Check for
updates

J. Appl. Probab. 1-24 (2025)
doi:10.1017/jpr.2025.10030

LIMIT THEOREMS FOR THE NUMBER OF CROSSINGS AND STRESS IN
PROJECTIONS OF A RANDOM GEOMETRIC GRAPH

HANNA DORING,* ** AND
LIANNE DE JONGE,* *** Osnabriick University

Abstract

We consider the number of edge crossings in a random graph drawing generated by
projecting a random geometric graph on some compact convex set W C R?, d > 3, onto
a plane. The positions of these crossings form the support of a point process. We show
that if the expected number of crossings converges to a positive but finite value, this point
process converges to a Poisson point process in the Kantorovich—Rubinstein distance.
We further show a multivariate central limit theorem between the number of crossings
and a second variable called the stress that holds when the expected vertex degree in the
random geometric graph converges to a positive finite value.
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1. Introduction

We consider the random geometric graph (RGG) generated in a compact convex set W C R?
with d > 3 and volume one. The vertices of the graph are defined by a homogeneous Poisson
point process on W with intensity ¢. Two vertices v and w are connected by an (undirected)
edge {v, w} whenever ||v — w| <r;, where || - || denotes the Euclidean norm.

To visualize this graph, we embed its vertices into R? and connect each pair with a line
whenever an edge exists, in which case it is likely that some lines need to cross. A straight-
line drawing with few edge crossings tends to be the most aesthetically pleasing, see [14].
The minimum number of crossings in such a drawing is called the rectilinear crossing number.
Finding this number is a classical problem in graph theory where a lot is still unknown, see for
example [7, 12], or the survey in [15].

We can naturally extend this problem to random graphs by studying the crossing number of
a random graph or the number of crossings in a random drawing of a graph. In [12, 18], the
expectation of the crossing number of an Erdos—Rényi random graph as well as concentration
inequalities are derived, and a generalization to k-planarity is considered in [3]. An extension
to weighted Erdos—Rényi random graphs is studied in [10], where the Bernoulli weight for the
presence of an edge is given by independent and identically distributed random variables for
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2 H. DORING AND L. DE JONGE

FIGURE 1. Projection of a graph in R3 onto a plane.

each edge. [1, 2] study the number of crossings of a fixed graph G whose vertices are randomly
placed in convex position. They prove a central limit theorem using Stein’s method.

In this paper we study a setting introduced in [4], an RGG where the graph drawing is
created by projecting the vertices and edges onto a plane, as shown in Figure 1. Compared
to the methods of drawing the graph used by [1, 2, 11], this method has the advantage that it
preserves some of the geometric properties of the original graph. We refer to the number of
edge crossings as the crossing number of the projection, or simply ‘crossing number’ when
its meaning is clear from the context. By construction it serves as an upper bound for the
rectilinear crossing number of the original RGG in W.

The connection between the crossing number of a projection and another quantity called
stress was studied in [4]. The stress is a measure of how much the distances between vertices
in the original graph and vertices in its drawing differ. In the context of projected random
geometric graphs, it makes sense to consider the Euclidean distance between vertices in R? and
in the projection so that the graph stress is low when projecting barely changes the distances
between vertices. However, if two vertices that are far away in R4 are close to each other in
the projection, the stress is high. Empirical evidence suggests that drawings with low stress
also tend to have fewer crossings. This is supported by [4], where it is shown that there indeed
exists a positive correlation between stress and the crossing number in the model described
above.

This paper extends the results from [4] by proving a multivariate central limit theorem for
the crossing number and stress. Additionally, we show that the point process of edge inter-
sections converges to a Poisson point process when r; is chosen to decrease at an appropriate
speed as ¢ tends to infinity.

It is easy to see that the expected degree of a randomly chosen vertex in the random geomet-
ric graph is of order trf . Based on this, we distinguish between the three regimes introduced
in [13]:

(i) sparse regime: lim;_, o trf = 0 implies that the expected degree tends to zero as ¢ goes
to infinity;

(ii) thermodynamic regime: lim;_ trfl =c € (0, 00) implies that the expected degree
converges to some positive but finite constant;

(iii) dense regime: lim;_, o tr,d = oo implies that the expected degree tends to infinity.

The expected crossing number of the projection is of order t4rt2d+2 (see [4, Theorem 1]).
For the convergence to a Poisson point process we consider a part of the sparse regime where
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the expected crossing number of the projection tends to a positive but finite value, which is
when £2 rle — ¢ € (0, 00) as ¢ tends to infinity. For the multivariate central limit theorem, we
focus on the thermodynamic and the dense regime, for which the expected crossing number of
the projection tends to infinity.

The study of the crossing number in random graphs is not only mathematically an interest-
ing problem. As argued in [4], the number of crossings in the projection in the sparse regime is
indeed with high probability only a constant factor away from the rectilinear crossing number
of the RGG. Therefore, the projection provides an algorithm for drawing a graph with low
crossing number. Limit theorems with rates of convergence are decisive for determining the
approximation error in this algorithm.

The structure of this paper is as follows: Section 1.1 introduces the mathematical definitions
and notation. Then, the convergence to a Poisson point process and the central limit theorem
are stated, which are then proved in Sections 2 and 3 respectively. The convergence to a Poisson
point process is an application of a limit result for Poisson U-statistics proved using Stein’s
method and the Malliavin formalism in [6]. The main difficulty in Section 2 is to derive uniform
bounds on the intensity measure of the point process of crossings. In Section 3, we prove good
bounds on the first- and second-order difference operators to apply a multivariate limit theorem
for a vector of Poisson functionals from [17].

1.1. Definitions and statements of results

Let A, for n>1 denote the n-dimensional Lebesgue measure. Our observation window
W c R? with d > 3 is a convex body such that 1;(W) = 1. Let n; be a Poisson point process
on W with intensity ¢ > 0. Then En,(W) = ¢ since the volume of W is one. The support of n;
defines the vertex set V of the random geometric graph G = (V, E) with

E={{v,w}):v,weVand |v—w| <r}

for some parameter r; going to zero as ¢ tends to infinity. Here, || - | denotes the Euclidean
norm. We denote the line segment between two points v, w € R? by [v, w]. Note that no points
exist outside of W, meaning that none of the edges cross the boundary of W. Almost surely,
vertices are not projected on other vertices or edges.

The orthogonal projection of the graph onto a plane L is denoted by Gz, and is constructed by
projecting all vertices onto L and connecting the vertices by an edge whenever an edge exists
in G. The projection of a point v and a set A C R? are denoted by v|; and Al := {v|.: v € A}
respectively. We write W, := W/|, for the projection of W onto L to avoid cumbersome notation.
The orthogonal complement of L is denoted by L.

Two edges {vi, v»} and {wy, wa} between four distinct vertices cross in the projection if
[vi, vallL N [w1, wa]|L # @. These intersections form the support of a point process &;. Let

Sei={(vi, va, wi, w2) € Vit v = wall <71, lwi —wall <1, i, vall O [wi, wallz # 2
be the set of quadruples of distinct vertices forming two crossing edges. Then
1
§(A) =g > Sl (A) (1)

(v1,v2,w1,W2)ES;

counts the number of crossings in a Borel set A C L. The pre-factor prevents the double count-
ing of crossings. The crossing number of the projection is denoted &;(L). The intensity measure
L; of the point process is defined as L;(A) :=E&;(A).
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For all Borel sets A, the variable &,(A) is a U-statistic of order four, meaning that it can
be written in the form &,(A) = Z(w,vz,va,m)eVi f(v1, va, v3, vg) for some symmetric function f

depending on A. Here we have

1
fv1,va,v3, v4) = ﬂ(l(llw —wall <1, v —vall <, v, v2llL N [va, valle NA # 9)

+1(lvi = v3ll <, lva —vall <7, [vr, valle N [v2, vallL NA # @)
+1(lvi —vall <71, [v2 = v3ll <1y 1 valle N [va, v3llL NA # ).

Since we consider three permutations of the vertices in each summand, the pre-factor from (1)
is divided by three, explaining the pre-factor 1,/24.

Throughout this paper we let By(x, r):={y € R?: |lx — y|| < r} denote the closed ball with
radius 7 around x, and By := B4(0, 1) the unit ball around the origin. The balls B> (x, r) and B>
are always considered to lie in the plane L. The inner parallel set of a convex set K is denoted
by K_s5:={x: (x+ §By) C K}. We write f(x) = O(g(x)) as x — oo if there exist M > 0 and xg
such that [f(x)| < Mg(x) for all x > xo. We also write f(x) = O,(g(x)) and omit the x — oo.

Our first result concerns the distribution of crossings in the sparse regime. We show conver-
gence of &; to a Poisson point process in the Kantorovich—Rubinstein distance. The definition
of this distance metric involves the total variation distance. For two finite measures 1 and o
on the Borel sets B(L) of L, the total variation distance is defined as

drv(pi, m2) :=supsep) 111(A) — n2(A)].

The Kantorovich—Rubinstein distance is then the optimal transport cost between two probabil-
ity measures,
dkr(pi, po)= _ _inf / drv(o1, w2) Cld(w1, @2)),
CeX(ur,p2)

where X (141, p2) is the set of all couplings between w1 and o, and we integrate over all o-
finite counting measures on the underlying space. For two point processes &1 and &> distributed
according to p1 and po respectively, we will write dxr (&1, &) instead of dgr(pe1, 2). By [6,
Proposition 2.1], convergence in dgr implies convergence in distribution.

The crossings in the RGG can also be studied in two dimensions without projection. In this
case, the definitions above can easily be adjusted by removing all mentions of the projection
onto L. The authors are not aware of results related to the distribution of these crossings and
therefore include the d = 2 case in the statement of the following theorem.

Theorem 1. (Convergence to Poisson point process.) Consider the projected RGG with inten-
sity t, dimension d > 2, and radius r; such that tzrfi+1 —c >0 as t— oo, and let the edge
crossings form the support of the point process &, as defined in (1). Let { be a Poisson point
process on L with intensity measure M defined by

1
M(A) = gcdcz / Aa—2((v+ LN W) dv
A

for all Borel sets A C L, where cqg = 8nK§_2B(3, d/2)? with B the beta function. Then

O J) + Ol =145y ifd=2,

dxr(&, ) =
kr(:, ¢ {O,(r,)+(9t(02—f4rt2d+2) ifd>3.

Convergence in distribution of & to ¢ follows.
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The term Oy(c* — t4r,2d+2) indicates that the rate of convergence of & to ¢ depends on how
fast tzrtd+1 approaches its limiting value.

This theorem is proved in Section 2. The proof relies on [6, Theorem 3.1], which roughly
states that a U-statistic & converges to a Poisson point process if the intensity measure con-
verges in total variation distance and the difference between the expectation and the variance
of &,(L) goes to zero.

Remark 1. A random projection plane L was also considered in [4], whereas we consider a
fixed plane. In the sparse regime described above, the limiting distribution of the crossing num-
ber would be a mixed Poisson distribution where the intensity is a random measure depending
on the orientation of L.

The second result concerns another quantity, called stress. Let do and dy, be two distance
metrics on the vertices in a graph, then

1
stress(G, G)i=5 3, w(vi, va)(do(vi, v2) = dr(v1, v2))°,
(V1,V2)€Vi

where w is some weight function. We will denote the stress between two vertices by
(1, v2:V) i=w(v, v2)(do(vi, v2) — A1, v2))*.

The V indicates that S might depend on V \ {v, v»}, which is the case if dy or d; depends
on V. Without this dependence, the stress is a U-statistic, which is the assumption made in [4].

A natural choice for w is |

WLV = G

in which case

2
stress(G. Gy) = 3 (1 _ M) .
2 ) do(v1, v2)
(v1,v2)eVy
For the RGG, it makes sense to let dy be the Euclidean distance between points in R,
and dj, the Euclidean distance in the projection. Note that in this case d; < dp, from which
S(vi, vp;V) €0, 1] follows for all vy, v, € W.

The expectation and variance of the crossing number and stress, as well as the covariance
between the two quantities, have been calculated in [4] for the situation where the value of
S(v1, v2;V) only depends on the two vertices v and v;. An extension of their results to more
general stress functions can be found in Appendix A.

The known expressions for the variances and covariance can be used to transform the cross-
ing number of the projection, &(L), and the stress to have mean zero and bounded variance. In
Section 3, we use these results and [17, Theorem 1.1] to show a central limit theorem in the d3
distance, which is defined as follows.

Definition 1. Let { be the set of functions g: R? — R admitting continuous partial derivatives
up to order three such that
2

a
Bx,-l 8xi2 g(X)

3

<1 and max  Sup,cpd

max  Sup,cgd
I<i)<ip<iz3=<d

1<ii<ir=d

_ <l1.
0x;, 0xj, 0%, g(X)‘ -

Then, for two random variables X and Y such that E||X||2 < oo and E||Y||2 < oo, we define

d3(X, ¥) := sup,ey [Eg(Y) — Eg(X),
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Theorem 2. (Central limit theorem.) Let d > 3 and consider the projected RGG in the thermo-
dynamic regime where trfl — ¢ >0, or the dense regime where trf — 00 as t tends to infinity.
Let S(v1, v2;V) < s almost surely for all (v1, v2) € Vi and define

= (F;l), ng)) " <§[(L) —E&(L) stress(G, G) — E stress(G, GL)>.

t7/2}’t2d+2 ? 13/2

Let X; be the covariance matrix of F;. Then d3(Fy, Zs,) = Ot~ Y%, where Zs, ~ N, £))
is a multivariate normal-distributed random variable with mean zero and covariance matrix
3. Additionally, if there exists a2 x 2 matrix X = lim,_, o X; then d3(F;, Zx) — 0 as t — 00,
where Zs, ~ MO, ). This implies convergence in distribution of F, to Zs..

Conditions on the stress such that the covariance matrix converges are derived in
Appendix A. The rate of convergence to Zy, ~ N(0, £) depends on how fast the (co)variances
converge to their limiting value, which we were not able to derive. In Appendix B, we derive
d3(Fy, Zs) = Oy(ry) for a special case with W = [0, 179 and L =R? x {0}9~2, which is mostly
the result of boundary effects. We expect this to be a typical rate of convergence since boundary
effects are present in all models.

Remark 2. (Stress as a U-statistic.) Note that if the stress is a U-statistic with S(vq, vp;V) =
S(v1, v2) < s (for example, if dy and dy are Euclidean metrics), a univariate central limit the-
orem for the stress also follows immediately from [9, Theorem 3], in which case we have

d (stress(G, Gp) — E stress(G, Gr)
3  V stress(G, Gp)

where Z ~ N(0, 1). By [16, Corollary 4.3], this convergence also holds in the Kolmogorov
distance.

The result in [17, Theorem 1.1] that is applied to prove the central limit theorem can also
be used to show convergence in the d, distance if the limiting covariance matrix is positive
definite. For a 2 x 2 covariance matrix, it is enough to show that

,z) =071,

2
( lim COV(FI(I), Ffz))) < lim VFI(I)VFI(Z).
t—00 =00

If S(vi, v2; V) =S(v1, v2) <s, this inequality quickly follows from an application of the
Cauchy—Schwarz inequality in combination with the variance and covariance expressions from
[5]. We were not able to show positive definiteness for general stress functionals.

The Slivnyak—Mecke formula (see, for example, [8]) is a well-known formula that is partic-
ularly useful in the proofs of both theorems. In the context of the notation used in this paper,
this formula can be written as

E[ E f(V],...,Vn,V)}:tn'/ E[f(VI,...,Vn,VU{Vl,...,Vn})]dV]"'an (2)
wn
1

v ,‘..,vnEV;
for all measurable functions f.

This paper builds on the work done in [4]. However, the proofs and derivations from [4] are
explained more elaborately in [5], which is referred to when needed.
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2. Convergence of crossings to a Poisson point process

In this section we prove Theorem 1 by applying [6, Theorem 3.1]. In order to apply this
theorem, we need to verify two things: the intensity measure needs to converge to some finite
measure, and the difference between the expectation and the variance must converge to zero.
We first formulate how &; satisfies these conditions, and then prove Theorem 1. The lemmas
are then proved in Section 2.1.

Our first result is on the intensity measure of the crossings in L. Compared to the expected
crossing number L;(L) derived by [4], this lemma features an improvement in the error term,
here denoted by g;(A).

Lemma 1. (Intensity measure.) There exists a term g;(A) depending on t and A such that
1
Li(A) = geat' ™+ ( f ha—2((v+LH N W) dv+ g,<A>)
A

for all Borel sets A C L, with cq = 87TK§_2B(3, d/2)?. The term g, is uniformly bounded for all
A, ie. |g(A)] < c; = Oury), where ¢, is a constant depending on the intensity t and the choice
of Wand L.

The following bound follows immediately.

Corollary 1. (Total variation distance.) Let M(A) = %cdc2 f 4 Aa—2((v+ LYY N W)2dv be the

r;1+l

measure defined as in Theorem 1, and 2 — cast— o0o. Then

drv(Ly, M) = sups sy [La(4) — M) = Oy(r) + O, (¢ = 77442

goes to zero as t tends to infinity.

Lemma 2. (Convergence variance to expectation.) Let [2,,;1—%1 — cast— oo. Then

@) ifd=2,
Vadl) - B L) = {Oli;/)r_t) ;fd >3
t\'t el

as t tends to infinity.
The proof of Theorem 1 now quickly follows.

Proof of Theorem 1. Let ¢ be a Poisson point process with finite intensity measure M. From
[6, Theorem 3.1], we know that dgg (&, ¢) < drv(L;, M) 4+ 2(E &(L)> — E (L) — (E £(1))?).
Combining this with Corollary 1 and Lemma 2, we obtain the desired result. (]

2.1. Proofs of the lemmas

In this section we prove Lemmas 1 and 2. Although our intensity measure looks similar to
the expected crossing number derived in [4], we use a different approach to derive it for any
Borel set A. To count all crossings in L, it is sufficient to count any crossing resulting from four
vertices in W, which was used by [4] to calculate E &,(L). Since vertices projected outside A
can have crossing edges inside A, we need to be more careful in the derivation.

The Poisson point process is homogeneous in W but the projected vertices are generally
not homogeneous in Wy, which further complicates the proof. In the proof of the following
lemma, the expected number of crossings in a sufficiently small Borel set U C L is bounded
using lower and upper bounds on the intensity of projected vertices near U.
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Lemma 3. (Bounds on the intensity measure.) The intensity measure of & is bounded as
follows:

1
—cqttrit? / inf  Ag_o(w+LHNW_, )2 dv
8 A WEB2(V,2r1)

1
<L/A) < gcdt4rt2d+2 / SUPyeBy (.2 Ad—2((W + L) N W) dy
A
for all Borel sets A C L.
Proof. Let A C L be a Borel set. Then

1
Lt(A)=]E|:§ >0 (v vl N v, vall NA 5 2)

(1, va)EVE
A(lvi —vall < llva —vall < Vt)]

1
=§l4/ 1([v1, v3llz N [va2, vallL NA # @)
W4

(v —vall <71, llva —vall <) dvy - - - dvg,

where the second equality follows from the Slivnyak—Mecke formula (2).

For x € A, let U, C B> (x, r;) be a non-empty Borel subset of L. The set A can be written as
the union of such disjoint sets U,. In the proofs of the lower and upper bounds that follow, we
derive a bound on the intensity of crossings in a set Uy, L;(Uy). These bounds can be used to
define a sequence of simple functions converging almost everywhere to the integrands from the
lemma. The bounds for L;(A) then follow from an application of the dominated convergence
theorem.

Lower bound. The position of a vertex on one end of an edge can be described by its position
relative to the other vertex, leading to the lower bound

L.(Uy)
1

e / / 1((v1 + [0, wiDlz N (v 4 [0, waDl N Uy # @) dwi dws dy dv
8 Jw_ 2 JoBay

=: RHS,

where vy + [0, wi] = [v1, vi + w1] is a translation of the line [0, w;] by v;. By restricting vy
and v, to lie in the inner parallel set W_,,, we ensure that the points v +wy and v2 4+ w; lie
in W. This situation and another transformation coming up later in the proof are depicted in
Figure 2.

An integral over a subset of R? can be split into an integral over L and one over L*. Let
U—r(B) = f g Aa—2((x + LYHnw_ r,) dx be the volume of W_,, that gets projected onto a Borel
set B C L. Then, the right-hand side of the inequality above can be expressed as

1
RHS = / / (1 + 10, will) 0 2 + [0, wall) N Uy # 2)
w2 J(rBg)?

dwy dwa u—p, (dv2) p—p,(dvy).
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(a) va|L (b) volp =v1lp + 2

w3l (v1 +w1)lL
v1lL
v4|r, V2L + walL
Construction of a crossing in Lwith 4 Construction of vertex positions in L relative
vertices tovi[L

FIGURE 2. Vertex relationships in L.
Note that the vertices v; and v, in this last expression lie in the plane L instead of in W.

If 1 +[0, will)N (2 + [0, w2ll) NUx #<@ then [vi —x|| <2r; and [vz — x| <2r;.
That is, for the indicator function in our integral to be non-zero, the points v; and v, must
lie in the set B> (x, 2r;). We define, for all Borel sets B C L, the translation-invariant measure

1 _(B):= ( inf  Ag_a(w+ LN W_r,))kz(B).

weBy(x,2r;)

For all B C By(x, 2r;), we have u_(B) < u—,,(B), which implies

1
L;(Uy) > RHS > —¢* / / 1((V1 + [0, willp) N (v2 + [0, wallp) N U, # @)
8 Jw2 JuByy

dwy dwy p—(dv2) p—(dvy).

If the indicator function is non-zero then the position of v, € L can be described relative to
v1 € L using a vector z € 2r;B; given by z=v, — vy, see Figure 2. Then,

1
L,(Uy) > §I4 / f f 1((v1 + [0, will) N (1 +2) + [0, wallL) N Uy # D)
Wi J2rBs J (riBq)?
dwidwy - (dz) p—(dvy).

Whether or not (vi + [0, wi]|z) and (vi +z+ [0, w2]|z) intersect is independent of the
position of v;. Combining this with an application of Fubini’s theorem, we can write

1
Li(Ux) = §t4 f f 1([0, willz N (z 4 [0, w2l|2) # @)
L J B2

fw 1((v1 + 10, willL) N (1 +2) + [0, wallz) N Uy # 9)
L

pu—(dvy) dwy dwy - (dz).

Whenever [0, wi]|z N (z+ [0, w2]|1) # &, we obtain the following equality by the transla-
tion invariance of p_:

/W (1 + 10, will2) N (1 +2) + [0, wallz) N Uy # &) pu—(dvy)
L

=u-Uo=(__infdaa(Ov+ L5 NW-y) )aa(U).

weBy(x,2r;)
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That is, if the position of the crossing relative to v € L is fixed, then v; can lie in a set of the
same size as Uy. Note that if x is close to the boundary of Wy then u_(U,) = 0. Plugging this
into the expression above, we obtain

1
L:(Uy) > —t4( inf  Ag_2((w+LH)N W_r,)>)»z(Ux)

8 weBy(x,2r7)

X / / 1([0, willL N (z + [0, w2llL) # @) dwy dwy - (dz)

2By (fth)2
1 2
= -t4r,2d+2( inf  Aga(w+LYHN W_,,)) A (U
8 weBy(x,2r;)

X f f 1([0, willL N (z+ [0, w2]lr) # @) dw; dw2 dz
2By J(Bq)?

1 2
- —t4r,2d+2cd< inf  Ag_a((w+ LN W_,,)) (U,
8 weB>(x,2r;)

where the calculation of
cai= / / 110, willz O G+ [0, wallp) # ) dwy dws dz = 8mk3_,B(3. d/2)°
2B, J(Bg)?

is done in [5].

Upper bound. The proof of the upper bound is similar to that of the lower bound, but for a
supremum instead of an infimum. Boundary effects can be ignored since counting more edges
is allowed for the upper bound. Then,

1
L(Uy < -f* / / 1((vi + [0, wiDIz N (v2 + [0, w2D| N Uy # D)
8 Jw2 JirBay
dwi dwy dvy dvs.

Defining, for all Borel sets B C L, the measure u(B) := f 5 Ad—2((x + LYYy N W) dx, we can
transform our integrals to ones over the plane L:

1
L.(Uy) < §’4 / / 1((vi + [0, wiDIz N (v2 + [0, w2 N Uy # D)
W2 J(riBy)?

dwy dws p(dvz) p(dvy).

Let z=v, — v} be the position of v, € L relative to v € L. Then

1
L(Ux) < §l4 f / / 1((v1 + 10, wiDlZ N (w1 + 2+ [0, waDIL N U, # @)
Wi J2rBy J(r:Bg)?

dwy dwy u(dz) u(dvy).
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Let ui(B):= (supwegm’z,[) rd—2((W+LHN W)))\Q(B). For all B C B>(x, 2r;) we have
U4 (B) > u(B), and therefore

L(Ux)

1
< -ﬁ/ f / (1 + [0, wiDIZ N1 42+ [0, waD)|L N Uy # @)
8 Jwy IByvi 2 JriBay?
dwi dwy py(dz) p4(dvr)
1
= §f4/ / 1 ([0, willz N (z + [0, wa)|L # D)
2rBy (”th)z

/W 1((vi + [0, wiDIZ N (v1 + 2+ [0, waD)| N Uy # @)
L

4 (dvy) dwy dwy ey (dz).
Whenever [0, wi]|L N (z 4 [0, w2])|L # 9, the translation invariance of p4 implies

fW 1(vi + 10, wiDlL N1 + 24 [0, waD)| N Uy # @) s (dvy)

= 1 (Un) = (SUPyyepy v, 2m) Ad—2((W + L) N W) 22 (Uy).

Plugging this into the expression above, we obtain
1 2
L:(Uy) < gz“r?d“cd( SUPyyep, (v.2ry) Md—2((W + L) N W)) Ao (Uy).

The bound for L;(A) with a Borel set A C L follows from an application of the dominated
convergence theorem as described at the start of this proof. (|

The value of L;(A) can be approximated using the lower and upper bounds from Lemma 3.
Using the difference between these bounds, we can determine the maximum error of this
estimation.

Lemma 4. (Uniform error bound.) Let

filA):= f SUPyeBy(v. 2y Ad—2((W + LYY NW)* — inf )Ad_z((w +LYHNw_,)*dv.
A

weBy(v,2r;

Then 0 < f{(A) < fi(L) = O(r;) for all Borel sets A C L.

Proof. The integrand is non-negative for all points v € L. Since A C L, it follows that f;(A) <

Ji(D).
To show the order of the upper bound, we start by bounding Ay_2((w + L) N W_,t)2 to get
rid of the —r;. Note that

Md—a(W+ LY AW, = (ha—a(w+ LY N W) = hgoa(w + LY N (WA W_,))°
> ha—2((w+ L5 N W)>
= 2hg2((w+ LN W) - dga((w+ LY N (W\ W_).

For a set A, let A denote its boundary. Then, the volume of W\ W_,, contained above w
can be bounded as follows:

Ad—2((W+ LN W\ W_,)) < riha—3(d((w + LYY N W))
< 17 sUp,ew, Aa—3@((v + LY N W)).
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12 H. DORING AND L. DE JONGE

FIGURE 3. Two-dimensional representation of a function A(v) (gray), the infimum %_(v), and the
supremum /4 (v). Solid lines indicate the domain W}, and dashed lines the domain L\ Wy.

Defining the constant
. 1 1
b:=2(sup ey, ra—3(d((v+ L) N W) (sup,ew, ra—2((v+LHNW)),

we see that Ay (W + L) N W_,)? > hg_a((w + L) N W)? — br, for all w € W.
Forvel,let

h(v) == hag—a((v + LY N W)?,

(V) 3= SUPyyey(v.2ry) Md—2((W + LYY N W)?,
h_(v) := infyyepy(v,2r) Ad—2((w + L) N W)2,

Note that &y is supported on a subset of L containing Wy. Hence,

filL) < / hyW)—h_(v)+br;dv+ / hy(v)dv
WL L

\WL

=brily(Wp) + / hy(v) —h(v)dv+ / h(v) — h_(v) dv. 3)
L L

These integrals represent the differences between the volumes under the surface defined
by h, hy, and h_ (see Figure 3). For 1> 0, let C(z)={velL: h(v)>z} and C4(z)={ve
L: hi(v) >z} be the superlevel sets of k and A4 respectively. If hy(v) =z for some veL
and z € R then there must exist a point w € Ba(v, 2r;) such that h(w) =z too. Combining
this with h(v) < hy(v) for all v € L, we obtain C(z) C C+(z) C C(z) ® Ba2(v, 2r;). By the con-
vexity of W, the function Ag_((v + L) N w)/@=2) = p(1)1/2@d=2) j5 concave, which implies
that C(z) is convex for all ze€R;. We can therefore apply the Steiner formula to see that
A(C(2) \ C(2)) = O(ry) for all z. Then,

o0
/ hy(v) —h(v)dv = / 22(C4+(2)\ C(2)) dz = O((r1)
L 0
is the order of the first integral in (3). Similar calculations show that f L h(v) —h_(v)dv= Os(ry)

too, from which we conclude that f;(L) = Oy(ry). U

We are now ready to prove Lemma 1.
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Proof of Lemma 1. Note that

inf  Ag_o(w+LYHNW_,)? <rgo((v+ L) NW)?

weBy(v,2r1)

< SupWEBQ(V,Zl‘[) )\.d_z((w + LJ_) N W)2

for all v € L. Combining this with Lemma 3, the following inequalities follow:
1
gcdt4r,2d+2< / Aa—a((v+ L) N W)Y dv — ﬁ(A))

A

1
<LiA) < gcdt4r,2d+2 < / Aa—a((v+LHY N W) dv + f,(A))
A
for all Borel sets A C L. We can therefore define g; to be the function such that

L(A) = —cqr*r?4+2 < fA Ad—a (W + LN W) dv + gt(A)>.

1
8

Combining this with Lemma 4, |g,(A)| <fi(A) <fi(L) = O(ry). Defining ¢; :=fi(L), the
result follows. U

Lastly, we prove that the difference between the variance and the expectation converges to
zero as ¢t tends to infinity.

Proof of Lemma 2. For this proof, we can mostly repeat the arguments of [5, Theorem 13],
which we shorten here. Writing

fOr,ooov) =1(ve, vallo N v, valle # DA(ve —vall <71, v —vall < 7),

the variance of the crossing number is given by

1
VEL) = E > FOL o vf W, wa).

[{visesvaln{wy,...,wa} =1

The sum over all quadruples such that {vi, ..., va} ={wq, ..., wa} yields the expected
crossing number. The other terms are also calculated by [5] and, by the last line of their proof,
we have

V E(L) = O r¥ ) + 0,037 + 0,42 4 O + B E(L).

Plugging in t = O,(r,_(d+1)/2) leads to

VE(L) = O0uri V) + 0,m) + 0 H + 01TV + E £,
For d > 3, the O(r;) term is the largest. For d = 2, the largest term is O;(,/r7). [l

3. Multivariate central limit theorem

The central limit theorem concerns the thermodynamic and dense regimes, where trfi >c>
0 for all > 0. In this case, we can apply the results from [4] or the improvements on these
results published in [5] to scale the crossing number and stress.
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We assume that S(vy, v;V) <s almost surely for all (vi,vy)€ Vi. Combining this
with [5, Theorems 13, 21, and 23] and their extensions to more general stress func-
tionals in Appendix A, we know that V &(L) = O,(7r#**), V (stress(G, Gp)) = Oy(7),
and Cov(&,(L), stress(G, Gr)) = O, r,2d+2). Note that #° r%d“ = (t3t7rfd+4)1/ 2. We therefore
scale the crossing number and the stress as follows:

P _ &) —EE&(W) FO _ stress(G, G1) — E stress(G, Gp)
LT e tT 32 :

To prove the multivariate central limit theorem we apply [17, Theorem 1.1], which requires
first- and second-order difference operators. For a Poisson functional F' = f(n), where n is a
Poisson point process, these operators are defined as

DyF =f(n+8x) —f(n), DY JF =f(n+ 8+ 8,) —f(n +8,) —f(n + 8:) + ().

We need to find sufficiently sharp upper bounds for the following expressions from [17,
Theorem 1.1]:

2
Y= t3/2( Z / (E(D?cl ,xth(i))z(D)zfzyXSFt(i))z)1/2
ij=17W? ‘
12
o (E(Dxle))z(szFy))z)l/z dx; dxy dx3> ,

2
s /( > [ (B0 P02, 0
i,j=1

X1,X3 X2,X3

1/2
x (E(D? . F?)* (D2 F@)Z)l”dxldxzdxg) :

2
V3 ::tz /WIE|D,CF,(1)|3 dx.
i=1

The Slivnyak—Mecke formula (2) is particularly useful when calculating such expectations
of difference operators.

We first calculate upper bounds for these expectations of the difference operators. For the
stress functional F;z) we can derive sufficiently sharp upper bounds by only considering the
maximal stress.

Lemma 5. (Bounds for stress.) If S(vi, v2;V) < s < 0o almost surely for all vi and v, then there
exist constants ki, ka, and k3 such that, for t large enough.

2 2 2)\ 2 _
sup,, ew E(Dy Fi") (Dy )" <kt ™2, )

2)13 _
sup,ew E|DF| < kot ™32, 5)

2 2m\2 (92 2)\2 -6
Supxlvx27x3€W]E(Dxlyx3F§ )n) (DXZax3F§ )) Sk}'t ° (6)
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Proof. For any x € W, the first-order difference operator yields

SCx, v;iV s
0<DFP"=3" % <Vl
veV

where s is the upper bound for S(x, v;V) and |V| is the number of vertices. For a random
variable X ~ Poi(¢) we have E X" = O(¢") as ¢ goes to infinity. The bounds (4) and (5) follow.

The second-order difference operator only depends on the two points x| and x, added to the
point process, SO
S(x1, x2;V) N
T ar S

which results in the bound (6). O

D  F =

X1,X2

The first-order difference operators for the number of crossings are of the same order as
those of the stress.

Lemma 6. (Bounds for number of crossings.) Let tr,d >c¢>0 for all t. Then there exist
constants k4 and ks such that

1)\2 1\ 2 _
supy, vew E(Dn i) (Do Fi)* < kat ™2, (7
SUP, cw IE|DXF,(1)|3 <kst73/2,

Proof. The first-order difference operator for the crossing number can be bounded from
above as follows:

Lo 2
DyFyY = 2 T2 =il < w =yl < i)l vl O D Yl # 2)

3
v,w,er#
1
—7/2 —2d-2
<5t D Alx = vl <re w =yl < r)L(llxlz — wiLll < 2r).
=13
v,w,}eV#
We have
D3
E|D.F}"|
1 3
—21/2 —6d—6
<Ry 0 [T = vl < sl = yill < XL = wilL | < 2r).
vl,wl,ylevi i=1

3
V2, w2, )26V,
3
V3,W3,y3EV#

We can apply the Slivnyak—Mecke formula to sums over distinct vertices in a Poisson point
process. Since the nine vertices in this sum are not necessarily distinct, we have to distinguish
between different cases: all vertices are distinct, eight vertices are distinct and two equal, etc.
An application of the Slivnyak—Mecke formula for the expectation of the sum where all points
are distinct yields

3

H (r3 / 2 1(llx = vill < 7o, lwi — yill < r)1(lxlz — willl < 2r) dv; dw; dy,->.
W.

i=1
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16 H. DORING AND L. DE JONGE

The integral over points v; such that || x — v;|| < r; is of order r;i. The point w; must be placed
in a cylinder with volume of order rtz. When w; is fixed, the point y; must be placed within a
distance of r, from w; so that the last integral is of order rfl too. Each of the three integrals
over W3 is therefore of order Ot(r,z‘”z). Together with the prefactor, the entire term is of order
Ol(t—Zl/Zr;6d76t9rt6d+6) — Ot(t—?a/Z).

If the triples of points have some overlap, we sum over at most eight distinct points. An
example of such a term is

3
E > [T = vill < 7w = yill < rX(llxlz — wilcll < 2r)
V1,WlﬁylyvzyyzsvsgwaysEVi i=1
wi=wp

=7 / . 1(lx = vill <75, lwr = y1ll < r)AIx]L — wrlLll <2r)?
14

X I(llx = vall =7, llwi = y2ll < r)1(llx = v3ll < 7, [lwz — y3ll < 1)

x 1 (|lx|z — w3l <2r;) dvi dwq dy; dva dy dvs dws dys.

The order of this integral can be determined the same way as before with the nine distinct
vertices and leads to a contribution of order O,(r—>/?r;” 3. In general, we can see that restricting
two vertices to be equal results in a loss of an integral of order Ot(tr,z) or (’),(trf). It is then
clear that the restriction that two or more vertices are the same does not increase the order of
this expectation. These other terms are therefore also at most O,(t—3/%). We can conclude that
EID.F{P = 0,73).

Similar calculations with tuples of twelve points show that

Squl,xzeW IE(DJCl}'ﬂt(l))z(szFt(l))2 = Supxl,xzeW ]E[(Dxl Ft(l))4 + (szFt(l))4]
=2sup,cyy E(D.FV) = 0,172,

which is what we needed to show for (7). O

Lemma 7. Under the conditions stated in Theorem 2, the parameters y1, y», and y3 are of the
orders y1 = O(t™'12), yo = O,(t7'1), and y3 = O, /).

Proof. The order of y3 follows immediately from Lemmas 5 and 6. For y; we obtain, by (4)
and (7),

2 1/2
> [ B8Ot s
ij=1"W

y1 < (supfki, k4})1/4t(
which implies

1/2
— 2 2\1/2
1 <2 sup{k],lq})l/“z(k;/zt S / (B3 W F) (03,0 F 1)) /2 dxy dx dx3>
W\

by (6) and Ay(W) = 1.
Note that D)%l ok l(l) counts the number of crossings with both vertices x; and x3 involved,
which either means that x; and x3 form a new edge and intersect an existing one or that
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x1 and x3 are endpoints of distinct edges which cross in their projection:

2 (1)
Dxl,x3Ft
1
= Sap a0 > 1l —xsll < 7. v = vall < 7)1(xn 2311 N v w3l # 9)
! v1,V3eVi
+ 1(llxr = vill < 7, ez — wall < ) 1L, ville 0 s, v3llz # ©).
1

> (b = xsll < v v = vall < ) 1(Ixa |z — vi Ll <2r)

= 2d+2
217272 X
V1,3 EV#

+ 1(llxt — vill <7, s — vall < r)1(llxt |2 — 312 < 2r).

Multiplying four such expressions to bound y; and y» leads to a sum of products of indica-
tor functions in a way similar to the proof of Lemma 6, where this time the sum is over four
pairs of points from V. These pairs of points may have overlap, and the products of indica-
tors can consist of combinations of the two different products we see in the equation above.
Calculating y1 and y» therefore requires many applications of the Slivnyak—Mecke formula
to all the various cases. However, we again quickly see that the highest-order terms are those
where the eight-tuples over which we sum consist of distinct vertices.

We distinguish between the two extreme cases: either ||x; — x2|| < r; and ||x; — x3|| <r; or
[lx1 —x2|| > r; and ||x; — x3|| > 7;. If x1 and x3 form an edge, each integral

f , 1(llx1 = x3ll < 2, i = vill < r) (N |z = vil )l < 2r7) dv; dy
W

resulting from an application of the Slivnyak—Mecke formula contributes a factor of order
(trd)(tr?) = 2r4%2  The factors

/ . 1(llxr — vill <o, llxs — il < ) 1(llx |z — X321 < 2r;) dv; dyy
W

each contribute a term of order (trf)(trﬁl) = tzrtzd whenever ||x|z — x3|L]| < 2r;.
If ||lx; — x2|| <ry and ||x; — x3]| < 1y, the points x> and x3 lie in a volume of order rf so the
integral contributes a factor of order r>¢. The expectation contributes a factor of order

2. .d+2\2
2 22 g2 _ o (E)TN -3 —2d
(E(DXIJGFI ) (sz-,X3Ff ) ) - O’( t7r4d+4 - O’(t Tt )-
t
If |lx; —x2|| > r; and ||x; — x3]| > ry, the points x» and x3 must each lie in a volume of order
r? in order for the integrand to be non-zero. The contribution of the expectation is a factor of
order

(12 rIZd)Z

X1,X3 X2,X3 /7 r4d+4
t

(E(D? FO)(p2 F;l))z)l/z _ Oz( ) — 0,

Combining the above calculations, we obtain
2 20172 _
f} ®(D2, . FO) (D2, FO))'? dxy dey dy = 0,673,
W;

X1,X3 X2,X3

It follows that y; = O,(r~1/?).
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The order of y» is derived similarly. The largest term, which determines the order, comes
from the number of crossings:

X2,X3

fw CE(D}, W FL) (D3, F) dxi dea dis = O,

X1,X3 X2,X3

[RCCRR AR

x (E(DZ  FO) (D2, F)) 2 dey da ds = Oi679).

/WIE(D2 FOY (D2, FP)? dxy dxy dis = 0,70,

Hence, y» = O,(r~1/?). O

The obtained parameters y1, y2, and y3 can now be combined with [17, Theorem 1.1] to
prove the following proposition and Theorem 2.
Proposition 1. Suppose that the covariance matrix I, of F; converges to L = (0j)ije(1,2}-
Then d3(Fy, Zz) < Y11, |0y — Cov(F", F)| + Oyt=1/2), where Zs ~ N(O, ).

Proof. We have 2y| + y» + 13 = O,(t~'/?). The result then immediately follows from an
application of [17, Theorem 1.1]. U

Proof of Theorem 2. Similarly to the proof of Proposition 1, we have

2
d3(Fr. Zs) < Y [Cov(F, FP) — Cov(F", F) | + 0712 = 0,711,
ij=1

The convergence in distribution of F; to M0, X) follows from Proposition 1. Then, since

Cov(Ffi), Ft(’)) — ojj fori, j € {1, 2}, we know that the upper bound on d3(F;, Zx) goes to zero,
and we obtain the desired result. O

Appendix A. Variance of stress and covariance

The results from [4] on the stress assume that the stress is a U-statistic, i.e. that S(v, vo;V)
is independent of V' \ {v1, v2}. The goal of this appendix is to extend the results from [4] for
the stress to a broader class of stress functionals, where the metrics dy and d;, can also depend
on the vertices of the graph. These derivations follow essentially the same steps as the proofs
in [4].

Applying the Slivnyak—Mecke formula to the expectation of the stress, we obtain

1 1

Estress(G, Gr) = EE Z Stvi, v;V) = Etz / E[S(vi, va;V U {vy, vaD] dvy dvs.
2

(vi,v2)eVs v

For the calculation of the variance, we follow the proof of [5, Theorem 21] and again apply
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the Slivnyak—Mecke formula. Then,

1
V stress(G, G1) =E Z SO, v V)S(v, WZ;V)+§JE Z Sy, v2;V)?

(v,v2,w2)eVy (viv2)eVs

=7 / ESW, vo;VU{v, DS, wo;V U {v, wp}) dvy dwy dv
W3
1
+ -7 / E S(vi, v2;V U {v1, m2)? dvy dvy
2 w2
=7 / E S, v2;V U {v, va DS, wa;V U {v, wa}) dva dwy dv + O@F).
w3

This expression is independent of whether or not we project the graph and is therefore also
valid for d = 2.
For the covariance, we follow the proof of [5, Theorem 23]. We then obtain

Cov(&(L), stress(G, Gpr))

:%cdﬁr%i“ / ra—2((V+LHNW) f E[S(v, w;V U {v, wh]dwdv (1 + o(1)).
w w

When d = 2, we obtain, following similar calculations,
1
Cov(&(L), stress(G, Gr)) = Ecztsr? / E[SWw, w;VU {v, whldwdv (1 + o(1)).
W2

The vertex set V depends on the intensity ¢ of the point process. The metrics dy and d;, and
the weight function appearing in the stress functional can be chosen to depend on the intensity
t too. In order for the covariance matrix in Theorem 2 to converge, the integrals in the variance
and covariance above must converge.

Appendix B. Central limit theorem rate of convergence for W = [0, 1]¢

To determine how fast F; converges to the normal distribution, we need a rate of conver-
gence of the variance and the covariance of the crossing number and the stress. For some
choices of W, these rates can be derived by making some adjustments to the derivations of the
variance and covariance in [5]. The easiest choice of W is the d-dimensional cube because of
its constant height with respect to R? x {0}4~2.

Proposition 2. Let W = [0, 11¢ and L =R? x {0}¢72, and let the stress be independent of the
vertex set V of G. Define r; such that trf =cforallt> 0, and let ¥ be defined as in Theorem 2.
Then, for Zs ~ N0, X), d3(F;, Zx)) = O(r;) as t goes to infinity.

The improved approximations of the variance and covariance needed for the derivation of
this result are given in the following two lemmas.

Lemma 8. Consider the model described in Proposition 2. The variance of the crossing
number is

1
VE(L) = gc“ﬁr;‘ (2¢2 + ™) (A + Our)), 8)

where czi = mc;_zB(Z%, d/2)2B(4, d/2) and cq is defined as in Lemma 1.
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Lemma 9. Consider the model described in Proposition 2. For the covariance between the
crossing number and the stress,

Cov(&(Wy), stress(G, Gr)) = %cdt3rt2 f s%(v) dv(1 + Oy(ry)), 9)
w

where S}, (v) := [y, w(0, v2)(do(0, v2) — d7(0, v2))? dva.
We first prove Proposition 2, after which we will prove the lemmas too.

Proof of Proposition 2. From (8), we can calculate

VSI(WL) _ 1 2 A |

(1 _ -
VF;,’' = t7rfd+4 = 8(20d +cyc” )+ Oury).
The variance of F, ,(2) follows from [4, Theorem 6]:
V stress(G, G _
VED = T f S0 dv+ O,
‘ w

The rate of convergence for the covariance Cov (F ;1), F, §2)) is given by

Cov(&,(Wyp), stress(G, Gr)) _ 1

(1)
5 Vz2d+2 5¢d /W Sw. (V) dv + Oy(ry).

Cov(F", F?) =

It follows from Proposition 1 that d3(Fy, Zx) < Or)+ 0t H+ 012 =0@r) as ¢
tends to infinity. O

The proofs of Lemmas 8 and 9 mostly follow the same steps as in the derivations of these
quantities in [5]. We first summarize the bounds they derived, before using them in our proofs,
sticking to the notation from [5] as much as possible.

B.1. Bounds from [5]

For a convex body K and a two-dimensional plane in R¢, the following integral is defined
in [5, Lemma 8]:

JVK) = f 10, x112. N (v + [0, 2Dz # @) dz dy dx.
(riBa)x K x(riBg)

Defining ¢4 as in Lemma 1, the proof of [5, Lemma 8] contains the following inequalities:

car?™1(2r,By CK|p) inf Ag_o((u+LY)NK)
uerBg
1
< JE Y(K) < car?it? SUp,cy,p, rd—2((u + LYHNK).

The following integral is also defined in [5] for points v € W:

1
Ly () := f (v, val N (3, val # 2, v =vall <7, 13— vall < ) dva dvs dvg.
1%
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By the proof of [5, Proposition 9], J; \(W_,, — v) <I{; (v) < J;(W — v). The following

integral is an analogue of Jg)(K ) needed to calculate the variance of the crossing number:

TP K) = f 110, X112 N 51 + [0, 21 DIz # 9)
(rtBa)x K% x (rtBg)?
x 1([0, x]|z N (v2 + [0, 22])|z # @) dz1 dzz dy; dy» d.

Defining ¢/, = k3 B3, d/2)*B(4, d/2), it is shown in the proof of [5, Lemma 10] that
d d—2

! 3d+4 - L 2
4128, C K| L)( inf ag-a(+LH0 K))
ueribq

2 2
<JP(K) < it (sup,e, p, ka—2(+ LY NK))”.

Letting v € W again, the following integral is defined in [5, Proposition 11]:

2
IFHOE / (v, vl N [va, vl # @, v —vall <7 Ivs —vall <7y)

Ws
x 1([v, vale N [w3, walp # @, lws — wall < ry) dva dva dvg dws dwy.

In the proof of the same proposition, it is derived that Jf)(W,r, —v) §I$?L(v) 5]22)
(W —v).

B.2. Proofs of the lemmas

Proof of Lemma 8. We closely follow the proof of [5, Theorem 13], in which the variance
is given by

1 1
VE(L) = ~1" / 1,0 dv+ =1 / 19, vy dv
4 Jw 8 Jw
+ OO} + 0P ) + 0,(* 7). (10)
Let v € W_3,,. Then we use the bounds prepared by [5] to bound 16‘1,) 1 (v) from below:

1 . _
15, 0) = I Wy, —v) = cgr?+? 0t Raa(ut LY N (W, — ) = car®2(1 — 27,02,
t

where (1 — 2;3)”1_2 is the volume of a (d — 2)-dimensional cube with edge length 1 — 2r;. For

ve W\ W_3,, a trivial lower bound for I%,:,?L(v) is zero. A similar derivation for the upper

bound yields, for allve W,
1), ) <IOW —v) < car? 2 supye, g, ha—2((u+ L) N (W =) = cqr2®*2.

It follows that

Lo ) 15
Zt /;VIW’L(V) dv = Zt W

1
= Zﬂ (AT + Or) + 2 Oy(ry))

1
- Zﬂr;‘d“cf}(l + Oyry)).

Iy )% dv+ /

1),y dv)
W\W73r; '

3rt

https://doi.org/10.1017/jpr.2025.10030 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2025.10030

22 H. DORING AND L. DE JONGE

For the second integral in the variance, we can also use the bounds from [5]. Let v e W_3,,,
then

2
2 2 .
19,00 2 I W_, =) 2 g™ int dmal@+ LN (W=, =)
tDd
= (1 — 27272

Zero is again a trivial lower bound for the case where v e W\ W_s,,. For the upper bound,
we again let v € W and derive

2 2 2
15, 0) < IPW —v) < 4 (supyeyp, ha—a((u+ L5 N (W = v)” = e+,

Then,
le [, 16
gl /M/IW’L(V)dv: gl w

—3rt

Iy, v dv+ /

17, ) dv)
WAW_s,

1
= (A + Our) + - (1)

8
1
- gt%;,rfd“a + Ou(r)).
We can plug the expressions we obtained for the integrals into (10) to see that
1 1 -
VE(L) = gﬂr;“”“ (2¢2 + i) (1 4+ Oy
Setting trf = c leads to (8). O

Proof of Lemma 9. By the proof of [5, Theorem 23], the covariance is given by
Cov(&/(Wp), stress(G, GL)) = %[5 /W I&?L(V)S(vaf),L(V) dv + O,(*r24+2),
Using our bounds on 5‘1/) 1, We can write
Cov(&/(Wp), stress(G, GL)) > %Cdtsrtzd+2

x / ( inf ,\d_z((u+LL)m(w_,,—v)))SW,L(v)dv
w

uerBg

1
> Ecdﬁr?d“(l — 2542 / Sw.(v)dv

W,

and

1
Cov(§(Wp), stress(G, G)) < Ecdtsrtwﬂ
) / (SUPueary ha—2((u+ L) N (W = 1)) S .(v) dv
w

1
= —cqPrit? / Sw.L(v) dv.
w

2
As in the proof of Lemma 8, we can look at the difference between the upper and lower
bounds and use that Sy . (v) <s for all v € W to obtain (9). O
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Remark 3. From this proof, we can also obtain a univariate central limit theorem for the
crossings: ds (F;l), Zg1,) = Ou(ry), where Zg 11 ~ MO, o711).

B.3. Remarks on the rate of convergence

The proofs in Appendix B show how to calculate the entries of the covariance matrix when
W is a cube. It might be possible to derive an order of convergence for a broader class of
windows in a similar way to the proof of Lemma 4, but this is significantly more complicated.

The rate of convergence for a cube W = [0, 119 is of order r, because of boundary effects for
the crossings. Because of these boundary effects, we expect the variance of the crossings and
the covariance to be the dominating terms in the upper bound of d3(F;, Zx) for other choices
of W too.
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