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The inertial migration of hydrogel particles suspended in a Newtonian fluid flowing
through a square channel is studied both experimentally and numerically. Experimental
results demonstrate significant differences in the focusing positions of the deformable
and rigid particles, highlighting the role of particle deformability in inertial migration.
At low Reynolds numbers (Re), hydrogel particles migrate towards the centre of the
channel cross-section, whereas the rigid spheres exhibit negligible lateral motion. At
finite Re, they focus at four points along the diagonals in the downstream cross-section,
in contrast to the rigid particles which focus near the centre of the channel face at
similar Re. Numerical simulations using viscous hyperelastic particles as a model for
hydrogel particles reproduced the experimental results for the particle distribution with an
appropriate Young’s modulus of the hyperelastic particles. Further numerical simulations
over a broader range of Re and the capillary number (Ca) reveal various focusing patterns
of the particles in the channel cross-section. The phase transitions between them are
discussed in terms of the inertial lift and the lift due to particle deformation, which would
act in the direction towards lower shear. The stability of the channel centre is analysed
using an asymptotic expansion approach to the migration force at low Re and Ca. The
theoretical analysis predicts the critical condition for the transition, which is consistent
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with the direct numerical simulation. These experimental, numerical and theoretical
results contribute to a deeper understanding of inertial migration of deformable particles.

Key words: flow-structure interactions, microfluidics, particle/fluid flow

1. Introduction
Deformable particles, such as fluid drops, elastic particles, capsules, vesicles and red
blood cells, suspended in channel flows have long been known to migrate away from the
channel wall at low Reynolds numbers (Re), with few exceptions for fluid drops with a
certain range of the viscosity ratio (Karnis, Goldsmith & Mason 1963; Goldsmith 1971;
Leal 1980; Sekimoto & Leibler 1993; Mortazavi & Tryggvason 2000; Hodges, Jensen &
Rallison 2004; Shin & Sung 2011; Villone & Maffettone 2019; Rezghi, Li & Zhang
2022; Takeishi et al. 2025). The migration of deformable particles away from the wall,
sometimes called the axial accumulation, is understood to be caused by nonlinear effects
between particle deformation and flow field due to the presence of the wall (Leal 1980;
Takemura, Magnaudet & Dimitrakopoulos 2009; Sugiyama & Takemura 2010). Along
with the wall effect, the curvature or shear gradient of the velocity profile also produces a
tendency for migration towards the centreline, where the shear is lower. Kaoui et al. (2008)
demonstrated by a two-dimensional (2-D) numerical simulation in the low-Re limit that a
vesicle in unbounded Poiseuille flow migrates towards the centre of the flow, as a result of
asymmetric deformation between higher and lower shear sides. In the Stokes flow limit,
Villone et al. (2016) and Villone (2019) showed by numerical analyses that a neo-Hookean
elastic particle always migrates towards the channel centreline both in circular and square
channel flows. They also found that the migration velocity is larger for particles that are
more deformable and located closer to the channel wall, due to larger deformation.

In recent years, inertial migration of particles in rectangular channel flows at finite
Re has been intensively studied in the field of microfluidics, as it is associated with a
promising technology for the passive manipulation, focusing and sorting of biological cells
and particles (Di Carlo 2009; Martel & Toner 2014; Stoecklein & Di Carlo 2019; Kalyan
et al. 2021; Lee, Kim & Yang 2023; Zhang et al. 2024). Currently, most microfluidic
devices for the separation and sorting of biological cells are designed to work mainly
based on the difference in cell size. However, the operation based on their deformability
is useful and of practical importance for improving diagnostic, therapeutic, biological and
other performance, since many target cells, such as circulating tumour cells and malaria-
infected cells, have a different stiffness from surrounding cells, and various diseases, such
as cancer, blood diseases and inflammation, often accompany cell deformability alterations
(Hou et al. 2010; Hur et al. 2011; McFaul, Lin & Ma 2012; Yang et al. 2012; Preira et al.
2013; Wang et al. 2013; Holmes et al. 2014; Park et al. 2016; Krüger et al. 2014a; Guo
et al. 2017; Connolly, McGourty & Newport 2021; Stathoulopoulos et al. 2024). Despite
the importance of the deformability of suspended particles, the fundamentals of its effect
on inertial migration have not been fully understood.

The present study aims to investigate the impact of the deformability of suspended
particles on their inertial migration experimentally and numerically from fluid-dynamical
points of view. To simplify the problem, we treat the flow of dilute suspensions of
deformable particles (hydrogel microspheres in the experiment and viscous hyperelastic
particles in the numerical simulation) in a Newtonian fluid flowing through straight square
channels.

1019 A22-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
57

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10574


Journal of Fluid Mechanics

Inertial migration of particles suspended in channel flows was first observed more than
60 years ago by Segré & Silberberg (1961). They reported that neutrally buoyant spherical
particles in circular tube flows migrate laterally towards an annulus with a radius 0.6 times
the tube at relatively low Re (Segré & Silberberg 1961, 1962). This phenomenon is referred
to as the Segre–Silberberg (SS) effect and the particle focusing annulus is called the SS
annulus. On the other hand, in rectangular channel flows, which are commonly used in
microfluidics, suspended particles were found to first focus on a ring, called pseudo-SS
ring (pSS ring), and then migrate towards several discrete points in downstream cross-
sections (Chun & Ladd 2006; Choi, Seo & Lee 2011; Nakagawa et al. 2015; Shichi
et al. 2017). In particular, spherical particles in square channel flows eventually focus on
four points located near the centre of the channel faces at relatively low Re (Di Carlo
et al. 2007, 2009; Zhou & Papautsky 2013; Abbas et al. 2014; Miura, Itano & Sugihara-
Seki 2014). This focusing position is called the channel face equilibrium position or
midline equilibrium position (MEP). If the focusing positions and cross-stream migration
velocities can be controlled by the size, shape and deformability of suspended particles,
the SS effect can be used for continuous particle separation and sorting in a label-free,
external field-free manner using microchannels of simple geometry. To this end, extensive
studies have been performed to develop microfluidic devices applying the SS effect to
suspension flows of living cells and particles (see the review articles such as those by Di
Carlo 2009; Bhagat et al. 2010; Karimi, Yazdi & Ardekani 2013; Stoecklein & Di Carlo
2019; Razavi Bazaz et al. 2020; Tang et al. 2020; Kalyan et al. 2021; Lee et al. 2023;
Zhang et al. 2024, and the references therein).

The inertial focusing of spherical particles on the midlines (MEP) can be explained
by the inertial lift exerted on them in square channel flows. The inertial lift is known to
consist mainly of the shear gradient-induced lift, acting in the direction towards higher
shear, and the wall effect, acting in the direction away from the channel wall (Ho & Leal
1974; Schonberg & Hinch 1989; Asmolov 1999; Matas, Morris & Guazzelli 2004). In
circular tube flows, the balance between the outward lift due to the shear gradient and the
inward lift due to the wall effect determines the radius of the SS annulus (Matas, Morris &
Guazzelli 2009). In the pressure-driven flow through a square channel, on the other hand,
the shear rate is higher closer to the channel walls with the maximum at the centre of the
channel faces, and it is lower near the centre of the cross-section and the corners. Thus,
the direction of the inertial lift due to the shear gradient is mostly outwards in the radial
direction and towards the midlines, or away from the diagonal, in the azimuthal direction.
The radial component, which is more pronounced than the azimuthal component, has a
tendency to balance with the wall effect, so that particles approach the pSS ring first,
and then migrate towards the y- or z-axis (MEP) due to the presence of the azimuthal
component of the shear gradient-induced lift towards these axes.

In addition to these inertial lifts, deformable particles in channel flows experience
lifts due to particle deformation (deformation-induced lift) as already noted. Thus, the
inertial focusing of deformable particles is expected to be different from that of rigid
particles. In fact, polyethylene glycol and alginate hydrogel particles suspended in a
rectangular channel flow were demonstrated to focus closer to the channel centreline as
they become more deformable (Ding et al. 2025). Recent numerical studies have reported
several features of inertial migration specific to deformable particles in square channel
flows. Schaaf & Stark (2017) showed that most of the elastic capsules migrate towards
equilibrium positions on the diagonal of the channel cross-section and their focusing
positions become closer to the centre for more deformable particles. The focusing position
on the diagonal is referred to here as the diagonal equilibrium position (DEP) and that on
the channel centre as the centre equilibrium position (CEP). Raffiee, Dabiri & Ardekani
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(2017) demonstrated that deformable capsules focus on the DEP in a relatively wide range
of Re, in contrast to rigid particles, which focus on the MEP in the same Re range. Using
hyperelastic particles, Esposito et al. (2022) have recently reported the existence of another
equilibrium position, which is located at an intermediate position between the MEP and
DEP. In certain ranges of parameters, this intermediate equilibrium position (IEP) is stable
whereas both MEP and DEP are unstable.

All these numerical studies agree that equilibrium positions of deformable particles can
exist on the diagonal in square channel flows at certain parameter values, but to the authors’
knowledge, no experimental evidence for the presence of the DEP has been provided,
except for our recent study on human red blood cells (RBCs) (Tanaka & Sugihara-Seki
2022). Human RBCs have a biconcave discoid shape at rest, with a diameter, thickness and
volume of approximately 8, 2−3 μm and 94 μm3(= V ), respectively (Hochmuth 1987).
Their equivalent diameter is d = 2 3

√
3V/4π ∼ 5.6 μm. RBCs are surrounded by a thin

membrane, inside which is a haemoglobin solution. Due to this structure and the excess
surface area relative to the volume, they are highly deformable. Tanaka & Sugihara-Seki
(2022) demonstrated that at low Re with negligible inertia, RBCs migrate towards the
channel centre (CEP) in square channel flows, in accord with previous studies (Goldsmith
1971; Mchedlishvili & Maeda 2001; Sasaki et al. 2017; Losserand, Coupier & Podgorski
2019). In contrast, at finite Re, they focus near four points on the diagonals, indicating
the presence of the DEP. Since RBCs have a rather specific shape, biconcave discoid, our
first aim of the present study is to demonstrate experimentally the presence of the DEP
using initially spherical deformable particles. To this end, using hydrogel spheres with
5.2 μm diameter and square channels with 50 μm width, we experimentally investigate
their inertial focusing in square channel flows. The obtained particle distributions in the
channel cross-section are compared with those of RBCs or rigid spherical particles with
similar sizes to explore the effect of particle deformation on their migration in square
channel flows.

These hydrogel particles with a diameter of 5.2 μm are the largest of their kind that
can currently be synthesised and the square channels used in this study, 50 μm wide
(600 mm long), are the smallest commercially available. Thus, it is difficult to perform
further experiments with different parameters, since suspended particles need to have a
finite size (�0.07) relative to the channel width for inertial focusing (Di Carlo et al. 2007;
Bhagat et al. 2008). Instead, we conduct numerical simulations for a viscous hyperelastic
particle suspended in square channel flows, using a full Eulerian method (Sugiyama et al.
2011). By comparing the numerical and experimental results, we estimate the stiffness of
the hydrogel particles and compare the obtained value with reported Young’s moduli for
similar particles. Next, the impact of the deformability of the particles on their inertial
focusing is investigated numerically by systematically changing the Reynolds number Re
and the capillary number Ca (or the Laplace number, La, defined as the ratio of the
particle Reynolds number and the capillary number; see § 2.1). Several types of focusing
patterns of the particles in the cross-section are obtained. As the particles become more
deformable, the focusing pattern shifts from four-point focusing on the MEP, to eight-point
focusing on the MEP and DEP, to four-point focusing on the DEP, and to single-point
focusing on the CEP. These transitions of the particle focusing pattern are discussed in
terms of the interplay between the inertial lift and the particle deformation-induced lift. In
contrast to a previous numerical study (Esposito et al. 2022), we observe a bistable state
of the MEP and DEP, but no single focusing on the IEP.

The present numerical computations indicate that the stability of the channel centre
(CEP) is changed at La ∼ 8 for the blockage ratio of 0.2; it is stable for La < 8 and
unstable for La > 8. This numerical result is accounted for by the lateral force exerted
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Figure 1. (a) Chemical structure of hydrogel microspheres and (b) optical microscopy image
of packed hydrogel microspheres (diameter d = 5.2 μm). NIPAm, N -isopropylacrylamide; BIS, N ,

N ′-methylenebis(acrylamide); AAc, acrylic acid.

on the hyperelastic particle near the channel centre under the assumption of small Re and
Ca. The discussion is based on the asymptotic expansion of the lateral force in terms of Re
and Ca, together with the numerical results for rigid spheres at Ca = 0 and for hyperelastic
particles at Re = 0.

In this manuscript, the experimental and numerical methods are described in § 2. The
experimental results using hydrogel particles are shown in § 3.1. The numerical results,
including the comparison with the experimental results and discussion, are presented
in § 3.2. Section 3.3 is devoted to the discussion of the stability of the CEP based on
the inertial lift and deformation-induced lift. Concluding remarks are drawn in § 4. In
Appendix A, the details of the numerical method for a rigid sphere using the immersed
boundary method are described.

2. Methods

2.1. Dimensionless parameters
If suspended particles are neutrally buoyant rigid spherical particles with diameter d
and the suspending fluid is a Newtonian fluid with density ρ and viscosity μ, then
important dimensionless parameters for the inertial migration in square channel flows
are the Reynolds number Re = ρU D/μ and the blockage ratio κ = d/D, where D and
U represent the channel width and the average flow velocity, respectively. The particle
Reynolds number is defined as Rep = Re · κ2. We consider here the case in which
the concentration of particles is low enough that particle–particle interactions can be
neglected. In the case of elastic particles with elastic modulus G, the capillary number
Ca = μU/DG, qualifying the ratio between the viscous stress and the elastic stress, is
added as a control parameter, and d represents the undeformed diameter of the particles.
The ratio between Rep and Ca gives the Laplace number La = Rep/Ca = ρd2G/μ2,
which is expressed in terms of the fluid and particle properties, independent of the flow
velocity and channel width.

2.2. Materials and experimental methods
As deformable suspended particles, we used poly(N -isopropylacrylamide)-based hydrogel
microspheres fluorescently labelled by 5-aminofluorescein (figure 1) (Kawamoto et al.
2023, 2024). These hydrogel particles were synthesised by a modified aqueous
precipitation polymerisation method under the condition of N -isopropylacrylamide
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Figure 2. (a) Experimental set-up and (b) method of image analyses: an example of obtained images (top),
distribution of particle centroids (middle) and probability density function (p.d.f.) in the channel cross-section
(bottom).

FlowD

D

L

Wall

Periodic(x)

d

x

y
z

Wall

Figure 3. Configuration for the numerical simulation (L = 2D).

(NIPAm) 70 mol %, N , N ′-methylenebis (acrylamide) (BIS) 1 mol % and acrylic
acid (AAc) 29 mol %. As shown in figure 1(b), the particle size is almost uniform,
with an average diameter d = 5.2 μm. Details of these hydrogel microspheres and their
deformation at the air/water interface are described by Minato et al. (2018).

The hydrogel particles were suspended in glycerol aqueous solution at volume fractions
of 0.003−0.01 %. The density and viscosity of the solution are 1.05 × 103 kg m−3 and 1.72
mPa s, respectively, at 22 ◦C. As shown in figure 2(a), a syringe pump (Nexus 6000, ISIS)
was used to infuse the suspension into a straight glass tube with a square cross-section of
width D = 50 μm and length L = 50−600 mm (VitroCom). Face-on fluorescence images
of the tube cross-section near the outlet (1–2 mm upstream of the outlet) were taken
along the tube axis from the downstream side using a high-speed camera with a built-in
image intensifier (SV200i, Photron) under the illumination of a 3 W blue laser (Kentech),
equipped with a longpass filter (SCHOTT OG-530, Edmund Optics) and an ultralong
working distance objective (SLMPLN 50×, 100×, Olympus). An LED light was also used
to detect the tube wall. When using a 50× objective, the pixel size is 0.268 × 0.268 μm2.
The images obtained were analysed using the public domain software ImageJ (NIH) to
detect the position of the centroid of each particle in the cross-section. In each experiment,
we counted more than 300 particles to determine their distribution and the probability
densities (figure 2b).
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2.3. Numerical methods
In our numerical simulations, we considered a single deformable particle flowing in a
channel of length L with a square cross-section with side D as shown in figure 3. The
channel is filled with a Newtonian fluid and the pressure-driven Poiseuille flow is directed
along the x-coordinate. We assume that both the fluid and the particle are incompressible
and have the same density ρ and dynamic viscosity μ, which means the particle is neutrally
buoyant. The deformable hydrogel particle is modelled as a viscous hyperelastic solid
rather than a capsule or a fluid drop. We specifically employ the neo-Hookean model
(Mooney 1940; Rivlin 1948; van Hoogstraten, Slaats & Baaijens 1994), which has the
simplest constitutive law for such hyperelastic materials. The particle is initially spherical
with a diameter d under unstressed conditions.

This study explores a broad parameter space to achieve more comprehensive
understandings rather than to reproduce specific phenomena. We employed two
dimensionless numbers Re and Ca as the governing parameters.

Our simulation employs the fully Eulerian method developed by Sugiyama et al. (2011).
This method is a finite difference method based on the VOF method by Hirt & Nichols
(1981), solving the fluid–structure coupling problem using the VOF function. To derive
the nondimensional governing equations, we introduce the following non-dimensional
variables,

∂

∂t
= U

D

∂

∂t∗
, u = U u∗, p = ρU 2 p∗, ∇ = 1

D
∇∗. (2.1)

Then, we obtain the non-dimensional governing equations:

∇∗ · u∗ = 0, (2.2)

∂u∗

∂t∗
+ (

u∗ − ex V ∗
x

) · ∇u∗ = −∇∗ p∗ + 1
Re

∇∗2u∗ + 1
ReCa

∇∗ · (
αB′∗) − ex

dP∗

dx∗ drive
,

(2.3)
∂α

∂t∗
+ (u∗ − ex V ∗

x ) · ∇α = 0, (2.4)

∂ B∗

∂t∗
+ (u∗ − ex V ∗

x ) · ∇B∗ = L∗ · B∗ + B∗ · L∗�, (2.5)

where Vx denotes the x-component of the particle’s velocity, α denotes the volume fraction
of solid, L = ∂u/∂x denotes the velocity gradient tensor and B = F · F� denotes the left
Cauchy–Green deformation tensor, where F = ∂x/∂ X is the deformation gradient, x is
the current coordinates and X is the reference coordinates (Bonet & Wood 2008).

Following Sugiyama et al. (2011), we monolithically describe the pressure over the
entire incompressible media. Further, we write the mixture stress as σ = −p I + (1 − α)

σ ′
f + ασ ′

s , where σ ′ denotes the deviatoric stress, and the subscript f and s refer to the
fluid and solid phases, respectively. The deviatoric tensor is defined as T ′ = T − tr(T )I/3.
The term dP∗/dx∗

drive indicates the constant driving pressure, which is analytically derived
from the solution of duct flow without particles (Cornish 1928):

− dP∗

dx∗ drive
= 4

KRe
, K ≈ 0.160577 . . . . (2.6)

Although the fully Eulerian method (Sugiyama et al. 2011) has been demonstrated to
facilitate solving various problems such as flows bounded by compliant walls (Rosti &
Brandt 2017; Esteghamatian, Katz & Zaki 2022) and flows including soft particles (Rosti &
Brandt 2018; Rosti et al. 2018; Prasad, Sharma & Kulkarni 2022), the numerical solution is
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likely to be unstable especially when long-time computation is required, as in the present
study. Such a numerical instability is more pronounced with the higher advection speed of
the fluid–structure interface.

In this study, we investigate the motion of particles moving downstream in the x-
direction. The particle’s x-coordinate can be fixed within the computational domain, as
the computational system is homogeneous in the x-direction. This technique is implied
by the term including ex V ∗

x in (2.3)–(2.5), minimising the advection velocity. Note that
this formulation is based on a coordinate transformation, in which the x coordinate
in the computational space attaches to the particle centroid, and holds even if V ∗

x
varies with time. For the time and spatial discretisation of the advection terms with the
constant velocity (∂t∗ − ex V ∗

x · ∇) in (2.3)–(2.5), a discrete Fourier interpolation (Gerz,
Schumann & Elghobashi 1989) is applied to reduce numerical diffusion and instability.

Furthermore, the MTHINC scheme (Ii et al. 2012b) is employed for the convection of the
volume fraction (∂t∗α + (u∗ · ∇)α) in (2.4). The MTHINC scheme approximates the VOF
function distribution across the elastic-fluid interface using a hyperbolic tangent function,
effectively suppressing interface smearing and numerical instability. The sharpness
parameter relative to the grid is set to β = 2, following the rigid particle simulation in
Appendix A.

Other spatial derivative terms are discretised using the second-order central scheme
except for the advection term of B. The advection term u∗ · ∇B∗ in (2.5) is spatially
discretised by the fifth-order WENO scheme (Liu, Osher & Chan 1994; Jiang & Shu 1996).

For the time procedures, the second-order Adams–Bashforth scheme (Canuto et al.
2012) is applied to the convection term of u∗ · ∇u∗ in (2.3), u∗ · ∇B∗ and the right-hand
side of (2.5). The Crank–Nicolson scheme (Canuto et al. 2012) is applied to the viscous
and elastic terms in (2.3). To implicitly treat the pressure together with (2.2), the Simplified
Marker-and-Cell (SMAC) method (Amsden & Harlow 1970) is employed. To solve the
Poisson equation directly, we use a fast Fourier transform (FFT) and a tri-diagonal matrix
algorithm (TDMA).

For the boundary conditions, we apply periodic conditions along the channel and
no-slip conditions for the walls. The computational domain is discretised with a grid
size of 256 × 128 × 128 and 128 × 64 × 64 for κ = 0.1 and κ = 0.2, respectively. The
channel length and width are defined as L = 2 and D = 1, respectively, and the grid
resolution is given by �x = �y = �z = 1/128 or 1/64. The effect of channel length L
associated with the periodic boundary condition is discussed and the present choice of
L/D = 2 is validated in figure S1 of the Supplementary material, which is available at
https://doi.org/10.1017/jfm.2025.10574.

The Courant–Friedrichs–Lewy (CFL) number is fixed at a constant value of 0.0625,
and the time step �t is determined based on the maximum propagation velocity
Uprop. Here, Uprop is determined by comparing the maximum advection velocity Uadv =
max(|ux − Vx |, |uy |, |uz|) and the shear/transverse wave speed in the elastic particle
Uels = √

G/ρ.

Uprop = max (Uadv, Uels) , (2.7)

�t = CFL · �x

Uprop
. (2.8)

In particular, for the advection terms, we employ the advective interpolation scheme
(Kajishima & Taira 2016, § 3.5.1), which satisfies the relations ∂ j (u j ui ) = ui∂ j u j +
u j∂ j ui in a discretised form and ensures that the momentum and the quadratic quantity
are highly conserved.
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We also employ the immersed boundary method (Kajishima et al. 2001) for a calculation
of a rigid particle, as detailed in Appendix A, and compare the results with those of the
deformable particles.

2.4. Taylor deformation parameter
The Taylor deformation parameter T is introduced as a measure of the deformation of
elastic particles. This parameter is mathematically defined by the lengths of the semi-major
axes lm and semi-minor axes ln of an ellipse in a two-dimensional plane (Taylor 1934),

T = lm − ln
lm + ln

. (2.9)

Here, T decreases as the shape of an object approaches a circle, whereas greater
deformations result in higher T values. As this study involves three-dimensional particles,
it is necessary to determine quantities corresponding to the semi-major and semi-minor
axes in a spherical geometry. In this study, we evaluate T using another well-known
approach by approximating the shape of a deformed sphere as a triaxial ellipsoid with
the same moment of inertia to capture the deformation in three dimensions (Ramanujan &
Pozrikidis 1998; Takeishi et al. 2019). The principal moments of inertia Ia,b,c relative to
the centre of mass of the triaxial ellipsoid can be determined using the VOF function α.
The semi-axes of the triaxial ellipsoid a, b, c are obtained from the following equations:

a =
√

5
2M

(−Ia + Ib + Ic), b =
√

5
2M

(Ia − Ib + Ic), c =
√

5
2M

(Ia + Ib − Ic).

(2.10)
where M denotes the mass of the particle. Finally, lm and ln are determined as
lm = max(a, b, c), ln = min(a, b, c).

3. Results and discussion

3.1. Experimental results
Figures 4(a)–4(e) show representative distributions of hydrogel particles in the channel
cross-section for L/D = 1000−12 000 at Re = 0.1−10, and figure 4(f ) shows probability
density functions (p.d.f.s) of particles for L/D = 12 000. At Re = 0.1 shown in figure 4(a),
particles gradually approach the centre of the channel cross-section, and focus near the
centre at the most downstream (see figure 4f ). This axial accumulation is consistent with
previous studies for deformable particles at low Re (Karnis et al. 1963; Goldsmith 1971).
At Re = 0.5 and 1, particles migrate inwards until they focus along a small ring together
with the channel centre. At Re = 5 and 10, particles are aligned along a ring (pSS ring)
upstream and focus near four points on the diagonals downstream. This focusing position
corresponds to the DEP. It is noteworthy that the particle focusing positions move away
from the channel centre with increasing Re.

For the particle distributions shown in figures 4(a)–4(e), figures 5(a) and 5(b) plot the
average distance of the particle centroid from the channel centre, 〈r〉/(D/2), and the
number fraction of particles located within ±10◦ from the diagonals, Pd (see the inset
of figure 5b), as a function of L/D. The error bar represents the standard deviation (only
the upper or lower side is plotted). At low Re (� 1), the average distances first decrease
with L/D up to 6000 and become almost constant further downstream, while Pd keeps
nearly constant values ∼20◦/90◦ = 0.22, that is, for random distribution, for all L/D. This
result indicates that, at Re � 1, particles have reached equilibrium positions in the radial
direction within a distance of L/D = 6000 from the channel inlet, with no preferential
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Figure 4. (a)–(e) Distributions of hydrogel particles (d = 5.2 μm, D = 50 μm) and (f ) probability density
functions (p.d.f.s) at L/D = 12 000 (L = 600 mm).
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(a) (b)

Figure 5. (a) Average distances 〈r〉/(D/2) of hydrogel particles from the channel centre and (b) number
fraction Pd of particles located within ±10◦ from the diagonals, at Re = 0.1 (triangles), 0.5 (open squares), 1
(closed squares), 5 (open circles) and 10 (closed circles).

distribution in the azimuthal direction. In contrast, the average distances at Re � 5 remain
nearly constant independent of L/D (� 1000) and Pd increases almost monotonically
with L/D. This result implies that, at Re � 5, particles have reached an equilibrium radial
position (pSS ring) in a short distance from the channel inlet (L/D < 1000) and migrate
circumferentially towards the diagonal further downstream. The first part of this migration,
mostly in the radial direction towards the pSS ring, is known as the first phase of the inertial
migration, which represents a rather rapid motion, and the following slow migration along
the pSS ring towards the DEP is the second phase. The present result demonstrates that
hydrogel particles also exhibit a two-phase property of the inertial migration in square
channel flows.
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Re = 0.1
(a)

(b)

(c)

Re = 1 Re = 10

Figure 6. Distributions of (a) hydrogel particles in glycerol aqueous solutions, (b) rigid spherical particles (d =
5 μm) in glycerol aqueous solutions and (c) human red blood cells in blood plasma (Tanaka & Sugihara-Seki
2022)(D = 50 μm, L = 600 mm).

Figure 6 illustrates a comparison of the distribution of hydrogel particles with those of
rigid spherical particles (d = 5 μm) and human red blood cells (RBCs) reported in our
previous study (Tanaka & Sugihara-Seki 2022). RBCs have a biconcave discoid shape at
rest, with an equivalent diameter d ∼ 5.6 μm, and they are highly deformable, as noted
in § 1. In the case of small inertia (Re = 0.1), deformable particles (hydrogel particles
and RBCs) focus near the channel centre, whereas rigid spherical particles are dispersed
widely in the channel cross-section, as inferred from the motion of rigid spherical particles
along the channel axis in the Stokes flow. On the other hand, in the case of finite inertia
at Re = 10, both hydrogel particles and RBCs focus near the DEP, whereas rigid spherical
particles focus near the MEP. This result indicates that the focusing on the DEP results
from the effect of particle deformation. At Re = 1, rigid particles focus along the pSS ring
with higher concentrations near the MEP. With regards to deformable particles, hydrogel
particles are aligned along a small ring together with the channel centre, whereas RBCs
focus on four points on the diagonals together with the centre. Although these two focusing
patterns of deformable particles may appear different, they are essentially similar and
the difference presumably arises from differences in the size of the pSS ring. Possibly
due to differences in the deformability and shape of the suspended particles and/or the
rheological properties of the suspending media, the pSS ring for the hydrogel particles is
much smaller than that for RBCs. Since the flow field near the channel centre is nearly
axisymmetric, the azimuthal component of the lift exerted on the hydrogel particles on the
pSS ring is much weaker than that on the RBCs. As a result, the focusing in the second
phase of the inertial migration is much slower for the hydrogel particles than that for RBCs.

3.2. Numerical results
The elastic modulus G or the Laplace number La for hyperelastic particles was searched
for the one that best reproduces the distribution of hydrogel particles experimentally
observed, since the elastic moduli of these particles are unknown. First, numerical
simulations with κ = 0.1 and Re = 10 corresponding to figure 4(e) were performed for
various La values. With La set to 5, 10 and 50, trajectories of the centroid of hyperelastic
particles projected onto the channel cross-section are shown in the upper panels of
figure 7(a–c), starting from various initial positions (open circles) located in the lower
right half of the first quadrant to final positions (closed circles) during a dimensionless
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Figure 7. Comparisons between the experimental and numerical results for the particle distribution in the
channel cross-section at corresponding distances from the inlet (κ = 0.1). The upper panels: trajectories of the
centroid of hyperelastic particles from initial positions (open circles) to final positions (closed circles) during
the dimensionless time (a)–(c) t∗(≡ tU/D) ∼ 2000 and (d,e) 1000, in the first quadrant of the cross-section.
The lower panels: final positions in the entire cross-section (dots) and corresponding particle distributions
obtained experimentally at (a)–(c) L/D = 2000, (d,e) 1000.

time t∗(≡ tU/D) ∼ 2000. The lower panels illustrate their final positions in the entire
cross-section, obtained by taking into account the symmetry with respect to the y-,
z-axes (midlines) and diagonals, along with the distribution of hydrogel particles observed
experimentally at L/D = 2000 (figure 4e). Comparisons between experimental and
numerical results in figure 7(a–c) indicate that the experimentally obtained distribution is
best reproduced when adopting La = 10. To confirm this value, the numerical simulations
with La = 10 for different Re and different distances L/D are performed and compared
with corresponding distributions of hydrogel particles. Figures 7(d) and 7(e) are two
examples, in which the experimental and numerical results are in good agreement in favour
of La ∼ 10.

The Laplace number La = 10 gives the elastic modulus G = 1.04 kPa, using the values
for the density and viscosity of the fluid and the particle diameter. Assuming a Poisson’s
ratio of 0.5, Young’s modulus of the hydrogel particles is estimated to be ∼3.13 kPa.
Banquy et al. (2009) used atomic force microscopy to measure Young’s modulus of similar
but much smaller hydrogel particles and reported that it ranges from 18 kPa for particles
with a cross-linker content of 1.7 mol % to 211 kPa for particles with a cross-linker content
of 15 mol %. The present estimate of Young’s modulus ∼3.1 kPa for particles with a
cross-linker content of 1 mol % is slightly smaller but comparable to extrapolations from
these reported values. Although the distributions of hydrogel particles experimentally
obtained at Re � 3 are successfully reproduced by the present numerical simulation,
comparisons at lower Re(� 1) are difficult because of the large computational time
required for small particles with κ = 0.1 to reach specific focusing positions at lower Re.

To explore the effect of particle deformation on the inertial migration in wider ranges of
Re and La, we computed the motion and deformation of hyperelastic particles with larger
blockage ratios. Figure 8 shows trajectories of the particle centroid starting from two initial
positions (y∗

0 , z∗
0) = (0.35, 0.07) and (0.35, 0.28), their final positions in the entire cross-

section obtained from symmetry considerations and final particle shapes, for κ = 0.2 at
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Figure 8. (a) Trajectories of the centroid of hyperelastic particles in the first quadrant of the channel cross-
section, (b) the final positions in the entire cross-section and (c) snapshots of particles at the final position, for
κ = 0.2 at Re = 40.

Re = 40 in the range of La from 10 to ∞ (rigid spherical particles). The computations
for rigid spherical particles were conducted using a computer scheme reported previously
(Nakagawa et al. 2015). In all cases, particles first migrate inwards until they reach a certain
distance from the channel centre and then move circumferentially towards the y-axis or
diagonal, except in the case of La = 10, where they continue to move towards the channel
centre. This feature clearly shows the two-phase property of the inertial migration in square
channel flows, and the circumferential motion in the second phase is performed along
the pSS ring towards a stable equilibrium position. The final position of rigid spherical
particles is located on the y-axis (MEP), in agreement with previous studies (Di Carlo
et al. 2009; Miura et al. 2014). The hyperelastic particles with relatively large La (= 400
and 200) also exhibit focusing on the MEP, and the focusing positions move closer to the
channel centre with decreasing La. On the other hand, for smaller La(= 50), the final
focusing positions are located on the diagonals (DEP). In the case of La = 120 between
these two cases, hyperelastic particles focus on eight points on the midlines and diagonals
in the entire cross-section, implying a bistable state of the MEP and DEP. At the smallest
value of La(= 10), a stable equilibrium position is located on the channel centre even at
moderate Re(= 40).

Figure 8(c) depicts snapshots of hyperelastic particles located at the final position, when
viewed along the x-, y- and z-axes. Note that these are shapes at a certain instant in
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Figure 9. (a) Trajectories (above the diagonal) are shown with dashed lines for t∗ � 20 and solid lines for
t∗ > 20, while the magnitude of the in-plane velocity (below the diagonal) is represented by the colour bar.
(b) Time evolution of the dimensionless y-coordinate y∗ (top) and z-coordinate z∗ (bottom), with the inset
focusing on the t∗-axis ranges from 0 to 100. The initial positions are (y∗

0 , z∗
0) = (0.35, 0.07), (0.35, 0.28).

The blockage ratio κ = 0.2 and Re = 40.

time. It is seen from figure 8(c) that, in general, a smaller La results in a larger particle
deformation, as expected. However, the shift of the final position towards the channel
centre with decreasing La suppresses that increase (see figures 10b and 10c). Notably,
for La = 10, the deformation is rather small and the particle has an almost axisymmetric
shape, rounded at the front and nearly flat at the back, since its final position is very close
to the channel centre, where the shear rate is small and axisymmetric.

To demonstrate the two-phase property of inertial migration in more detail, figure 9
shows the lateral speed and the movement of the particle centroid. The particle is seeded
at the same initial positions as in figure 8 or symmetric positions relative to the diagonal for
La = 50−400. In the upper left half of figure 9(a), the trajectories of the particle are drawn
with dashed lines for t∗ � 20, corresponding to a roughly estimated dimensionless time
for the first phase, and the trajectories for t∗ > 20 are drawn with solid lines. In the lower
right half of figure 9(a), the lateral velocity magnitude of the particle is indicated by colour
along the trajectories. The variations of the position of the particle centroid are plotted as
a function of time in figure 9(b). It is seen from figure 9(a) that the lateral velocity in the
first phase is O(10−2) relative to the mean flow velocity, whereas that in the second phase
is O(10−3) for La = 50 and O(10−4) for La = 120−400. The rapid migration in the first
phase and the slow migration in the second phase can be also confirmed from figure 9(b)
together with the insets. A distinct feature observed in figure 9(b) is that the centroid of
hyperelastic particles fluctuates even after approaching a stable position.

In each case shown in figures 8 and 9, the focusing pattern of particles can be easily
identified. However, for some parameter values including La between 10 and 50 at Re =
40, the process became highly challenging. In some cases, the migration velocity of the
particle becomes very small before reaching the midline, diagonal or centre. In other cases,
excessive deformation caused numerical instability. The former case suggests the presence
of another type of equilibrium position, presumably located between the MEP and DEP
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Figure 10. (a) Particle focusing patterns, (b) distance of the final position from the channel centre and (c)
time average of T at the final position for κ = 0.2. Each dataset is calculated for each Re and Ca from three
initial positions: (y∗

0 , z∗
0) = (0.0625, 0.03125), (0.3125, 0.03125), (0.3125, 0.28125). Each symbol represents

a focusing position: circles for CEP, squares for MEP, diamonds for DEP and triangles for IEP. Each coloured
region corresponds to a focusing pattern: (A) CEP, (B) DEP, (C) MEP and (D) MEP + DEP.

on the pSS ring. This focusing position may correspond to the equilibrium position called
the intermediate equilibrium position (IEP) by Esposito et al. (2022). Their numerical
analyses showed that hyperelastic particles suspended in square channel flows migrate to
the IEP between the midline and the diagonal (eight equilibrium positions in the whole
cross-section) in a rather wide range of parameters. In the present study, it is practically
difficult to determine whether the particle’s intermediate position is a focusing position
or a transient one. This is mainly because the lateral migration in the second phase is
generally slow as seen in figure 9, and it becomes extremely slow near the transitions
between different focusing positions.

To avoid ambiguity, we performed the computation in fixed time steps of 4 × 106 at a
constant CFL = 0.0625, starting from several initial positions of the particle for various Re
and Ca at κ = 0.2. Each final position is classified into four types as follows: CEP when
the final position is located within 0.05D from the channel centre, MEP or DEP when the
azimuthal angle of the final position from the midline or diagonal is within ±π/30, and
IEP for the rest. When the final position is categorised as the IEP, the extra computation
of 3 × 106 steps is conducted and its final position is checked again according to the above
criteria. This procedure is repeated as far as the final position is categorised as the IEP, up
to the total time steps of 2.2 × 107. The computational time t∗ = tU/D for 2.2 × 107 time
steps depends on Uprop (which is primarily determined by Re and Ca) under the constant
CFL number, with the maximum t∗ ∼ 1.029 × 104 for Re = 50 and Ca = 0.02, and the
minimum t∗ ∼ 1.359 × 103 for Re = 1 and Ca = 0.004.

The results of such a classification with three initial positions (y∗
0 , z∗

0) = (0.0625,

0.03125), (0.3125, 0.03125) and (0.3125, 0.28125) are shown in figure 10(a), in which
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three symbols representing the type of the final positions are superimposed at each point
in the parameter space for 1 � Re � 102 and 4 × 10−3 � Ca � 3 × 10−2. When three
symbols are identical (in most of these cases, the three final positions are very close to
each other), it is highly suggested that the final position represents a stable equilibrium
position or a focusing position observed in the experiment. Such cases consist of a single-
point focusing at the CEP (pattern A, area coloured yellow in figure 10a), four-point
focusing at the DEP (pattern B, area coloured green) and four-point focusing at the MEP
(pattern C, area coloured blue). In the parameter space between patterns (B) and (C) for
Ca � 10−2 highlighted in orange, a bistable state of the DEP and MEP is suggested. This
focusing pattern, corresponding to the pattern for La = 120 in figure 8(b), is referred to as
pattern (D). In uncoloured areas near the edge of coloured areas, where transitions between
different focusing patterns are expected, the IEP (triangles) is observed together with other
symbols. This indicates that all three final positions do not converge to a single point in
the current computational time. Although single or multiple stable states of equilibrium
positions (CEP, DEP, MEP and IEP) may be reached after much longer computations, it
is currently hard to identify the focusing pattern in these areas. As far as examined in the
present study, we do not observe a sole focusing pattern at the IEP. This is a significant
difference from the results of Esposito et al. (2022), as discussed later.

The effect of particle deformability is dominant and that of inertia is small in the upper
left of figure 10(a), and vice versa in the lower right. From top left to bottom right,
coloured areas sequentially represent patterns (A), (B) and (C). There is an area of pattern
(D) between patterns (B) and (C). A notable feature in figure 10(a) is that the boundary
between patterns (A) and (B) lies approximately on a straight line with La = 8, which is
related to the stability of the CEP. Similarly, the stability of the DEP may be changed on
another line with La ∼ 200. The implication of the former is discussed in § 3.3. The latter
is beyond the scope of the present study and will be left for future work.

We consider the transitions of the particle focusing pattern shown in figure 10(a), based
on the effects of inertia and particle deformation. As noted in § 1, the inertial lift consists
mainly of the shear gradient-induced lift, acting in the direction towards higher shear, and
the wall effect, acting in the direction away from the channel wall. In the square cross-
section, the direction of the shear gradient-induced lift is mostly outwards in the radial
direction and towards the y- or z-axis (midlines) in the azimuthal direction. Thus, rigid
particles are focused on the midlines (MEP) at finite Re and small Ca (pattern C). On the
other hand, if the particle deformation-induced lift is exerted on hyperelastic particles in
the direction towards lower shear, as noted already, then its direction is nearly opposite to
the shear gradient-induced lift, i.e. mostly inwards and towards the diagonal in the square
cross-section. As a result, more deformable particles tend to focus on the diagonal (DEP)
rather than on the midline (MEP), and their focusing positions approach the channel centre
(CEP), as seen in figure 10(a). Thus, an increase in the deformation-induced lift directed
towards lower shear accounts for the transition of the focusing pattern from pattern (C)
through (B) to (A) shown in figure 10(a).

Figures 10(b) and 10(c) depict the distance of the final position from the channel centre
and the average of the Taylor deformation parameter T during the last 50 000 steps,
respectively. Figure 10(b) clearly shows that, at constant Re, all of MEP, DEP and IEP
approach the channel centre with decreasing La. This indicates that the final positions of
more deformable particles approach closer to the channel centre. All curves for the DEP
roughly collapse onto a single curve, which is similar to the feature observed for capsules
(Schaaf & Stark 2017). Figure 10(b) shows that this is also almost true for the MEP, and
that the master curve for the MEP is located below the DEP master curve. Additionally,
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Krüger et al., (2014)

Ca = 0.004
Ca = 0.010
Ca = 0.020
Ca = 0.030

0.4

Re (–)
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0

Ca′ = 0.3
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Ca′ = 0.003
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100 101 102

r∗ e (
–
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Figure 11. Distance of the final position from the channel centre. Coloured plots show results for particles in
the present study, and black markers represent capsule data from Krüger et al. (2014b)(κ = 0.2).

the DEP appears only for La � 8, below which the focusing position is changed to the
channel centre (CEP), as expected from figure 10(a).

Figure 10(c) shows that T at the final position increases with increasing La up to several
tens, and then gradually decreases at each Re. Considering that La provides a measure
of the impact of inertia relative to particle deformation, a decrease in T with increasing
La seems reasonable. The inverse trend for small La is explained by the fact that more
deformable particles tend to approach closer to the channel centre, where smaller shear
rates cause smaller deformation.

Recently, Esposito et al. (2022) reported focusing patterns of hyperelastic particles for
κ = 0.2 in wider ranges of Re and Ca. They found four types of particle focusing patterns,
among which patterns (A) and (C) are consistent with the present study. Each of patterns
(A) and (C) appears in a similar range of Re and Ca in figure 10(a), whereas in their
study, the focusing on the IEP emerges in the range where patterns (B) and (D) appear in
the present study, and pattern (B) does not appear in the present range of 1 � Re � 102 and
4 × 10−3 � Ca � 3 × 10−2. Esposito et al. (2022) never found pattern (D) in their whole
range of parameters. These discrepancies may be due to the different models used for
the particles: the particles in the present study are viscoelastic, but those in their models
include no viscosity. Differences in the criteria used to categorise the focusing positions
may also be possible causes of the discrepancies.

As deformable particles, capsule models have been often adopted in numerical
simulations to study inertial migration. Among these studies, Krüger et al. (2014b)
investigated the rheological properties of a capsule suspension in the pressure-driven
flow between two infinite parallel plates (Misbah 2014). At a low volume fraction of
particles, they demonstrated that the lateral equilibrium position of the capsules increases
with increasing Re up to 45 (corresponding to ∼60 in the present definition of Reynolds
number), followed by a decrease, as shown in figure 11. Figure 11 replots the present results
of the final lateral position r∗

e shown in figure 10(b) as a function of Re for various Ca,
superimposing the results of Krüger et al. (2014b). In their study, the capillary number Ca′
is defined as the ratio of a typical shear stress magnitude to a characteristic elastic particle
stress κs/a, where κs and a represent the shear elasticity of the capsule membrane and the
radius of the undeformed capsule, respectively. Figure 11 demonstrates that each plot at a
constant Ca or Ca′ exhibits a similar upward convex property, although the hyperelastic
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particles show a gradual decrease in r∗
e at Re > 40 only for cases with larger Ca(� 0.02).

For the hyperelastic particles with smaller Ca, r∗
e drops sharply at Re ∼ 40 due to the

transition of stable equilibrium position from the DEP to the MEP (see figure 10a).
Additionally, both particles exhibit the trend that r∗

e at constant Re is smaller for larger
Ca, implying that more deformable particles tend to focus closer to the channel centre.

For capsules in a confined square channel, Schaaf & Stark (2017) reported capsule
migration behaviour in the same geometry. Although strict quantitative comparisons are
not possible due to differences in the deformation metrics used to characterise particle
stiffness (in terms of La and Ca), their results show behaviour broadly similar to our
findings for viscous hyperelastic particles. As shown in figures 3(b) and 3(d) of Schaaf &
Stark (2017), which correspond to our results at Re ∼ 5 and 50, respectively, the changes in
focusing patterns exhibit nearly the same trends. Capsules migrate towards the CEP at low
La, and the focusing positions transition from the DEP to the MEP with increasing La.
Regarding the migration velocity, a two-phase migration property is also observed, with
softer capsules migrating faster, consistent with the elastic particle results in figure 9. The
primary difference lies in the bistable state between the DEP and MEP. This bistability is
likely absent in the results of Schaaf & Stark (2017) because they computed trajectories
from a single initial position, whereas capturing bistability requires simulations from at
least two distinct initial positions. Another difference is the dependence of r∗

e and T on
La, shown in figure 10(b, c). Schaaf & Stark (2017) reported a critical Laplace number
Lac ∼ 1 for capsules with κ = 0.2 to move away from the CEP and noted that Lac changes
sensitively with Re. In contrast, our results indicate Lac ∼ 8 without clear dependence on
Re within the low-Re regime as shown in figure 10(b). Additional details are provided in
figures S2 and S3 in the Supplementary material.

In some cases in the present study, identifying the equilibrium position of the particle
is very difficult, mainly due to their extremely slow migration in the second phase. This
difficulty is unavoidable when the equilibrium position is determined from the calculation
of trajectories. Instead of calculating trajectories, Schaaf & Stark (2017) estimated the lift
exerted on a capsule by applying an adjustable force evenly distributed over all the mem-
brane vertices to hold the capsule in place. By evaluating the external force to compensate
the lift for various prescribed positions of the capsule, they obtained the lift map and de-
termined the equilibrium position where the lift vanishes. In the present study, however, it
is difficult to apply this method to the hyperelastic particles and thus to obtain the lift map.

3.3. Discussion of the stability of the channel centre
The phase diagram (figure 10a) suggests that the boundaries of focusing patterns appear
to be formed along lines of constant La. Here, La is defined by the ratio of Rep to Ca,
indicating that both inertia (Rep) and deformation (Ca) influence the transition of the
focusing positions. This trend becomes even more apparent in the phase diagram plotted
using (Re, La) coordinates, as shown in figure S4 of the Supplementary material. In the
following, we first explain why La serves as the characteristic scaling parameter for this
phenomenon. Then, with the aid of additional numerical simulations, we present a semi-
analytical discussion of the transition between CEP and DEP near the line of La = 8 using
an asymptotic expansion of the forces acting on the particle, with Rep and Ca as perturbed
parameters.

3.3.1. Asymptotic expansion
Cox & Brenner (1968) applied matched asymptotic expansions to predict the migration
of rigid spheres in Poiseuille flow with low Re. This approach was extended to include
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inertial effects on the lateral migration of a neutrally buoyant rigid sphere in a Newtonian
fluid, through an asymptotic expansion in terms of Re (Ho & Leal 1974; Hood, Lee &
Roper 2015). For deformable drops, Chan & Leal (1979, 1981) applied perturbation
methods and the reciprocal theorem to analyse deformation-induced migration. The
effects of inertia and deformation on the lateral migration of bubbles near a wall were
experimentally investigated by Takemura et al. (2002), and theoretically analysed by
Magnaudet, Takagi & Legendre (2003) through a perturbation expansion in terms of the
Galileo and Bond numbers. Sugiyama & Takemura (2010) also performed an asymptotic
expansion in terms of Ca to analyse the lateral migration of slightly deformed bubbles
rising near a wall, complementing the previous work by Magnaudet et al. (2003).

Using such an asymptotic expansion, the force acting on an slightly deformable sphere
can be expressed as

F = μdU f (y, z)ex − μd D · u + RepμdU f I + CaμdU fD + o
(
Rep

) + o (Ca) . (3.1)

The first and second terms represent the force on a rigid sphere in a creeping flow. The
third and fourth terms correspond to the first-order terms of inertial lift and deformation-
induced lift, respectively, expanded in terms of Rep and Ca. Here, f (y, z) is the force
coefficient dependent on the cross-sectional position, D is the drag coefficient matrix, and
f I and fD are the dimensionless vectors representing the inertia and deformation-induced
forces, respectively.

For small Rep and Ca, the cross-sectional components (denoted by the ⊥ symbol) of
the force can be expressed as

F⊥ = −μd D⊥ · u⊥ + RepμdU f ⊥
I + CaμdU f ⊥

D . (3.2)

The particle is at the equilibrium position, provided that

F⊥ = 0, u⊥ = 0, (3.3)

from which, (3.2) becomes

La f ⊥
I + f ⊥

D = 0, (3.4)

where La = Rep/Ca is the Laplace number. Since f I and fD are functions of the cross-
sectional coordinates and the blockage ratio κ , (3.4) indicates that La determines the
particle’s equilibrium positions. Once f I and fD are known, we may evaluate La at
the equilibrium position. Subsequently, we shall demonstrate that (3.4) accounts for the
change of the focusing pattern from the CEP to the DEP beyond La ∼ 8 in figure 10(a).
Upon decomposing (3.2) on the polar coordinates with the origin at the channel centre, we
consider the following relation between the radial force Fr and velocity ur of the particle
near the origin:

Fr = −μd Drr ur + RepμdU fIr + CaμdU fDr. (3.5)

In § 3.3.2, we estimate fIr from numerical simulations for a rigid sphere (Ca = 0) at
finite Re. In § 3.3.3, we estimate fDr from simulations for a hyperelastic particle (finite
Ca) at Re = 0. In § 3.3.4, we examine the stability of the CEP.

3.3.2. Rigid sphere fixed within the cross-section
Di Carlo et al. (2009) computed the inertial lift force by simulating a fixed rigid particle
within the cross-section using COMSOL Multi-physics. They expressed it in a dimension-
al form as FI = ρU 2d2κ f I = μdURep f I , where f I is a function of the particle position.
Nakagawa et al. (2015) also investigated the lateral migration of rigid spheres using the
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Figure 12. Force profile acting on a particle fixed at (yp, z p) with Re = 40, Ca = 0 and κ = 0.22, along three
lines: (red squares) the midline z p/yp = 0, (green triangles) the diagonal line z p/yp = 1.0 and (blue triangles)
the intermediate line z p/yp = 0.5. The case of z p/yp = 0 is compared with the previous studies: (grey circles)
Di Carlo et al. (2009) and (grey diamonds) Nakagawa et al. (2015). (Inset) Fitting functions of a fifth-degree
odd polynomial and linear fits with slopes of the first-degree coefficients.

immersed boundary method and clarified the stability of equilibrium positions through
simulations of both fixed and moving particles. Following the approach of Nakagawa
et al. (2015), we employ the immersed boundary method (detailed in Appendix A) for
the numerical simulation of a rigid sphere, which freely moves in the streamwise direction
and rotates in all the directions but rests at the cross-sectional position.

For a rigid sphere fixed within the cross-section (ur = 0, fDr = 0), (3.5) becomes

Fr = RepμdU fIr. (3.6)

Computing Fr along the straight lines across the centre within the cross-section, we
estimate radial profiles of fIr based on (3.6), as shown in figure 12. Each coloured symbol
represents the results along the midline (z p/yp = 0), the diagonal line (z p/yp = 1.0) and
the intermediate line (z p/yp = 0.5), where (yp, z p) is the particle’s centre of mass. The
grey marks represent the results of Di Carlo et al. (2009) and Nakagawa et al. (2015)
at z p/yp = 0, showing good agreements with the present results. We also simulated the
moving particles and verified the particle motion towards the equilibrium point of fIr = 0.
In all the cases, the particles near the channel centre migrated outwards, implying the
instability of the CEP pattern as expected from figure 12. The solid lines represent odd
polynomial fits (up to the fifth degree) of the discrete points near the origin (0 � r∗ �
0.25). The dashed lines indicate linear fits with slopes a1 corresponding to the first-order
coefficients of the fitted functions. The force approximately increases along these linear
lines, which are nearly identical. Thus, we obtain

fIr = Fr

ρU 2d2κ
≈ a1r∗, a1 ≈ (1.238 ± 0.003) at r∗ � 1. (3.7)

3.3.3. Deformable particle in Stokes flow
The deformation-induced force fDr in (3.5) is estimated by computing a hyperelastic
particle moving in the Stokes flow. Assuming the quasi-steady motion of the particle
(namely, Fr = 0) and employing Stokes’s law (Drr = 3π) in an infinite domain with
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Figure 13. (a) Trajectories of the centroid of hyperelastic particles for Re = 0, Ca = 0.01 and κ = 0.2 with
initial positions y∗

0 = 0.375, z∗
0 = 0.03125, 0.125, 0.25, 0.375. Circles indicate the initial positions, and crosses

mark the end points of the calculation. (b) Velocity distributions of deformable particles in Stokes flow under
the same conditions of panel (a). Dash-dotted lines indicate fifth-degree odd polynomial fits, while dotted lines
represent linear approximations using the first-degree coefficients. The fitting range is r∗ ∈ [0 : 0.3].

Re = 0, (3.5) becomes

0 = −3πμdur + CaμdU fDr . (3.8)

From (3.8), fDr is determined using the particle velocity u∗
r , namely

fDr = 3π

CaU
ur = 3π

Ca
u∗

r

(
∵ ur = Uu∗

r

)
. (3.9)

The distribution of u∗
r is found as the numerical solution to the equation set (2.2)–(2.5),

where the left-hand side of (2.3) is omitted. The numerical simulations were conducted
for seven initial positions given by y∗

0 = 0.375, z∗
0 = 0.03125, 0.0625i (i = 1, 2, . . . , 6)

and three capillary numbers Ca = 0.005, 0.01, 0.015. Figure 13 shows typical results
of the particle trajectory and velocity. In all the cases, the particles migrate towards the
channel centre, exhibiting the CEP pattern as expected (figure 13a). It is seen from the
inset of figure 13(b) that the plots for different initial positions are likely to collapse
onto a single line near the origin. By fitting the plots of u∗

r versus r∗ with a fifth-order
polynomial (odd polynomial up to degree 5) and approximating it near the centre (r∗ � 1),
the dimensionless velocity can be expressed as

u∗
r ≈ b

′
1r∗, (3.10)

with b
′
1 = 1.07 × 10−2 for Ca = 0.01. The asymptotic expansion in § 3.3.1 supposes that

fDr in (3.9) is independent of Ca and dependent only on r∗ near the origin for given κ .
Introducing b1 = b′

1/Ca gives

fDr = 3π

Ca
b

′
1r∗ = 3πb1r∗. (3.11)

We find b1 = 1.07 for Ca = 0.01, b1 = 0.863 for Ca = 0.005, and b1 = 1.12 for Ca =
0.015. Thus, b1 remains nearly constant, specifically

b1 = −(1.02 ± 0.14). (3.12)
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3.3.4. Stability of CEP
Substituting (3.7) and (3.11) into (3.5) with ur = 0 gives

Fr ≈ CaμdU
(
Laa1r∗ + 3πb1r∗) . (3.13)

Note that a1 has a positive value, indicating that the inertial force drives the particle away
from the channel centre, while b1 has a negative value, resulting in the particle migrating
towards the centre. Equations (3.3) and (3.13) indicate that the particle is at the equilibrium
position if r∗ = 0 or Laa1r∗ + 3πb1r∗ = 0. Here, we consider a particle located slightly
offset from the channel centre. In the case where Laa1r∗ + 3πb1r∗ < 0, the radial force Fr
is negative and, therefore, the particle migrates towards the centre r∗ = 0, corresponding
to the equilibrium position. By contrast, in the case where Laa1r∗ + 3πb1r∗ > 0 (namely
Fr > 0), the particle migrates away from the centre. Therefore, together with Fr = 0, we
find the critical Laplace number Lac:

Lac = −3πb1

a1
= 7.75 ± 1.05, (3.14)

beyond which the CEP pattern becomes unstable. This critical value in (3.14) shows a good
agreement with the boundary at La ∼ 8 in figure 10(a), indicating that the asymptotic
expansion explains the transition of the particle focusing between the CEP and DEP
regions.

4. Conclusions
In the present study, we used hydrogel microspheres as deformable particles to investigate
experimentally the inertial migration of deformable particles flowing through square
channels. The experiments have shown that at finite Re(� 5), hydrogel particles with
blockage ratio of 0.1 focus near four points located on the diagonals, which indicates the
presence of stable equilibrium positions on the diagonal (DEP). As Re decreases, the
particle focusing position moves inwards until the particles focus on the channel centre
(CEP), i.e. axial accumulation, at low Re (= 0.1). Corresponding numerical simulations
using viscous hyperelastic particles predicted that Young’s modulus of these hydrogel
particles would be ∼3.1 kPa, slightly smaller but comparable to extrapolations from
previously reported values. Additionally, two-phase migration property observed for
hydrogel particles was reproduced by the numerical simulation for hyperelastic particles
at finite Re; particles move rather quickly mostly in the radial direction towards the pSS
ring in the first phase, followed by a slow migration along the pSS ring towards stable
equilibrium positions in the second phase.

Furthermore, the numerical simulations for hyperelastic particles with a larger blockage
ratio (= 0.2) showed that, as the particles become more deformable, their focusing pattern
shifts from four-point focusing on the MEP (pattern C), to eight-point focusing on the
MEP and DEP (pattern D), to four-point focusing on the DEP (pattern B), and to single-
point focusing on the channel centre (pattern A). The particle focusing positions approach
the channel centre with increasing particle deformability. These transitions of the particle
focusing pattern can be accounted for by an increase in the particle deformation-induced
lift, acting towards the lower shear.

In addition, we confirmed that the migration behaviour observed for hydrogel particles
qualitatively agrees with previously reported capsule migration (Krüger et al. 2014b;
Schaaf & Stark 2017). While quantitative comparison is complicated by differences
in deformation metrics and particle models, key features such as the two-phase
migration process and the transition of focusing patterns with particle deformability show
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remarkable qualitative similarity. Notably, both studies observe particle focusing moving
towards the channel centre with increasing deformability, and a corresponding variation
in equilibrium positions depending on flow conditions. In the present study, we have
constructed a phase diagram showing the particle focusing patterns as a function of Re
and Ca (and Re and La in the Supplementary material).

Moreover, our study extends these findings by performing detailed stability analyses
and theoretical modelling through asymptotic expansions with two perturbed parameters,
Rep and Ca, suggesting that the equilibrium position is governed by the balance between
inertial lift and deformation-induced lift. Extra numerical simulations were performed to
examine the stability of the CEP, and the predicted critical value from the theoretical
analysis showed good agreement with the boundary of CEP and DEP regions in the phase
diagram. The boundary between the DEP and MEP at high Re (or higher La ∼ 200 in
figure 10a) is difficult to analyse using asymptotic expansions, as the assumptions of small
Rep and Ca no longer hold. Additionally, further investigation is required to clarify why
deformable particles tend to migrate towards the DEP at low Re, whereas rigid particles
focus at the MEP under similar conditions. These two points/issues are beyond the scope
of the present study and are left for future work.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10574.
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Appendix A.
The numerical simulations of neutrally buoyant rigid particle were conducted using the
immersed boundary method (IBM) based on Kajishima et al. (2001). The rigid density is
the same as the fluid one. Here, we will outline the numerical algorithm applicable only
when the particle is spherical and the density ρ is spatially uniform and time-invariant.

The governing equations are

∇ · u = 0, (A1)

ρ
Du
Dt

= ∇ · σ + f p, (A2)

where D/Dt = ∂/∂t + u · ∇ is the material derivative, and f p is the body force for
coupling the rigid and fluid motions. Note that although we use the method to fix the
x-coordinate of the particle centroid in the computational space as described in § 2.3, we
here write equations of the physical space in the inertial coordinates (where the particle
freely moves) for simplicity of explanation. Additionally, the stress tensor σ includes the
influence of driving pressure dp/dxdrive. The IBM consists of two sequential procedures
in the progression from the nth time step to the (n + 1)th one.

In the first procedure, the entire domain is regarded as a fluid. To satisfy (A1) and (A2)
with f p = 0, the velocity û is found by the SMAC algorithm

ũ = un + �t

(
−3

2

(
u · ∇u

)n + 1
2

(
u · ∇u

)n−1 − 1
ρ

∇ pn

+ 1
ρ

{
3
2

(∇ · σ ′)n − 1
2

(∇ · σ ′)n−1
})

, (A3)
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∇2δp = ρ

�t
∇ · ũ, (A4)

û = ũ − �t

ρ
∇δp, (A5)

where ũ is the unprojection velocity, δp = pn+1 − pn is the pressure increment and
σ ′ = σ − tr(σ )I/3 is the deviatoric stress tensor. In (A3), the second-order Adams–
Bashforth (AB2) scheme is applied to u · ∇u and ∇ · σ ′.

In the second procedure, the rigid and fluid motions are coupled. The AB2 scheme
updates the particle centroid position x p in a way,

xn+1
p = xn

p + �t

(
3
2
vn

p − 1
2
vn−1

p

)
, (A6)

where v p denotes the translational velocity of the particle. To have the same smoothness
across the interface as the present fluid-structure interaction simulation (see § 2.3), the
rigid volume fraction α at the location x is given by

α = 1
2

(
1 − tanh

β(|r p| − d/2)

�x

)
, (A7)

where r p = x − x p is the relative position vector to the particle centroid, d is the sphere
diameter and β(= 2) is the sharpness parameter relative to the grid width �x . From (A2)–
(A5), un+1 is determined as

un+1 = û + �t

ρ
f p. (A8)

To impose the rigid motion inside the particle, the coupling force f p in (A8) is

fp = αn+1ρ
un+1

p − û

�t
, (A9)

where un+1
p is the particle velocity at the (n + 1)th time step given by

un+1
p = vn+1

p + ωn+1
p × rn+1

p , (A10)

where ωp denotes the rotational velocity of the particle. In the subsequent development,
we will clarify how to identify vn+1

p and ωn+1
p . The equations of motion for the spherical

particle are

m p
dv p

dt
=

∮
Sp

np · σdS, (A11)

I p · dωp

dt
=

∮
Sp

r p × (np · σ )dS, (A12)

where m p(= πρd3/6) is the particle mass, Sp is the particle surface, np is the outward
unit normal vector on the surface and I p(= πρd5 I/60) is the inertia tensor. As long as
the grid resolution is sufficiently fine, the rigid volume fraction α possesses the nature of
the Heaviside function, and thus m p and v p may be written as

m p = ρ

∫
V

α dV, v p =
∫

V αudV∫
V αdV

=
∫

V αupdV∫
V αdV

, (A13)
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where V is the volume of the entire domain. To be treated in the IBM, (A11) is
approximated with the grid scale smoothness. Introducing a smoothed delta function
δ = |∇α|, which is non-zero only near the interface, we express the normal vector np
and the surface integral as

np = −∇α

δ
,

∮
Sp

. . . dS =
∫

V
. . . δ dV . (A14)

From (A14), an arbitrary tensor T satisfies∮
Sp

np · TdS = −
∫

V
∇α · TdV = −

∫
V

∇ · (αT ) dV +
∫

V
α∇ · TdV . (A15)

Applying the divergence theorem to the first term on the right-hand side of (A15) gives∫
V

∇ · (αT ) dV =
∮

∂V
n · (αT )dS = 0. (A16)

Here, we supposed no particle (i.e. α = 0) on the boundary ∂V of the entire domain. From
(A2), (A15) and (A16), the right-hand side of (A11) is rewritten in a volume integral form∮

Sp

np · σ dS =
∫

V
α∇ · σ dV =

∫
V

αρ
Du
Dt

dV −
∫

V
α f p dV . (A17)

Using the conservation of the volume fraction Dα/Dt = 0 and the Lagrangian time
derivative d/dt = ∂/∂t + v p · ∇ along the particle centroid together with (A1), the first
term on the right-hand side of (A17) becomes∫

V
αρ

Du
Dt

dV = ρ

∫
V

d(αu)

dt
dV + ρ

∫
V

∇ · (
α(u − v p)u

)
dV︸ ︷︷ ︸

=0

. (A18)

On the right-hand side of (A18), the first term may be written as

ρ

∫
V

d(αu)

dt
dV = ρ

d
dt

∫
V

αu dV (A19)

owing to the time-invariance of the domain in the inertial coordinates. Further, the second
term vanishes because of (A16). The relations f p �= 0 and α = 1 are valid only inside the
particle. Therefore, the translational motion equation (A11) with (A13) and (A17)–(A19)
reduces into ∫

V
f p dV = 0. (A20)

From (A9), (A13) and (A20), we arrive at the expression of the translational velocity at
the (n + 1)th time step

vn+1
p =

∫
V αn+1un+1

p dV∫
V αn+1 dV

=
∫

V αn+1ûdV∫
V αn+1 dV

. (A21)

Through a similar process to the derivation of (A20), the rotational motion equation (A12)
reduces into ∫

V
rn+1

p × f p dV = 0. (A22)
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From (A9), (A10) and (A22), we can express the i th component of the rotational velocity
at the (n + 1)th time step in Einstein’s index notation

ωn+1
p,i =

∫
V αn+1(εi jkrn+1

p, j ûk
)

dV∫
V αn+1

(∣∣rn+1
p

∣∣2 − (
rn+1

p,i

)2) dV
(no sum. with respect to i) , (A23)

where εi jk denotes the Levi–Civita symbol. The expressions (A10), (A21) and (A23)
indicate that the velocity un+1

p of the neutrally buoyant particle depends only on û , xn+1
p

and αn+1 (which are given by (A5), (A6) and (A7), respectively), and is identified without
time-integral operation for v p and ωp. Once these quantities are known, we can determine
the coupling force f p by (A9) and update un+1 by (A8).

In the numerical simulation with the rigid sphere fixed within the cross-section in
§ 3.3.2, the particle obeys (A22) and freely rotates. Further, it freely translates in the x-
direction despite ey · v p = 0 and ez · v p = 0. For such a translational motion, the reduced
equation is

ex ·
∫

V
f p dV = 0. (A24)

Thus, xn+1
p , αn+1, vn+1

p , ωn+1
p , f p and un+1 are determined in the above-mentioned

manner except that (A21) is replaced with

vn+1
p = ex

∫
V αn+1ex · û dV∫

V αn+1dV
. (A25)

In the steady state with dv p/dt = 0, from (A13), (A17)–(A19) and (A24), we may estimate
the cross-sectional force F⊥ (see § 3.3.2) as

F⊥ = P⊥ ·
∮

Sp

np · σ dS = −P⊥ ·
∫

V
f p dV = −

∫
V

f p dV, (A26)

where P⊥ = I − ex ex is the projection tensor onto the cross-section.
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