
J. Appl. Probab. 1–24 (2025)
doi:10.1017/jpr.2025.10030

LIMIT THEOREMS FOR THE NUMBER OF CROSSINGS AND STRESS IN
PROJECTIONS OF A RANDOM GEOMETRIC GRAPH
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Abstract

We consider the number of edge crossings in a random graph drawing generated by
projecting a random geometric graph on some compact convex set W ⊂R

d , d ≥ 3, onto
a plane. The positions of these crossings form the support of a point process. We show
that if the expected number of crossings converges to a positive but finite value, this point
process converges to a Poisson point process in the Kantorovich–Rubinstein distance.
We further show a multivariate central limit theorem between the number of crossings
and a second variable called the stress that holds when the expected vertex degree in the
random geometric graph converges to a positive finite value.
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1. Introduction

We consider the random geometric graph (RGG) generated in a compact convex set W ⊂R
d

with d ≥ 3 and volume one. The vertices of the graph are defined by a homogeneous Poisson
point process on W with intensity t. Two vertices v and w are connected by an (undirected)
edge {v, w} whenever ‖v − w‖ ≤ rt, where ‖ · ‖ denotes the Euclidean norm.

To visualize this graph, we embed its vertices into R
2 and connect each pair with a line

whenever an edge exists, in which case it is likely that some lines need to cross. A straight-
line drawing with few edge crossings tends to be the most aesthetically pleasing, see [14].
The minimum number of crossings in such a drawing is called the rectilinear crossing number.
Finding this number is a classical problem in graph theory where a lot is still unknown, see for
example [7, 12], or the survey in [15].

We can naturally extend this problem to random graphs by studying the crossing number of
a random graph or the number of crossings in a random drawing of a graph. In [12, 18], the
expectation of the crossing number of an Erdös–Rényi random graph as well as concentration
inequalities are derived, and a generalization to k-planarity is considered in [3]. An extension
to weighted Erdös–Rényi random graphs is studied in [10], where the Bernoulli weight for the
presence of an edge is given by independent and identically distributed random variables for
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2 H. DÖRING AND L. DE JONGE

FIGURE 1. Projection of a graph in R
3 onto a plane.

each edge. [1, 2] study the number of crossings of a fixed graph G whose vertices are randomly
placed in convex position. They prove a central limit theorem using Stein’s method.

In this paper we study a setting introduced in [4], an RGG where the graph drawing is
created by projecting the vertices and edges onto a plane, as shown in Figure 1. Compared
to the methods of drawing the graph used by [1, 2, 11], this method has the advantage that it
preserves some of the geometric properties of the original graph. We refer to the number of
edge crossings as the crossing number of the projection, or simply ‘crossing number’ when
its meaning is clear from the context. By construction it serves as an upper bound for the
rectilinear crossing number of the original RGG in W.

The connection between the crossing number of a projection and another quantity called
stress was studied in [4]. The stress is a measure of how much the distances between vertices
in the original graph and vertices in its drawing differ. In the context of projected random
geometric graphs, it makes sense to consider the Euclidean distance between vertices in R

d and
in the projection so that the graph stress is low when projecting barely changes the distances
between vertices. However, if two vertices that are far away in R

d are close to each other in
the projection, the stress is high. Empirical evidence suggests that drawings with low stress
also tend to have fewer crossings. This is supported by [4], where it is shown that there indeed
exists a positive correlation between stress and the crossing number in the model described
above.

This paper extends the results from [4] by proving a multivariate central limit theorem for
the crossing number and stress. Additionally, we show that the point process of edge inter-
sections converges to a Poisson point process when rt is chosen to decrease at an appropriate
speed as t tends to infinity.

It is easy to see that the expected degree of a randomly chosen vertex in the random geomet-
ric graph is of order trd

t . Based on this, we distinguish between the three regimes introduced
in [13]:

(i) sparse regime: limt→∞ trd
t = 0 implies that the expected degree tends to zero as t goes

to infinity;

(ii) thermodynamic regime: limt→∞ trd
t = c ∈ (0, ∞) implies that the expected degree

converges to some positive but finite constant;

(iii) dense regime: limt→∞ trd
t = ∞ implies that the expected degree tends to infinity.

The expected crossing number of the projection is of order t4r2d+2
t (see [4, Theorem 1]).

For the convergence to a Poisson point process we consider a part of the sparse regime where
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Limit theorems for projections of random geometric graphs 3

the expected crossing number of the projection tends to a positive but finite value, which is
when t2rd+1

t → c ∈ (0, ∞) as t tends to infinity. For the multivariate central limit theorem, we
focus on the thermodynamic and the dense regime, for which the expected crossing number of
the projection tends to infinity.

The study of the crossing number in random graphs is not only mathematically an interest-
ing problem. As argued in [4], the number of crossings in the projection in the sparse regime is
indeed with high probability only a constant factor away from the rectilinear crossing number
of the RGG. Therefore, the projection provides an algorithm for drawing a graph with low
crossing number. Limit theorems with rates of convergence are decisive for determining the
approximation error in this algorithm.

The structure of this paper is as follows: Section 1.1 introduces the mathematical definitions
and notation. Then, the convergence to a Poisson point process and the central limit theorem
are stated, which are then proved in Sections 2 and 3 respectively. The convergence to a Poisson
point process is an application of a limit result for Poisson U-statistics proved using Stein’s
method and the Malliavin formalism in [6]. The main difficulty in Section 2 is to derive uniform
bounds on the intensity measure of the point process of crossings. In Section 3, we prove good
bounds on the first- and second-order difference operators to apply a multivariate limit theorem
for a vector of Poisson functionals from [17].

1.1. Definitions and statements of results

Let λn for n ≥ 1 denote the n-dimensional Lebesgue measure. Our observation window
W ⊂R

d with d ≥ 3 is a convex body such that λd(W) = 1. Let ηt be a Poisson point process
on W with intensity t > 0. Then Eηt(W) = t since the volume of W is one. The support of ηt

defines the vertex set V of the random geometric graph G = (V, E) with

E = {{v, w} : v, w ∈ V and ‖v − w‖ ≤ rt}
for some parameter rt going to zero as t tends to infinity. Here, ‖ · ‖ denotes the Euclidean
norm. We denote the line segment between two points v, w ∈R

d by [v, w]. Note that no points
exist outside of W, meaning that none of the edges cross the boundary of W. Almost surely,
vertices are not projected on other vertices or edges.

The orthogonal projection of the graph onto a plane L is denoted by GL and is constructed by
projecting all vertices onto L and connecting the vertices by an edge whenever an edge exists
in G. The projection of a point v and a set A ⊂R

d are denoted by v|L and A|L := {v|L : v ∈ A}
respectively. We write WL := W|L for the projection of W onto L to avoid cumbersome notation.
The orthogonal complement of L is denoted by L⊥.

Two edges {v1, v2} and {w1, w2} between four distinct vertices cross in the projection if
[v1, v2]|L ∩ [w1, w2]|L �=∅. These intersections form the support of a point process ξt. Let

St := {(v1, v2, w1, w2) ∈ V4�= : ‖v1 − v2‖ ≤ rt, ‖w1 − w2‖ ≤ rt, [v1, v2]|L ∩ [w1, w2]|L �=∅}
be the set of quadruples of distinct vertices forming two crossing edges. Then

ξt(A) := 1

8

∑
(v1,v2,w1,w2)∈St

δ[v1,v2]|L∩[w1,w2]|L (A) (1)

counts the number of crossings in a Borel set A ⊂ L. The pre-factor prevents the double count-
ing of crossings. The crossing number of the projection is denoted ξt(L). The intensity measure
Lt of the point process is defined as Lt(A) :=Eξt(A).
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4 H. DÖRING AND L. DE JONGE

For all Borel sets A, the variable ξt(A) is a U-statistic of order four, meaning that it can
be written in the form ξt(A) =∑

(v1,v2,v3,v4)∈V4�=
f (v1, v2, v3, v4) for some symmetric function f

depending on A. Here we have

f (v1, v2, v3, v4) = 1

24

(
1(‖v1 − v2‖ ≤ rt, ‖v3 − v4‖ ≤ rt, [v1, v2]|L ∩ [v3, v4]|L ∩ A �=∅)

+ 1(‖v1 − v3‖ ≤ rt, ‖v2 − v4‖ ≤ rt, [v1, v3]|L ∩ [v2, v4]|L ∩ A �=∅)

+ 1(‖v1 − v4‖ ≤ rt, ‖v2 − v3‖ ≤ rt, [v1, v4]|L ∩ [v2, v3]|L ∩ A �=∅)
)
.

Since we consider three permutations of the vertices in each summand, the pre-factor from (1)
is divided by three, explaining the pre-factor 1/24.

Throughout this paper we let Bd(x, r) := {y ∈R
d : ‖x − y‖ ≤ r} denote the closed ball with

radius r around x, and Bd := Bd(0, 1) the unit ball around the origin. The balls B2(x, r) and B2
are always considered to lie in the plane L. The inner parallel set of a convex set K is denoted
by K−δ := {x : (x + δBd) ⊂ K}. We write f (x) =O(g(x)) as x → ∞ if there exist M > 0 and x0
such that |f (x)| ≤ Mg(x) for all x ≥ x0. We also write f (x) =Ox(g(x)) and omit the x → ∞.

Our first result concerns the distribution of crossings in the sparse regime. We show conver-
gence of ξt to a Poisson point process in the Kantorovich–Rubinstein distance. The definition
of this distance metric involves the total variation distance. For two finite measures μ1 and μ2
on the Borel sets B(L) of L, the total variation distance is defined as

dTV(μ1, μ2) := supA∈B(L) |μ1(A) − μ2(A)|.
The Kantorovich–Rubinstein distance is then the optimal transport cost between two probabil-
ity measures,

dKR(μ1, μ2) = inf
C∈�(μ1,μ2)

∫
dTV(ω1, ω2) C(d(ω1, ω2)),

where �(μ1, μ2) is the set of all couplings between μ1 and μ2, and we integrate over all σ -
finite counting measures on the underlying space. For two point processes ξ1 and ξ2 distributed
according to μ1 and μ2 respectively, we will write dKR(ξ1, ξ2) instead of dKR(μ1, μ2). By [6,
Proposition 2.1], convergence in dKR implies convergence in distribution.

The crossings in the RGG can also be studied in two dimensions without projection. In this
case, the definitions above can easily be adjusted by removing all mentions of the projection
onto L. The authors are not aware of results related to the distribution of these crossings and
therefore include the d = 2 case in the statement of the following theorem.

Theorem 1. (Convergence to Poisson point process.) Consider the projected RGG with inten-
sity t, dimension d ≥ 2, and radius rt such that t2rd+1

t → c > 0 as t → ∞, and let the edge
crossings form the support of the point process ξt, as defined in (1). Let ζ be a Poisson point
process on L with intensity measure M defined by

M(A) = 1

8
cdc2

∫
A

λd−2((v + L⊥) ∩ W)2 dv

for all Borel sets A ⊂ L, where cd = 8πκ2
d−2B(3, d/2)2 with B the beta function. Then

dKR(ξt, ζ ) =
{
Ot(

√
rt) +Ot(c2 − t4r6

t ) if d = 2,

Ot(rt) +Ot(c2 − t4r2d+2
t ) if d ≥ 3.

Convergence in distribution of ξt to ζ follows.
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The term Ot(c2 − t4r2d+2
t ) indicates that the rate of convergence of ξt to ζ depends on how

fast t2rd+1
t approaches its limiting value.

This theorem is proved in Section 2. The proof relies on [6, Theorem 3.1], which roughly
states that a U-statistic ξt converges to a Poisson point process if the intensity measure con-
verges in total variation distance and the difference between the expectation and the variance
of ξt(L) goes to zero.

Remark 1. A random projection plane L was also considered in [4], whereas we consider a
fixed plane. In the sparse regime described above, the limiting distribution of the crossing num-
ber would be a mixed Poisson distribution where the intensity is a random measure depending
on the orientation of L.

The second result concerns another quantity, called stress. Let d0 and dL be two distance
metrics on the vertices in a graph, then

stress(G, GL) := 1

2

∑
(v1,v2)∈V2�=

w(v1, v2)(d0(v1, v2) − dL(v1, v2))2,

where w is some weight function. We will denote the stress between two vertices by

S(v1, v2;V) := w(v1, v2)(d0(v1, v2) − dL(v1, v2))2.

The V indicates that S might depend on V \ {v1, v2}, which is the case if d0 or dL depends
on V . Without this dependence, the stress is a U-statistic, which is the assumption made in [4].

A natural choice for w is

w(v1, v2) = 1

d0(v1, v2)2
,

in which case

stress(G, GL) = 1

2

∑
(v1,v2)∈V2�=

(
1 − dL(v1, v2)

d0(v1, v2)

)2

.

For the RGG, it makes sense to let d0 be the Euclidean distance between points in R
d,

and dL the Euclidean distance in the projection. Note that in this case dL ≤ d0, from which
S(v1, v2;V) ∈ [0, 1] follows for all v1, v2 ∈ W.

The expectation and variance of the crossing number and stress, as well as the covariance
between the two quantities, have been calculated in [4] for the situation where the value of
S(v1, v2;V) only depends on the two vertices v1 and v2. An extension of their results to more
general stress functions can be found in Appendix A.

The known expressions for the variances and covariance can be used to transform the cross-
ing number of the projection, ξt(L), and the stress to have mean zero and bounded variance. In
Section 3, we use these results and [17, Theorem 1.1] to show a central limit theorem in the d3
distance, which is defined as follows.

Definition 1. Let H be the set of functions g : Rd →R admitting continuous partial derivatives
up to order three such that

max
1≤i1≤i2≤d

supx∈Rd

∣∣∣∣ ∂2

∂xi1∂xi2
g(x)

∣∣∣∣≤ 1 and max
1≤i1≤i2≤i3≤d

supx∈Rd

∣∣∣∣ ∂3

∂xi1∂xi2∂xi3
g(x)

∣∣∣∣≤ 1.

Then, for two random variables X and Y such that E‖X‖2 < ∞ and E‖Y‖2 < ∞, we define

d3(X, Y) := supg∈H |Eg(Y) −Eg(X)|.
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6 H. DÖRING AND L. DE JONGE

Theorem 2. (Central limit theorem.) Let d ≥ 3 and consider the projected RGG in the thermo-
dynamic regime where trd

t → c > 0, or the dense regime where trd
t → ∞ as t tends to infinity.

Let S(v1, v2;V) ≤ s almost surely for all (v1, v2) ∈ V2�= and define

Ft = (
F(1)

t , F(2)
t
)

:=
(

ξt(L) −E ξt(L)

t7/2r2d+2
t

,
stress(G, GL) −E stress(G, GL)

t3/2

)
.

Let �t be the covariance matrix of Ft. Then d3(Ft, Z�t ) =Ot(t−1/2), where Z�t ∼N(0, �t)
is a multivariate normal-distributed random variable with mean zero and covariance matrix
�t. Additionally, if there exists a 2 × 2 matrix � = limt→∞ �t then d3(Ft, Z�) → 0 as t → ∞,
where Z� ∼N(0, �). This implies convergence in distribution of Ft to Z� .

Conditions on the stress such that the covariance matrix converges are derived in
Appendix A. The rate of convergence to Z� ∼N(0, �) depends on how fast the (co)variances
converge to their limiting value, which we were not able to derive. In Appendix B, we derive
d3(Ft, Z�) =Ot(rt) for a special case with W = [0, 1]d and L =R

2 × {0}d−2, which is mostly
the result of boundary effects. We expect this to be a typical rate of convergence since boundary
effects are present in all models.

Remark 2. (Stress as a U-statistic.) Note that if the stress is a U-statistic with S(v1, v2;V) =
S(v1, v2) < s (for example, if d0 and dL are Euclidean metrics), a univariate central limit the-
orem for the stress also follows immediately from [9, Theorem 3], in which case we have

d3

(
stress(G, GL) −E stress(G, GL)√

V stress(G, GL)
, Z

)
=Ot(t

−1/2),

where Z ∼N(0, 1). By [16, Corollary 4.3], this convergence also holds in the Kolmogorov
distance.

The result in [17, Theorem 1.1] that is applied to prove the central limit theorem can also
be used to show convergence in the d2 distance if the limiting covariance matrix is positive
definite. For a 2 × 2 covariance matrix, it is enough to show that

(
lim

t→∞ Cov
(
F(1)

t , F(2)
t
))2

< lim
t→∞ V F(1)

t V F(2)
t .

If S(v1, v2; V) = S(v1, v2) < s, this inequality quickly follows from an application of the
Cauchy–Schwarz inequality in combination with the variance and covariance expressions from
[5]. We were not able to show positive definiteness for general stress functionals.

The Slivnyak–Mecke formula (see, for example, [8]) is a well-known formula that is partic-
ularly useful in the proofs of both theorems. In the context of the notation used in this paper,
this formula can be written as

E

[ ∑
v1,...,vn∈Vn�=

f (v1, . . . , vn, V)

]
= tn

∫
Wn

E[f (v1, . . . , vn, V ∪ {v1, . . . , vn})] dv1 · · · dvn (2)

for all measurable functions f .
This paper builds on the work done in [4]. However, the proofs and derivations from [4] are

explained more elaborately in [5], which is referred to when needed.
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2. Convergence of crossings to a Poisson point process

In this section we prove Theorem 1 by applying [6, Theorem 3.1]. In order to apply this
theorem, we need to verify two things: the intensity measure needs to converge to some finite
measure, and the difference between the expectation and the variance must converge to zero.
We first formulate how ξt satisfies these conditions, and then prove Theorem 1. The lemmas
are then proved in Section 2.1.

Our first result is on the intensity measure of the crossings in L. Compared to the expected
crossing number Lt(L) derived by [4], this lemma features an improvement in the error term,
here denoted by gt(A).

Lemma 1. (Intensity measure.) There exists a term gt(A) depending on t and A such that

Lt(A) = 1

8
cdt4r2d+2

t

( ∫
A

λd−2((v + L⊥) ∩ W)2 dv + gt(A)

)

for all Borel sets A ⊂ L, with cd = 8πκ2
d−2B(3, d/2)2. The term gt is uniformly bounded for all

A, i.e. |gt(A)| ≤ ct =Ot(rt), where ct is a constant depending on the intensity t and the choice
of W and L.

The following bound follows immediately.

Corollary 1. (Total variation distance.) Let M(A) = 1
8 cdc2

∫
A λd−2((v + L⊥) ∩ W)2 dv be the

measure defined as in Theorem 1, and t2rd+1
t → c as t → ∞. Then

dTV(Lt, M) = supA∈B(L) |Lt(A) − M(A)| =Ot(rt) +Ot

(
c2 − t4r2d+2

t

)
goes to zero as t tends to infinity.

Lemma 2. (Convergence variance to expectation.) Let t2rd+1
t → c as t → ∞. Then

V ξt(L) −E ξt(L) =
{
Ot(

√
rt) if d = 2,

Ot(rt) if d ≥ 3

as t tends to infinity.
The proof of Theorem 1 now quickly follows.

Proof of Theorem 1. Let ζ be a Poisson point process with finite intensity measure M. From
[6, Theorem 3.1], we know that dKR(ξt, ζ ) ≤ dTV(Lt, M) + 2

(
E ξt(L)2 −E ξt(L) − (E ξt(L))2

)
.

Combining this with Corollary 1 and Lemma 2, we obtain the desired result. �

2.1. Proofs of the lemmas

In this section we prove Lemmas 1 and 2. Although our intensity measure looks similar to
the expected crossing number derived in [4], we use a different approach to derive it for any
Borel set A. To count all crossings in L, it is sufficient to count any crossing resulting from four
vertices in W, which was used by [4] to calculate E ξt(L). Since vertices projected outside A
can have crossing edges inside A, we need to be more careful in the derivation.

The Poisson point process is homogeneous in W but the projected vertices are generally
not homogeneous in WL, which further complicates the proof. In the proof of the following
lemma, the expected number of crossings in a sufficiently small Borel set U ⊂ L is bounded
using lower and upper bounds on the intensity of projected vertices near U.
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8 H. DÖRING AND L. DE JONGE

Lemma 3. (Bounds on the intensity measure.) The intensity measure of ξt is bounded as
follows:

1

8
cdt4r2d+2

t

∫
A

inf
w∈B2(v,2rt)

λd−2((w + L⊥) ∩ W−rt )
2 dv

≤ Lt(A) ≤ 1

8
cdt4r2d+2

t

∫
A

supw∈B2(v,2rt) λd−2((w + L⊥) ∩ W)2 dv

for all Borel sets A ⊂ L.

Proof. Let A ⊂ L be a Borel set. Then

Lt(A) =E

[
1

8

∑
(v1,...,v4)∈V4�=

1
(
[v1, v3]|L ∩ [v2, v4]|L ∩ A �=∅

)

· 1
(‖v1 − v3‖ ≤ rt, ‖v2 − v4‖ ≤ rt

)]

= 1

8
t4
∫

W4
1
(
[v1, v3]|L ∩ [v2, v4]|L ∩ A �=∅

)
· 1
(‖v1 − v3‖ ≤ rt, ‖v2 − v4‖ ≤ rt

)
dv1 · · · dv4,

where the second equality follows from the Slivnyak–Mecke formula (2).
For x ∈ A, let Ux ⊂ B2(x, rt) be a non-empty Borel subset of L. The set A can be written as

the union of such disjoint sets Ux. In the proofs of the lower and upper bounds that follow, we
derive a bound on the intensity of crossings in a set Ux, Lt(Ux). These bounds can be used to
define a sequence of simple functions converging almost everywhere to the integrands from the
lemma. The bounds for Lt(A) then follow from an application of the dominated convergence
theorem.

Lower bound. The position of a vertex on one end of an edge can be described by its position
relative to the other vertex, leading to the lower bound

Lt(Ux)

≥ 1

8
t4
∫

(W−rt )2

∫
(rtBd)2

1
(
(v1 + [0, w1])|L ∩ (v2 + [0, w2])|L ∩ Ux �=∅

)
dw1 dw2 dv1 dv2

=: RHS,

where v1 + [0, w1] = [v1, v1 + w1] is a translation of the line [0, w1] by v1. By restricting v1
and v2 to lie in the inner parallel set W−rt , we ensure that the points v1 + w1 and v2 + w2 lie
in W. This situation and another transformation coming up later in the proof are depicted in
Figure 2.

An integral over a subset of Rd can be split into an integral over L and one over L⊥. Let
μ−rt (B) = ∫

B λd−2((x + L⊥) ∩ W−rt ) dx be the volume of W−rt that gets projected onto a Borel
set B ⊂ L. Then, the right-hand side of the inequality above can be expressed as

RHS = 1

8
t4
∫

W2
L

∫
(rtBd)2

1
(
(v1 + [0, w1]|L) ∩ (v2 + [0, w2]|L) ∩ Ux �=∅

)
dw1 dw2 μ−rt (dv2) μ−rt (dv1).
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v1|L

v2|L

v3|L

v4|L
Construction of a crossing in with 4
vertices

v1|L

v2|L = v1|L + z

(v1 + w1)|L

v2|L + w2|L
Construction of vertex positions in relative
to 1 |

(a) (b)

FIGURE 2. Vertex relationships in L.

Note that the vertices v1 and v2 in this last expression lie in the plane L instead of in W.
If (v1 + [0, w1]|L) ∩ (v2 + [0, w2]|L) ∩ Ux �=∅ then ‖v1 − x‖ ≤ 2rt and ‖v2 − x‖ ≤ 2rt.

That is, for the indicator function in our integral to be non-zero, the points v1 and v2 must
lie in the set B2(x, 2rt). We define, for all Borel sets B ⊂ L, the translation-invariant measure

μ−(B) :=
(

inf
w∈B2(x,2rt)

λd−2((w + L⊥) ∩ W−rt )
)
λ2(B).

For all B ⊂ B2(x, 2rt), we have μ−(B) ≤ μ−rt (B), which implies

Lt(Ux) ≥ RHS ≥ 1

8
t4
∫

W2
L

∫
(rtBd)2

1
(
(v1 + [0, w1]|L) ∩ (v2 + [0, w2]|L) ∩ Ux �=∅

)
dw1 dw2 μ−(dv2) μ−(dv1).

If the indicator function is non-zero then the position of v2 ∈ L can be described relative to
v1 ∈ L using a vector z ∈ 2rtB2 given by z = v2 − v1, see Figure 2. Then,

Lt(Ux) ≥ 1

8
t4
∫

WL

∫
2rtB2

∫
(rtBd)2

1
(
(v1 + [0, w1]|L) ∩ ((v1 + z) + [0, w2]|L) ∩ Ux �=∅

)
dw1dw2 μ−(dz) μ−(dv1).

Whether or not (v1 + [0, w1]|L) and (v1 + z + [0, w2]|L) intersect is independent of the
position of v1. Combining this with an application of Fubini’s theorem, we can write

Lt(Ux) ≥ 1

8
t4
∫

L

∫
(rtBd)2

1
(
[0, w1]|L ∩ (z + [0, w2]|L) �=∅

)
∫

WL

1
(
(v1 + [0, w1]|L) ∩ ((v1 + z) + [0, w2]|L) ∩ Ux �=∅

)
μ−(dv1) dw1 dw2 μ−(dz).

Whenever [0, w1]|L ∩ (z + [0, w2]|L) �=∅, we obtain the following equality by the transla-
tion invariance of μ−:∫

WL

1
(
(v1 + [0, w1]|L) ∩ ((v1 + z) + [0, w2]|L) ∩ Ux �=∅

)
μ−(dv1)

= μ−(Ux) =
(

inf
w∈B2(x,2rt)

λd−2((w + L⊥) ∩ W−rt )
)
λ2(Ux).
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10 H. DÖRING AND L. DE JONGE

That is, if the position of the crossing relative to v1 ∈ L is fixed, then v1 can lie in a set of the
same size as Ux. Note that if x is close to the boundary of WL then μ−(Ux) = 0. Plugging this
into the expression above, we obtain

Lt(Ux) ≥ 1

8
t4
(

inf
w∈B2(x,2rt)

λd−2((w + L⊥) ∩ W−rt )
)
λ2(Ux)

×
∫

2rtB2

∫
(rtBd)2

1([0, w1]|L ∩ (z + [0, w2]|L) �=∅) dw1 dw2 μ−(dz)

= 1

8
t4r2d+2

t

(
inf

w∈B2(x,2rt)
λd−2((w + L⊥) ∩ W−rt )

)2
λ2(Ux)

×
∫

2B2

∫
(Bd)2

1([0, w1]|L ∩ (z + [0, w2]|L) �=∅) dw1 dw2 dz

= 1

8
t4r2d+2

t cd

(
inf

w∈B2(x,2rt)
λd−2((w + L⊥) ∩ W−rt )

)2
λ2(Ux),

where the calculation of

cd :=
∫

2B2

∫
(Bd)2

1([0, w1]|L ∩ (z + [0, w2]|L) �=∅) dw1 dw2 dz = 8πκ2
d−2B(3, d/2)2

is done in [5].

Upper bound. The proof of the upper bound is similar to that of the lower bound, but for a
supremum instead of an infimum. Boundary effects can be ignored since counting more edges
is allowed for the upper bound. Then,

Lt(Ux) ≤ 1

8
t4
∫

W2

∫
(rtBd)2

1
(
(v1 + [0, w1])|L ∩ (v2 + [0, w2])|L ∩ Ux �=∅

)
dw1 dw2 dv1 dv2.

Defining, for all Borel sets B ⊂ L, the measure μ(B) := ∫
B λd−2((x + L⊥) ∩ W) dx, we can

transform our integrals to ones over the plane L:

Lt(Ux) ≤ 1

8
t4
∫

W2
L

∫
(rtBd)2

1
(
(v1 + [0, w1])|L ∩ (v2 + [0, w2])|L ∩ Ux �=∅

)
dw1 dw2 μ(dv2) μ(dv1).

Let z = v2 − v1 be the position of v2 ∈ L relative to v1 ∈ L. Then

Lt(Ux) ≤ 1

8
t4
∫

WL

∫
2rtB2

∫
(rtBd)2

1
(
(v1 + [0, w1])|L ∩ (v1 + z + [0, w2])|L ∩ Ux �=∅

)
dw1 dw2 μ(dz) μ(dv1).
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Limit theorems for projections of random geometric graphs 11

Let μ+(B) := (
supw∈B2(x,2rt) λd−2((w + L⊥) ∩ W)

)
λ2(B). For all B ⊂ B2(x, 2rt) we have

μ+(B) ≥ μ(B), and therefore

Lt(Ux)

≤ 1

8
t4
∫

WL

∫
B2(v1,2rt)

∫
(rtBd)2

1
(
(v1 + [0, w1])|L ∩ (v1 + z + [0, w2])|L ∩ Ux �=∅

)
dw1 dw2 μ+(dz) μ+(dv1)

= 1

8
t4
∫

2rtB2

∫
(rtBd)2

1 ([0, w1]|L ∩ (z + [0, w2])|L �=∅)∫
WL

1
(
(v1 + [0, w1])|L ∩ (v1 + z + [0, w2])|L ∩ Ux �=∅

)
μ+(dv1) dw1 dw2 μ+(dz).

Whenever [0, w1]|L ∩ (z + [0, w2])|L �=∅, the translation invariance of μ+ implies∫
WL

1
(
(v1 + [0, w1])|L ∩ (v1 + z + [0, w2])|L ∩ Ux �=∅

)
μ+(dv1)

= μ+(Ux) = (
supw∈B2(x,2rt) λd−2((w + L⊥) ∩ W)

)
λ2(Ux).

Plugging this into the expression above, we obtain

Lt(Ux) ≤ 1

8
t4r2d+2

t cd
(

supw∈B2(x,2rt) λd−2((w + L⊥) ∩ W)
)2

λ2(Ux).

The bound for Lt(A) with a Borel set A ⊂ L follows from an application of the dominated
convergence theorem as described at the start of this proof. �

The value of Lt(A) can be approximated using the lower and upper bounds from Lemma 3.
Using the difference between these bounds, we can determine the maximum error of this
estimation.

Lemma 4. (Uniform error bound.) Let

ft(A) :=
∫

A
supw∈B2(v,2rt) λd−2((w + L⊥) ∩ W)2 − inf

w∈B2(v,2rt)
λd−2((w + L⊥) ∩ W−rt )

2 dv.

Then 0 ≤ ft(A) ≤ ft(L) =Ot(rt) for all Borel sets A ⊂ L.

Proof. The integrand is non-negative for all points v ∈ L. Since A ⊂ L, it follows that ft(A) ≤
ft(L).

To show the order of the upper bound, we start by bounding λd−2((w + L⊥) ∩ W−rt )
2 to get

rid of the −rt. Note that

λd−2((w + L⊥) ∩ W−rt )
2 = (

λd−2((w + L⊥) ∩ W) − λd−2((w + L⊥) ∩ (W \ W−rt ))
)2

≥ λd−2((w + L⊥) ∩ W)2

− 2λd−2((w + L⊥) ∩ W) · λd−2((w + L⊥) ∩ (W \ W−rt )).

For a set A, let ∂A denote its boundary. Then, the volume of W \ W−rt contained above w
can be bounded as follows:

λd−2((w + L⊥) ∩ (W \ W−rt )) ≤ rtλd−3(∂((w + L⊥) ∩ W))

≤ rt supv∈WL
λd−3(∂((v + L⊥) ∩ W)).
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12 H. DÖRING AND L. DE JONGE

h
h− h+

FIGURE 3. Two-dimensional representation of a function h(v) (gray), the infimum h−(v), and the
supremum h+(v). Solid lines indicate the domain WL and dashed lines the domain L \ WL.

Defining the constant

b := 2
(

supv∈WL
λd−3(∂((v + L⊥) ∩ W))

)(
supv∈WL

λd−2((v + L⊥) ∩ W)
)
,

we see that λd−2((w + L⊥) ∩ W−rt )
2 ≥ λd−2((w + L⊥) ∩ W)2 − brt for all w ∈ WL.

For v ∈ L, let

h(v) := λd−2((v + L⊥) ∩ W)2,

h+(v) := supw∈B2(v,2rt) λd−2((w + L⊥) ∩ W)2,

h−(v) := infw∈B2(v,2rt) λd−2((w + L⊥) ∩ W)2.

Note that h+ is supported on a subset of L containing WL. Hence,

ft(L) ≤
∫

WL

h+(v) − h−(v) + brt dv +
∫

L\WL

h+(v) dv

= brtλ2(WL) +
∫

L
h+(v) − h(v) dv +

∫
L

h(v) − h−(v) dv. (3)

These integrals represent the differences between the volumes under the surface defined
by h, h+, and h− (see Figure 3). For t > 0, let C(z) = {v ∈ L : h(v) ≥ z} and C+(z) = {v ∈
L : h+(v) ≥ z} be the superlevel sets of h and h+ respectively. If h+(v) = z for some v ∈ L
and z ∈R then there must exist a point w ∈ B2(v, 2rt) such that h(w) = z too. Combining
this with h(v) ≤ h+(v) for all v ∈ L, we obtain C(z) ⊂ C+(z) ⊂ C(z) ⊕ B2(v, 2rt). By the con-
vexity of W, the function λd−2((v + L⊥) ∩ W)1/(d−2) = h(v)1/2(d−2) is concave, which implies
that C(z) is convex for all z ∈R+. We can therefore apply the Steiner formula to see that
λ2(C+(z) \ C(z)) =O(rt) for all z. Then,

∫
L

h+(v) − h(v) dv =
∫ ∞

0
λ2(C+(z) \ C(z)) dz =Ot(rt)

is the order of the first integral in (3). Similar calculations show that
∫

L h(v) − h−(v) dv =Ot(rt)
too, from which we conclude that ft(L) =Ot(rt). �

We are now ready to prove Lemma 1.
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Proof of Lemma 1. Note that

inf
w∈B2(v,2rt)

λd−2((w + L⊥) ∩ W−rt )
2 ≤ λd−2((v + L⊥) ∩ W)2

≤ supw∈B2(v,2rt) λd−2((w + L⊥) ∩ W)2

for all v ∈ L. Combining this with Lemma 3, the following inequalities follow:

1

8
cdt4r2d+2

t

( ∫
A

λd−2((v + L⊥) ∩ W)2 dv − ft(A)

)

≤ Lt(A) ≤ 1

8
cdt4r2d+2

t

( ∫
A

λd−2((v + L⊥) ∩ W)2 dv + ft(A)

)

for all Borel sets A ⊂ L. We can therefore define gt to be the function such that

Lt(A) = 1

8
cdt4r2d+2

t

( ∫
A

λd−2((w + L⊥) ∩ W)2 dv + gt(A)

)
.

Combining this with Lemma 4, |gt(A)| ≤ ft(A) ≤ ft(L) =Ot(rt). Defining ct := ft(L), the
result follows. �

Lastly, we prove that the difference between the variance and the expectation converges to
zero as t tends to infinity.

Proof of Lemma 2. For this proof, we can mostly repeat the arguments of [5, Theorem 13],
which we shorten here. Writing

f (v1, . . . , v4) = 1([v1, v3]|L ∩ [v2, v4]|L �=∅)1(‖v1 − v3‖ ≤ rt, ‖v2 − v4‖ ≤ rt),

the variance of the crossing number is given by

V ξt(L) = 1

64
E

∑
(v1,...,v4)∈V4�=
(w1,...,w4)∈V4�=

|{v1,...,v4}∩{w1,...,w4}|≥1

f (v1, . . . , v4)f (w1, . . . , w4).

The sum over all quadruples such that {v1, . . . , v4} = {w1, . . . , w4} yields the expected
crossing number. The other terms are also calculated by [5] and, by the last line of their proof,
we have

V ξt(L) =Ot(t
7r4d+4

t ) +Ot(t
6r3d+4

t ) +Ot(t
6r4d+2

t ) +Ot(t
5r3d+2

t ) +E ξt(L).

Plugging in t =Ot(r
−(d+1)/2
t ) leads to

V ξt(L) =Ot(r
(d+1)/2
t ) +Ot(rt) +Ot(r

d−1
t ) +Ot(r

(d−1)/2
t ) +E ξt(L).

For d ≥ 3, the Ot(rt) term is the largest. For d = 2, the largest term is Ot(
√

rt). �

3. Multivariate central limit theorem

The central limit theorem concerns the thermodynamic and dense regimes, where trd
t ≥ c >

0 for all t > 0. In this case, we can apply the results from [4] or the improvements on these
results published in [5] to scale the crossing number and stress.
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14 H. DÖRING AND L. DE JONGE

We assume that S(v1, v2;V) ≤ s almost surely for all (v1, v2) ∈ V2�=. Combining this
with [5, Theorems 13, 21, and 23] and their extensions to more general stress func-
tionals in Appendix A, we know that V ξt(L) =Ot(t7r4d+4

t ), V (stress(G, GL)) =Ot(t3),
and Cov(ξt(L), stress(G, GL)) =Ot(t5r2d+2

t ). Note that t5r2d+2
t = (t3t7r4d+4

t )1/2. We therefore
scale the crossing number and the stress as follows:

F(1)
t = ξt(L) −E ξt(L)

t7/2r2d+2
t

, F(2)
t = stress(G, GL) −E stress(G, GL)

t3/2
.

To prove the multivariate central limit theorem we apply [17, Theorem 1.1], which requires
first- and second-order difference operators. For a Poisson functional F = f (η), where η is a
Poisson point process, these operators are defined as

DxF = f (η + δx) − f (η), D2
x,yF = f (η + δx + δy) − f (η + δy) − f (η + δx) + f (η).

We need to find sufficiently sharp upper bounds for the following expressions from [17,
Theorem 1.1]:

γ1 := t3/2

(
2∑

i,j=1

∫
W3

(
E
(
D2

x1,x3
F(i)

t
)2(

D2
x2,x3

F(i)
t
)2)1/2

× (
E
(
Dx1 F(j)

t
)2(

Dx2 F(j)
t
)2)1/2 dx1 dx2 dx3

)1/2

,

γ2 := t3/2

(
2∑

i,j=1

∫
W3

(
E
(
D2

x1,x3
F(i)

t
)2(

D2
x2,x3

F(i)
t
)2)1/2

× (
E
(
D2

x1,x3
F(j)

t
)2(

D2
x2,x3

F(j)
t
)2)1/2 dx1 dx2 dx3

)1/2

,

γ3 := t
2∑

i=1

∫
W
E
∣∣DxF(i)

t

∣∣3 dx.

The Slivnyak–Mecke formula (2) is particularly useful when calculating such expectations
of difference operators.

We first calculate upper bounds for these expectations of the difference operators. For the
stress functional F(2)

t we can derive sufficiently sharp upper bounds by only considering the
maximal stress.

Lemma 5. (Bounds for stress.) If S(v1, v2;V) ≤ s < ∞ almost surely for all v1 and v2 then there
exist constants k1, k2, and k3 such that, for t large enough.

supx1,x2∈W E
(
Dx1 F(2)nn

t
)2(

Dx2 F(2)
t
)2 ≤ k1t−2, (4)

supx∈W E
∣∣DxF(2)

t

∣∣3 ≤ k2t−3/2, (5)

supx1,x2,x3∈W E
(
D2

x1,x3
F(2)n

t
)2(

D2
x2,x3

F(2)
t
)2 ≤ k3t−6. (6)
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Proof. For any x ∈ W, the first-order difference operator yields

0 ≤ DxF(2)n
t =

∑
v∈V

S(x, v;V)

t3/2
≤ |V| s

t3/2
,

where s is the upper bound for S(x, v;V) and |V| is the number of vertices. For a random
variable X ∼ Poi(t) we have E Xn =O(tn) as t goes to infinity. The bounds (4) and (5) follow.

The second-order difference operator only depends on the two points x1 and x2 added to the
point process, so

D2
x1,x2

F(2)
t = S(x1, x2;V)

t3/2
≤ s

t3/2
,

which results in the bound (6). �

The first-order difference operators for the number of crossings are of the same order as
those of the stress.

Lemma 6. (Bounds for number of crossings.) Let trd
t ≥ c > 0 for all t. Then there exist

constants k4 and k5 such that

supx1,x2∈W E
(
Dx1F(1)

t
)2(

Dx2F(1)
t
)2 ≤ k4t−2, (7)

supx∈W E
∣∣DxF(1)

t

∣∣3 ≤ k5t−3/2.

Proof. The first-order difference operator for the crossing number can be bounded from
above as follows:

DxF(1)
t = 1

2
t−7/2r−2d−2

t

∑
v,w,y∈V3�=

1(‖x − v‖ ≤ rt, ‖w − y‖ ≤ rt)1([x, v]|L ∩ [w, y]|L �=∅)

≤ 1

2
t−7/2r−2d−2

t

∑
v,w,y∈V3�=

1(‖x − v‖ ≤ rt, ‖w − y‖ ≤ rt)1(‖x|L − w|L‖ ≤ 2rt).

We have

E|DxF(1)
t |3

≤ 1

8
t−21/2r−6d−6

t E

∑
v1,w1,y1∈V3�=
v2,w2,y2∈V3�=
v3,w3,y3∈V3�=

3∏
i=1

1(‖x − vi‖ ≤ rt, ‖wi − yi‖ ≤ rt)1(‖x|L − wi|L‖ ≤ 2rt).

We can apply the Slivnyak–Mecke formula to sums over distinct vertices in a Poisson point
process. Since the nine vertices in this sum are not necessarily distinct, we have to distinguish
between different cases: all vertices are distinct, eight vertices are distinct and two equal, etc.
An application of the Slivnyak–Mecke formula for the expectation of the sum where all points
are distinct yields

3∏
i=1

(
t3
∫

W3
1
(‖x − vi‖ ≤ rt, ‖wi − yi‖ ≤ rt

)
1
(‖x|L − wi|L‖ ≤ 2rt

)
dvi dwi dyi

)
.
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16 H. DÖRING AND L. DE JONGE

The integral over points vi such that ‖x − vi‖ ≤ rt is of order rd
t . The point wi must be placed

in a cylinder with volume of order r2
t . When wi is fixed, the point yi must be placed within a

distance of rt from wi so that the last integral is of order rd
t too. Each of the three integrals

over W3 is therefore of order Ot(r
2d+2
t ). Together with the prefactor, the entire term is of order

Ot(t−21/2r−6d−6
t t9r6d+6

t ) =Ot(t−3/2).
If the triples of points have some overlap, we sum over at most eight distinct points. An

example of such a term is

E

∑
v1,w1,y1,v2,y2,v3,w3,y3∈V8�=

w1=w2

3∏
i=1

1(‖x − vi‖ ≤ rt, ‖wi − yi‖ ≤ rt)1(‖x|L − wi|L‖ ≤ 2rt)

= t8
∫

W8
1(‖x − v1‖ ≤ rt, ‖w1 − y1‖ ≤ rt)1(‖x|L − w1|L‖ ≤ 2rt)

2

× 1(‖x − v2‖ ≤ rt, ‖w1 − y2‖ ≤ rt)1(‖x − v3‖ ≤ rt, ‖w3 − y3‖ ≤ rt)

× 1 (‖x|L − w3|L‖ ≤ 2rt) dv1 dw1 dy1 dv2 dy2 dv3 dw3 dy3.

The order of this integral can be determined the same way as before with the nine distinct
vertices and leads to a contribution of order Ot(t−5/2r−2

t ). In general, we can see that restricting
two vertices to be equal results in a loss of an integral of order Ot(tr2

t ) or Ot(trd
t ). It is then

clear that the restriction that two or more vertices are the same does not increase the order of
this expectation. These other terms are therefore also at most Ot(t−3/2). We can conclude that
E|DxF(1)

t |3 =Ot(t−3/2).
Similar calculations with tuples of twelve points show that

supx1,x2∈W E
(
Dx1F(1)

t
)2(

Dx2F(1)
t
)2 ≤ supx1,x2∈W E

[(
Dx1 F(1)

t
)4 + (

Dx2F(1)
t
)4]

= 2 supx∈W E
(
DxF(1)

t
)4 =Ot(t

−2),

which is what we needed to show for (7). �

Lemma 7. Under the conditions stated in Theorem 2, the parameters γ1, γ2, and γ3 are of the
orders γ1 =Ot(t−1/2), γ2 =Ot(t−1/2), and γ3 =Ot(t−1/2).

Proof. The order of γ3 follows immediately from Lemmas 5 and 6. For γ1 we obtain, by (4)
and (7),

γ1 ≤ ( sup{k1, k4})1/4t

(
2∑

i,j=1

∫
W3

(
E
(
D2

x1,x3
F(i)

t
)2(

D2
x2,x3

F(i)
t
)2)1/2 dx1 dx2 dx3

)1/2

,

which implies

γ1 ≤ 2( sup{k1, k4})1/4t

(
k1/2

3 t−3 +
∫

W3

(
E
(
D2

x1,x3
F(1)

t
)2(

D2
x2,x3

F(1)
t
)2)1/2 dx1 dx2 dx3

)1/2

by (6) and λd(W) = 1.
Note that D2

x1,x3
F(1)

t counts the number of crossings with both vertices x1 and x3 involved,
which either means that x1 and x3 form a new edge and intersect an existing one or that
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x1 and x3 are endpoints of distinct edges which cross in their projection:

D2
x1,x3

F(1)
t

= 1

2t7/2r2d+2
t

∑
v1,v3∈V2�=

1
(‖x1 − x3‖ ≤ rt, ‖v1 − v3‖ ≤ rt

)
1
(
[x1, x3]|L ∩ [v1, v3]|L �=∅

)

+ 1
(‖x1 − v1‖ ≤ rt, ‖x3 − v3‖ ≤ rt

)
1
(
[x1, v1]|L ∩ [x3, v3]|L �=∅

)
.

≤ 1

2t7/2r2d+2
t

∑
v1,v3∈V2�=

1
(‖x1 − x3‖ ≤ rt, ‖v1 − v3‖ ≤ rt

)
1
(‖x1|L − v1|L‖ ≤ 2rt

)

+ 1
(‖x1 − v1‖ ≤ rt, ‖x3 − v3‖ ≤ rt

)
1
(‖x1|L − x3|L‖ ≤ 2rt

)
.

Multiplying four such expressions to bound γ1 and γ2 leads to a sum of products of indica-
tor functions in a way similar to the proof of Lemma 6, where this time the sum is over four
pairs of points from V . These pairs of points may have overlap, and the products of indica-
tors can consist of combinations of the two different products we see in the equation above.
Calculating γ1 and γ2 therefore requires many applications of the Slivnyak–Mecke formula
to all the various cases. However, we again quickly see that the highest-order terms are those
where the eight-tuples over which we sum consist of distinct vertices.

We distinguish between the two extreme cases: either ‖x1 − x2‖ ≤ rt and ‖x1 − x3‖ ≤ rt or
‖x1 − x2‖ > rt and ‖x1 − x3‖ > rt. If x1 and x3 form an edge, each integral∫

W2
1
(‖x1 − x3‖ ≤ rt, ‖vi − vj‖ ≤ rt

)
1
(‖x1|L − vi|L‖ ≤ 2rt

)
dvi dvj

resulting from an application of the Slivnyak–Mecke formula contributes a factor of order
(trd

t )(tr2
t ) = t2rd+2

t . The factors∫
W2

1
(‖x1 − vi‖ ≤ rt, ‖x3 − vj‖ ≤ rt

)
1
(‖x1|L − x3|L‖ ≤ 2rt

)
dvi dvj

each contribute a term of order (trd
t )(trd

t ) = t2r2d
t whenever ‖x1|L − x3|L‖ ≤ 2rt.

If ‖x1 − x2‖ ≤ rt and ‖x1 − x3‖ ≤ rt, the points x2 and x3 lie in a volume of order rd
t so the

integral contributes a factor of order r2d
t . The expectation contributes a factor of order

(
E
(
D2

x1,x3
F(1)

t
)2(

D2
x2,x3

F(1)
t
)2)1/2 =Ot

(
(t2rd+2

t )2

t7r4d+4
t

)
=Ot(t

−3r−2d
t ).

If ‖x1 − x2‖ > rt and ‖x1 − x3‖ > rt, the points x2 and x3 must each lie in a volume of order
r2

t in order for the integrand to be non-zero. The contribution of the expectation is a factor of
order (

E
(
D2

x1,x3
F(1)

t
)2(

D2
x2,x3

F(1)
t
)2)1/2 =Ot

(
(t2r2d

t )2

t7r4d+4
t

)
=Ot(t

−3r−4
t ).

Combining the above calculations, we obtain∫
W3

(
E
(
D2

x1,x3
F(1)

t
)2(

D2
x2,x3

F(1)
t
)2)1/2 dx1 dx2 dx3 =Ot(t

−3).

It follows that γ1 =Ot(t−1/2).
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The order of γ2 is derived similarly. The largest term, which determines the order, comes
from the number of crossings:

∫
W3

E
(
D2

x1,x3
F(1)

t
)2(

D2
x2,x3

F(1)
t
)2 dx1 dx2 dx3 =Ot(t

−4),∫
W3

E
(
D2

x1,x3
F(2)

t
)2(

D2
x2,x3

F(2)
t
)2 dx1 dx2 dx3 =Ot(t

−6),∫
W3

(
E
(
D2

x1,x3
F(1)

t
)2(

D2
x2,x3

F(1)
t
)2)1/2

× (
E
(
D2

x1,x3
F(2)

t
)2(

D2
x2,x3

F(2)
t
)2)1/2 dx1 dx2 dx3 =Ot(t

−5).

Hence, γ2 =Ot(t−1/2). �

The obtained parameters γ1, γ2, and γ3 can now be combined with [17, Theorem 1.1] to
prove the following proposition and Theorem 2.

Proposition 1. Suppose that the covariance matrix �t of Ft converges to � = (σij)i,j∈{1,2}.
Then d3(Ft, Z�) ≤∑2

i,j=1

∣∣σij − Cov
(
F(i)

t , F(j)
t
)∣∣+Ot(t−1/2), where Z� ∼N(0, �).

Proof. We have 2γ1 + γ2 + γ3 =Ot(t−1/2). The result then immediately follows from an
application of [17, Theorem 1.1]. �

Proof of Theorem 2. Similarly to the proof of Proposition 1, we have

d3(Ft, Z�t ) ≤
2∑

i,j=1

∣∣Cov
(
F(i)

t , F(j)
t
)− Cov

(
F(i)

t , F(j)
t
)| +Ot(t

−1/2) =Ot(t
−1/2).

The convergence in distribution of Ft to N(0, �) follows from Proposition 1. Then, since
Cov

(
F(i)

t , F(j)
t
)→ σij for i, j ∈ {1, 2}, we know that the upper bound on d3(Ft, Z�) goes to zero,

and we obtain the desired result. �

Appendix A. Variance of stress and covariance

The results from [4] on the stress assume that the stress is a U-statistic, i.e. that S(v1, v2;V)
is independent of V \ {v1, v2}. The goal of this appendix is to extend the results from [4] for
the stress to a broader class of stress functionals, where the metrics d0 and dL can also depend
on the vertices of the graph. These derivations follow essentially the same steps as the proofs
in [4].

Applying the Slivnyak–Mecke formula to the expectation of the stress, we obtain

Estress(G, GL) =E
1

2

∑
(v1,v2)∈V2�=

S(v1, v2;V) = 1

2
t2
∫

W2
E[S(v1, v2;V ∪ {v1, v2})] dv1 dv2.

For the calculation of the variance, we follow the proof of [5, Theorem 21] and again apply
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the Slivnyak–Mecke formula. Then,

V stress(G, GL) =E

∑
(v,v2,w2)∈V3�=

S(v, v2;V)S(v, w2;V) + 1

2
E

∑
(v1,v2)∈V2�=

S(v1, v2;V)2

= t3
∫

W3
E S(v, v2;V ∪ {v, v2})S(v, w2;V ∪ {v, w2}) dv2 dw2 dv

+ 1

2
t2
∫

W2
E S(v1, v2;V ∪ {v1, v2})2 dv1 dv2

= t3
∫

W3
E S(v, v2;V ∪ {v, v2})S(v, w2;V ∪ {v, w2}) dv2 dw2 dv +O(t2).

This expression is independent of whether or not we project the graph and is therefore also
valid for d = 2.

For the covariance, we follow the proof of [5, Theorem 23]. We then obtain

Cov(ξt(L), stress(G, GL))

= 1

2
cdt5r2d+2

t

∫
W

λd−2((v + L⊥) ∩ W)
∫

W
E[S(v, w;V ∪ {v, w})] dw dv (1 + o(1)).

When d = 2, we obtain, following similar calculations,

Cov(ξt(L), stress(G, GL)) = 1

2
c2t5r6

t

∫
W2

E[S(v, w;V ∪ {v, w})] dw dv (1 + o(1)).

The vertex set V depends on the intensity t of the point process. The metrics d0 and dL and
the weight function appearing in the stress functional can be chosen to depend on the intensity
t too. In order for the covariance matrix in Theorem 2 to converge, the integrals in the variance
and covariance above must converge.

Appendix B. Central limit theorem rate of convergence for W = [0, 1]d

To determine how fast Ft converges to the normal distribution, we need a rate of conver-
gence of the variance and the covariance of the crossing number and the stress. For some
choices of W, these rates can be derived by making some adjustments to the derivations of the
variance and covariance in [5]. The easiest choice of W is the d-dimensional cube because of
its constant height with respect to R

2 × {0}d−2.

Proposition 2. Let W = [0, 1]d and L =R
2 × {0}d−2, and let the stress be independent of the

vertex set V of G. Define rt such that trd
t = c for all t > 0, and let � be defined as in Theorem 2.

Then, for Z� ∼N(0, �), d3(Ft, Z�)) =O(rt) as t goes to infinity.

The improved approximations of the variance and covariance needed for the derivation of
this result are given in the following two lemmas.

Lemma 8. Consider the model described in Proposition 2. The variance of the crossing
number is

V ξt(L) = 1

8
c4t3r4

t

(
2c2

d + c′
dc−1)(1 +Ot(rt)), (8)

where c′
d = πκ3

d−2B(3, d/2)2B(4, d/2) and cd is defined as in Lemma 1.
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Lemma 9. Consider the model described in Proposition 2. For the covariance between the
crossing number and the stress,

Cov(ξt(WL), stress(G, GL)) = 1

2
cdt3r2

t

∫
W

S(1)
W,L(v) dv(1 +Ot(rt)), (9)

where S(1)
W,L(v) := ∫

W−v w(0, v2)(d0(0, v2) − dL(0, v2))2 dv2.
We first prove Proposition 2, after which we will prove the lemmas too.

Proof of Proposition 2. From (8), we can calculate

V F(1)
t = V ξt(WL)

t7r4d+4
t

= 1

8
(2c2

d + c′
dc−1) +Ot(rt).

The variance of F(2)
t follows from [4, Theorem 6]:

V F(2)
t = V stress(G, GL)

t3
=
∫

W
S(1)

W,L(v)2 dv +Ot(t
−1).

The rate of convergence for the covariance Cov
(
F(1)

t , F(2)
t
)

is given by

Cov
(
F(1)

t , F(2)
t
)= Cov(ξt(WL), stress(G, GL))

t5r2d+2
t

= 1

2
cd

∫
W

S(1)
W,L(v) dv +Ot(rt).

It follows from Proposition 1 that d3(Ft, Z�) ≤O(rt) +O(t−1) +O(t−1/2) =O(rt) as t
tends to infinity. �

The proofs of Lemmas 8 and 9 mostly follow the same steps as in the derivations of these
quantities in [5]. We first summarize the bounds they derived, before using them in our proofs,
sticking to the notation from [5] as much as possible.

B.1. Bounds from [5]

For a convex body K and a two-dimensional plane in R
d, the following integral is defined

in [5, Lemma 8]:

J(1)
L (K) :=

∫
(rtBd)×K×(rtBd)

1([0, x]|L ∩ (y + [0, z])|L �=∅) dz dy dx.

Defining cd as in Lemma 1, the proof of [5, Lemma 8] contains the following inequalities:

cdr2d+2
t 1(2rtB2 ⊂ K|L) inf

u∈rtBd
λd−2((u + L⊥) ∩ K)

≤ J(1)
L (K) ≤ cdr2d+2

t supu∈rtBd
λd−2((u + L⊥) ∩ K).

The following integral is also defined in [5] for points v ∈ W:

I(1)
W,L(v) :=

∫
W3

1
(
[v, v2]L ∩ [v3, v4]L �=∅, ‖v − v2‖ ≤ rt, ‖v3 − v4‖ ≤ rt

)
dv2 dv3 dv4.
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By the proof of [5, Proposition 9], J(1)
L (W−rt − v) ≤ I(1)

W,L(v) ≤ J(1)
L (W − v). The following

integral is an analogue of J(1)
L (K) needed to calculate the variance of the crossing number:

J(2)
L (K) :=

∫
(rtBd)×K2×(rtBd)2

1([0, x]|L ∩ (y1 + [0, z1])|L �=∅)

× 1
(
[0, x]|L ∩ (y2 + [0, z2])|L �=∅

)
dz1 dz2 dy1 dy2 dx.

Defining c′
d = πκ3

d−2B(3, d/2)2B(4, d/2), it is shown in the proof of [5, Lemma 10] that

c′
dr3d+4

t 1(2rtB2 ⊂ K|L)
(

inf
u∈rtBd

λd−2((u + L⊥) ∩ K)
)2

≤ J(2)
L (K) ≤ c′

dr3d+4
t

(
supu∈rtBd

λd−2((u + L⊥) ∩ K)
)2.

Letting v ∈ W again, the following integral is defined in [5, Proposition 11]:

I(2)
W,L(v) =

∫
W5

1
(
[v, v2]L ∩ [v3, v4]L �=∅, ‖v − v2‖ ≤ rt, ‖v3 − v4‖ ≤ rt

)
× 1

(
[v, v2]L ∩ [w3, w4]L �=∅, ‖w3 − w4‖ ≤ rt

)
dv2 dv3 dv4 dw3 dw4.

In the proof of the same proposition, it is derived that J(2)
L (W−rt − v) ≤ I(2)

W,L(v) ≤ J(2)
L

(W − v).

B.2. Proofs of the lemmas

Proof of Lemma 8. We closely follow the proof of [5, Theorem 13], in which the variance
is given by

V ξt(L) = 1

4
t7
∫

W
I(1)
W,L(v)2 dv + 1

8
t6
∫

W
I(2)
W,L(v) dv

+Ot(t
6r4d+2

t ) +Ot(t
5r3d+2

t ) +Ot(t
4r2d+2

t ). (10)

Let v ∈ W−3rt . Then we use the bounds prepared by [5] to bound I(1)
W,L(v) from below:

I(1)
W,L(v) ≥ J(1)

L (W−rt − v) ≥ cdr2d+2
t inf

u∈rtBd
λd−2((u + L⊥) ∩ (W−rt − v)) = cdr2d+2

t (1 − 2rt)
d−2,

where (1 − 2rt)d−2 is the volume of a (d − 2)-dimensional cube with edge length 1 − 2rt. For
v ∈ W \ W−3rt , a trivial lower bound for I(1)

W,L(v) is zero. A similar derivation for the upper
bound yields, for all v ∈ W,

I(1)
W,L(v) ≤ J(1)

L (W − v) ≤ cdr2d+2
t supu∈rtBd

λd−2((u + L⊥) ∩ (W − v)) = cdr2d+2
t .

It follows that

1

4
t7
∫

W
I(1)
W,L(v)2 dv = 1

4
t7
( ∫

W−3rt

I(1)
W,L(v)2 dv +

∫
W\W−3rt

I(1)
W,L(v)2 dv

)

= 1

4
t7
(
c2

dr4d+4
t (1 +Ot(rt)) + c2

dr4d+4
t ·Ot(rt)

)
= 1

4
t7r4d+4

t c2
d(1 +Ot(rt)).

https://doi.org/10.1017/jpr.2025.10030 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.10030
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For the second integral in the variance, we can also use the bounds from [5]. Let v ∈ W−3rt ,
then

I(2)
W,L(v) ≥ J(2)

L (W−rt − v) ≥ c′
dr3d+4

t

(
inf

u∈rtBd
λd−2((u + L⊥) ∩ (W−rt − v))

)2

= c′
dr3d+4

t (1 − 2rt)
2(d−2).

Zero is again a trivial lower bound for the case where v ∈ W \ W−3rt . For the upper bound,
we again let v ∈ W and derive

I(2)
W,L(v) ≤ J(2)

L (W − v) ≤ c′
dr3d+4

t

(
supu∈rtBd

λd−2((u + L⊥) ∩ (W − v))
)2 = c′

dr3d+4
t .

Then,

1

8
t6
∫

W
I(2)
W,L(v) dv = 1

8
t6
( ∫

W−3rt

I(2)
W,L(v) dv +

∫
W\W−3rt

I(2)
W,L(v) dv

)

= 1

8
t6
(
c′

dr3d+4
t (1 +Ot(rt)) + c′

dr3d+4
t · (rt)

)
= 1

8
t6c′

dr3d+4
t (1 +Ot(rt)).

We can plug the expressions we obtained for the integrals into (10) to see that

V ξt(L) = 1

8
t7r4d+4

t

(
2c2

d + c′
dt−1r−d

t

)
(1 +Ot(rt)).

Setting trd
t = c leads to (8). �

Proof of Lemma 9. By the proof of [5, Theorem 23], the covariance is given by

Cov(ξt(WL), stress(G, GL)) = 1

2
t5
∫

W
I(1)
W,L(v)S(1)

W,L(v) dv +Ot(t
4r2d+2

t ).

Using our bounds on I(1)
W,L, we can write

Cov(ξt(WL), stress(G, GL)) ≥ 1

2
cdt5r2d+2

t

×
∫

W

(
inf

u∈rtBd
λd−2((u + L⊥) ∩ (W−rt − v))

)
SW,L(v) dv

≥ 1

2
cdt5r2d+2

t (1 − 2rt)
d−2

∫
W−rt

SW,L(v) dv

and

Cov(ξt(WL), stress(G, GL)) ≤ 1

2
cdt5r2d+2

t

×
∫

W

(
supu∈2rtBd

λd−2((u + L⊥) ∩ (W − v))
)
SW,L(v) dv

= 1

2
cdt5r2d+2

t

∫
W

SW,L(v) dv.

As in the proof of Lemma 8, we can look at the difference between the upper and lower
bounds and use that SW,L(v) ≤ s for all v ∈ W to obtain (9). �
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Remark 3. From this proof, we can also obtain a univariate central limit theorem for the
crossings: d3

(
F(1)

t , Zσ11

)=Ot(rt), where Zσ11 ∼N(0, σ11).

B.3. Remarks on the rate of convergence

The proofs in Appendix B show how to calculate the entries of the covariance matrix when
W is a cube. It might be possible to derive an order of convergence for a broader class of
windows in a similar way to the proof of Lemma 4, but this is significantly more complicated.

The rate of convergence for a cube W = [0, 1]d is of order rt because of boundary effects for
the crossings. Because of these boundary effects, we expect the variance of the crossings and
the covariance to be the dominating terms in the upper bound of d3(Ft, Z�) for other choices
of W too.
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