.12 0.647 0.644

15 5 0.2 0.5 290.677 1.777 1.762 30 20 0.6 0.2 9.591 0.693 0.689

15 5 0.2 0.7 89.916 1.946 1.942 30 20 0.6 0.5 11.39 0.669 0.665

15 5 0.5 0.2 96.434 1.599 1.597 30 20 0.6 0.7 2.793 0.705 0.702

15 5 0.5 0.5 61.309 1.747 1.742 30 30 0.2 0.2 0.981 0.342 0.353

15 5 0.5 0.7 83.573 1.936 1.926 30 30 0.2 0.5 0.794 0.322 0.333

15 5 0.6 0.2 34.357 1.622 1.61 30 30 0.2 0.7 2.281 0.331 0.341

15 5 0.6 0.5 111.232 1.742 1.739 30 30 0.5 0.2 0.973 0.503 0.499

15 5 0.6 0.7 328.599 1.904 1.903 30 30 0.5 0.5 2.255 0.476 0.472

15 10 0.2 0.2 216.574 1.186 1.184 30 30 0.5 0.7 1.147 0.494 0.491

15 10 0.2 0.5 2961.914 1.25 1.249 30 30 0.6 0.2 0.815 0.558 0.55

15 10 0.2 0.7 93.279 1.271 1.278 30 30 0.6 0.5 0.745 0.541 0.533

15 10 0.5 0.2 30.459 1.195 1.195 30 30 0.6 0.7 1.736 0.564 0.558

15 10 0.5 0.5 120.55 1.208 1.209 30 40 0.2 0.2 0.621 0.231 0.24

15 10 0.5 0.7 19.802 1.288 1.291 30 40 0.2 0.5 3.259 0.241 0.252

15 10 0.6 0.2 135.805 1.178 1.181 30 40 0.2 0.7 0.651 0.261 0.272

15 10 0.6 0.5 40.038 1.221 1.226 30 40 0.5 0.2 0.708 0.443 0.435

15 10 0.6 0.7 35.817 1.265 1.268 30 40 0.5 0.5 0.572 0.441 0.435

15 20 0.2 0.2 24.678 0.878 0.883 30 40 0.5 0.7 1.291 0.432 0.427

15 20 0.2 0.5 166.166 0.875 0.878 30 40 0.6 0.2 1.296 0.522 0.514

15 20 0.2 0.7 19.525 0.936 0.939 30 40 0.6 0.5 0.731 0.509 0.502

15 20 0.5 0.2 43.648 0.899 0.903 30 40 0.6 0.7 0.475 0.508 0.501

15 20 0.5 0.5 62.277 0.879 0.878
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Table 3. RMSE values of the ML (RMSEML) and the Bayesian estimators (RMSEBay represents the Bayesian with βb and

RMSEBML represents the Bayesian with β̂b) for ICCX = 0.1 and different values of n, J, βb, and βw

n J βb βw RMSEML RMSEBay RMSEBML n J βb βw RMSEML RMSEBay RMSEBML

5 5 0.2 0.2 33.935 2.436 2.383 15 20 0.5 0.7 2.45 0.511 0.51

5 5 0.2 0.5 612.83 2.858 2.853 15 20 0.6 0.2 24.405 0.578 0.578

5 5 0.2 0.7 258.045 3.069 3.057 15 20 0.6 0.5 1.927 0.551 0.548

5 5 0.5 0.2 46.967 2.389 2.341 15 20 0.6 0.7 3.717 0.547 0.544

5 5 0.5 0.5 61.524 2.63 2.607 15 30 0.2 0.2 1.268 0.257 0.271

5 5 0.5 0.7 41.284 2.988 2.976 15 30 0.2 0.5 0.733 0.265 0.28

5 5 0.6 0.2 38.72 2.449 2.383 15 30 0.2 0.7 0.807 0.308 0.321

5 5 0.6 0.5 346.286 2.657 2.625 15 30 0.5 0.2 0.723 0.42 0.416

5 5 0.6 0.7 58.937 3.06 3.049 15 30 0.5 0.5 3.031 0.417 0.413

5 10 0.2 0.2 176.892 1.591 1.571 15 30 0.5 0.7 1.083 0.421 0.418

5 10 0.2 0.5 20.44 1.737 1.736 15 30 0.6 0.2 0.657 0.478 0.472

5 10 0.2 0.7 49.498 1.994 1.99 15 30 0.6 0.5 1.69 0.475 0.47

5 10 0.5 0.2 55.096 1.52 1.509 15 30 0.6 0.7 0.588 0.47 0.464

5 10 0.5 0.5 230.062 1.618 1.613 15 40 0.2 0.2 0.577 0.19 0.202

5 10 0.5 0.7 62.571 1.865 1.86 15 40 0.2 0.5 1.869 0.207 0.22

5 10 0.6 0.2 17.002 1.57 1.565 15 40 0.2 0.7 15.892 0.229 0.24

5 10 0.6 0.5 20.908 1.661 1.663 15 40 0.5 0.2 1.213 0.381 0.376

5 10 0.6 0.7 180.241 1.756 1.742 15 40 0.5 0.5 0.391 0.383 0.378

5 20 0.2 0.2 728.749 1.06 1.063 15 40 0.5 0.7 0.373 0.382 0.378

5 20 0.2 0.5 105.743 1.088 1.085 15 40 0.6 0.2 0.396 0.439 0.433

5 20 0.2 0.7 108.22 1.278 1.273 15 40 0.6 0.5 0.339 0.44 0.435

5 20 0.5 0.2 26.338 1.017 1.01 15 40 0.6 0.7 0.34 0.441 0.437

5 20 0.5 0.5 11.918 1.018 1.022 30 5 0.2 0.2 25.285 1.216 1.216

5 20 0.5 0.7 58.23 1.206 1.208 30 5 0.2 0.5 38.692 1.278 1.286

5 20 0.6 0.2 1378.614 1.001 1.005 30 5 0.2 0.7 135.292 1.247 1.248

5 20 0.6 0.5 39.003 1.061 1.057 30 5 0.5 0.2 20.224 1.135 1.136

5 20 0.6 0.7 123.476 1.104 1.11 30 5 0.5 0.5 40.565 1.21 1.212

5 30 0.2 0.2 52.669 0.793 0.801 30 5 0.5 0.7 46.002 1.159 1.163

5 30 0.2 0.5 20.106 0.836 0.832 30 5 0.6 0.2 124.16 1.127 1.129

5 30 0.2 0.7 14.304 0.926 0.928 30 5 0.6 0.5 12.079 1.129 1.13

5 30 0.5 0.2 11.626 0.769 0.763 30 5 0.6 0.7 46.667 1.198 1.201

5 30 0.5 0.5 18.425 0.789 0.786 30 10 0.2 0.2 4.575 0.61 0.621

5 30 0.5 0.7 33.711 0.792 0.8 30 10 0.2 0.5 4.977 0.628 0.64

5 30 0.6 0.2 14.777 0.789 0.793 30 10 0.2 0.7 29.187 0.651 0.664

5 30 0.6 0.5 14.068 0.82 0.819 30 10 0.5 0.2 2.935 0.629 0.63

5 30 0.6 0.7 50.97 0.858 0.854 30 10 0.5 0.5 12.047 0.665 0.665

(Continued)
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Table 3. Continued

n J βb βw RMSEML RMSEBay RMSEBML n J βb βw RMSEML RMSEBay RMSEBML

5 40 0.2 0.2 13.05 0.616 0.625 30 10 0.5 0.7 6.835 0.68 0.681

5 40 0.2 0.5 6.66 0.655 0.661 30 10 0.6 0.2 3.711 0.684 0.684

5 40 0.2 0.7 322.906 0.757 0.759 30 10 0.6 0.5 10.482 0.679 0.676

5 40 0.5 0.2 12.974 0.642 0.642 30 10 0.6 0.7 6.904 0.667 0.667

5 40 0.5 0.5 12.791 0.662 0.655 30 20 0.2 0.2 0.505 0.227 0.243

5 40 0.5 0.7 8.006 0.711 0.712 30 20 0.2 0.5 0.479 0.223 0.242

5 40 0.6 0.2 35.647 0.693 0.699 30 20 0.2 0.7 0.592 0.235 0.252

5 40 0.6 0.5 13.025 0.661 0.66 30 20 0.5 0.2 0.441 0.395 0.391

5 40 0.6 0.7 25.894 0.703 0.701 30 20 0.5 0.5 0.6 0.4 0.395

15 5 0.2 0.2 32.744 1.411 1.402 30 20 0.5 0.7 0.437 0.394 0.39

15 5 0.2 0.5 823.55 1.494 1.497 30 20 0.6 0.2 18.717 0.458 0.452

15 5 0.2 0.7 13462.32 1.654 1.651 30 20 0.6 0.5 0.577 0.466 0.46

15 5 0.5 0.2 100.543 1.402 1.394 30 20 0.6 0.7 0.451 0.462 0.456

15 5 0.5 0.5 12.623 1.392 1.388 30 30 0.2 0.2 0.344 0.162 0.174

15 5 0.5 0.7 238.948 1.459 1.458 30 30 0.2 0.5 0.345 0.163 0.176

15 5 0.6 0.2 169.018 1.356 1.359 30 30 0.2 0.7 0.347 0.168 0.181

15 5 0.6 0.5 97.213 1.343 1.343 30 30 0.5 0.2 0.341 0.369 0.363

15 5 0.6 0.7 25.553 1.525 1.519 30 30 0.5 0.5 0.511 0.375 0.37

15 10 0.2 0.2 30.52 0.852 0.855 30 30 0.5 0.7 0.326 0.372 0.368

15 10 0.2 0.5 37.813 0.877 0.884 30 30 0.6 0.2 0.332 0.43 0.424

15 10 0.2 0.7 17.617 0.9 0.901 30 30 0.6 0.5 0.319 0.433 0.428

15 10 0.5 0.2 8.591 0.842 0.846 30 30 0.6 0.7 0.308 0.433 0.429

15 10 0.5 0.5 28.307 0.863 0.866 30 40 0.2 0.2 0.292 0.16 0.167

15 10 0.5 0.7 16.876 0.838 0.84 30 40 0.2 0.5 0.292 0.159 0.165

15 10 0.6 0.2 12.698 0.84 0.842 30 40 0.2 0.7 0.293 0.16 0.168

15 10 0.6 0.5 18.314 0.833 0.833 30 40 0.5 0.2 0.279 0.359 0.354

15 10 0.6 0.7 17.259 0.834 0.835 30 40 0.5 0.5 0.272 0.36 0.356

15 20 0.2 0.2 4.809 0.437 0.449 30 40 0.5 0.7 0.269 0.362 0.358

15 20 0.2 0.5 14.818 0.448 0.459 30 40 0.6 0.2 0.266 0.421 0.418

15 20 0.2 0.7 5.329 0.486 0.498 30 40 0.6 0.5 0.268 0.421 0.417

15 20 0.5 0.2 1.404 0.525 0.524 30 40 0.6 0.7 0.261 0.423 0.42

15 20 0.5 0.5 1.637 0.518 0.517
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Table 4. RMSE values of the ML (RMSEML) and the Bayesian estimators (RMSEBay represents the Bayesian with βb and

RMSEBML represents the Bayesian with β̂b) for ICCX = 0.3 and different values of n, J, βb, and βw

n J βb βw RMSEML RMSEBay RMSEBML n J βb βw RMSEML RMSEBay RMSEBML

5 5 0.2 0.2 42.506 1.716 1.658 15 20 0.5 0.7 0.202 0.255 0.261

5 5 0.2 0.5 18.529 1.853 1.828 15 20 0.6 0.2 0.196 0.282 0.287

5 5 0.2 0.7 19.436 1.959 1.943 15 20 0.6 0.5 0.188 0.283 0.288

5 5 0.5 0.2 17.082 1.664 1.634 15 20 0.6 0.7 0.177 0.284 0.291

5 5 0.5 0.5 150.933 1.746 1.725 15 30 0.2 0.2 0.19 0.128 0.141

5 5 0.5 0.7 30.333 1.858 1.821 15 30 0.2 0.5 0.186 0.13 0.142

5 5 0.6 0.2 15.691 1.594 1.555 15 30 0.2 0.7 0.189 0.13 0.142

5 5 0.6 0.5 171.096 1.616 1.592 15 30 0.5 0.2 0.166 0.23 0.236

5 5 0.6 0.7 122.525 1.71 1.69 15 30 0.5 0.5 0.157 0.231 0.238

5 10 0.2 0.2 20.815 0.758 0.761 15 30 0.5 0.7 0.155 0.231 0.237

5 10 0.2 0.5 36.747 0.844 0.835 15 30 0.6 0.2 0.153 0.261 0.266

5 10 0.2 0.7 38.392 0.883 0.878 15 30 0.6 0.5 0.142 0.262 0.267

5 10 0.5 0.2 8.447 0.699 0.697 15 30 0.6 0.7 0.135 0.263 0.268

5 10 0.5 0.5 13.505 0.713 0.705 15 40 0.2 0.2 0.161 0.122 0.131

5 10 0.5 0.7 12.165 0.799 0.796 15 40 0.2 0.5 0.16 0.125 0.134

5 10 0.6 0.2 15.714 0.763 0.75 15 40 0.2 0.7 0.16 0.125 0.134

5 10 0.6 0.5 6.207 0.675 0.674 15 40 0.5 0.2 0.14 0.22 0.227

5 10 0.6 0.7 22.794 0.74 0.728 15 40 0.5 0.5 0.135 0.219 0.225

5 20 0.2 0.2 1.301 0.325 0.344 15 40 0.5 0.7 0.129 0.219 0.225

5 20 0.2 0.5 0.905 0.315 0.343 15 40 0.6 0.2 0.129 0.252 0.258

5 20 0.2 0.7 4.667 0.371 0.386 15 40 0.6 0.5 0.12 0.251 0.256

5 20 0.5 0.2 6.983 0.368 0.374 15 40 0.6 0.7 0.117 0.253 0.258

5 20 0.5 0.5 0.504 0.366 0.37 30 5 0.2 0.2 2.041 0.705 0.706

5 20 0.5 0.7 0.866 0.367 0.376 30 5 0.2 0.5 2.276 0.707 0.708

5 20 0.6 0.2 2.347 0.39 0.396 30 5 0.2 0.7 57.25 0.727 0.727

5 20 0.6 0.5 0.58 0.365 0.37 30 5 0.5 0.2 2.991 0.579 0.579

5 20 0.6 0.7 2.782 0.368 0.372 30 5 0.5 0.5 4.882 0.583 0.584

5 30 0.2 0.2 1.821 0.176 0.201 30 5 0.5 0.7 5.315 0.658 0.66

5 30 0.2 0.5 0.34 0.184 0.21 30 5 0.6 0.2 2.366 0.54 0.54

5 30 0.2 0.7 0.337 0.192 0.216 30 5 0.6 0.5 1.13 0.542 0.543

5 30 0.5 0.2 0.346 0.282 0.288 30 5 0.6 0.7 126.33 0.525 0.525

5 30 0.5 0.5 0.618 0.277 0.283 30 10 0.2 0.2 0.422 0.165 0.199

5 30 0.5 0.7 0.284 0.281 0.287 30 10 0.2 0.5 0.366 0.184 0.218

5 30 0.6 0.2 0.861 0.309 0.315 30 10 0.2 0.7 0.347 0.16 0.198

5 30 0.6 0.5 2.374 0.307 0.314 30 10 0.5 0.2 0.309 0.294 0.299

5 30 0.6 0.7 0.316 0.302 0.308 30 10 0.5 0.5 0.322 0.29 0.295

(Continued)
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Table 4. Continued

n J βb βw RMSEML RMSEBay RMSEBML n J βb βw RMSEML RMSEBay RMSEBML

5 40 0.2 0.2 0.248 0.145 0.164 30 10 0.5 0.7 0.541 0.3 0.305

5 40 0.2 0.5 0.239 0.143 0.165 30 10 0.6 0.2 0.273 0.324 0.328

5 40 0.2 0.7 0.283 0.144 0.166 30 10 0.6 0.5 1.181 0.327 0.331

5 40 0.5 0.2 0.54 0.249 0.255 30 10 0.6 0.7 0.253 0.331 0.336

5 40 0.5 0.5 0.232 0.257 0.264 30 20 0.2 0.2 0.218 0.133 0.149

5 40 0.5 0.7 0.196 0.254 0.261 30 20 0.2 0.5 0.214 0.134 0.149

5 40 0.6 0.2 0.222 0.279 0.286 30 20 0.2 0.7 0.211 0.134 0.15

5 40 0.6 0.5 0.195 0.28 0.287 30 20 0.5 0.2 0.186 0.243 0.249

5 40 0.6 0.7 0.175 0.282 0.289 30 20 0.5 0.5 0.178 0.243 0.249

15 5 0.2 0.2 12.929 0.902 0.898 30 20 0.5 0.7 0.174 0.246 0.253

15 5 0.2 0.5 24.547 0.906 0.913 30 20 0.6 0.2 0.165 0.277 0.282

15 5 0.2 0.7 23.651 0.925 0.926 30 20 0.6 0.5 0.156 0.276 0.281

15 5 0.5 0.2 5.145 0.802 0.8 30 20 0.6 0.7 0.156 0.278 0.283

15 5 0.5 0.5 33.086 0.776 0.776 30 30 0.2 0.2 0.172 0.126 0.135

15 5 0.5 0.7 11.948 0.795 0.794 30 30 0.2 0.5 0.171 0.126 0.135

15 5 0.6 0.2 15.276 0.732 0.731 30 30 0.2 0.7 0.168 0.126 0.135

15 5 0.6 0.5 3.845 0.742 0.74 30 30 0.5 0.2 0.146 0.228 0.234

15 5 0.6 0.7 12.678 0.736 0.737 30 30 0.5 0.5 0.143 0.226 0.232

15 10 0.2 0.2 1.994 0.291 0.315 30 30 0.5 0.7 0.14 0.227 0.233

15 10 0.2 0.5 0.616 0.284 0.313 30 30 0.6 0.2 0.129 0.259 0.263

15 10 0.2 0.7 0.95 0.287 0.314 30 30 0.6 0.5 0.123 0.26 0.265

15 10 0.5 0.2 1.122 0.345 0.351 30 30 0.6 0.7 0.12 0.26 0.264

15 10 0.5 0.5 0.693 0.342 0.348 30 40 0.2 0.2 0.146 0.12 0.126

15 10 0.5 0.7 1.563 0.34 0.345 30 40 0.2 0.5 0.144 0.122 0.128

15 10 0.6 0.2 13.285 0.367 0.373 30 40 0.2 0.7 0.143 0.12 0.126

15 10 0.6 0.5 2.519 0.36 0.366 30 40 0.5 0.2 0.123 0.215 0.221

15 10 0.6 0.7 1.467 0.361 0.365 30 40 0.5 0.5 0.118 0.215 0.221

15 20 0.2 0.2 0.245 0.135 0.156 30 40 0.5 0.7 0.118 0.217 0.223

15 20 0.2 0.5 0.344 0.139 0.161 30 40 0.6 0.2 0.111 0.251 0.254

15 20 0.2 0.7 0.245 0.141 0.163 30 40 0.6 0.5 0.105 0.25 0.253

15 20 0.5 0.2 0.213 0.251 0.257 30 40 0.6 0.7 0.101 0.251 0.255

15 20 0.5 0.5 0.206 0.254 0.259
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Table 5. RMSE values of the ML (RMSEML) and the Bayesian estimators (RMSEBay represents the Bayesian with βb and RMSEBML

represents the Bayesian with β̂b) for ICCX = 0.5 and different values of n, J, βb, and βw

n J βb βw RMSEML RMSEBay RMSEBML n J βb βw RMSEML RMSEBay RMSEBML

5 5 0.2 0.2 25.163 1.146 1.126 15 20 0.5 0.7 0.122 0.161 0.175

5 5 0.2 0.5 10.82 1.242 1.221 15 20 0.6 0.2 0.1 0.17 0.177

5 5 0.2 0.7 1591.347 1.281 1.257 15 20 0.6 0.5 0.093 0.173 0.181

5 5 0.5 0.2 35.852 1.098 1.086 15 20 0.6 0.7 0.085 0.175 0.182

5 5 0.5 0.5 9.419 1.04 1.023 15 30 0.2 0.2 0.136 0.103 0.12

5 5 0.5 0.7 10.523 1.092 1.077 15 30 0.2 0.5 0.137 0.103 0.121

5 5 0.6 0.2 16.765 1.05 1.028 15 30 0.2 0.7 0.136 0.104 0.121

5 5 0.6 0.5 27.568 1.048 1.033 15 30 0.5 0.2 0.103 0.137 0.149

5 5 0.6 0.7 14.273 1.031 1.023 15 30 0.5 0.5 0.097 0.139 0.151

5 10 0.2 0.2 3.749 0.334 0.371 15 30 0.5 0.7 0.094 0.139 0.151

5 10 0.2 0.5 1.869 0.356 0.383 15 30 0.6 0.2 0.079 0.154 0.161

5 10 0.2 0.7 41.055 0.396 0.428 15 30 0.6 0.5 0.072 0.154 0.159

5 10 0.5 0.2 1.281 0.345 0.359 15 30 0.6 0.7 0.067 0.154 0.16

5 10 0.5 0.5 2.041 0.323 0.337 15 40 0.2 0.2 0.115 0.093 0.108

5 10 0.5 0.7 12.806 0.344 0.358 15 40 0.2 0.5 0.114 0.094 0.108

5 10 0.6 0.2 179.541 0.346 0.363 15 40 0.2 0.7 0.113 0.094 0.109

5 10 0.6 0.5 0.501 0.323 0.334 15 40 0.5 0.2 0.088 0.128 0.138

5 10 0.6 0.7 2.179 0.311 0.322 15 40 0.5 0.5 0.084 0.128 0.138

5 20 0.2 0.2 0.24 0.134 0.172 15 40 0.5 0.7 0.082 0.129 0.14

5 20 0.2 0.5 0.242 0.136 0.177 15 40 0.6 0.2 0.068 0.143 0.148

5 20 0.2 0.7 0.273 0.148 0.185 15 40 0.6 0.5 0.062 0.144 0.15

5 20 0.5 0.2 0.208 0.194 0.213 15 40 0.6 0.7 0.058 0.145 0.149

5 20 0.5 0.5 0.186 0.19 0.208 30 5 0.2 0.2 3.068 0.519 0.517

5 20 0.5 0.7 0.179 0.197 0.215 30 5 0.2 0.5 1.998 0.521 0.521

5 20 0.6 0.2 0.212 0.209 0.224 30 5 0.2 0.7 1.584 0.519 0.519

5 20 0.6 0.5 0.167 0.206 0.22 30 5 0.5 0.2 1.417 0.365 0.365

5 20 0.6 0.7 0.156 0.21 0.223 30 5 0.5 0.5 1.486 0.366 0.366

5 30 0.2 0.2 0.181 0.117 0.144 30 5 0.5 0.7 0.624 0.357 0.358

5 30 0.2 0.5 0.177 0.118 0.144 30 5 0.6 0.2 1.038 0.282 0.283

5 30 0.2 0.7 0.178 0.119 0.145 30 5 0.6 0.5 0.281 0.247 0.247

5 30 0.5 0.2 0.157 0.163 0.181 30 5 0.6 0.7 0.434 0.247 0.247

5 30 0.5 0.5 0.145 0.164 0.182 30 10 0.2 0.2 0.261 0.135 0.174

5 30 0.5 0.7 0.136 0.166 0.182 30 10 0.2 0.5 0.25 0.13 0.169

5 30 0.6 0.2 0.142 0.172 0.185 30 10 0.2 0.7 0.258 0.137 0.175

5 30 0.6 0.5 0.125 0.173 0.185 30 10 0.5 0.2 0.181 0.2 0.213

5 30 0.6 0.7 0.117 0.178 0.19 30 10 0.5 0.5 0.174 0.203 0.216

(Continued)
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Table 5. Continued

n J βb βw RMSEML RMSEBay RMSEBML n J βb βw RMSEML RMSEBay RMSEBML

5 40 0.2 0.2 0.153 0.109 0.13 30 10 0.5 0.7 0.171 0.204 0.216

5 40 0.2 0.5 0.155 0.111 0.133 30 10 0.6 0.2 0.131 0.214 0.219

5 40 0.2 0.7 0.152 0.111 0.133 30 10 0.6 0.5 0.116 0.215 0.221

5 40 0.5 0.2 0.13 0.144 0.16 30 10 0.6 0.7 0.113 0.217 0.224

5 40 0.5 0.5 0.123 0.148 0.166 30 20 0.2 0.2 0.158 0.112 0.132

5 40 0.5 0.7 0.115 0.149 0.164 30 20 0.2 0.5 0.158 0.111 0.131

5 40 0.6 0.2 0.119 0.157 0.169 30 20 0.2 0.7 0.159 0.113 0.132

5 40 0.6 0.5 0.106 0.162 0.173 30 20 0.5 0.2 0.11 0.152 0.164

5 40 0.6 0.7 0.097 0.162 0.172 30 20 0.5 0.5 0.109 0.152 0.164

15 5 0.2 0.2 4.898 0.637 0.637 30 20 0.5 0.7 0.106 0.156 0.168

15 5 0.2 0.5 1.439 0.601 0.602 30 20 0.6 0.2 0.077 0.168 0.173

15 5 0.2 0.7 1.517 0.618 0.613 30 20 0.6 0.5 0.073 0.17 0.175

15 5 0.5 0.2 0.851 0.466 0.467 30 20 0.6 0.7 0.071 0.171 0.176

15 5 0.5 0.5 2.01 0.456 0.46 30 30 0.2 0.2 0.127 0.099 0.115

15 5 0.5 0.7 1.7 0.475 0.477 30 30 0.2 0.5 0.126 0.1 0.114

15 5 0.6 0.2 1.784 0.41 0.411 30 30 0.2 0.7 0.125 0.1 0.115

15 5 0.6 0.5 2.641 0.396 0.395 30 30 0.5 0.2 0.088 0.136 0.146

15 5 0.6 0.7 3.921 0.372 0.374 30 30 0.5 0.5 0.088 0.139 0.149

15 10 0.2 0.2 0.291 0.155 0.195 30 30 0.5 0.7 0.086 0.137 0.146

15 10 0.2 0.5 0.284 0.15 0.193 30 30 0.6 0.2 0.062 0.154 0.157

15 10 0.2 0.7 0.281 0.145 0.189 30 30 0.6 0.5 0.057 0.153 0.157

15 10 0.5 0.2 0.209 0.21 0.225 30 30 0.6 0.7 0.055 0.155 0.158

15 10 0.5 0.5 0.21 0.216 0.229 30 40 0.2 0.2 0.108 0.089 0.103

15 10 0.5 0.7 0.197 0.216 0.23 30 40 0.2 0.5 0.106 0.09 0.103

15 10 0.6 0.2 0.26 0.227 0.236 30 40 0.2 0.7 0.107 0.091 0.105

15 10 0.6 0.5 0.782 0.226 0.235 30 40 0.5 0.2 0.077 0.128 0.137

15 10 0.6 0.7 2.011 0.228 0.237 30 40 0.5 0.5 0.076 0.128 0.136

15 20 0.2 0.2 0.176 0.115 0.139 30 40 0.5 0.7 0.074 0.127 0.135

15 20 0.2 0.5 0.172 0.117 0.141 30 40 0.6 0.2 0.052 0.145 0.148

15 20 0.2 0.7 0.172 0.115 0.138 30 40 0.6 0.5 0.05 0.147 0.15

15 20 0.5 0.2 0.131 0.155 0.169 30 40 0.6 0.7 0.048 0.146 0.15

15 20 0.5 0.5 0.124 0.16 0.174

Downloaded from https://www.cambridge.org/core. 22 Nov 2025 at 04:49:32, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 37

Table 6. Relative bias in % of the ML (BiasML) and the Bayesian estimators (BiasBay represents the Bayesian with βb and

BiasBML represents the Bayesian with β̂b) for ICCX = 0.05 and different values of n, J, βb, and βw

n J βb βw BiasML BiasBay BiasBML n J βb βw BiasML BiasBay BiasBML

5 5 0.2 0.2 939.706 −175.218 −177.665 15 20 0.5 0.7 −23.76 −67.163 −65.211

5 5 0.2 0.5 −2576.35 −344.055 −340.826 15 20 0.6 0.2 −102.766 −32.639 −31.891

5 5 0.2 0.7 1012.501 −456.048 −461.978 15 20 0.6 0.5 −151.732 −52.393 −50.838

5 5 0.5 0.2 −108.197 −84.818 −81.633 15 20 0.6 0.7 −639.383 −63.361 −61.91

5 5 0.5 0.5 9.274 −162.483 −163.005 15 30 0.2 0.2 −200.772 −65.025 −62.464

5 5 0.5 0.7 −526.117 −210.689 −210.87 15 30 0.2 0.5 −167.176 −104.229 −100.129

5 5 0.6 0.2 −173.361 −90.041 −87.431 15 30 0.2 0.7 18.683 −137.57 −133.024

5 5 0.6 0.5 49.158 −135.665 −134.478 15 30 0.5 0.2 161.756 −47.165 −45.048

5 5 0.6 0.7 −699.459 −178.635 −179.595 15 30 0.5 0.5 47.962 −62.547 −60.248

5 10 0.2 0.2 1064.461 −128.863 −127.003 15 30 0.5 0.7 −75.302 −76.234 −73.687

5 10 0.2 0.5 203.735 −207.413 −208.761 15 30 0.6 0.2 67.323 −43.167 −41.534

5 10 0.2 0.7 −94.878 −297.133 −296.062 15 30 0.6 0.5 −19.332 −59.943 −58.139

5 10 0.5 0.2 −93.408 −77.668 −76.457 15 30 0.6 0.7 −17.13 −63.18 −61.173

5 10 0.5 0.5 −654.471 −102.57 −103.688 15 40 0.2 0.2 36.969 −72.628 −69.546

5 10 0.5 0.7 332.931 −144.312 −146.785 15 40 0.2 0.5 −15.178 −101.716 −98.562

5 10 0.6 0.2 −169.053 −59.41 −59.602 15 40 0.2 0.7 −103.122 −122.674 −119.056

5 10 0.6 0.5 63.505 −109.252 −108.353 15 40 0.5 0.2 54.952 −56.233 −53.458

5 10 0.6 0.7 −1353.22 −122.199 −123.637 15 40 0.5 0.5 14.505 −71.001 −68.306

5 20 0.2 0.2 313.298 −94.42 −90.214 15 40 0.5 0.7 31.637 −74.519 −71.875

5 20 0.2 0.5 1435.496 −175.674 −172.445 15 40 0.6 0.2 3.904 −55.525 −53.487

5 20 0.2 0.7 −104.246 −207.484 −206.478 15 40 0.6 0.5 15.277 −66.395 −64.375

5 20 0.5 0.2 1695.914 −54.03 −54.491 15 40 0.6 0.7 −28.682 −71.796 −69.65

5 20 0.5 0.5 −43.633 −84.151 −84.021 30 5 0.2 0.2 −1394.99 −57.697 −57.462

5 20 0.5 0.7 321.686 −101.773 −101.497 30 5 0.2 0.5 −6438.42 −92.174 −91.853

5 20 0.6 0.2 −216.689 −54.383 −55.371 30 5 0.2 0.7 6188.805 −107.343 −107.263

5 20 0.6 0.5 −51.553 −75.3 −74.366 30 5 0.5 0.2 −177.108 −33.585 −32.785

5 20 0.6 0.7 −26.749 −96.432 −96.959 30 5 0.5 0.5 −128.246 −48.822 −49.195

5 30 0.2 0.2 21.324 −87.631 −87.895 30 5 0.5 0.7 −37.675 −63.07 −63.138

5 30 0.2 0.5 −83.263 −133.207 −128.895 30 5 0.6 0.2 −192.766 −26.28 −26.152

5 30 0.2 0.7 1292.766 −168.866 −164.89 30 5 0.6 0.5 −226.727 −49.149 −49.239

5 30 0.5 0.2 −87.437 −48.346 −48.156 30 5 0.6 0.7 244.26 −50.056 −50.014

5 30 0.5 0.5 114.345 −75.708 −73.846 30 10 0.2 0.2 887.138 −40.248 −38.253

5 30 0.5 0.7 129.019 −89.891 −88.584 30 10 0.2 0.5 91.978 −90.081 −86.919

5 30 0.6 0.2 203.25 −47.662 −47.134 30 10 0.2 0.7 −48.618 −107.919 −104.33

5 30 0.6 0.5 26.482 −68.369 −67.769 30 10 0.5 0.2 43.356 −35.66 −34.49

5 30 0.6 0.7 −48.218 −79.373 −79.442 30 10 0.5 0.5 134.341 −48.188 −46.45

(Continued)
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Table 6. Continued

n J βb βw BiasML BiasBay BiasBML n J βb βw BiasML BiasBay BiasBML

5 40 0.2 0.2 −28.181 −70.438 −71.177 30 10 0.5 0.7 −572.786 −59.396 −57.443

5 40 0.2 0.5 −47.091 −141.974 −137.019 30 10 0.6 0.2 180.012 −30.446 −29.172

5 40 0.2 0.7 169.648 −166.692 −159.894 30 10 0.6 0.5 262.174 −42.491 −41.197

5 40 0.5 0.2 232.466 −41.92 −41.522 30 10 0.6 0.7 −221.584 −49.66 −48.066

5 40 0.5 0.5 −50.815 −71.833 −70.561 30 20 0.2 0.2 17.57 −70.202 −68.437

5 40 0.5 0.7 −65.781 −88.633 −87.188 30 20 0.2 0.5 −76.648 −87.522 −83.764

5 40 0.6 0.2 95.755 −41.248 −41.131 30 20 0.2 0.7 −102.031 −105.512 −102.991

5 40 0.6 0.5 −337.021 −62.363 −61.601 30 20 0.5 0.2 −25.786 −64.208 −61.509

5 40 0.6 0.7 137.401 −75.084 −73.927 30 20 0.5 0.5 −195.755 −68.995 −65.967

15 5 0.2 0.2 1382.23 −66.236 −65.608 30 20 0.5 0.7 −12.808 −75.91 −72.546

15 5 0.2 0.5 −3114.31 −123.3 −124.703 30 20 0.6 0.2 36.709 −60.133 −57.464

15 5 0.2 0.7 −762.222 −180.02 −177.251 30 20 0.6 0.5 −28.893 −68.769 −66.26

15 5 0.5 0.2 312.494 −45.271 −45.203 30 20 0.6 0.7 −8.648 −74.745 −72.346

15 5 0.5 0.5 −158.832 −73.883 −73.922 30 30 0.2 0.2 −16.632 −83.612 −80.43

15 5 0.5 0.7 −176.129 −89.463 −88.718 30 30 0.2 0.5 −4.256 −84.067 −81.135

15 5 0.6 0.2 −47.277 −48.753 −50.276 30 30 0.2 0.7 −22.266 −88.912 −85.758

15 5 0.6 0.5 −285.822 −61.179 −61.678 30 30 0.5 0.2 12.282 −75.513 −72.03

15 5 0.6 0.7 −40.838 −83.226 −82.861 30 30 0.5 0.5 −12.309 −79.911 −76.956

15 10 0.2 0.2 1266.762 −41.67 −41.652 30 30 0.5 0.7 −2.186 −80.325 −77.784

15 10 0.2 0.5 −21970.6 −106.428 −104.369 30 30 0.6 0.2 9.385 −74.856 −71.836

15 10 0.2 0.7 330.852 −127.641 −125.988 30 30 0.6 0.5 1.032 −78.497 −75.826

15 10 0.5 0.2 61.867 −30.545 −30.122 30 30 0.6 0.7 −8.66 −80.323 −77.907

15 10 0.5 0.5 −108.936 −50.674 −49.646 30 40 0.2 0.2 1.012 −83.597 −79.347

15 10 0.5 0.7 −55.614 −64.946 −64.667 30 40 0.2 0.5 −35.467 −86.099 −83.287

15 10 0.6 0.2 311.448 −32.714 −32.54 30 40 0.2 0.7 −22.23 −89.364 −86.915

15 10 0.6 0.5 −19.852 −49.811 −49.947 30 40 0.5 0.2 2.428 −80.059 −76.881

15 10 0.6 0.7 −67.793 −60.111 −59.945 30 40 0.5 0.5 −0.828 −82.002 −79.127

15 20 0.2 0.2 −354.039 −57.176 −54.656 30 40 0.5 0.7 −1.092 −81.837 −79.248

15 20 0.2 0.5 −1217.28 −109.289 −105.68 30 40 0.6 0.2 2.463 −78.273 −75.699

15 20 0.2 0.7 163.248 −142.24 −136.652 30 40 0.6 0.5 1.436 −79.898 −77.626

15 20 0.5 0.2 −61.296 −38.271 −36.857 30 40 0.6 0.7 −1.31 −80.875 −78.575

15 20 0.5 0.5 −205.614 −57.65 −55.776
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Table 7. Relative bias in % of the ML (BiasML) and the Bayesian estimators (BiasBay) represents the Bayesian with βb and

BiasBML represents the Bayesian with β̂b) for ICCX = 0.1 and different values of n, J, βb, and βw

n J βb βw BiasML BiasBay BiasBML n J βb βw BiasML BiasBay BiasBML

5 5 0.2 0.2 −180.425 −97.729 −97.848 15 20 0.5 0.7 −1.779 −68.523 −65.365

5 5 0.2 0.5 −4085.79 −296.848 −296.841 15 20 0.6 0.2 −44.621 −55.605 −52.813

5 5 0.2 0.7 −1867.08 −353.484 −349.919 15 20 0.6 0.5 3.034 −60.238 −57.617

5 5 0.5 0.2 50.618 −49.194 −50.365 15 20 0.6 0.7 5.119 −64.958 −62.425

5 5 0.5 0.5 −112.359 −99.353 −100.261 15 30 0.2 0.2 6.011 −74.512 −69.163

5 5 0.5 0.7 20.548 −149.938 −151.061 15 30 0.2 0.5 −14.988 −81.933 −77.68

5 5 0.6 0.2 −20.156 −42.548 −41.06 15 30 0.2 0.7 −21.005 −88.347 −85.029

5 5 0.6 0.5 738.784 −86.14 −86.637 15 30 0.5 0.2 2.785 −68.067 −64.702

5 5 0.6 0.7 209.891 −137.535 −137.512 15 30 0.5 0.5 7.305 −70.079 −66.955

5 10 0.2 0.2 702.919 −82.189 −81.101 15 30 0.5 0.7 −6.319 −72.935 −70.103

5 10 0.2 0.5 209.136 −182.931 −184.313 15 30 0.6 0.2 8.127 −65.341 −62.491

5 10 0.2 0.7 396.677 −250.645 −246.332 15 30 0.6 0.5 5.803 −67.464 −65.019

5 10 0.5 0.2 −213.951 −31.923 −32.773 15 30 0.6 0.7 −1.144 −69.318 −66.917

5 10 0.5 0.5 −608.719 −70.512 −72.082 15 40 0.2 0.2 1.56 −76.63 −71.004

5 10 0.5 0.7 292.342 −107.28 −106.708 15 40 0.2 0.5 −27.766 −80.567 −76.371

5 10 0.6 0.2 −114.348 −31.499 −33.501 15 40 0.2 0.7 −132.798 −82.327 −77.86

5 10 0.6 0.5 37.868 −60.978 −60.269 15 40 0.5 0.2 6.269 −70.345 −67.259

5 10 0.6 0.7 322.257 −86.07 −84.107 15 40 0.5 0.5 0.227 −71.222 −68.422

5 20 0.2 0.2 5140.523 −74.28 −73.683 15 40 0.5 0.7 −2.364 −72.428 −69.788

5 20 0.2 0.5 −738.356 −136.74 −131.187 15 40 0.6 0.2 3.306 −68.78 −66.52

5 20 0.2 0.7 −973.423 −193.073 −183.85 15 40 0.6 0.5 −0.237 −70.115 −68.227

5 20 0.5 0.2 33.357 −26.839 −26.188 15 40 0.6 0.7 −1.657 −70.571 −68.814

5 20 0.5 0.5 −29.743 −56.85 −55.812 30 5 0.2 0.2 −71.264 −30.015 −30.151

5 20 0.5 0.7 −293.616 −80.078 −78.315 30 5 0.2 0.5 203.093 −47.948 −48.552

5 20 0.6 0.2 3064.897 −23.056 −22.691 30 5 0.2 0.7 −162.961 −57.815 −57.962

5 20 0.6 0.5 −141.048 −49.363 −48.477 30 5 0.5 0.2 −65.295 −11.699 −11.46

5 20 0.6 0.7 −183.525 −64.047 −63.43 30 5 0.5 0.5 33.614 −27.163 −27.075

5 30 0.2 0.2 −63.151 −54.592 −50.382 30 5 0.5 0.7 −52.018 −27.074 −27.23

5 30 0.2 0.5 −88.897 −115.98 −108.684 30 5 0.6 0.2 −296.281 −7.696 −7.805

5 30 0.2 0.7 −74.222 −156.856 −147.408 30 5 0.6 0.5 −20.843 −17.36 −17.523

5 30 0.5 0.2 −5.832 −28.231 −27.638 30 5 0.6 0.7 67.838 −27.974 −27.849

5 30 0.5 0.5 −90.982 −51.166 −49.514 30 10 0.2 0.2 15.486 −56.606 −52.52

5 30 0.5 0.7 56.225 −65.307 −63.523 30 10 0.2 0.5 −25.161 −77.947 −74.029

5 30 0.6 0.2 25.728 −26.956 −26.756 30 10 0.2 0.7 −287.394 −97.207 −92.745

5 30 0.6 0.5 −76.56 −47.217 −46.01 30 10 0.5 0.2 23.314 −49.55 −45.933

5 30 0.6 0.7 −18.263 −57.962 −56.192 30 10 0.5 0.5 64.459 −55.552 −52.107

(Continued)
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Table 7. Comtinued

n J βb βw BiasML BiasBay BiasBML n J βb βw BiasML BiasBay BiasBML

5 40 0.2 0.2 59.795 −57.455 −52.962 30 10 0.5 0.7 4.539 −62.899 −59.47

5 40 0.2 0.5 −104.315 −101.762 −94.837 30 10 0.6 0.2 20.208 −48.932 −46.516

5 40 0.2 0.7 −2423.67 −146.467 −137.357 30 10 0.6 0.5 23.429 −57.004 −54.44

5 40 0.5 0.2 71.194 −34.808 −33.115 30 10 0.6 0.7 20.733 −61.414 −58.784

5 40 0.5 0.5 17.511 −56.792 −54.364 30 20 0.2 0.2 3.856 −77.33 −71.309

5 40 0.5 0.7 −9.612 −68.39 −66.062 30 20 0.2 0.5 −9.562 −79.292 −74.84

5 40 0.6 0.2 42.379 −30.542 −29.469 30 20 0.2 0.7 −16.742 −82.423 −78.538

5 40 0.6 0.5 −7.197 −48.516 −46.937 30 20 0.5 0.2 0.587 −72.727 −69.369

5 40 0.6 0.7 80.748 −59.465 −57.386 30 20 0.5 0.5 0.296 −73.087 −69.506

15 5 0.2 0.2 −490.349 −40.138 −39.193 30 20 0.5 0.7 −1.527 −73.836 −70.474

15 5 0.2 0.5 −2803.13 −93.016 −95.135 30 20 0.6 0.2 −40.58 −70.874 −68.019

15 5 0.2 0.7 −94231.7 −118.795 −118.882 30 20 0.6 0.5 2.45 −71.272 −68.618

15 5 0.5 0.2 −446.312 −20.598 −20.48 30 20 0.6 0.7 −0.147 −72.023 −69.408

15 5 0.5 0.5 −8.249 −39.589 −39.418 30 30 0.2 0.2 −3.493 −77.961 −72.732

15 5 0.5 0.7 −686.354 −50.31 −50.278 30 30 0.2 0.5 −1.877 −77.558 −72.005

15 5 0.6 0.2 −472.988 −14.685 −15.161 30 30 0.2 0.7 −6.558 −78.139 −73.528

15 5 0.6 0.5 187.689 −26.937 −27.048 30 30 0.5 0.2 1.787 −72.357 −69.404

15 5 0.6 0.7 27.892 −51.789 −51.997 30 30 0.5 0.5 −1.615 −72.959 −70.207

15 10 0.2 0.2 230.013 −35.213 −31.963 30 30 0.5 0.7 −2.106 −72.922 −70.443

15 10 0.2 0.5 −344.476 −82.708 −78.286 30 30 0.6 0.2 3.399 −70.612 −68.31

15 10 0.2 0.7 15.321 −111.873 −106.684 30 30 0.6 0.5 0.584 −70.95 −68.985

15 10 0.5 0.2 −22.65 −28.692 −27.291 30 30 0.6 0.7 −0.895 −71.066 −69.293

15 10 0.5 0.5 64.502 −41.437 −39.689 30 40 0.2 0.2 −3.362 −77.598 −72.447

15 10 0.5 0.7 −2.906 −54.824 −52.782 30 40 0.2 0.5 0.231 −76.673 −71.081

15 10 0.6 0.2 −39.196 −23.171 −22.183 30 40 0.2 0.7 −7.209 −77.56 −72.785

15 10 0.6 0.5 44.949 −39.477 −38.189 30 40 0.5 0.2 2.468 −70.765 −68.271

15 10 0.6 0.7 −32.648 −43.632 −41.748 30 40 0.5 0.5 −0.038 −70.983 −68.802

15 20 0.2 0.2 −39.603 −64.419 −58.788 30 40 0.5 0.7 −0.553 −71.21 −69.095

15 20 0.2 0.5 −114.491 −90.242 −86.207 30 40 0.6 0.2 0.738 −69.428 −68.01

15 20 0.2 0.7 −81.633 −97.36 −92.204 30 40 0.6 0.5 1.48 −69.411 −67.777

15 20 0.5 0.2 11.16 −57.031 −53.31 30 40 0.6 0.7 −0.532 −69.658 −68.31

15 20 0.5 0.5 −4.442 −63.884 −60.681
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Table 8. Relative bias in % of the ML (BiasML) and the Bayesian estimators (BiasBay represents the Bayesian with βb and

BiasBML represents the Bayesian with β̂b) for ICCX = 0.3 and different values of n, J, βb, and βw

n J βb βw BiasML BiasBay BiasBML n J βb βw BiasML BiasBay BiasBML

5 5 0.2 0.2 −380.903 −7.31 −5.4 15 20 0.5 0.7 −0.998 −46.918 −45.141

5 5 0.2 0.5 −297.1 −95.193 −90.933 15 20 0.6 0.2 1.699 −44.539 −43.227

5 5 0.2 0.7 150.267 −143.281 −141.121 15 20 0.6 0.5 0.883 −44.362 −43.218

5 5 0.5 0.2 −56.277 46.127 44.998 15 20 0.6 0.7 −0.51 −44.749 −43.928

5 5 0.5 0.5 432.617 0.206 0.453 15 30 0.2 0.2 1.117 −56.168 −47.821

5 5 0.5 0.7 61.206 −27.888 −27.918 15 30 0.2 0.5 −2.359 −57.306 −50.176

5 5 0.6 0.2 −13.767 43.107 40.977 15 30 0.2 0.7 −2.578 −56.83 −49.285

5 5 0.6 0.5 −485.798 10.824 10.598 15 30 0.5 0.2 0.554 −43.555 −42.309

5 5 0.6 0.7 −247.168 −1.55 −1.634 15 30 0.5 0.5 −0.128 −43.808 −42.703

5 10 0.2 0.2 −131.468 −35.023 −27.847 15 30 0.5 0.7 0.43 −43.752 −42.498

5 10 0.2 0.5 185.621 −89.478 −77.998 15 30 0.6 0.2 1.457 −41.903 −41.005

5 10 0.2 0.7 −248.119 −108.161 −97.15 15 30 0.6 0.5 0.287 −41.945 −41.364

5 10 0.5 0.2 −31.098 −11.137 −8.976 15 30 0.6 0.7 −0.033 −42.031 −41.507

5 10 0.5 0.5 −26.568 −27.84 −25.328 15 40 0.2 0.2 1.409 −54.164 −46.953

5 10 0.5 0.7 −50.187 −40.606 −37.555 15 40 0.2 0.5 −3.353 −55.342 −49.136

5 10 0.6 0.2 −50.377 −4.481 −4.542 15 40 0.2 0.7 −4.992 −55.617 −49.763

5 10 0.6 0.5 25.482 −23.963 −22.808 15 40 0.5 0.2 −0.053 −42.134 −41.392

5 10 0.6 0.7 25.378 −35.246 −33.298 15 40 0.5 0.5 0.659 −42.045 −41.048

5 20 0.2 0.2 10.828 −51.717 −41.437 15 40 0.5 0.7 −0.279 −42.07 −41.399

5 20 0.2 0.5 −21.449 −68.64 −61.552 15 40 0.6 0.2 −0.027 −40.787 −40.45

5 20 0.2 0.7 −63.852 −83.751 −76.923 15 40 0.6 0.5 0.108 −40.644 −40.275

5 20 0.5 0.2 8.852 −40.682 −36.675 15 40 0.6 0.7 −0.034 −40.829 −40.452

5 20 0.5 0.5 0.077 −46.392 −43.033 30 5 0.2 0.2 −4.067 −0.005 0

5 20 0.5 0.7 −4.033 −50.636 −47.69 30 5 0.2 0.5 6.026 −8.355 −8.332

5 20 0.6 0.2 7.13 −37.517 −35.116 30 5 0.2 0.7 −381.519 −18.351 −18.252

5 20 0.6 0.5 2.671 −41.089 −38.967 30 5 0.5 0.2 4.964 5.906 5.869

5 20 0.6 0.7 −11.56 −45.502 −43.638 30 5 0.5 0.5 −7.468 3.082 3.014

5 30 0.2 0.2 13.341 −59.329 −49.672 30 5 0.5 0.7 −15.179 −0.386 −0.457

5 30 0.2 0.5 −17.994 −64.693 −58.182 30 5 0.6 0.2 −4.802 8.471 8.463

5 30 0.2 0.7 −18 −65.289 −58.525 30 5 0.6 0.5 3.508 4.313 4.291

5 30 0.5 0.2 5.034 −45.253 −41.916 30 5 0.6 0.7 −289.118 2.066 2.117

5 30 0.5 0.5 −1.161 −47.406 −44.776 30 10 0.2 0.2 4.031 −60.499 −50.403

5 30 0.5 0.7 −3.027 −48.702 −46.545 30 10 0.2 0.5 −5.741 −64.16 −56.034

5 30 0.6 0.2 2.359 −42.974 −41.05 30 10 0.2 0.7 −6.347 −62.99 −55.608

5 30 0.6 0.5 −4.503 −44.644 −43.32 30 10 0.5 0.2 1.843 −51.672 −48.263

5 30 0.6 0.7 −1.451 −45.244 −43.908 30 10 0.5 0.5 1.684 −51.568 −48.275

(Continued)
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Table 8. Continued

n J βb βw BiasML BiasBay BiasBML n J βb βw BiasML BiasBay BiasBML

5 40 0.2 0.2 −0.984 −58.17 −49.658 30 10 0.5 0.7 −2.506 −53.068 −50.129

5 40 0.2 0.5 −7.897 −59.238 −51.948 30 10 0.6 0.2 1.695 −49.025 −47.103

5 40 0.2 0.7 −9.097 −60.041 −53.542 30 10 0.6 0.5 3.728 −49.251 −47.491

5 40 0.5 0.2 1.26 −45.072 −42.743 30 10 0.6 0.7 −0.072 −49.626 −48.056

5 40 0.5 0.5 −0.797 −46.11 −44.267 30 20 0.2 0.2 1.105 −58.467 −49.686

5 40 0.5 0.7 −1.807 −46.459 −44.731 30 20 0.2 0.5 −1.151 −58.733 −50.616

5 40 0.6 0.2 2.136 −43.252 −41.836 30 20 0.2 0.7 −3.356 −59.335 −51.794

5 40 0.6 0.5 0.334 −43.83 −42.83 30 20 0.5 0.2 1.165 −45.931 −44.21

5 40 0.6 0.7 −1.045 −44.088 −43.199 30 20 0.5 0.5 0.869 −45.997 −44.415

15 5 0.2 0.2 −74.931 4.84 5.798 30 20 0.5 0.7 −0.619 −46.582 −45.336

15 5 0.2 0.5 323.87 −15.23 −15.118 30 20 0.6 0.2 0.58 −44.207 −43.462

15 5 0.2 0.7 59.503 −40.264 −40.218 30 20 0.6 0.5 0.216 −44.112 −43.436

15 5 0.5 0.2 7.849 15.234 15.098 30 20 0.6 0.7 −0.147 −44.297 −43.668

15 5 0.5 0.5 120.525 6.303 6.248 30 30 0.2 0.2 −0.07 −56.129 −48.75

15 5 0.5 0.7 −12.943 −2.154 −2.174 30 30 0.2 0.5 −0.044 −56.139 −48.759

15 5 0.6 0.2 52.143 18.306 18.276 30 30 0.2 0.7 −0.794 −55.821 −48.806

15 5 0.6 0.5 8.054 9.334 9.369 30 30 0.5 0.2 −0.122 −43.627 −42.777

15 5 0.6 0.7 −2.296 3.754 3.712 30 30 0.5 0.5 0.392 −43.329 −42.388

15 10 0.2 0.2 4.432 −59.604 −51.105 30 30 0.5 0.7 −0.284 −43.495 −42.701

15 10 0.2 0.5 −9.53 −63.083 −55.401 30 30 0.6 0.2 0.448 −41.879 −41.398

15 10 0.2 0.7 −22.137 −68.075 −60.897 30 30 0.6 0.5 −0.18 −42.106 −41.816

15 10 0.5 0.2 8.999 −46.317 −42.314 30 30 0.6 0.7 0.22 −42.095 −41.672

15 10 0.5 0.5 −0.416 −49.214 −45.6 30 40 0.2 0.2 0.946 −53.592 −47.014

15 10 0.5 0.7 2.784 −51.402 −48.068 30 40 0.2 0.5 −2.535 −54.666 −48.894

15 10 0.6 0.2 33.381 −44.3 −42.08 30 40 0.2 0.7 −0.731 −53.616 −47.618

15 10 0.6 0.5 6.384 −45.365 −43.426 30 40 0.5 0.2 0.3 −41.79 −41.174

15 10 0.6 0.7 −6.388 −47.913 −45.969 30 40 0.5 0.5 0.022 −41.822 −41.29

15 20 0.2 0.2 2.87 −58.865 −49.359 30 40 0.5 0.7 −0.688 −42.035 −41.65

15 20 0.2 0.5 −3.719 −58.974 −50.509 30 40 0.6 0.2 0.717 −40.913 −40.456

15 20 0.2 0.7 −6.431 −60.174 −52.351 30 40 0.6 0.5 0.548 −40.653 −40.245

15 20 0.5 0.2 0.911 −46.634 −44.514 30 40 0.6 0.7 0.013 −40.976 −40.722

15 20 0.5 0.5 0.735 −46.989 −44.938
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Table 9. Relative bias in % of the ML (BiasML) and the Bayesian estimators (BiasBay represents the Bayesian with βb and

BiasBML represents the Bayesian with β̂b) for ICCX = 0.5 and different values of n, J, βb, and βw

n J βb βw BiasML BiasBay BiasBML n J βb βw BiasML BiasBay BiasBML

5 5 0.2 0.2 −164.985 30.853 30.064 15 20 0.5 0.7 −0.22 −27.013 −26.284

5 5 0.2 0.5 −91.398 −2.688 −0.009 15 20 0.6 0.2 0.573 −24.739 −24.365

5 5 0.2 0.7 −11249.1 −39.249 −35.45 15 20 0.6 0.5 0.168 −24.833 −24.536

5 5 0.5 0.2 96.408 56.089 56.06 15 20 0.6 0.7 −0.221 −25.053 −24.896

5 5 0.5 0.5 22.581 36.746 36.707 15 30 0.2 0.2 −0.123 −38.818 −31.516

5 5 0.5 0.7 −18.976 28.04 28.119 15 30 0.2 0.5 −0.124 −38.316 −31.104

5 5 0.6 0.2 −45.493 54.128 53.045 15 30 0.2 0.7 −1.024 −38.757 −31.716

5 5 0.6 0.5 85.638 38.771 37.987 15 30 0.5 0.2 0.389 −23.985 −23.405

5 5 0.6 0.7 34.784 31.698 32.092 15 30 0.5 0.5 −0.225 −24.225 −23.839

5 10 0.2 0.2 3.087 −44.882 −34.243 15 30 0.5 0.7 −0.651 −24.334 −24.132

5 10 0.2 0.5 −24.56 −54.504 −45.425 15 30 0.6 0.2 0.225 −22.859 −22.637

5 10 0.2 0.7 264.16 −65.759 −56.246 15 30 0.6 0.5 0.318 −22.779 −22.525

5 10 0.5 0.2 4.413 −25.214 −21.39 15 30 0.6 0.7 0.038 −22.842 −22.671

5 10 0.5 0.5 −1.164 −30.273 −27.212 15 40 0.2 0.2 0.72 −35.116 −29.072

5 10 0.5 0.7 25.381 −35.121 −32.221 15 40 0.2 0.5 0.026 −35.599 −29.691

5 10 0.6 0.2 431.493 −22.177 −20.11 15 40 0.2 0.7 −0.6 −35.434 −29.604

5 10 0.6 0.5 0.409 −26.339 −24.864 15 40 0.5 0.2 0.182 −22.687 −22.291

5 10 0.6 0.7 −5.418 −29.331 −27.934 15 40 0.5 0.5 −0.056 −22.669 −22.337

5 20 0.2 0.2 2.174 −45.461 −33.726 15 40 0.5 0.7 −0.256 −22.893 −22.621

5 20 0.2 0.5 −5.226 −47.175 −37.32 15 40 0.6 0.2 0.251 −21.605 −21.404

5 20 0.2 0.7 −13.597 −50.043 −42.321 15 40 0.6 0.5 −0.315 −21.726 −21.707

5 20 0.5 0.2 2.893 −29.868 −27.276 15 40 0.6 0.7 0.027 −21.818 −21.687

5 20 0.5 0.5 0.702 −30.204 −28.086 30 5 0.2 0.2 32.27 12.072 12.191

5 20 0.5 0.7 −1.059 −31.021 −29.332 30 5 0.2 0.5 −13.866 −2.04 −2.062

5 20 0.6 0.2 2.823 −27.324 −25.747 30 5 0.2 0.7 −2.588 −3.011 −2.939

5 20 0.6 0.5 0.358 −27.984 −27.006 30 5 0.5 0.2 6.004 8.522 8.553

5 20 0.6 0.7 −0.622 −28.591 −27.808 30 5 0.5 0.5 −1.864 6.028 6.046

5 30 0.2 0.2 −1.118 −43.94 −34.55 30 5 0.5 0.7 −2.62 3.931 3.91

5 30 0.2 0.5 −3.38 −43.802 −35.125 30 5 0.6 0.2 7.629 7.837 7.829

5 30 0.2 0.7 −5.405 −44.419 −36.288 30 5 0.6 0.5 0.18 7.132 7.124

5 30 0.5 0.2 1.063 −27.096 −25.587 30 5 0.6 0.7 1.126 6.588 6.579

5 30 0.5 0.5 −0.26 −27.139 −26.052 30 10 0.2 0.2 −1.672 −50.254 −40.083

5 30 0.5 0.7 −0.879 −27.124 −26.169 30 10 0.2 0.5 −2.743 −49.396 −39.691

5 30 0.6 0.2 1.631 −24.597 −23.649 30 10 0.2 0.7 −3.732 −50.118 −40.716

5 30 0.6 0.5 0.801 −24.669 −23.933 30 10 0.5 0.2 0.676 −33.464 −31.932

5 30 0.6 0.7 −0.025 −25.092 −24.539 30 10 0.5 0.5 −0.757 −33.783 −32.615

(Continued)
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Table 9. Continued

n J βb βw BiasML BiasBay BiasBML n J βb βw BiasML BiasBay BiasBML

5 40 0.2 0.2 −0.286 −40.655 −32.185 30 10 0.5 0.7 −0.746 −33.947 −32.733

5 40 0.2 0.5 −3.114 −41.373 −33.552 30 10 0.6 0.2 1.361 −30.333 −29.705

5 40 0.2 0.7 −4.552 −41.592 −34.315 30 10 0.6 0.5 0.315 −30.791 −30.359

5 40 0.5 0.2 1.022 −24.608 −23.518 30 10 0.6 0.7 −0.227 −31.065 −30.802

5 40 0.5 0.5 −0.904 −25.201 −24.685 30 20 0.2 0.2 −0.194 −42.537 −34.137

5 40 0.5 0.7 −0.611 −25.064 −24.452 30 20 0.2 0.5 0.387 −42.302 −33.956

5 40 0.6 0.2 1.223 −23.036 −22.307 30 20 0.2 0.7 −0.726 −43.307 −34.829

5 40 0.6 0.5 0.086 −23.63 −23.293 30 20 0.5 0.2 −0.087 −26.456 −25.927

5 40 0.6 0.7 0.067 −23.325 −22.934 30 20 0.5 0.5 0.069 −26.524 −25.956

15 5 0.2 0.2 −49.017 5.309 5.33 30 20 0.5 0.7 −0.521 −27.079 −26.677

15 5 0.2 0.5 9.856 5.713 5.599 30 20 0.6 0.2 0.183 −25.035 −24.861

15 5 0.2 0.7 −10.242 −4.097 −3.765 30 20 0.6 0.5 −0.256 −25.187 −25.141

15 5 0.5 0.2 3.634 16.041 16.119 30 20 0.6 0.7 0.1 −25.282 −25.079

15 5 0.5 0.5 −1.772 11.103 10.99 30 30 0.2 0.2 0.905 −37.67 −30.916

15 5 0.5 0.7 −10.997 8.54 8.541 30 30 0.2 0.5 −0.626 −38.138 −31.72

15 5 0.6 0.2 9.453 15.968 16.075 30 30 0.2 0.7 −1.574 −38.38 −32.473

15 5 0.6 0.5 5.909 11.696 11.82 30 30 0.5 0.2 0.045 −24.436 −24.089

15 5 0.6 0.7 9.654 9.399 9.34 30 30 0.5 0.5 −0.509 −24.798 −24.617

15 10 0.2 0.2 2.597 −48.549 −36.968 30 30 0.5 0.7 −0.194 −24.503 −24.226

15 10 0.2 0.5 −6.183 −50.589 −41.012 30 30 0.6 0.2 0.457 −23.322 −23.08

15 10 0.2 0.7 −3.402 −49.337 −39.467 30 30 0.6 0.5 0.064 −23.224 −23.114

15 10 0.5 0.2 2.188 −32.991 −30.545 30 30 0.6 0.7 −0.076 −23.545 −23.49

15 10 0.5 0.5 0.793 −33.708 −31.654 30 40 0.2 0.2 1.383 −34.375 −28.764

15 10 0.5 0.7 0.025 −34.526 −32.589 30 40 0.2 0.5 −0.421 −35.044 −30.064

15 10 0.6 0.2 1.822 −30.649 −29.834 30 40 0.2 0.7 −1.567 −35.718 −31.128

15 10 0.6 0.5 1.872 −31.295 −30.632 30 40 0.5 0.2 −0.076 −23.337 −23.095

15 10 0.6 0.7 4.392 −31.398 −30.911 30 40 0.5 0.5 −0.053 −23.412 −23.18

15 20 0.2 0.2 0.533 −42.985 −33.471 30 40 0.5 0.7 −0.066 −23.021 −22.781

15 20 0.2 0.5 −3.369 −44.04 −35.625 30 40 0.6 0.2 0.231 −22.45 −22.297

15 20 0.2 0.7 0.616 −42.699 −33.427 30 40 0.6 0.5 0.028 −22.813 −22.734

15 20 0.5 0.2 0.972 −26.057 −24.997 30 40 0.6 0.7 −0.202 −22.456 −22.436

15 20 0.5 0.5 −0.437 −26.877 −26.243
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