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The quantum three-wave interaction, the lowest-order nonlinear interaction in plasma
physics, describes energy—momentum transfer between three resonant waves in the
quantum regime. We describe how it may also act as a finite-degree-of-freedom
approximation to the classical three-wave interaction in certain circumstances. By
promoting the field variables to operators, we quantize the classical system, show that the
quantum system has more free parameters than the classical system and explain how these
parameters may be selected to optimize either initial or long-term correspondence. We
then numerically compare the long-time quantum—classical correspondence far from the
fixed point dynamics. We discuss the Poincaré recurrence of the system and the mitigation
of quantum scrambling.
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1. Introduction

The three-wave interaction equations may describe the dynamics of the nonlinear
interactions of three waves, or they can describe individual or pairs of small-amplitude
waves in nonlinear media. For example, in the decay interaction, a large-amplitude wave
with frequency w; and wavenumber k; will decay into two smaller waves with energies
w,, w3 and wavenumbers k»,, k3 if the resonance conditions w; = w, + w3 and k; =
k, + ks are met. The three-wave interaction equations have applications in laser—plasma
interactions (Moody et al. 2012; Myatt et al. 2014), determining weak turbulence spectra
(Zakharov, L’vov & Falkovich 2012), nonlinear optical system design (Frantz & Nodvik
1963; Ahn et al. 2003; Brunton et al. 2012) and oceanic wave theory (Kadri & Stiassnie
2013). Although the three-wave equations are well studied (Rosenbluth, White & Liu
1973; Zakharov & Manakov 1976; Kaup, Reiman & Bers 1979; Reiman 1979) and their
solutions (in terms of Jacobi elliptic functions, Armstrong et al. 1962) are known, the
three-wave interaction equations provide a model for understanding nonlinear interactions
in general, as they are the lowest-order nonlinear interactions found in many systems,
including plasma physics.
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Nonlinear dynamical systems often display complex behaviours, so, were the solution
to the three-wave equations unknown, we may approach solving them via finite-difference
integration of the system’s Liouville equation (necessary if there is uncertainty in the
initial condition). Because of the large computational cost this entails, many techniques
have been developed to transform nonlinear systems into linear systems with a finite
state space. The transformation to a finite, linear system also facilitates the use of
quantum computers since quantum computers act on finite-dimensional spaces with
linear operators. A popular technique is the process of Koopman embedding, initially
developed by Koopman (1931) and von Neumann (1932) (KvN), in which the a
nonlinear system is transformed into a (potentially) infinite-dimensional linear system
using operational dynamics. This operational dynamic method allows for extensions of the
Hartman-Grobman theorem, which shows that the linearized dynamics around fixed points
will be qualitatively similar to the actual dynamics, to entire basins of attraction (Lan &
Mezi¢ 2013), and there may be significant computational advantages to evaluating classical
dynamics rendered finite-dimensional by the KvN method on a quantum computer (Joseph
2020).

Operational dynamic methods have several significant drawbacks, however, which
restrict their theoretical applications. For actual computation, the linear
infinite-dimensional systems must be rendered finite, either by finding a
Koopman-invariant subspace or using a closure. There is research into determining
Koopman-invariant finite subspaces (Mezi¢ & Wiggins 1999; Budisi¢ & Mezi¢ 2012;
Brunton et al. 2016), but solutions are often narrowly tailored to specific systems.
Operational dynamical methods also suffer from the issue of ad hoc linearization, with an
infinite number of Koopman linearizations possible for most nonlinear systems. Although
the original work of Koopman prescribed a unitary embedding, this has often been ignored
in Koopman-derived research, particularly dynamical mode decomposition. Care must be
taken to ensure that the linearization and closure chosen result in unitary linear dynamics
for applications in quantum computation.

Instead of using operational dynamics to linearize the quantum three-wave interaction,
we propose transforming the classical interaction into a quantum interaction via the
quantum field-theoretic method, originally explored for the three-wave interaction by Shi,
Qin & Fisch (2017), Shi (2018) and Shi, Qin & Fisch (20215) and robustly simulated on a
quantum computer (Shi et al. 2021a). In this method, the classical dynamic variables,
which represent the waves’ amplitudes, are promoted to linear operators which obey
canonical commutation relations and act on a Hilbert space. If the resultant system is
infinite-dimensional, as one would expect from a Koopman linearization, nothing would
be gained from the quantization; however, it happens that, for the three-wave interaction,
the quantization allows for a natively finite-dimensional description of the dynamics. Of
course, this comes at the cost of the linear quantum system not necessarily capturing the
classical nonlinear dynamics. The quantum wave function will not be localized, may be
able to explore classically forbidden regions and will exhibit interference due to complex
phase interactions. Despite these drawbacks, elsewhere, quantum versions of classical
equations have been used to calculate classical dynamical quantities, including diffusion
coefficients and Lyapunov exponents, more efficiently than the classical equations could
(Benenti et al. 2001; Benenti, Casati & Montangero 2003; Joseph 2020).

Quantum-—classical correspondence for the three-wave interaction has been previously
explored in the context of quantum instabilities in non-chaotic classical systems (May &
Qin 2023b), but this work was limited to linear time scales of less than one nonlinear
orbit. In the following, we will use the quantum three-wave interaction as a model for
the classical three-wave interaction, considering for the first time their relationship over
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an entire nonlinear orbit. We find that that the quantum system is able to reproduce the
classical nonlinear periodic solution for finite times. Thus, through its relationship with
the classical three-wave interaction, the quantum three-wave interaction may serve as a
fundamental model for the application of quantum field-theoretic quantization as a means
of probing other nonlinear classical symplectic systems using linear unitary theory.

We begin in §2 by reviewing the dynamics of the classical three-wave equations.
We also review the formalism developed by Shi er al. for the quantum three-wave
equations, including their finite state-space representation (Shi et al. 2017; Shi 2018;
Shi et al. 2021b). We find that the governing equations of the classical and quantum
interactions are structurally similar and discuss their differences. In § 3 we describe the
initial conditions we will use for comparing the quantum and classical systems. We
compare the integrated classical system with the finite, linear quantum system, finding
excellent correspondence for many classical nonlinear periods. We also explain how
hyperparameters available in the quantum system, including the initial variance and
dimension, can be used to extend the correspondence between the quantum and classical
systems, even for large nonlinearities. Finally in §4, we summarize our findings and
discuss their relevance to quantum computation.

2. Three-wave interactions

The homogeneous, classical three-wave equations for the decay interaction are given by

A1 = gArAs, (2.1)
A, = —g"AIA], (2.2)
0,Az = _g*AlA; (2.3)

where A; is the amplitude of the jth wave, A7 is its complex conjugate and g is the coupling

coefficient (Jurkus & Robson 1960; Jaynes & Cummings 1963; Kaup et al. 1979; Reiman
1979). In addition to the Hamiltonian

H = gATAxA; — g"A1AA3, 2.4
the interaction supports two other constants of motion

s =1+ L, (2.5)
s3=1 + 1D, (2.6)

where [; = A7A; is the wave action of the jth wave. Because the wave amplitudes A; are not
real-valued, their quantum analogues will not be observables. Thus, to directly compare
the classical and quantum three-wave interactions, we will consider the second-order
differential equation for the first wave action

O = 2|g|* (sas3 — 2(s2 + s3)I, + 31}), 2.7

which is obtained directly by differentiating /, and making substitutions using (2.1)—(2.3)
and (2.5) and (2.6). The dynamics for I, and I3 is the same as that for /; thanks to the
constants s, and s;. Note that the second-order differential equation for /; is decoupled
from the equations for I, and /53 (which is not the case for the first-order differential
equation for /;). Because there is a symmetry between s, and s3, in what follows we will
assume s3 > S,.
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We can further simplify this equation by scaling it by s, and making the time parameter
dimensionless so

32x = 2(c — 2(1 + o)x + 3x%), (2.8)

with the scaled wave amplitude x = [ /s,, the constant ¢ = s3/s, and the time parameter
T = |g|/s2t. In this form, the three initial conditions A;(t = 0), A,(t = 0) and A3(t = 0)
necessary to integrate (2.1)—(2.3) become initial conditions on the first wave’s scaled
action x, x(t = 0), its first derivative, d,x(t = 0), and the constant c¢. Equation (2.8) is
integrable, and one solution can be written as a Jacobi elliptic function

x(t) =c sn2(p + 1, 0), (2.9)

where p is a constant determined by the initial conditions. Note that, although (2.8) is
a second-order equation, the above solution only has a single free parameter. This is
because the solution space for (2.8) is much larger than that of the original problem given
by (2.1)—(2.3), to which (2.9) is also a solution. The space of initial conditions A;(0),
A,(0) and A3(0) is not surjective onto the space of ¢, x(0) and 9.x(0). Indeed, because
52, a constant determined by the initial conditions, has been scaled out of (2.8), we are
not free to determine x(0) and 9,x(0) independently. There are additional requirements
that ¢ > 1 and 0 < x(0) < 1. It is also clear from (2.8) that the constant ¢ will act as the
modulator of the nonlinearity of the interaction. Taking ¢ = 1, its lowest value since we
have assumed s3 > s,, maximizes the effect of the nonlinear term x, while taking ¢ — 0o
the system becomes linear and the Hamiltonian becomes that of the algebraic discrete
quantum harmonic oscillator (May & Qin 2023a).

Using the quantum field-theoretic method of quantization, we can promote the wave
amplitudes of (2.1)—(2.3) to operators and replace the complex conjugation with Hermitian
conjugation to obtain a set of quantum three-wave equations

3#2\1 = gAzA%
9A, = —g"AAL (2.10)
8;1&3 = —g*AlA;

The operators have the canonical commutation relations [Aj, AZ] =4 forj, ke(l,2,3}
and with §; , the Kronecker delta function. The quantum Hamiltonian

H = igAlAA; —ig"AAJAL (2.11)
and the mutually commuting operators

Sy = ﬁl + ;13, (212)
S3 = ﬁl + flz, (213)

where the number operators are defined in the usual way, 1, = A}Aj We will denote the
eigenvalues of these Hermitian operators with the same symbols as the classical operators,
e.g. (52) = s,. As found by Yuan Shi (Shi er al. 2021a), eigenvectors of the operators
5, and §3, and the eigenvectors of the number operators 71y, n, and n3 form a finite
d = s, + 1-dimensional invariant subspace when acted on by the Hamiltonian. We can
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write such subspace elements as

W) =Y o)y (2.14)
Jj=0
where
Vi =ls2—Jj, 55 =52+, )) (2.15)

has eigenvalues {71, o, n3}¥; = {52 — j, 83 — 52 +j, j};. The finiteness of the subspace
may be directly seen through the action of the Hamiltonian on a subspace element ;:
Hy = ig(ss = j+1)"2(s3 = 52+ )1
—ig" (52 —N)'"P(ss =2+ 1+NG+ D200 (2.16)

If j = s, in the above equation, then the coefficient of v, will be zero and similarly for
j = 0and ¢_,. The action of the Hamiltonian on these subspace elements can be calculated
directly from the Schrodinger equation

i9,¥ = HY, (2.17)

where we have taken the constant i = 1. Writing ¥ (f) as a column vector of weights
(ao(1), 0ty (1), ...y, (1)), H becomes a d x d tridiagonal matrix,

0 h O 0 O
hp 0 h 0 O

H = 0 m 0 h 0 ... (2.18)
0 0 h 0 hy ...

with

hij=+/(s2 =3 =2+ 1+ + D). (2.19)
Thus, explicitly, we may write the Schrodinger equation as a system of d coupled
first-order linear differential equations:

iy = hoa, (2.20)

id] = hoO[Q + hlolz, (221)

lOlJ = nj_ 10 + ]’le[j+1. (222)

We have taken g = —i in the above equations for simplicity; however, it will be shown that

the phase and magnitude of g will not affect the quantum dynamics, as they did not affect
the classical scaled dynamics of (2.8), below. Note that many efficient techniques have
been developed for simulating sparse Hamiltonian dynamics, such as that of (2.20)—(2.22),
on quantum computers. See, for example, Berry et al. (2015) and Low & Chuang (2017).

To compare this finite linear system with the nonlinear classical system, we need only
take the expectation value of 7,

G = 3 logl(s2 = ), (2.23)
=0

and compare it with the classical wave action /;. Of course, the quantum linear dynamical
equations and the classical nonlinear equations refer to different systems, so their
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dynamics will diverge except in the classical limit (s, — o0). Let us find the quantum
equivalent of the classical (2.8) to see how the quantum dynamics might be written as a
nonlinear differential equation. First, we find a second-order equation for 71; by using the
quantum three-wave equations and making substitutions with the definitions of 5, and $;:

3y = 2|g|* (5,85 — (25, + 255 + D)y + 3n7). (2.24)
This is similar to that for /; in (2.7). Next, we take the expectation of this equation
97 (n1) = 2gl*(s283 — 252 + 253 4+ 1) (m1) + 3(m1)* + 38), (2.25)
where we have defined the variance
§ = (n) — (m)* (2.26)

Finally, we scale the equation for (i;) by 53, make the equation dimensionless by using the
time parameter to absorb the coupling coefficient g and define xp = (n;) /s, T = |g| /21,
and 8’ = §/s3 to arrive at

1
32x0 :2(C—2<1 +c+ 2—) xQ+3x2Q+35/>, (2.27)
52

which may be directly compared with (2.8). Both the quantum equation for x, and the
classical (2.8) for x are the same except for the additional linear factor of 2x, /s, and the
inclusion of the scaled variance in the quantum system. As the dimension of the quantum
system increases, so will s,, diminishing the effect of the 2x,/s, term; however, the effect
of the variance in (2.27) will depend on the initial conditions of the quantum system,
not just the total dimension. Also, note the variance is not a function of x,. It must be
calculated directly from the Schrodinger equation.

3. Quantum-classical correspondence

The initial conditions of the quantum system must be chosen carefully to correspond to
those in the classical system. Consider an arbitrary initial condition where we write the
weights of (2.23) in polar form

o =r;e?, (3.1)
with a real amplitude r; and argument ¢;. Using (2.20)—(2.22), we may directly
differentiate (2.23) to find

0,1 (0)) =2 hyryryya sin(@j1 — ). (3.2)

J=0

In choosing the initial condition for the classical system, for exact correspondence we
would have x(0) = x,(0), 9:x(0) = 9:x,(0) and the nonlinearity parameters equal. This
system of equations is underdetermined, however, because the quantum system has many
more degrees of freedom, f ~ O(s,), than the classical system. To deal with this, we will
restrict ourselves to considering quantum initial conditions for which the real amplitude
rj is taken to be a Gaussian over the index of «; with a mean p and standard deviation o
which will depend on the dimension of the quantum system

- 2
r; = N exp (——(J s2) ) : (3.3)

202

The normalization A/ must account for the initial condition being clipped since r_; =
ry+1 = 0. Note that the initial scaled variance &, of the quantum system is only
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FIGURE 1. Comparison between nonlinear classical and quantum dynamics. The initial
standard deviation chosen for the quantum systems is set at d/5, and the nonlinearity parameter
¢ = 1.05.

qualitatively related to the standard deviation o since

2

So=| > ra—js*| =D ra—js| . (34)
J=0 j=0
while
o 172
o= (D rG-w =D ri-w : (3.5)
j=0 j=0

Let us further restrict our quantum initial conditions to those which are velocity
maximizing, which amounts to taking ¢;,; — ¢; = /2 for all j. This is a prescription
of the initial phase of the quantum nonlinear orbit. Since we are principally interested
in correspondence over the course of many nonlinear orbits, the initial phase should not
matter for our analysis. We thus need to match p and o for the point on the classical orbit
where the velocity is maximized. As noted in § 2, x(0) and d.x(0) are not independent,
so choosing to maximize the classical velocity also specifies a point on the classical
trajectory. The solution to (2.8) at the classical inflection point (when 8r2x =0)is

x0=%(l+c—\/1+cz—c). (3.6)

The negative root is chosen because the velocity at the inflection point

-).CO = 2\/)(3_0\/ 1-— Xov C — Xp (37)

becomes imaginary for the positive root. Finally, we set p = xy. The choice of initial
standard deviation o will be discussed below.

We compare the integrated classical system with initial conditions x(0) = xy,
0.x(0) = xo with the quantum system in figures 1, 2 and 8. As discussed above, the
initial condition is Gaussian in r, and we have also taken u = xy, 0 = d/5 and the
normalization N\ chosen such that the total probability is 1. In what remains of this
section, we will consider the quantum—classical correspondence and various effects on that
correspondence due to different choices of nonlinearity parameter c, the initial standard
deviation o and the quantum dimension d.
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FIGURE 2. Phase-space plots of the classical (x, X) and quantum (xg, Xp) systems with initial
condition (xp, Xo), initial quantum dimension d = 100 and initial quantum standard deviation
o = 20 for three values of the nonlinearity parameter, ¢ = 1.1, 1.05 and 1.01. The classical
trajectories are shown in solid blue lines. The quantum trajectories are shown via the dashed
red lines. The blue dot indicates the initial condition. Each system is evolved for three classical
orbits.

In figure 1, we compare three systems, two quantum with d = 100 and d = 400 and
the classical system, for a nonlinearity parameter ¢ = 1.05. Recall that ¢ > 1, and as
¢ — 1, the nonlinearity increases. Despite the quantum and classical velocities being
independently maximized, there is excellent initial correspondence between all three
systems. The nonlinearity is pronounced enough that the d = 100 system diverges from
the classical solution within a couple of periods; however, the correspondence for the
d = 400 system lasts much longer, with the d = 400 quantum system accurately capturing
both the nonlinearity of the classical orbit as well as its period.

We may more carefully explore the effect of the nonlinearity parameter ¢ on the
quantum—classical dynamics via phase-space diagrams of the quantum d = 100 and
classical systems in figure 2. Three classical nonlinear orbits are shown for each of the
nonlinearity parameters ¢ = 1.1, 1.05 and 1.01. Decreasing the nonlinearity parameter
causes the classical orbits to become more pinched. This increasingly linear relationship
between (n;) and 9,(n,) indicates exponential-like growth, the onset of the classical
instability and its quantum counterpart (see May & Qin 2023b). From the quantum orbits
in figure 2, it is obvious that, as the nonlinearity increases, the correspondence between
the systems decreases. Investigations into exponential growth of quantum correlators in
non-chaotic systems indicate that proximity to the classical fixed point leads to quantum
scrambling (Xu, Scaffidi & Cao 2020). For instance, after a single pass near the classical
fixed point, the d = 100 system sharply diverges from the classical solution for ¢ = 1.01.
On the other hand, the d = 100 quantum system approximates the classical solution for a
couple of classical periods for ¢ = 1.05 (see also figure 1), and the correspondence lasts
for much longer for ¢ = 1.1. The proximate cause of the sharp divergence of the quantum
system from the classical system near the fixed point is the increased classical period as
¢ — 1. Since the quantum system may only approximate the classical system for finite
times, when ¢ — 1 and the classical period tends to infinity, the quantum solution will
inevitably diverge from the classical solution within a single period.

Shown in figure 3 is the error as a function of the dimension of the quantum system for
a nonlinearity parameter ¢ = 1.05. The error is calculated by averaging the absolute value
of the difference between the classical and quantum systems over a single classical period.
The log of this mean absolute error (MAE) is shown for each of the first four classical
periods. Note that, for two uncorrelated oscillators with amplitude 1, the expected value
of the MAE will be 0.25. A MAE higher than this must be due to anti-correlated phases.
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FIGURE 3. Log-log plot of the MAE between the classical and quantum systems with
¢ = 1.05, averaged over each of the first four classical periods. The dimension d ranges from
25 to 400.
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FIGURE 4. Log-log plot of the dimension versus the transformed nonlinearity parameter ¢’ =
(c — 1)~! for various values of the MAE between the quantum and classical solutions during
the first and second classical periods. The threshold error values for the first classical period
are 0.15, 0.1 and 0.05. Also shown, in the red, large dashes, is the dimension necessary to keep
the MAE below 0.15 during the second classical period. The original nonlinearity parameter ¢
ranges from 2 (highly linear, left side of the plot) to 1.01 (highly nonlinear, right side of the plot).

This occurs for low dimension in figure 3. As the dimension of the quantum simulation is
increased, the error decays exponentially. There is a minimum error, however, which may
be attributed to our choice of initial conditions, particularly the initial standard deviation.

For a target value of the MAE, how does the dimension scale with increasing
nonlinearity? Recall that the nonlinearity parameter ranges from 1, when the nonlinearity
is maximized, to oo, where the nonlinearity disappears. For clarity, we make the
transformation ¢ = (c — 1)7!, so that ¢’ € (0,00), and increasing ¢ increases the
nonlinearity. In figure 4, we show how the dimension depends on ¢’ for various target
values of the MAE between the quantum and classical solutions for either the first or
second classical period. For each value of the threshold error, the slope is remarkably
consistent. This consistency is not limited to the short time scales either: looking at how
the dimension scales with ¢’ for a threshold error of 0.15 during the second period, we see
the same slope. We can approximate this exponential relationship

dx(c—1) (3.8)
with y ~ —3/4.
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FIGURE 5. Maximum variance over time for the d = 200, ¢ = 1.05 quantum three-wave
interaction. Results for various initial standard deviations are shown.
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FIGURE 6. Eigenvalues of the Hamiltonian scaled by the highest eigenvalue. The indices of the
eigenvalues linearly increase from that of the lowest eigenvalue 0, to the highest index 1. For
finite-dimensional systems, the eigenvalues will lie between the ¢ = 1 and ¢ — oo curves.

So far, the initial standard deviation of the quantum system has been taken tobe o0 = d/5
for simplicity; however, this does not necessarily lead to the best correspondence with the
classical system. There is a trade off between long-term fidelity and the size of the initial
variance. Shown in figure 5 is the growth of the variance over time given different initial
standard deviations. Only the maximum variance is plotted because the magnitude of the
variance oscillates with the amplitude of the wave. This can be seen in the spurts of growth
of the maximum variance occurring at multiples of the period of the nonlinear oscillation.
For a higher initial standard deviation, the variance grows more slowly with time.

The slow growth of the variance with larger initial standard deviations is attributable
to the spectrum of the Hamiltonian, shown in figure 6. When ¢ — o0, the d eigenvalues
will be exactly linearly distributed, and for finite ¢ > 1, they will lie between the two
lines of the figure. Importantly, even for the maximally nonlinear ¢ = 1, the eigenvalues
with small absolute value (those with scale eigenvalue indices of around 0.5) will still
be approximately linearly distributed. As the three-wave interaction acts similarly to a
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FIGURE 7. Variance of d = 100 quantum system with nonlinearity parameter ¢ = 1.05 and
initial standard deviation set to o = d/5 = 20. The three labelled vertical gridlines at T = 0,
1750 and 3075 indicate the starting times of the three elements of figure 8. The horizontal gridline
shows the starting variance 8’ = 0.011.
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FIGURE 8. Comparison between classical and quantum dynamics for nonlinearity parameter
¢ = 1.05 beginning at three times 7 = 0, 1750 and 3075. The plot beginning at T = 1750 typifies
high variance behaviour, and the plot beginning at time 7 = 3075 shows a partial quantum
revival, which was found by looking for relative minima in the variance of figure 7. The d = 100
quantum system begins with a standard deviation of o = d/5 = 20.

perturbed quantum harmonic oscillator, we may by analogy understand that states with a
large initial standard deviation are represented by the lowest energy eigenmodes—those
eigenmodes which reside in the central, linear area of figure 6. With higher initial
variance states having their dominant eigenfrequencies linearly distributed, they remain
in correspondence with the classical dynamics for longer periods of time. Thus, despite a
high initial variance coming at the cost of the quantum (2.27) beginning with a dynamics
farther from that of the classical (2.8) with no variance, the effect of quantum interference
is suppressed. Of course, if the initial variance is taken to be too large, (i) the initial
condition may no longer be taken to be Gaussian, and (ii) the initial condition ceases
to be well-approximated by lower-frequency eigenstates. An initial standard deviation of
o = d/5 strikes a balance between the need for a small growth rate of the variance with
the need to prevent clipping of the initial Gaussian in the finite domain witho_; = ¢y = 0
enforced.

The variance may be used as a tool to determine where quantum revivals will
occur. Shown in figure 7 is the variance for the d = 100 quantum system for the
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first approximately 880 classical orbits. The initial standard deviation is o = 20, which
corresponds to an initial variance of §' = 0.011. Beginning around T = 3075, the variance
sharply decreases to a minimum of 8" = 0.022, indicating a partial quantum revival, shown
in figure 8. Although the phase and amplitude of the quantum system differ from those of
the classical, during the revival, the quantum system accurately captures the period of
the classical orbit. When the variance is higher, for example, beginning at r = 1750, it is
difficult to characterize the correlation between the quantum and classical systems.

4. Conclusions

As a model for the classical system, the quantum description of the three-wave
interaction has several advantages. First, via the correspondence principle, the classical
and quantum systems are guaranteed to converge as the dimension of the quantum system
is increased. Second, we did not need to rely on closures or arbitrary choices of a finite
representation, as would have been the case for a KvN quantization of the classical
dynamics. The quantum field-theoretic method for quantization provides a systematic
means of rendering the dynamics discrete, finite-dimensional and unitary. Finally, as
displayed in figures 1 and 3, the quantum system of appropriate dimension can capture
both the qualitative and quantitative aspects of the nonlinear periodic solution, including
its frequency.

While the dimension of the quantum systems being compared with classical dynamics
has been large (d ~ 100), simulations of this degree may soon be achievable with quantum
computers. Since n o log,(d), where n is the number of qubits necessary to represent
a state, neglecting error correction, a d = 100 quantum state only requires 8 qubits
to represent it. However, difficulties would arise from approximating the three-wave
Hamiltonian as a series of universal gates acting on those qubits. In general, approximating
arbitrary unitary operators can require O(d”) gate applications, which is obviously
untenable for high dimension. Shi et al., in simulations of the quantum three-wave
equations with d = 3, have shown this problem may be sidestepped, however, through
the creation of special-made gates particular to the system one is simulating (Shi et al.
2021a).

Another hurdle to quantum simulation of the three-wave interaction is quantum state
preparation. Initializing a non-sparse arbitrary state, which would include our Gaussian
initial state, may require either an exponential (in the number of qubits #n, so linear in the
dimension d) number of operations (Plesch & Brukner 2011) or an exponential number of
ancillary qubits (Zhang, Li & Yuan 2022).

Finally, we should consider the information being extracted from the quantum system.
Measuring the full time history of each component of the quantum phase space, o;,
will destroy any potential quantum speedup; however, when compared with simulating
the full classical Liouville dynamics, simulating the quantum dynamics may result in
speedups as long as the extracted information is sparse. In particular, we have shown
that low-dimensional classical information, including the nonlinear frequency and the
expectation value of the number operator, may be effectively simulated in a quantum
system. While the three-wave interaction is only the lowest-order nonlinearity in plasma
physics, this opens the possibility of using natively unitary quantum dynamics to model
more complicated classical, nonlinear dynamics on quantum hardware in the near future.
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