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To address the possible occurrence of a finite-time singularity during the oblique
reconnection of two vortex rings, (Moffatt and Kimura 2019, J. Fluid Mech., vol. 870, R1)
developed a simplified model based on the Biot—Savart law and claimed that the vorticity
amplification w4y /wo becomes very large for vortex Reynolds number Rer > 4000.
However, with direct numerical simulations (DNS), Yao and Hussain (2020a, J. Fluid
Mech. vol. 888, pp. R2) were able to show that the vorticity amplification is in fact much
smaller and increases slowly with Re. This suppression of vorticity was linked to two key
factors — deformation of the vortex core during approach, and formation of hairpin-like
bridge structures. In this work, a recently developed numerical technique called log-lattice
(Campolina & Mailybaev, 2021, Nonlinearity, vol. 34, 4684), where interacting Fourier
modes are logarithmically sampled, is applied to the same oblique vortex ring interaction
problem. It is shown that the log-lattice vortex reconnection displays core compression
and formation of bridge structures, similar to the actual reconnection seen with DNS.
Furthermore, the sparsity of the Fourier modes allows us to probe very large Re = 103
until which the peak of the maximum norm of vorticity, while increasing with Rer,
remains finite, and a blow-up is observed only for the inviscid case.
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1. Introduction

Vortex reconnection is described by Yao & Hussain (20200) as a ‘fundamental topology-
transforming dynamical event’. Studying its mechanism is important for predicting the
behaviour of trailing vortices of an aircraft, understanding the turbulence cascade, and
more importantly, the occurrence of a finite-time singularity (FTS) in Euler or Navier—
Stokes equations (Yao & Hussain 2022). The starting configuration ranges from simple
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vortex rings and vortex tubes to complex knotted and linked vortices such as the Hopf
link and the trefoil knot. Numerical simulations are usually carried out with either direct
numerical simulations (DNS) or simplified models.

With a Biot—Savart (B—S) model, Kimura & Moffatt (2017) (see also references
therein) found that anti-parallel vortex filaments stretch out as they approach closely,
forming a tent-like (or pyramid-like) structure before reconnection regardless of the initial
configuration, thereby suggesting a universal route. To desingularise the B-S integral,
a ‘cut-off’ parameter is added to the denominator. This implies that the integral will
produce spurious results for length scales smaller than the cut-off, such as at the time
of reconnection. Moffatt & Kimura (2019a) argued that the evolution at reconnection time
depends only on the curvature, the core radius and the separation distance. They used
the B-S law to obtain analytical expressions for the rate of change of these variables,
resulting in a nonlinear dynamical system, hereafter referred as the Moffatt—Kimura (MK)
model. With this and subsequent work (Moffatt & Kimura 2019b), they suggested the
possible occurrence of ‘physical’ singularity for both inviscid (Euler) flow and viscous
flows when the vortex Reynolds number is Rep = I"/v > 4000. Here, I is the circulation
strength, and v is the kinematic viscosity. In particular, they note that the vorticity
amplification, i.e. the ratio of maximum vorticity at some time ?, to the initial vorticity
Wmax /@0, takes very large values with increase in Rep. This is important as it was
shown with the theorem of Beale, Kato & Majda (1984) that if a FTS occurs at a critical
time ?., then the maximum norm of vorticity becomes unbounded as a consequence of
fot" lw(x, t)|lcodt = co. Employing a similar set-up with Re up to 4000, Yao & Hussain
(2020a) (hereafter YH) used DNS to show that the vorticity amplification is, in fact, much
smaller than that reported by Moffatt & Kimura (20195). In particular, YH attributed the
suppression of vortex growth to flattening of the vortex cores as they approach closely, and
the braking effect of the bridges, both of which were ignored in the MK model.

Early work with DNS at low Rep, e.g. Kida, Takaoka & Hussain (1991), was
instrumental in establishing a clear understanding of the physical mechanism of
reconnection. The process is usually divided into three phases. In the first phase, called
inviscid advection, the vortex rings approach each other due to self-induction and mutual
induction, and they undergo strong vortex stretching. The cores also flatten, resulting in a
dipole structure. Next, during the bridging phase, the anti-parallel vortex lines annihilate
each other, resulting in the formation of bridge- or hairpin-like structures in a direction
orthogonal to the interaction. While the bridge structures rapidly recede, they remain
connected by remnant threads from incomplete reconnection, resulting in the threading
phase. High Rer < 40000 simulations with vortex tubes (Yao & Hussain 20205, 2022)
have revealed more intricate details with increasing Re, such as the formation of the
k=373 spectrum as a result of successive reconnections, and the core flattening becoming
more pronounced. Since DNS may become prohibitively expensive for larger Rer, it is
useful to study the problem with simplified toy models that preserve some of the physical
processes elucidated above while being computationally cheaper.

In this work, we use a projection of Navier—Stokes equations on a set of logarithmically
spaced discrete Fourier modes to reach very large Reynolds numbers, at moderate
numerical cost. Such a projection was invented by Campolina & Mailybaev (2021) and
termed logarithmic-lattice (or log-lattice, for short). Although it may superficially look like
a mere three-dimensional (3-D) generalisation of well-known shell models of turbulence
(see the review by Biferale 2003), the projection on log-lattice is a mathematically
well-defined procedure, allowing us to preserve the main symmetries and conservation
laws of the original equations, without the need of adjustable parameters. The interest in
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this technique in the context of a FTS has already been demonstrated by Campolina &
Mailybaev (2018), who showed that the Euler equation on log-lattice develops a blow-up
at finite time. This blow-up is characterised by a chaotic attractor that spans a wide range
of scales, out of reach of present DNS (see figure 2 of Campolina & Mailybaev 2018).
Log-lattice is also gaining considerable interest in geophysical applications where large
Reynolds numbers are common and one can perform numerous simulations with a wide
range of parameters to obtain general scaling laws that can later be turned into meaningful
parametrisations for climate models (Pikeroen et al. 2023). Both Pikeroen et al. (2023)
and Barral & Dubrulle (2023) note that the scaling laws obtained for homogeneous
Rayleigh—-Bénard convection appear to be mostly compatible with existing experimental
and numerical work despite the decimation of modes. Furthermore, with log-lattice
simulations of reversible Navier—Stokes equations, Costa, Barral & Dubrulle (2023) were
able to observe the existence of a second-order phase transition previously seen with DNS
at a higher resolution by reaching scales smaller than usual DNS. The unique combination
of using the equations of motion in their original form and the ability to span a wide range
of scales with few modes makes log-lattice an attractive tool for a wide range of problems.
The goal of the current work is to assess the similarity of log-lattice vortex reconnections
to those seen with DNS and the B—S law by comparing with the results of MK and YH.
In particular, the following questions are addressed.

(i) Since the initial conditions for a log-lattice simulation need to be defined in Fourier
space, is it possible to construct vortex rings and set up the reconnection problem
similar to Moffatt & Kimura (2019a) and Kida et al. (1991)?

(i) The reconstruction of physical space from lattice variables is currently an open
question. Similar to Bohr ef al. (1998) and Giircan (2017), can one use the standard
discrete Fourier transform to reconstruct the velocity field in physical space? If so,
what are the possible issues with this approach?

(iii) Qualitatively, how does the log-lattice vortex reconnection compare with vortex
reconnections seen with DNS and the B—S law? Which physical processes, if any,
are preserved?

(iv) Finally, do log-lattice vortex reconnections show a blow-up of global quantities such
as enstrophy € and maximum norm of vorticity [|@||« at finite Rey up to 1032 How
does the Euler simulation differ?

2. Numerical framework and initial conditions
2.1. Log-lattice framework

Only a brief description of the log-lattice framework is given here. Additional details can
be found in Campolina & Mailybaev (2021). Starting with the Fourier transform of the
incompressible Navier—Stokes equation,

dui +ikju; xuj =—ik; p — vk2u; + fi, 2.1
ikju; =0, (2.2)
i xu) (k)= Y ui(q)u;(r), (2.3)

q,re "

q+r=k
where i=+/—1, k; is the ith component of the d-dimensional wave vector k =
(k1, ..., kg), pisthe complex pressure field, f; denotes the forcing, and v is the kinematic
viscosity. In this work, f; =0 for all simulations. When v =0, the flow is inviscid,
1024 A39-3
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and the system reduces to the incompressible Euler equations. Here, (2.3) describes the
main convolution operation that couples Fourier modes in triadic interactions such that
k=gq +r and q, r, k are any three nodes on a logarithmic lattice A. The logarithmic lattice
is the set

A ={F1) ez, (2.4)

where A > 1 is the spacing factor. As shown in Campolina & Mailybaev (2021), non-trivial
triad interactions exist only when the equation A" = A7 4+ A" has integer solutions for any
(n,q,r)e Z3. The following three families of solutions are known to exist, each with z
interactions in d dimensions.

(i) 1=2with z=3<.
(ii) 1= o =~ 1.325 is the plastic number with z = 12¢.
(iii)) Any A that satisfies 1 = Y — 2% where (a, b) are mutual prime integers and (a, b) ¢
(1, 3), (4,5) as they correspond to the plastic number. In this case, z =6. For
(a, b) = (1, 2), the spacing factor 4 = ¢ =~ 1.618 is the golden mean.

While decreasing the spacing factor A can increase the node density and the number
of interactions per node, which is desirable for simulating turbulent flows, this increases
the computational cost. In this sense, simulations with 4 = 2 are computationally cheaper,
but as pointed out in Barral & Dubrulle (2023), this should be avoided for divergence-free
flows because of the lack of a forward cascade. Furthermore, the more general absence of
backscatter prohibits any inverse cascade as well. For instance, if one starts with an initial
condition where (k) =0 for k < K, then this remains true for all subsequent time. This
problem is not present for other values of A.

In this work, 4 = ¢ is chosen for all simulations. The minimum wave vector k;,;, is
set to 2w to match a simulation on a box of size L =1. The initial grid size is set
as (2N)3 =403. The Python code used in the simulations is adaptive, and new grid
points are added or removed based on the fraction of energy contained in the outermost
shells, i.e.

(Jux (O] + [uy WO + |z () ]) > ror/E, - M ={k € A 11Kl = Kinin ™"}

(2.5)
where E = (1/2)(u, u) is the total energy, k;, is the minimum wavenumber, M is a
spectral mask, and ry,; is a very small threshold that is set to 107290, When the above
condition is satisfied, larger wavenumbers corresponding to smaller scales are added. The
computational cost is reduced further by taking advantage of the grid symmetry along
the initial axis f(—k)= f(k) where (-) denotes complex conjugation. This means that
the actual simulation is performed for N x 2N x 2N nodes instead of (2N )3 nodes for
each velocity component.

max
keM

2.2. Flow visualisation with log-lattice

To enable qualitative studies, 3-D velocity fields need to be reconstructed in physical space
from the lattice variables. As suggested in Bohr et al. (1998) and Giircan (2017), a simple
algorithm would involve the discrete Fourier transform (DFT)

u(x) = Z a(k) e**, (2.6)

ke
where @ (k) is the velocity vector in Fourier space, k is the non-uniformly spaced wave
vector, and x are evenly spaced sample points. If A is an evenly spaced lattice, then (2.6)

1024 A39-4


https://doi.org/10.1017/jfm.2025.10900

https://doi.org/10.1017/jfm.2025.10900 Published online by Cambridge University Press

Journal of Fluid Mechanics

Figure 1. (a) Schematic of the initial configuration. Figure adapted from YH. (b) Visualisation of vortex
rings from log-lattices for the Kida-type ring with §o/R = 0.2 with the spacing factor 1 =¢. (c) As in (b)
for A~ 1.237. The Q-criterion isosurfaces on grid size 1283 are plotted at Q > 0.35 Q,;4x and Q > 0.3 Qpax»
respectively.

reduces to the regular DFT. While the complexity of the regular one-dimensional DFT is
O(N?), the complexity for log-lattices is O(N log, N), similar to a fast Fourier transform,
which reduces computation time. However, for a large number of sample points, this is still
computationally expensive, therefore the Python DFT code was GPU-parallelised with the
CuPy library (Okuta et al. 2017).

2.3. Initial conditions and simulation details

Two sets of initial conditions are chosen to study the oblique interaction of two vortex
rings as shown in figure 1(a). The first set is similar to Moffatt & Kimura (2019a), with
initially circular vortex rings with radii R, thickness g, and inclination angle o = 45°.
They have equal and opposite circulation I, and are separated at their centrelines by a
distance 2sg = 0.4. The core size is o/ R = 0.01. The only difference with the second set
is the core size, which is §p/ R = 0.2, which is similar to that studied by Kida et al. (1991).
The larger core size enables better visualisation of the various reconnection processes.
Due to the spectral nature of log-lattices, the initial conditions need to be described
in Fourier space as well. This immediately leads to the question of how to represent a
vortex ring structure in Fourier space. An early idea exploited the fact that the Fourier
transform of a 3-D Gaussian function is another 3-D Gaussian, and a rudimentary ring
can be constructed by imposing the divergence-free condition. However, this type of ring
has essentially one length scale to control its thickness, but the radius of the ring cannot
be controlled. The current idea makes use of the Dirac delta function to represent a two-
dimensional circle in 3-D space. For a vortex ring of radius R, the vorticity is given by

wx)=T / 39 (x — R(¢)) T () do, (2.7)

where R(¢)=(Rcos¢, Rsing,0), and the unit tangent vector is T (¢p)=
(—sin ¢, cos ¢, 0). Taking the Fourier transform of (2.7) gives

ok)=T / e HR@) T () dop. (2.8)

Using polar coordinates with x=Rcos¢, y=Rsin¢, and correspondingly
ke =ky cosa, ky =k sina, such that R=+/x?+y? and k| = /k? +k§, the dot
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product k - R(¢) reduces to Rk, cos(¢ — «), and (2.8) can be written as
oky=T / e IRkLCOsS@=[_ gin ¢, cos ¢, 0] dgb. (2.9)

Let 6 = ¢ — « such that d@ = d¢, and after some trigonometric manipulation, we note
that the result [ el Rk1c0s0 cos 9 dO can be conveniently expressed as a Bessel function
—1J1 (k1 R). Further, assuming I" = 1 and multiplying (corresponding to a convolution in
real space) with a 3-D Gaussian of width g to represent the thickness of the vortex ring,
the following closed-form expressions are obtained:

R . ky =kl 80
wx(k):_lJl(kJ_R)k_e 2, (2.10)
1
. , ky —Ukl80)?
a)y(k)zl-]l(kJ_R)k_e 2, (2.11)
1
w; (k) =0. (2.12)

This describes a single vortex ring in Fourier space having radius R and thickness
8o oriented along the z direction. Straightforward extensions of the formula allow for
translation and rotation of the ring. For instance, to translate the ring in the —z direction
by a distance sp, one can multiply (2.10)—(2.12) with e k50 (see (Al) for the complete
equation). Multiple rings can be added by superposition. Finally, the initial velocity field
can be obtained by applying the B-S law,

ik x @(k)
k|2

To study the qualitative aspects of reconnection, one needs to define a vortex. In this work,

the second invariant of the velocity gradient tensor Vu, i.e. the Q-criterion (Hunt, Wray &

Moin 1988), is chosen, which identifies vortices as regions where rotation dominates over
the strain:

uk) = for k #0. (2.13)

Q=1(I21*-1SI?) >0, (2.14)

where 2 = (1/2)[Vu — (Vu)T] is the spin tensor, and S = (1/2)[Vu + (Vu)T] is the
strain-rate tensor. This can be seen as an immediate improvement over vorticity magnitude
l@|l =11V x u|, which is known to misidentify shearing motions as vortices as both
regions possess non-zero vorticity (Lugt 1979). While numerous works in the vortex
reconnection literature appear to favour the A criterion, which identifies regions as
vortices when the middle eigenvalue 1, of the symmetric tensor (S + £22) possesses
negative values Ay < 0, Chakraborty, Balachandar & Adrian (2005) showed that it is
possible to obtain equivalent thresholds among popular methods such as the Q, 42 and A
criteria so that a particular choice among these criteria should not affect the qualitative
results presented here.

The initial conditions for the Kida-type ring with 89/R =0.2, after applying the
inverse DFT, are visualised with the Q-criterion in figure 1(b). Applying a threshold
Q > 0.35Qy;4x reveals the vortex rings. The visualisation seems to suggest that the vortex
rings are deformed, which if true, may invoke some unintended instability during the
simulation. By comparing an additional log-lattice simulation of head-on collision of
vortex rings with DNS, it is shown in Appendix A that the apparent deformation can
be attributed to the approach taken for the real space representation, and the vortex rings
are actually circular. One can also take advantage of the fact that large-scale modes are

1024 A39-6
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grouped closer on a logarithmic grid to ensure better physical space representation. This
means that using rings with large radii (e.g. R =0.1L, where L is the integral scale) and
large thicknesses leads to a better result. Further improvements can be made at the expense
of increased computational cost, e.g. including the modes containing zero components
k; =0, and reducing the grid spacing factor A. All visualisations in this paper are
shown with simulations performed with the k; = 0 modes. The zero modes where k; =0
would couple to every other mode p such that k; = p; — p; in triadic interactions. These
interactions are non-local, and they may enable, for instance, sweeping effects of small-
scale structures by the large-scale structures. A qualitative comparison of the full-time
evolution of the vortex rings with and without k; = 0 modes is shown in the supplementary
movie is available at https://doi.org/10.1017/jfm.2025.10900. The effect of reducing A can
be seen from figure 1(c), where the rings appear more circular than in figure 1(b). Due
to the irregular spacing of the Fourier modes, using the inverse DFT approach as is will
include artefacts/images with lower amplitude (similar to ringing artefacts in the signal
processing literature) that are generally not visible at larger thresholds but become more
apparent as the simulation progresses and turbulence decays. All visualisations and plots
produced with real space data were made early times where the impact of these artefacts
was minimal. To track the behaviour of global quantities such as enstrophy and maximum
norm of vorticity over long times, they were calculated directly in Fourier space, which is
unaffected by the artefacts.

3. Results and discussion
3.1. Core flattening, bridging and threading

Figure 2(a—d) show the temporal evolution of log-lattice vortex reconnection within the
smaller box indicated in figure 1(b) for the Kida-type ring at Rer = 10*. The Q-criterion
fields are thresholded at 10 % of the maximum at each time step, and shaded with axial
vorticity wy to delineate the opposite rotation of the vortices. As explained in Kida
et al. (1991), the first phase of reconnection is inviscid advection, where the anti-parallel
vortex structures approach each other due to curvature-driven self-induction, and collide.
A similar process is evident in the log-lattice simulation as shown in figure 2(a,b), where
the vortex rings are advected towards each other.

Next are the bridging and threading phases. Kida et al. (1991) further explain that
during the collision, the outermost vortex lines cancel each other at the point of contact
due to viscous cross-diffusion until they form hairpin-like bridge structures in a direction
orthogonal to the initial approach of the two vortices. Since the hairpin-bridge structures
are strongly curved at the tip, this generates a large self-induced velocity that pushes the
structures out of the plane of the paper, and backwards away from each other, which
effectively stops the cancellation of vortex lines, and the remnant thread structures remain
connected. At later times of the log-lattice simulation, i.e. figure 2(c,d) and 3(b), the
regions shaded with axial vorticity clearly reveal the formation of both bridge and thread
structures. This suggests that the three phases of vortex reconnection can be captured with
a log-lattice simulation.

The entire process including core compression is better illustrated in figure 4(a—d),
where contours of axial vorticity along the symmetric plane (x, z) are plotted at various
times. The core becomes flatter upon approach, resulting in a head-tail dipole structure
similar to that of Yao & Hussain (2020a). Interestingly, the vortex core flattens further
and almost smears out with increasing Rer, even when the core is thin, as evidenced
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https://doi.org/10.1017/jfm.2025.10900
https://doi.org/10.1017/jfm.2025.10900

https://doi.org/10.1017/jfm.2025.10900 Published online by Cambridge University Press

A. Harikrishnan, A. Lopez, and B. Dubrulle
(@) ()

N
A Vorticity y
\ B
3.57
y y
z b4
4 s
2.14
(¢) Threads ) Bridges 0.714
0714

-2.14

-3.57

-5.00

\./xiz

Figure 2. Q-criterion isosurfaces shaded with contours of axial vorticity at + =0.01, 0.12, 0.2, 0.225. The
shaded region with the colour map is the small box indicated in figure 1(b) thresholded at Q > 0.1Q,;,4x. Other
regions are uniformly shaded with 30 % opacity and thresholded at Q > 0.08Q;;4 -

(a) (b)

Threads

Y z

Figure 3. (a,b) Alternate camera angles of figures 2(b) and 2(c), respectively, with the former emphasising
the flattening of the vortex cores, and the latter showing the threads formed during the reconnection process.
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Figure 4. (a—d) Temporal evolution of the vortex core shape is shown with contours of axial vorticity with
level sets wy =[0.75—0.99] wy, jnqx in the symmetric (x, z) plane for the Kida-type ring at Rep = 10%. (e=h)
Contours of axial vorticity at t = 0.115 and level sets wy = [0.85—0.99] wy, yqx are shown in the symmetric
(x, z) plane for the MK-type ring for increasing Rer .

in figure 4(e—h), where contours of axial vorticity are plotted for the MK-type ring at
t=0.115.

Reconnection is generally accompanied by the formation of vortex sheets (cf. figure 6 of
Yao & Hussain 2022), which along with vortex tubes are considered to be the geometric
building blocks of turbulence (Bermejo-Moreno, Pullin & Horiuti 2009). Since Q > 0
identifies regions where spin dominates strain, it is not clear from the visualisations shown
in figure 2 if vortex sheets are formed in log-lattice simulations. Following Bermejo-
Moreno et al. (2009) and Yao & Hussain (20200), one can use the positive eigenvalues
of symmetric second-order velocity gradient tensor A;; = S;x$2k; + Sk $2k; proposed by
Horiuti & Takagi (2005) to educe vortex sheets. This takes advantage of the fact that
both vorticity and strain rate in a vortex sheet are large and correlated. Examining closely
at a large threshold of [A;]+ > 0.5[Aj;]4 max, it can be seen from figure 5(a) that these
structures are at the edge of the Q-criterion vortex structure where the threads are formed.
This is to be expected since it was already noted in Bermejo-Moreno et al. (2009) that
the Q-criterion structures tend be surrounded, overlapped or intersected with structures of
[Aj]+. Interestingly, the vortex sheets seem to persist after the bridge structures are formed
(see figure 5b), and start thinning out and move away from the centre of the reconnection
zone.

At large Rer, numerous small-scale structures are generated as a result of successive
reconnections where threads of sufficient intensity undergo further reconnections, as
explained with the cascade picture by Melander & Hussain (1988). These are distinctly
absent in the log-lattice visualisations shown in figures 2 and 3. While one can reach very
large wavenumbers (small scales) with few modes on a log-lattice, the small scales are
sparse and may not be adequate to visualise the associated structures. A smaller spacing
factor could help in ascertaining more details. This effect can be clearly seen in figure 6,
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R )|

Figure 5. The dark green shaded regions are structures of [A;;]; at times (a) t = 0.2, (b) t = 0.225, thresholded
at [Ajl+ > 0.5[Ajj]+ max. Other regions shaded uniformly at 30 % opacity are Q-criterion structures at
Q> 0.08Q4x-

(@) (b)

Figure 6. Q-criterion structures similar to figure 3(b) filtered up to kj, in the inertial range (a) || k||co < 30 for
A=¢, (b) ||k|lco <40 for 1~ 1.237.

where a lowpass filter is applied to the velocity field in Fourier space, i.e.

a(k) if [klloo <k,

~(c) k) =
k) 0 otherwise.

3.1)

The wavenumbers are filtered up to kj, in the inertial range |k||co < 30 for 1= ¢, and
lk]lco < 40 for reduced A~ 1.237. Comparing with figure 3(b), one can no longer see
the thread structures for A = ¢, but they are visible in figure 6(b), where more modes are
available in the inertial range. However, the inertial range is much larger for the reduced A,
and the structures appear to be different. While qualitatively the dynamics displays the
usual reconnection between the rings (not shown) seen at A = ¢, further simulations with
lower A are necessary before it can be conclusively stated that the reconnection dynamics
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Figure 7. Time evolution of the energy spectrum for the Kida case at Re = 10* with k; = 0 modes and 1 = ¢.
The y direction shows wavenumbers up to k., for this simulation. The contour lines represent level sets of the
function log E(|k|, 1).

is not different. Computing the energy spectrum, defined as
E(k) = (|a)s,. (3.2)

where the average (-)s, is taken over wave vectors in the shell S, its time evolution as
shown in figure 7 clearly illustrates the flow of energy to finer scales (larger wavenumbers)
as time progresses for the Kida-type ring with 1= ¢. Interestingly, there is a marked
increase in the flow of energy at time ¢ =0.2 when the threads were visualised (cf.
figures 2(c) and 3(b)), suggesting that the reconnection triggers the proliferation of
small-scale structures.

It has been suggested by MK that there is a counter-intuitive increase of curvature at the
tipping points induced by strong vortex stretching, which may be responsible for the large
growth of vorticity. This was examined by YH, who concluded that the radius of curvature
decreases slower than the MK model, and subsequently increases once the bridges are
formed. Prompted by one of the reviewers, who suggested that the limited resolution in
the DNS of YH could have curbed the growth of curvature, this is examined for the Kida-
type ring with the log-lattice simulation. Similar to YH, the curvature is calculated with
vortex lines by integrating,

dx(s) ®

=—, (3.3)

ds |w|

and the seed points are chosen as the peak of w, along the symmetry (x, z) plane. The
vortex lines at different times show an increase in curvature at the tip region as seen in
figure 8(a). While calculating the temporal evolution of /cg /Kk2(t), a smooth plot could not
be obtained (possibly due to artefacts), and a plot was made with every fourth time step so
that one could get a sense of the trend. As illustrated in figure 8(b), the radius of curvature
decreases strongly, which is consistent with the results of MK and YH. However, unlike
YH, the radius of curvature decreases very strongly and almost vanishes just after r = 0.2.
Whether this is due to the availability of access to much smaller scales with log-lattices
than that achievable with DNS, or the naive approach taken to real space representation
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Figure 8. (a) The black and red lines show the vortex lines at t = 0, 0.167, respectively. (b) Temporal
evolution of K&/Kz(l‘) for the Kida case at Re = 10* and 1 = ¢.

hindering the analysis, requires further investigation. Subsequently, K(% /(1) does start to
increase, similar to YH, which could be attributed to the bridges receding.

3.2. Circulation transfer and separation distance scaling

Key evidence of reconnection is the transfer of circulation from the symmetry (x, z) plane
to the collision (x, y) plane. This is calculated for one half of each plane with I'y = [ @ -
ngdSand I, = f ® - n. dS, where ng and n, are unit vectors normal to the symmetric and
collision planes, plotted in figure 9(a) for both Kida- and MK-type rings at Rer = 10%.
The inviscid advection phase is not evident as in YH due to the choice of the box (cf.
figure 1b) where the complete vortex core is not visible during the initial time (see the
shaded region in figure 2a). Therefore, the circulation along the symmetry plane initially
increases as a larger portion of the vortex core comes into view. Later, a pattern similar to
that in YH is visible where the circulation continuously drops along the symmetry plane
while consequently increasing along the collision plane.

An important question in reconnection studies is the rate of approach and separation
of the vortices. If I'" is the only relevant dimensional quantity, then it was shown with
dimensional analysis that the separation distance sy would scale as so ~ (I't) 1/2 Indeed,
for superfluid vortex reconnections with the Gross—Pitaevskii model, the approach and
separation rates were found to follow the same scaling, suggesting that this scaling may be
universal (Villois, Proment & Krstulovic 2017). However, Yao & Hussain (2020b) note that
for viscous vortex reconnection, this scaling depends on the core size, with slender cores
maintaining the local assumption required for the 1/2 scaling. To examine the temporal
evolution of separation distance during approach, an approach similar to that of YH is
taken where the centroid of wy at 0.75wy juqx is calculated for one half of the symmetry
plane, and is taken to be the centre of the tube. As shown in figure 9(b), the separation
distance before reconnection is found to scale as sg ~ (z9 — 1)*%° for the Kida-type ring,
far from the 1/2 scaling obtained from dimensional analysis. However, as found in Yao &
Hussain (20200), reducing the core size better maintains the local assumption, and for the
MK-type ring, s scales as (fg — £)%-7.

3.3. Behaviour of enstrophy and maximum norm of vorticity
The temporal evolution of enstrophy and maximum norm of vorticity are plotted in
figures 10(a,b) and 10(d,e) for the Kida- and MK-type rings, respectively. As explained in
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Figure 9. Temporal evolution of (@) circulation I'y, I; normalised by the total circulation I" =1} + I
along the symmetric (x, z) plane shaded black, and collision (x,y) plane shaded cyan, respectively.
(b) The separation distance sg is shown for both the Kida-type (solid line) and MK-type (dashed line) rings
at Rep = 10*.

10°

10°

Figure 10. Time evolution of (a,d) total enstrophy &, (b,e) maximum norm of vorticity ||w| 0, and (c, f) kinetic
energy spectrum at peak enstrophy for increasing Reynolds numbers, for (a—c) Kida-type rings and (d—f) MK-
type rings. Here, Repr =5 x 103, 104, 109, 106, 107, 108, oo are shaded red, maroon, green, cyan, blue, violet
and black, respectively.

§ 2.3, these quantities are calculated directly from lattice variables in Fourier space. This
means that they are free from artefacts, allowing us to examine them for long times. It is
clear that both enstrophy and vorticity, while increasing with Rer, remain finite even for
very large Re. Only the Euler simulation (indicated with a solid black line) shows a blow-
up for both cases, albeit at different times. This difference is to be expected, as it is already
shown by Pikeroen et al. (2024) that the blow-up times for log-lattice simulations are
sensitive to initial conditions. Figure 10(c,f) show the energy spectrum at peak enstrophy,
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Figure 11. Time evolution of enstrophy for the Kida-type ring (a) with and without the k; = 0 modes and
A= ¢, (b) with different A along with the k; = 0 modes.

where one can observe a Kolmogorov-type k—/3 spectrum. At low Rer, the range of
the —5/3 slope is confined to the small wavenumbers, but this expands with increasing
Rer, suggesting a large number of small-scale structures being generated as a result of
successive reconnections.

Influence of the k; =0 modes and spacing factor A While some comments have
already been directed towards the influence of the zero modes and using different spacing
factors, here it is addressed with the behaviour of total enstrophy for the Kida-type ring.
In figure 11(a), the total enstrophy over its initial value is examined for early times until
t = 4. The simulation without k; = 0 modes shows an enstrophy growth as seen in the DNS
reconnection of Yao & Hussain (20205). However, the addition of the k; = 0 modes almost
doubles this peak. As explained previously in § 2.3, this is to be expected since the zero
modes would couple other modes in triadic interactions, thereby resulting in an increase
of enstrophy. The addition of k; =0 becomes necessary when non-local interactions
are important. In this paper, it is being used for visualisation purposes. Whether this is
sufficient to include all non-local interactions is an important question. An early work by
Plunian & Stepanov (2007) introduced non-local interactions in the sabra shell model.
This could be straightforwardly implemented for log-lattices, and the effect of non-local
interactions can be tested by tweaking the non-locality strength.

Now the effect of changing A is examined. Lowering A from 2 (dyadic) to ¢ &~ 1.618
(golden mean) and o & 1.325 (plastic number) increases the enstrophy each time as the
number of interactions per mode is doubled (cf. figure 115). However, as pointed out in
Campolina & Mailybaev (2021) and § 2.1, one can choose other values of (a,b) such
that the lattice is non-degenerate and the number of interactions are same as that of the
golden mean. With (a,b) = (2, 5), this corresponds to 4 ~ 1.237 (visualised previously in
figures 1(c) and 6(b)). With this spacing factor, the peak of enstrophy is similar to the gold-
en mean (cf. figure 115), but the peak is reached at an earlier time. These results suggest
that the addition of k; = 0 modes and changing the spacing factor may have an impact on
the log-lattice reconnection dynamics, and their examination is left for future work.

4. Conclusion
With the log-lattice technique, numerical simulations of two inclined vortex rings with
core sizes 89/R =0.2, 0.01 are performed for increasing Rey up to 108, along with an
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Vortex ring thickness
80/R=0.2 80/R=0.01
Rer [Initial grid size  Final grid size CPU time (s) Initial grid size  Final grid size =~ CPU time (s)

10* 20 x 40 x 40 20 x 40 x 40 11.15 20 x 40 x 40 21 x 42 x 42 18.27
108 20 x 40 x 40 29 x 58 x 58 45.44 20 x 40 x 40 29 x 58 x 58 21.31
00 20 x40 x40 64 x 128 x 128 512.769 20 x40 x40 65 x 130 x 130 428.87
104 21 x 41 x 41 21 x 41 x 41 11.23 21 x 41 x 41 22 x43 x 43 17.42
108 21 x 41 x 41 40 x79 x79 427.04 21 x 41 x 41 41 x 81 x 81 351.8

00 21 x41 x41 68 x 135 x 135 1119.23 21 x41 x41 79 x 157 x 157 485.72

Table 1. Initial and final grid sizes, and time taken, for some cases of the log-lattice simulation. Bold font
indicates simulations performed with the k; =0 modes. The CPU time indicates the time taken for the
convolution operation (2.3) at the last time step of the simulation. The simulation at Rep = 10* with k; =0 is
examined in detail in § 3.1.

inviscid (Euler) simulation. It is shown that the log-lattice vortex reconnections appear to
retain key physical processes seen in DNS, including core flattening and the formation of
hairpin-like bridge structures that suppress vorticity amplification. In line with the DNS
results of YH, the peak of the maximum norm of vorticity increases with Re but remains
finite even at Re- = 10%, and a blow-up is seen only for the inviscid case. Other qualitative
results observed with DNS studies — such as the presence of vortex sheets, proliferation
of small-scale structures (by examining the temporal evolution of energy), behaviour of
curvature, circulation transfer and separation distance scaling — are also captured quite
well by log-lattices, making them suitable toy models to study vortex reconnections and
their links to an FTS at a much lower computational cost than DNS, as shown in table 1.
Future studies can be directed towards testing the accuracy of the log-lattice vortex
reconnections by establishing quantitative comparisons with their DNS counterparts.
While it is possible to use the inverse DFT to visualise the reconnection process, this is
limited to early times due to the presence of artefacts that are a result of using non-uniform,
non-integer Fourier modes. Further improvements can be focused on interpolating the
Fourier modes to linearly spaced integer values to not only suppress artefacts but also to
employ the standard fast Fourier transform algorithms. Another direction is to hide the
artefacts with a clever choice of sampling points. This is currently being explored and
will be a part of a future publication. Research can also be directed towards understanding
the reconnection dynamics at different spacing factors and also by introducing further
non-local interactions with the method described in Plunian & Stepanov (2007). It is also
currently unknown if log-lattice simulations converge to DNS when the spacing factor A4
tends to 1. The delta function can be used to study other initial conditions, such as vortex
tubes, by replacing the equation of a circle with that of a line, and convolving with a 3-D
Gaussian to give it some thickness. This is at the core of our current efforts to study the
interaction of vortex tubes with increasing complexity — by varying the circulation strength
and core sizes, and introducing axial flow in the vortex cores at very high Rer. Such
studies of asymmetrical reconnection could be useful in devising a method for directly
identifying vortex reconnection in turbulent flow data, which is a major challenge.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10900.
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Appendix A. On the circularity of the vortex ring with 1= ¢

The real-space visualisation of the initial condition in figure 1(b) seems to suggest that
the vortex rings may not be actually circular when the spacing factor is A = ¢. If true,
then this deformation of the rings could invoke an unintended instability during their
temporal evolution. By comparing with a well-known result from DNS, it is shown here
that the rings are actually circular, and the apparent deformation can be linked to the naive
approach taken for the real-space representation.

With DNS, Kang, Yun & Protas (2020) (hereafter KYP) conducted a systematic search
for potentially singular behaviour of the 3-D Navier—Stokes equation by solving a family
of partial differential equation optimisation problems where the initial conditions with
a given enstrophy are sought in such a way that the enstrophy within a time window is
maximised. This resulted in two sets of initial conditions, which are termed symmetric and
asymmetric (cf. figure 3 of KYP), whose subsequent flow evolution always shows a growth
of enstrophy. Our interest is in the symmetric initial condition as shown in figure 8(b) of
KYP, where two vortex rings oriented along the diagonal of the computational domain
can be seen. The subsequent evolution of total enstrophy and component-wise enstrophy
corresponding to each coordinate direction (cf. figure 3(a) of KYP) clearly show that the
total enstrophy is always equally distributed among its components.

To orient the vortex ring along the diagonal of the computational domain in Fourier
space, the unit vector is set to n = (£1, £1, 1) (with positive values being used for one
ring, and negative values for the other) in the equation

k — (k] 80)> .
o) =TI (lnx k|| R)———— e 2 e ka0, (A1)
In k|

and I" ==1. When the unit vector is n = (0,0, —1), n x k= (—ky, k,0), ||n x k| =
ki = /k? 4+ k2 and s = 0, the above reduces to (2.10)~(2.12).

With a Kida-type ring, i.e. §o/R =0.2 and all other parameters being the same as
described in §2.3, the vortex rings oriented along the diagonal are initialised on log-
lattice. Similar to oblique reconnection, the real-space representation with Q-criterion in
figure 12(b) shows an apparent deformation of the ring. However, it can be easily checked
that the total enstrophy remains equipartitioned among the three coordinate directions for
the initial condition. This equipartitioning is immediately disturbed even if the vortex rings
are tilted gently from this position. Running the simulation with Rey = 10*, the temporal
evolution of total enstrophy and component-wise enstrophy are plotted in figure 12(a).
Similar to the results of KYP, the total enstrophy remains equipartitioned among its
components throughout the simulation. This suggests that the initialised vortex rings are
more or less circular, even if this is not apparent from the visualisation.
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Figure 12. (a) Temporal evolution of total enstrophy £ (maroon thick solid line) and component-wise enstrophy
corresponding to each coordinate direction &, &, &3 (black solid, dotted and dashed lines, respectively).
(b,c) Initial condition for the head-on collision of vortex rings oriented along the diagonal of the computational
domain visualised at different angles. (d—f) Evolution of head-on collision at r =0.127, 0.204, 0.324. All
visualisations show Q-criterion isosurfaces thresholded at Q > 0.4Q,4x.
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