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Abstract

Visible satellite imagery (VIS) is essential for monitoring weather patterns and tracking ground surface changes
associated with climate change. However, its availability is limited during nighttime. To address this limitation, we
present a discrete variational autoencoder (VQVAE) method for translating infrared satellite imagery to VIS. This
method departs from previous efforts that utilize a U-Net architecture. By removing the connections between
corresponding layers of the encoder and decoder, the model learns a discrete and rich codebook of latent priors for
the translation task.We train and test ourmodel onmesoscale data from theGeostationary Operational Environmental
Satellite (GOES) West Advanced Baseline Imager (ABI) sensor, spanning 4 years (2019 to 2022) using the
Conditional Generative Adversarial Nets (CGAN) framework. This work demonstrates the practical use of a VQVAE
for meteorological satellite image translation. Our approach provides a modular framework for data compression and
reconstruction, with a latent representation space specifically designed for handling meteorological satellite imagery.

Impact Statement

This article introduces a discrete variational autoencoder (VQVAE) method for generating nighttime visible
satellite imagery, demonstrating that high-quality generations can be achieved without relying on UNet
architectures. By learning a versatile latent space, this approach provides a foundation for broader applications
beyond single-task models, improving the detection of low-level atmospheric features during nocturnal hours
and enabling more accurate and continuous Earth monitoring in reflectance bands beyond daylight.

1. Introduction

Meteorological satellites observe emitted, reflected, and scattered electromagnetic waves fromwithin the
Earth’s atmosphere. Over the past decades, these satellites—particularly geostationary ones—have
revolutionized weather forecasting by enabling near-continuous monitoring of atmospheric conditions.
With their high spatiotemporal resolution, they deliver essential data for accurate weather analysis and
serve as invaluable long-term records of climatic trends and land surface changes.

Since the mid-2010s, the Geostationary Operational Environmental Satellite (GOES) series has
employed the Advanced Baseline Imager (ABI) sensor for the monitoring of weather and clouds in the
Pacific and Atlantic regions across 16 spectral bands (Schmit et al., 2017). The ABI has since become
the benchmark for many contemporary meteorological radiometer imagers (Park et al., 2021). Despite
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its advancements, a significant limitation remains: six of its spectral bands depend on solar reflectance,
rendering them ineffective during nighttime. This creates a gap in nighttime observation, restricting the
use of visible satellite imagery (VIS), essential for accurate low-level cloud tracking and weather
prediction (Conway, 1997), to daylight hours. Recent advancements in generative modeling present
promising avenues to tackle this challenge. However, existing approaches (Kim et al., 2019; Harder
et al., 2020; Kim et al., 2020; Park et al., 2021; Cheng et al., 2022; Han et al., 2022; Chirokova et al.,
2023; Yan et al., 2023; Pasillas et al., 2024; Yao et al., 2024) have primarily focused on a limited subset
of model architectures and training strategies, leaving significant room for further exploration and
innovation.

Most previous efforts (Kim et al., 2019; Harder et al., 2020; Kim et al., 2020; Park et al., 2021; Cheng
et al., 2022; Han et al., 2022; Yao et al., 2024) have predominantly focused on training Pix2Pix models
(Isola et al., 2018) for this task. Pix2Pix utilizes a U-Net architecture (Ronneberger et al., 2015) trained
adversarially with a PatchGAN discriminator (Isola et al., 2018). This approach is efficient for training, as
the skip connections between corresponding encoder and decoder layers enable effective backpropaga-
tion with minimal loss and mitigate vanishing gradient issues. These skip connections also introduce an
explicit spatial correspondence bias between input and target pixels, which is particularly beneficial for
tasks like image translation and segmentation. However, to develop a more generalizable model for this
task, it is essential to forego these skip connections and design a more robust latent representation. We
conduct an initial investigation into constructing a robust latent representation without explicitly
enforcing spatial correspondence as in Pix2Pix; instead, the correspondence is learned implicitly by
the model.

In this work, we evaluate the potential of discrete variational autoencoders trained adversarially for
generating synthetic visible imagery from GOES West Mesoscale data, particularly under nighttime
conditions where traditional optical sensors have limitations. We also introduce a straightforward
processing pipeline for converting ABI sensor L2 data from NetCDF files into usable NumPy arrays.
This pipeline includes synthetic green band construction and tailored normalization to address the
unique spectral characteristics of the sensor. Furthermore, our experiments explore the construction of a
context-rich latent space that encapsulates atmospheric structure and provide valuable insights into how
VQGAN-based synthesis performs relative to alternative methods such as Pix2Pix (Isola et al., 2018)
and MLPs. These findings establish a foundation for future work in satellite image processing,
including potential applications in super-resolution and latent diffusion to enhance the overall utility
of meteorological data.

2. Background and related work

2.1. The advance baseline imager (ABI)

TheABI, developed byNASA in collaboration with NOAA, delivers continuous Earth observations from
the geostationary orbit of the GOES family of satellites (Schmit et al., 2017). It captures imagery across
16 spectral wavelengths, as detailed in Table A1, providing a high spatiotemporal resolution that
surpasses earlier meteorological Earth observation satellites (Menzel and Purdom, 1994). Vandal et al.
(2022) emphasize that the transferability between different satellite sensors remains a limitation for
current deep learning approaches in this domain. The ABI’s broad spectral range and its role as a blueprint
for subsequent imagers (Park et al., 2021) may help address this challenge. NOAA’s public release of the
extensive GOES dataset can facilitate the training of more generalizable deep learning models using
imagery captured by the ABI and driving advancements in the field.

Expanding on the ABI’s capabilities, the imager can operate in multiple scan modes to address
various observational requirements. In scan mode 6, the current default, the ABI captures a full-disk
image of Earth every 10minutes and images of the contiguous United States (CONUS) every 5minutes.
Additionally, it acquires two mesoscale images every minute, each covering approximately 1,000km2

(Schmit and Gunshor, 2024). These mesoscale images target regions of meteorological significance,
with locations determined by NOAA staff and adjusted hourly or daily based on evolving conditions.
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This ability to focus on specific areas ensures continuous monitoring of critical weather phenomena
such as developing cyclones and thunderstorms, enabling more precise and timely forecasting. Owing
to their localized detail and meteorological interest, these images are particularly well-suited for this
work and form the basis of our data selection.

2.2. Convolutional approaches to synthetic VIS generation

Kim et al. (2019) conducted the first experiments using deep convolutional networks to generate synthetic
nighttime reflectance by employing the Pix2Pix architecture (Isola et al., 2018) to transform longwave
infrared (LWIR) imagery into red-band visible (VIS) data. Their experiments revealed that longwave
infrared (LWIR) bands in the 10:3μm�11:3μm range exhibit the highest correlation with the visible red
band (0:55μm�0:80μm), establishing a foundational baseline for this task. While their model demon-
strates the potential of generative modeling for this task, its performance was hindered by seasonal
variability, particularly due to changes in the spatial distribution of clouds and low-level fog. A further
shortcoming of the Pix2Pix model was its difficulty in distinguishing cloud cover from bare land at night,
leading to frequent misclassification of cold desert or sparsely vegetated regions as cloud-filled (Han
et al., 2022).

By incorporating four additional LWIR bands (Kim et al., 2020, advanced the initial approach and
helped formalize the use of multi-band inputs as a standard strategy for improving generation fidelity.
Expanding themulti-band approach (Cheng et al., 2022) integrate ERA5-derived scale and depth priors to
enhance RGB VIS generation. While this improves image quality, it introduces computational overhead
by increasing input size to 83 channels and requiring a Squeeze-and-Excitation preprocessing step
(Hu et al., 2019). More recently, Yao et al. (2024) introduced solar positioning parameters, azimuth
and zenith angles, into the generation process, resulting in synthetic red VIS imagery with highly realistic
lighting that reflects variations across different times of day. Diverging from prior efforts that focus on
data enrichment, our work centers on architectural design, specifically the development of a context-rich
latent space. To this end, we employ a multi-band approach with three input bands and assess the
performance of a Vector Quantized Variational Autoencoder (VQVAE) (van den Oord et al., 2018; Esser
et al., 2021), trained adversarially.

2.3. Multi-layer perceptron approaches to synthetic VIS generation

While (Harder et al., 2020) explore convolutional generative models, including UNet and UNet+, and
identify Pix2Pix CGAN as the most effective for realistic generations, alternative approaches take a
fundamentally different route bymodeling the task as a regression problem usingMLPs. NightDNN (Yan
et al., 2023) employs six LWIR wavelength bands that capture key atmospheric features such as water
vapor, cloud cover, and surface temperatures. These bands are flattened into 1D arrays and subsequently
passed through amulti-layer perceptron (MLP). Since pixel-by-pixel training tends to lose surface texture
and spatial structure, the authors mitigate this by training a second, shallow MLP to encode geographic
features from NASA’s Blue Marble images. This additional input helps the model retain the local and
global details lost by focusing solely on minimizing pixel-wise mean square error (MSE). The method is
applied to full-disk imagery, which benefits from the added spatial encoding to maintain high-quality
image generation. The model outputs a 1D array of values, which is reshaped into an RGB image. This
technique effectively removes solar lighting artifacts, including glint, and shows how modeling pixel
interactions can also lead to high-quality results.

In building on this prior work, Pasillas et al. (2024) introduces a deep MLP framework, called
machine learning nighttime visible imagery (ML-NVI). This model is trained on Day Night Band
(DNB) data from the Visible Infrared Imaging Radiometer Suite (VIIRS), producing consistent DNB-
derived imagery with accurate cloud representation throughout the lunar cycle, thus enabling robust
nighttime cloud detection. The study demonstrates that MLPs are effective in generating consistent
imagery by modeling pixel-level interactions, as opposed to relying solely on the local interactions
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facilitated by convolutions. However, the “curse of dimensionality” makes MLP-based approaches
impractical for satellite imagery, given the large number of pixels typically involved. In response, our
approach integrates pixel-level interactions using a self-attention layer (Vaswani et al., 2017) within the
VQVAE framework at the encoder’s lowest resolution.

3. Methodology

This section outlines our experimental approach by detailing how we process the data, design our model
architecture for image-to-image translation, and implement the training protocol with focused hyperpara-
meter studies. The methodology is organized into three main parts: data processing, model architecture,
and training strategy.

3.1. Data processing

The study uses the ABI-L2-MCMIPM product from the GOESWest satellite (NOAA, n.d.). This dataset
comprises co-registered satellite images with a spatial resolution of 2km2, resampled to 500× 500 pixels.
The data, originally provided in NetCDF format, is converted to NumPy (.npy) arrays for compatibility
with deep learning frameworks. Min-max normalization is applied using valid minimum and maximum
values for the ABI sensor at each wavelength band, ensuring consistent scaling. Since the ABI sensor
lacks a dedicated green band, a synthetic green band is generated using the Cooperative Institute for
Meteorological Satellite Studies formula:

Green_Band = 0:45 Red_Bandð Þ+ 0:1 Veggie_Bandð Þ+ 0:45 Blue_Bandð Þ: (1)

To reduce dataset size and computational complexity, a subset of spectral bands is chosen based on
prior research (Park et al., 2021). The selected bands are 1, 2, 3, 8, 9, 10, 11, 13, 14 (see Table A1), along
with the constructed green band, forming a 3D array of shape 10× 500× 500. The ground truth (target
domainY) comprises RGB images from the Red, Green, and Blue bands, and the input domainX consists
of three bands selected from 8,9,10,11,13,14f g. The study evaluates various band combinations to
optimize the translation task.

After preprocessing, each sample includes:

• Input domain: Three selected LWIR bands.
• Target domain: Corresponding RGB images from VIS bands.

The dataset is partitioned as follows:

• Training: 6,000 examples (daytime imagery between 10 am and 4 pm PST, from 2019 to 2021).
• Validation: 600 examples (daytime imagery between 10 am and 4 pm PST, from 2019 to 2021).
• Testing: 360 nighttime images (1 am–4 am PST), 356 daytime images (10 am–2 pm PST),
20 daytime land-only images, and 20 daytime ocean-only images (all testing samples collected
from 2022 imagery).

3.2. Model architecture

Image-to-image translation involves transforming an image from one domain to another while preserving
its essential content (Isola et al., 2018). In our case, the task involves converting satellite imagery across
different spectral representations, ensuring spatial consistency and accurate domain-specific character-
istics. Our approach is framed as an image-to-image translation problem where the goal is to learn a
function F :X! Y that maps an input image x∈X to its corresponding output y∈Y . To accomplish this,
we leverage a combination of discrete variational autoencoders (VQVAEs) and generative adversarial
networks (GANs). The following components make up our model architecture.
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3.2.1. Discrete variational autoencoders (VQVAEs)
VQVAEs compress high-dimensional data into a discrete latent space, facilitating efficient image
reconstruction and translation. Their architecture consists of three main parts:

Encoder. The encoder E xð Þ maps the input x to a lower-dimensional latent representation ẑ. Unlike
standard VAEs that learn continuous latent representation, the VQVAE encoder outputs are served to a
quantization layer which discretizes the latent representation ẑ=E xð Þ.

Quantizer. The quantizer discretizes the encoder’s output by mapping each index vector to the closest
one among K predefined embedding vectors in the space Z. This is formalized as

zq = q ẑð Þ≔ argmin
zk ∈ Z

∥ẑij� zk∥
� �

: (2)

Since the quantization step is non-differentiable, we use the straight-through estimator to approximate
gradients and facilitate end-to-end training.

Decoder. The decoder reconstructs the input image from the quantized latent variable zq. The overall
training objective for the VQVAE integrates three loss components: reconstruction loss, vector quant-
ization loss (aligning the embedding vectors), and commitment loss (ensuring the encoder commits to
specific embeddings). The combined loss is given by

LVQ E,G,Zð Þ= ∥x� x̂∥22 + ∥sg E xð Þ½ �� zq∥22 + ∥sg zq
� ��E xð Þ∥22, (3)

where sg �½ � denotes the stop-gradient operator.

3.2.2. Generative adversarial networks (GANs)
GANs are employed to enhance the perceptual realism of the generated images. The discriminator D xð Þ
distinguishes between real and generated examples, while the generator G ẑð Þ produces realistic outputs.
The GAN loss is defined as

LGAN E,G,Zf g,Dð Þ=Ex logD xð Þ+ log 1�D x̂ð Þð Þ½ �: (4)

Following the framework of Esser et al. (2021), adversarial training is combined with the VQVAE losses
to yield the VQGAN model, with the overall learning objective formulated as

Q∗ = arg min
E,G,Z

max
D

Ex�p xð Þ LVQ E,G,Zð Þ+ λLGAN Efð ,G,Zg,DÞ� �
, (5)

where λ balances the perceptual reconstruction and adversarial losses. A schematic of the complete
VQGAN model used in this pipeline is presented in Figure 1.

Figure 1. Diagram of the VQGAN model for image-to-image translation in the training pipeline.
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3.3. Training protocol and hyperparameter tuning

Our training strategy follows the framework introduced by Esser et al. (2021), focusing on constructing a
robust latent space for effective image-to-image translation. Key aspects include the following:

3.3.1. Overall training setup
• Data preparation: Training images are resized to 512× 512 and normalized to the �1,1½ � range.
• Baseline configuration: For fair comparison, the baseline employs the default VQGAN settings with
a codebook size of 1024, 2 residual blocks, embedding dimension ZD = 256, discriminator start at
10,000 steps, and discriminator loss weight of 0.8. This baseline achieves LPIPS = 0:537,
PSNR = 12.329, RMSE= 0:244, and SSIM= 0:240.

• Training duration: All models are trained for 100 epochs with a learning rate of 4:5× 10�6.

3.3.2. Training warm-up
Initial experiments set the latent embedding dimension ZD = 4, utilize 1,024 embeddings, and fix the
discriminator loss weight at 0.8. We varied the discriminator activation step between 2,500 and 12,000
steps and tested encoder-decoder depths ranging from 2 to 5 residual blocks. While the 2-block model
showed early promise with a short warm-up, it suffered from sharp spikes in perceptual loss once the
discriminator was introduced. In contrast, the 3-block model exhibited more stable training, especially
when paired with a longer warm-up. Deeper variants (4 and 5 blocks) provided no significant improve-
ments. Based on these findings, we adopted the 3-block configuration with a longer generator warm-up
for most experiments, striking a balance between training stability and representation quality.

Interestingly, this regime also revealed an evaluation-time discrepancy: themodel’s output during training
appeared visually inverted compared to the test-time output. Further inspection suggests this may stem from
bandmisalignment during training. This issue is known to occur in models like VQGAN and Pix2Pix when
handling multi-channel outputs, yet it is seldom highlighted in training literature, where such inversion
artifacts are often overlooked or undocumented. While the baseline model continued to produce inverted
outputs at test time, our final trained models successfully generated correctly ordered RGB imagery.

3.3.3. Codebook size exploration
We explore various codebook sizes to assess their impact on performance, with the discriminator start
fixed at 5,000 steps and the latent embedding dimension ZD = 4. The number of residual blocks in the
encoder/decoder is increased from 3 to 4, while evaluating codebook sizes K ∈ 1024,2048,4096,8192f g.
While larger codebooks are theoretically better at capturing a broader range of features, results show that
the 2,048 and 4,096 variants perform comparably across most metrics, with 4,096 offering moderate
improvements in SSIM (see Table A2). Interestingly, the deepest model (4 blocks) with the largest
codebook (8,192) did not outperform the 2,048 baseline, which we attribute to insufficient generator
warm-up.

3.3.4. Model depth and discriminator loss weight
To further stabilize training and improve image quality, we reduce the discriminator loss weight to 0.2 and
delay its activation to 50,000 steps. This adjustment allows the generator to focus on learning meaningful
representations without being prematurely penalized by the discriminator. Unlike earlier configurations,
this setup results in a steady decrease in perceptual loss rather than the sharp spikes observed previously
(Figure A3). These results highlight the benefits of pairing longer warm-up periods with a reduced
discriminator influence, especially in deeper models trained with larger codebooks.

3.3.5. Varying input bands
Building on the stabilized training regime and insights from prior ablation studies, we further evaluate the
effect of varying LWIR wavelength bands and embedding dimensions ZD ∈ 4,6f g. These experiments
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retain two residual blocks in the encoder-decoder architecture and introduce water vapor imagery as an
additional input channel. The discriminator activation step is extended to 70,000 steps to allow the
generator more time to learn stable representations.

Although two band combinations were considered, Bands 11, 13, and 14 versus Bands 10, 11, and
14, all results reported here are from the latter configuration. This combination was chosen based on its
more consistent output quality during exploratory testing. The 4- and 6-dimensional embeddings both
yield high-quality outputs (FigureA2), with no significant advantage observed for the higher-dimensional
case aside from a longer convergence time. Notably, the inclusion of water vapor imagery substantially
improves image realism (Table 1).

4. Results and discussion

4.1. Evaluation of land, ocean, and nighttime image generation

The top two models were evaluated across land and ocean imagery to assess their performance over
different surface types. Interestingly, land imagery consistently outperformed ocean imagery across all
evaluation metrics (Table 2), contrary to initial expectations. This discrepancy may be due to a bias in the
training data as most mesoscale scenes were centered over the western United States, comprising
predominantly land. Consequently, the model may have become more adept at reconstructing daytime
land scenes due to their relative abundance during training. Visual comparisons underscore this difference
in performance (Figure A1).

Despite the lower numerical scores for ocean scenes, these examples revealed promising qualitative
results. A key success lies in the model’s ability to reconstruct subtle atmospheric features from longwave
infrared (LWIR) inputs. Features like low-level fog—which typically blend into the background in LWIR
—were clearly generated in the visible output. Similarly, the model successfully highlighted low-altitude
cumulus clouds associatedwith the early stages of tropical cyclones.While themodel did not fully capture
the structured vortex of a developing storm, it did reconstruct the general circular cloud pattern and a
perceptible center of rotation, showing promise in its ability to infer complex weather dynamics from
thermal data (Figure A1).

Nighttime evaluations further confirmed themodel’s strengths and limitations. Over ocean regions, the
model retained high levels of detail and contrast (Figure A2). Land imagery, however, often defaulted to
overwhelmingly white land cover (Figure A4). This behavior is consistent with Han et al. (2022) and
likely arises because land surfaces cool more rapidly than oceans at night. The model appears to infer
cloud presence over cooled land surfaces based on their temperature similarity, suggesting it is learning
surface temperature rather than implicitly modeling cloud or atmospheric structure.

These findings point to a deeper limitation in current image-to-image translation models when applied
to geophysical data: they lack an understanding of the physical world. The persistent nighttime artifact
over land, for instance, signals the model’s reliance on statistical correlations rather than physical
reasoning. This highlights the need for incorporating physically-informed representations. Embedding
techniques such as Sphere2Vec (Mai et al., 2023), or broader frameworks that acknowledge the
spatiotemporal and physical structure of atmospheric data, may offer a way forward. Treating satellite
imagery as generic natural images overlooks domain-specific constraints—and this evaluation under-
scores the need for dedicated methods tailored to geoscientific image modeling.

Table 1. Final configurations of evaluated models

Run ZD No. of embeddings z-channel ResBlock Disc start Disc Wt Steps

Baseline 256 1024 256 2 10,000 0.8 100,000
Embed 4 4 8192 256 2 70,000 0.2 100,000
Embed 6 6 8192 256 2 70,000 0.2 100,000

Note. All models were trained for 100 epochs with consistent architecture and loss settings.
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4.2. Input bands and the learned latent space

The performance improvements observed with the inclusion of a water vapor imagery channel may stem
from the additional vertical distribution information it provides. Specifically, the low-level water vapor
band introduces information from a distinct atmospheric layer, effectively acting as a weak depth prior for
themodel (Figure A5).While the other LWIR channels offer integrated signals across the full atmospheric
column, water vapor imagery tends to be more level-specific, allowing the model to better localize
features in its latent representation.

Despite still exhibiting some of the same challenges as the baseline, such as color inversion in
reconstructed VIS output, the qualitative detail in the generated images was noticeably improved.
Fine-grained structures and spatial coherence were better preserved, suggesting that the multi-level
atmospheric context helped the model disentangle relevant features more effectively. A comparison
between the input bands, baseline model, ground truth, and final generation is shown in Figure A6.

These results indicate the model learning a robust, generalizable representation of the earth and
atmosphere that is, to some extent, independent of the specific input bands presented. This suggests the
potential for a refined approach, where the latent space could be designed to be invariant to thewavelength
inputs. If we view the different bands as multimodal inputs, we can then imagine that the learned latent
space would be conditioned on all these multimodal inputs. For tasks such as latent diffusion, it could be
possible to train a model on a single satellite with a sufficiently broad variety of wavelengths and transfer
the learned latent space to other tasks. In such cases, the only requirement would be to train a new encoder
model on the specific inputs for a given task. The model would replace the inputs with their nearest
neighbor vector embeddings from the learned latent space, allowing themodel to operate fully in the latent
space for objectives like diffusion or super-resolution. This approach would make computation more
efficient, as it would leverage a common embedding space, enabling future research to focus on
improving interpretability across multiple models that share this latent space.

Table 2. Performance metrics comparison

Model Config Scene LPIPS↓ PSNR↑ RMSEa↓ SSIM↑

Ours Dim = 4 Land/Ocean 0.251 21.788 0.084 0.637
Ours Dim = 6 Land/Ocean 0.268 21.244 0.090 0.614
Ours Dim = 4 Land 0.258 22.108 0.081 0.635
Ours Dim = 6 Land 0.275 21.543 0.086 0.605
Ours Dim = 4 Ocean 0.330 18.956 0.117 0.525
Ours Dim = 6 Ocean 0.328 18.856 0.121 0.522
Previous work
Yao et al. (2024) Pix2Pix Tropical cyclones – 28.3 0.043 0.885
Kim et al. (2019) Pix2Pix Winter – – 0.129 –

Pix2Pix Summer – – 0.145 –

Kim et al. (2020) Pix2Pix – – – 0.105 –

Harder et al. (2020) Pix2Pix – – – 0.11 0.77
U-Net – – – 0.09 0.85
U-Net++ – – – 0.07 0.86

Han et al. (2022) Pix2Pix Red Band – – 0.061 –

Green Band – – 0.050 –

Blue Band – – 0.047 –

Cheng et al. (2022) Pix2Pix – – 25.5 0.082 0.480
Yan et al. (2023) DNN – – – 8.38 –

Note.Best-performingmetrics (highlighted in yellow) for ourmodel evaluated on combined land/ocean, land-only, and ocean-only scenes. Best overall
performance per category is highlighted in green.
aRMSE values are not directly comparable across methods due to differences in data domains, pre-processing pipelines, and evaluation setups.
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5. Conclusion and limitations

In this work, we evaluated the potential of VQVAEs to generate synthetic RGB visible imagery from
LWIR data during nighttime. Our model successfully captures key spatial features and even high-
frequency details, such as small surface clouds, but several challenges remain.

A primary limitation we observed is the mischaracterization of colder nighttime ground surfaces as
cloud-filled. This shortcoming suggests that the current CNN-based approaches may lack sufficient
encoding of spatial information. In future work, incorporating explicit positional encodings (e.g.,
Sphere2Vec; Mai et al., 2023) or adopting a multimodal approach, where additional inputs like SAR
imagery inform the model, may improve differentiation between land and cloud features.

Another critical challenge lies in our data processing pipeline. Although the conversion of raw GOES
data from NetCDF format into deep learning—ready NumPy arrays was necessary for training, the
resulting files were extremely large and inefficient. These issues, combined with the limitations of
NetCDF for random access, significantly constrained training scalability. As a result, we were forced
to use only a small fraction, roughly 6,000 out of over 56,000 available NetCDF files, due to storage and
compute constraints. This highlights a broader bottleneck in the field: the absence of pre-processed, full-
spectrum cloud datasets tailored for deep learning applications.

Recent work (Pasillas et al., 2024) has emphasized that, while quantitative metrics provide some
insight, they often fall short in assessing spatial coherence and operational utility. In this context,
qualitative evaluation by domain specialists, who are the end users of such imagery, is essential. These
expert assessments can reveal subtleties and real-world usability that automated metrics may overlook,
especially in safety, critical applications like weather forecasting or disaster response. Nonetheless, the
lack of formal spatial evaluation metrics remains an open issue. Metrics such as Moran’s I, Geary’s C, or
Kullback–Leibler divergence along with consistent comparisons against prior models like (Harder et al.,
2020), whose evaluations were limited to SSIM and RMSE, are needed to more rigorously assess spatial
bias and distributional fidelity. We consider this an important direction for future work, as such
evaluations are currently underutilized across the literature.

Overall, our study provides valuable insights into the challenges and potential of applying VQVAEs for
nighttime VIS synthesis from LWIR data. The identified limitations and future directions lay the ground-
work for developing more physically informed, multimodal approaches in geoscientific image modeling.
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A. Appendix

Figure A1. Comparison of model outputs for land and ocean cover. Row 1 shows land cover, while Row
2 shows ocean cover. Columns, from left to right, represent: input, ground truth (GT), baseline model,
embedding dimension ZD = 4, and embedding dimension ZD = 6.

Figure A2. Comparison of model outputs for nighttime. From left to right: input, ground truth (GT),
baseline model, embedding dimension 4, and embedding dimension 6.
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Table A1. Spectral and spatial characteristics of GOES ABI sensor bands. Reflective bands operate
during daytime; radiance bands are thermal and operate continuously

Band Wavelength (μm) Resolution (km2) Type Descriptive name

Reflective bands
1 0.47 1.0 Reflectance Blue
2 0.64 0.5 Reflectance Red
3 0.86 1.0 Reflectance Vegetation
4 1.37 2.0 Reflectance Cirrus
5 1.61 1.0 Reflectance Snow/ice
6 2.24 2.0 Reflectance Cloud particle size
7 3.90 2.0 Reflectance (daytime)/

radiance (nighttime)
Shortwave window

Infrared radiance bands
8 6.19 2.0 Radiance Upper-level water vapor
9 6.93 2.0 Radiance Mid-level water vapor
10 7.34 2.0 Radiance Low-level water vapor
11 8.44 2.0 Radiance Cloud-top phase
12 9.61 2.0 Radiance Ozone
13 10.33 2.0 Radiance Clean longwave window
14 11.21 2.0 Radiance Longwave window
15 12.29 2.0 Radiance Dirty longwave window
16 13.28 2.0 Radiance CO2 (carbon dioxide)

Table A2. Evaluation of reconstruction quality across different codebook sizes. Highlighted values
(yellow) indicate best performance for each metric

Codebook size Residual blocks LPIPS↓ PSNR↑ RMSE↓ SSIM↑

1024 3 0.587 10.749 0.293 0.234
2048 3 0.527 11.622 0.267 0.276
4096 3 0.539 11.905 0.259 0.311
8192 4 0.537 11.267 0.276 0.263

Figure A3. Comparison of the effect of reduced discriminator influence on image reconstruction quality.
(a) Default model. (b) Model with 2 residual blocks before each downsample and upsample block.
(c) Model with 4 residual blocks before each downsample and upsample block. (d) Ground truth image.
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Figure A5. Comparison of the impact of embedding dimension on models trained with ABI bands 10, 11,
and 14. (a) Baseline model. (b) Model with 4-dimensional embedding. (c) Model with 6-dimensional
embedding. (d) Ground truth VIS.

Figure A4. Nighttime visible images over land. (a) 3 Band nighttime IR image. (b) Generated nighttime
visible image.

Figure A6. Visual comparison of model outputs when evaluated on inputs it was not trained on—specifically,
the Band 11, 13, and 14 combination. (a) Input LWIR imagery. (b)Ground truthVIS image. (c) Baselinemodel
output. (d) Output from the trained model using ZD = 4.
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