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Abstract

Robotic exoskeletons offer the potential to train novel motor skill acquisition and thus aid physical rehabilitation. Our
prior work demonstrated that individuals converge to certain kinematic coordinations as they learn a novel task. An
upper-limb exoskeleton controller that constrains individuals to this known coordination was also shown to
significantly improve straight-line reaching task performance. This paper studies the impact of variations of this
controller on novel skill acquisition. We quantify learning under three variations of the intervention (each group with
N =10 participants) against a control group (N = 13). Our results show that introducing any constraint during learning
can hinder the learning process, as this alters the task dynamics that lead to success. However, when presented with a
personalized constraint, participants still learn. When presented with a task-specific constraint, rather than a personalized
one, participants cannot overcome the differences in the training and target task, suggesting exoskeleton-based training
interventions should be personalized. The changes in kinematic behaviors during learning further suggest that
participants do not have a statistically consistent performance. While participants respond more to exoskeleton
intervention, others may not respond in short training sessions, necessitating further analysis of how strong a response
can be encouraged. Our findings emphasize the need for further study of the effects of exoskeleton intervention for motor
training and the potential need for personalization.

1. Introduction

Wearable robotic systems are becoming more capable of safe and effective interactions with their
wearers. These devices have demonstrated the ability to assist in functional task performance and even
bring about the adaptation of known movement behaviors (Young & Ferris, 2016; Proietti et al., 2022).
The same devices offer the potential to not only assist the wearer (Yun et al., 2020; Franks et al., 2021;
Dingetal.,2023; Nasretal., 2023) but also train them to improve performance and learning (Rose et al.,
2021). Specifically, robotic devices such as exoskeletons could train novel motor behaviors through
physical interaction (Heuer & Luettgen, 2015) with the eventual goal of enabling rehabilitation post
neurological injury (de Oliveira et al., 2019; He et al., 202 1; Hailey et al., 2022). Such robotic motor
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training could have several applications, including sports training, surgical skills training, physical
rehabilitation, and teaching individuals with amputation novel motor behaviors to better control
prosthetic devices.

Motor training aims to improve the efficiency of motor learning, by which humans learn novel motor
tasks. This learning process is difficult to quantify and has long been studied by movement scientists
(Krakauer et al., 2019). Testing motor training interventions is challenging as humans have high
variability in their learning abilities and behavior when presented with novel motor tasks. Prior studies
have largely focused on learning tasks in static environments where the learner’s movements fully control
the environment. For example, reaching a static target with visual or motor perturbations (Losey et al.,
2016; Elangovan et al., 2017) has been studied extensively to understand how human behaviors adapt to
such disturbances. However, learning in such tasks only requires movements that participants (at least
those without impairments) can already generate and, as such, do not induce learning of genuinely new
movement patterns. Instead, these studies observe motor adaptation to the task or exoskeleton environ-
ment, also referred to as transformation learning (Heuer & Luettgen, 2015). Some prior work has
evaluated learning of novel movement trajectories within a static environment (Sans-Muntadas et al.,
2014; Wu et al., 2014). However, research on exoskeleton interaction modes that elicit improvements in
human performance through motor learning rather than task assistance remains sparse. Further, few
studies have considered learning dynamic tasks, where participants must not only learn a motor behavior
but also react to the environment’s dynamics (Bazzi & Sternad, 2020).

This paper explores the motor training potential of an exoskeleton interaction mode that has been
shown to assist in known task movements. Two key features of the current study differentiate it from prior
work. First, we focus on de Novo learning (Krakauer, 2006) of dynamic motor tasks rather than the more
commonly studied reaching to static targets or trajectory following. Second, we explore intervention
modes that interact with the participant in a time-independent manner, thus allowing the wearer to control
their movement and learning. Such control schemes enable the exploration of the available motor
landscape, necessary in the early stages of learning (Kleim & Jones, 2008; Schmidt et al., 2018) while
encouraging the learner to remain close to a desired behavior. Our time-independent interaction frame-
work, joint angle coordination control (Ghonasgi et al., 2023b), has previously been shown to assist in
reaching static targets but has not been explored as a mode for novel motor skill acquisition. Thus, we aim
to identify the opportunities and challenges presented by such an assistive interaction mode in motor skill
training for novel dynamic tasks. Specifically, we explored three hypotheses: H1) Participants will be
able to perform and learn the dynamic task under different coordination-based constraints during
training, H2) Coordination interventions may be designed to impede or assist the learning process,
and H3) Individuals may need personalized training interventions to support learning. Our findings, in
line with those from prior literature, suggest that these interventions can indeed influence motor learning
outcomes, and underscore the potential benefits of personalized approaches.

The following section (section 2) presents prior work related to motor learning and robotic interven-
tions for motor training. Next, we present the intervention control, experimental protocol, and analysis
used in this paper (section 3). We then present our results (section 4) demonstrating the feasibility of using
coordination-based intervention to modulate task difficulty and the relative effects of training with such
interventions on learned behavior. These results are discussed (section 5) and the relative advantages and
disadvantages of the proposed intervention design. We also discuss the potential need for individualized
training environments based on our observations. The paper concludes (section 6) with limitations and
potential future directions for this work.

2. Related works and motivation

In their reviews of motor learning, Krakauer (2006) and Krakauer et al. (2019) consider the challenges
of studying the acquisition of novel motor skills. The authors make a case for interactive learning
where the novelty of the task, high salience, and participant engagement are key features of a good
motor training intervention. We explore the learning of a salient and novel motor task based on the
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Japanese ball-and-cup toy, Kendama (Ghonasgi et al., 2023a). We use this task environment for
further evaluation of a wearable robotic system as a platform for motor training intervention.
Krakauer (2006) also suggest that teaching task behaviors through trajectory or end-effector-based
assistance are likely to fail as there is insufficient control offered to the learner. However, an
intervention that involves active participation of the learner, where they drive the movement and
the interaction, may be more successful for motor training.

In prior work, we presented such an intervention for the assistance of a point-to-point reaching task in
both the joint-space and the end-effector space (Ghonasgi et al., 2023b). The core idea of this intervention
is that it targets joint coordination rather than time-dependent movement trajectories. This idea is
motivated by the findings that the consistent use of joint coordination behaviors has been suggested as
an indicator of motor learning (Bockemiihl et al., 2010; Averta et al., 2019; Huang et al., 202 | ; Khanafer
etal., 2021; Pei et al., 2021).

Coordination-based control has been proposed as an assistive exoskeleton interaction mode for
walking (Vallery et al., 2007; Hassan et al., 2015) and functional task assistance (Ghonasgi et al.,
2023b). Proietti et al. (2017) further demonstrated that, through joint-velocity coordination-based
training, participants learned to modify their known joint coordination behaviors for a static reaching
task with some lasting effect beyond training. However, as reaching movements are typically known
behaviors, and the study did not involve learning to dynamically interact with the environment to
accomplish a goal, the observed changes constitute adaptation rather than novel motor skill acquisition.
Dynamic interactions may also be achieved through adaptation, but learning a dynamic unknown task
environment may be an effective platform for the study of motor learning. Although coordination-based
assistance may be beneficial for known task performance, it remains unclear how a similarly designed
robotic intervention will affect the learning of a novel dynamic motor task.

The study presented in this paper is designed to test the effect of a coordination-based robotic
intervention on novel motor skill acquisition on a dynamic task. Our initial implementation of the
coordination-based intervention was designed to be assistive for a static reaching task (Ghonasgi et al.,
2023a) performed while wearing a bimanual upper-limb rehabilitation robot, the Harmony Exoskeleton
(Kim & Deshpande, 2017). Specifically, we use a known reference behavior to construct a desired
coordination that was imposed during testing. We found that the intervention improved the accuracy of
straight-line reaching movements as a consequence of maintaining the imposed joint coordination
behavior. For a novel dynamic task, a novice is unlikely to succeed during their initial attempts, and thus
may not be using success-correlated coordination compared to a reference behavior identified from expert
data. Thus, while constructing a coordination behavior using these initial attempts to personalizes the
assistance, this approach may not result in an assistive coordination control mode. In addition to this
approach, we also consider a second participant-generalized approach to constructing the training
coordination. Specifically, we use data from a control group of participants who learn the Kendama task
without any intervention to define a task-specific, across-participant desired coordination behavior. We
previously identified such behaviors to be indicative of expert performance and aim to teach this behavior
to novice learners directly to increase the efficiency of learning through interaction (Ghonasgi et al.,
2023a). Lastly, an additional intervention is designed to test whether participants can be constrained away
from the task-specific coordination behavior.

The goal of the study presented in this paper is to evaluate the feasibility and the effect of time-
independent joint-coordination-based training interventions on dynamic motor skill acquisition. Toward
this evaluation, we use the Harmony Exoskeleton to study how novice participants learn to perform the
dynamic Kendama task. Based on prior literature (Crocher et al., 2012; Proietti et al., 2017), we
hypothesize that participants will be able to perform the dynamic task during the coordination-based
intervention introduced by the robot (feasibility). However, at the same time, we expect that certain
interventions may introduce increased complexity to the task making it harder to learn (effect) (Sans-
Muntadas et al., 2014; Heuer & Luettgen, 2015). We also hypothesized that participants who were trained
with the same coordination-based intervention would learn the coordination behavior as a result of the

training (effect).
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3. Methods

Below, we describe the Harmony exoskeleton and the control modes implemented on the device to study
their effect on motor learning. The experimental protocol, outcome measures, and statistical analysis are
explained as well.

3.1. The harmony exoskeleton and the Kendama task

The Harmony exoskeleton (Kim & Deshpande, 2017), a bi-manual upper limb rehabilitation robot, has
seven degrees of freedom in each arm: shoulder elevation/depression, shoulder protraction/retraction,
shoulder abduction/adduction, shoulder internal/external rotation, shoulder flexion/extension, elbow
flexion/extension, and forearm pronation/supination. This robot has been explored as a platform for
rehabilitation (de Oliveira et al., 2019; Hailey et al., 2022) and to observe motor learning as humans learn
novel dynamic tasks while wearing the exoskeleton (Ghonasgi et al., 2022; Ghonasgi et al., 2023a). In the
current study, the exoskeleton is torque-controlled to impose coordination-based constraints on novices as
they learn a novel dynamic task based on the Japanese ball-and-cup toy Kendama. It should be noted that
the Harmony exoskeleton does not allow flexion and extension of the wrist. As a consequence, all
participants using the exoskeleton for the Kendama task were restricted and could not use their wrists.
This restriction changes the movement behavior that participants use for the task with the exoskeleton
compared to when they do not wear it. However, to maintain consistency, all participants performed the
task with the wrist constraint. This allows direct comparison across different interaction groups.

The goal of the Kendama task is to swing a ball attached to a cup through a string and to catch it in the
cup. A virtual simplified version of the Kendama task is used in this study (Ghonasgi et al., 2023a). The
game is designed using Unreal Engine 4 and played wearing an Oculus Rift headset. The task requires
the learner to manipulate the motion of the cup to control a ball attached to the cup through a string. The
goal of the task is to swing the ball into the cup. To allow comparison across participants for similar
learned behaviors, we explicitly instruct participants to perform the task by using arm movements parallel
to their torso, in the frontal plane. Participants are verbally instructed to use this frontal-plane strategy to
reduce the variability of task instruction across participants and to ensure the learning of comparable
movement behaviors. The task and the frontal-plane strategy are depicted in Figure 1. Each movement
was found to be under 4 s and was automatically cut using the velocity of the end-effector (Ghonasgi et al.,

Parallel to
the torso

First-Person View

Figure 1. The virtual Kendama task: the left half of the image shows the virtual reality environment as
observed by the participant; the right half shows a participant wearing the Harmony exoskeleton and
playing the Kendama task in virtual reality. The inset shows the task strategy participants are verbally
instructed to follow. The participant is instructed to move the controller parallel to their frontal plane.

https://doi.org/10.1017/wtc.2025.10028 Published online by Cambridge University Press


https://doi.org/10.1017/wtc.2025.10028

Wearable Technologies e52-5

2023a). Specifically, the peak of the end-effector velocity was identified and the movement was cut such
that the start was 1 s before the peak and the end was 2 s after the peak. Centering around peak-end-
effector velocity and cutting attempts to a uniform length allows for comparison of the kinematic
coordination for discrete attempts. The exoskeleton control runs at 200 Hz while the VR game is set to
run at 60 Hz frame rate.

Learning of novel tasks has been shown to be correlated with learning of kinematic coordination
behaviors (Averta et al., 2019; Ghonasgi et al., 2023a). In keeping with the high-level goal of this study, to
explore the feasibility and effect of joint-coordination-based constraints on dynamic task learning, we use
the Harmony exoskeleton to constrain participants’ movements as they learn to perform the dynamic
Kendama task. Specifically, we extract task and participant-specific coordination behaviors and test the
effect of training with these as motor constraints.

3.2. Kinematic coordination identification

For a given human-robot interactive movement, we can identify the kinematic coordination using
principal component analysis (PCA) on the joint angle signals. Specifically, we construct a matrix 6y,
of size n x T where T is the number of time-steps of data collected for the movement, and # is the number
of degrees of freedom of the robot for each movement for which we wish to identify the kinematic
coordination. In the case of the Harmony exoskeleton, n="7.

Orask,1 7= C7x787x T + Omean1 < T e9)

The matrix S encodes the time-dependent behavior while the matric C encodes the time-independent
behaviors of the joints of the robot. Further, each component in C corresponds to a coordination vector
along which the # joints of the robot are coordinated during the movement. This analysis can be applied to
every attempt at the virtual Kendama task.

The first vector in the identified components, the principal coordination, encodes the joint coordination
responsible for the largest variability in the movement. For tasks performed with the Harmony exoskel-
eton, this process yields a seven-dimensional principal coordination for every attempt of the task. Note
that these task attempts need not all be for one participant. Comparing the principal coordination across
different attempts for an individual and across individuals allows us to construct individual-specific and
task-specific coordination behaviors. Specifically, we use unsupervised k-means clustering to cluster the
7-dimensional data points across any N attempts (whether for a given individual or across individuals).
The number of clusters is selected automatically by detecting the optimal number of clusters that describe
the data well while avoiding overfitting. In this study, we cluster the data into different numbers of
clusters, k=2 to k=10, and identify the elbow in the curve plotting change in clustering distance as the
number of clusters is increased. This elbow represents the point where increasing the number does not
yield a sufficiently large improvement in clustering separation. Once the clustering is complete, the cluster
most correlated with desirable movement behaviors is identified, and the centroid is defined as the 7 x 1
success-correlated coordination vector. In the case of the Kendama task, successful movements, those that
result in the ball being caught in the cup, are defined as desirable behaviors.

An example of the clustering process is shown in Figure 2 for 13 novice participants performing the
Kendama task without any exoskeleton intervention for 200 attempts. These participants form the
baseline control group as discussed in the following sections. The first principal coordinate is identified
for all attempts across participants, and unsupervised clustering is used to separate the data. The within-
cluster-sum-of-square (WCSS) was plotted for 2 to 10 clusters and an elbow was identified at k=3
indicating that 3 clusters maximize the distance between the clusters while minimizing overfitting.
Figure 2a and b show the t-SNE plots of the k-means clustering when 3 clusters are identified. The
number of clusters corresponds to the maximum number of clusters before an increase in this number does
not cause a significant decrease in clustering inertia. Next, the cluster correlated with the most number of
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(a) 2D t-SNE plot. (b) 3D t-SNE plot.

Figure 2. (a) and (b) show the t-SNE plots of the k-means clustering in 2D and 3D space respectively. The

clusters are formed through unsupervised k-means clustering on unlabeled data. Three clusters separate

the data without overfitting, shown in yellow, blue, and green. The one corresponding to the most number
of successes, the yellow cluster in this example, is identified as the success-correlated cluster.

successes is identified as cluster 3 shown in yellow. The centroid of this cluster is selected and the
corresponding unit coordination vector is identified as the task-specific coordination behavior.

This preferred coordination can be calculated for any number of attempts both within and across
participants. When used on attempts on the same task performed by different participants (as in Figure 2,
the resulting coordination is a task-specific coordination behavior. When used on a single participant’s
attempts after training, this coordination represents their learned coordination. Similarly, participant-
specific initial coordination can be identified by clustering their initial attempts. While the first principal
component may not describe all of the motion, for most comparisons presented in this paper, this
coordination represents at least a majority of the motion (>50%). Next, we describe the exoskeleton
control mode developed to constrain the human-robot combined system’s movement along or orthogonal
to a desired coordination.

3.3. Exoskeleton control mode 1: fixed coordination constraint

An impedance-controlled force field is used to impose a desired coordination behavior at each joint.
Details of the control mode can be found in Ghonasgi et al. (2023b), but we repeat the salient features here
for completeness. The torque commands for the joint angle coordination control (JACC) are

tyacc =K (Oges — 0). ()

Given an arbitrary 6(¢) at time ¢, we aim to identify the desired joint angles 6., such that the desired
joint coordination behavior, C; », is maintained where m is can be any number between 1 and n=7. Note
that Cge, is constructed from the first m columns of the matrix Cge7x7 in Eq. 1 which are naturally
ordered in decreasing order of contribution to movement variability. Using the full matrix m =7 will result
in no constraint as the participant will be constrained to their entire workspace. As each column is
removed m <7, the constrained space will lose a dimension, resulting in a stronger perception of the
constraint and reduced workspace. The case considered in this paper is the most constrained version of this
controller, where m=1.

At time z, we identify the 1-dimensional time-dependent signal relative to the desired coordination
S des (t ) as
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Figure 3. Visualization of imposing (lefi) the desired coordination (Ghonasgi et al., 2023b) and con-
straining to the null space of (right) the desired coordination for an example 3 degree of freedom system.

Sdes(t) = (Q(Z‘) - eref) Cdes,l (3)

Given Sg (the desired signal behavior), 6, (the mean position of the movement for PCA), and C e,
(the desired coordination matrix), the desired joint angles are

Oues = (0(1) = Orer) Ctes,1 Chog 1 + Orer 4)

Note that if Cge, of size n x n is used in Eq. 3, the corresponding 0,4, in Eq. 4 is the same as 6(¢). By
reducing the dimensionality of Cg, we restrict the relative behaviors at each joint to a specific
coordination. The calculated desired joint angles 8., define the closest joint angle pose such that the
desired coordination is satisfied. A simplified example of this coordination control is depicted in Figure 3
(left). For a human-robot system with three degrees of freedom, say the green line represents the desired
coordination behavior. If the system moves away from a desired configuration (to one of the red points),
the desired coordination assistance applies a force field to bring the system to the nearest desired
configuration depicted by the yellow vectors.

It is important to note that a dynamic task like Kendama is likely to be complex and require more than
one kinematic coordination or synergy to describe 90% of movement variance using PCA. However, to
simplify control and enforce a single dominant coordination pattern, we used only the first principal
component derived from participant attempts for the personalized coordination control, rather than
attempting to reconstruct the full variance of the movement. Similarly, in our prior work, we identified
expert behaviors that correlated with three principal components for the frontal plane (side-swing)
strategy. However, only the first principal component is used for the current study as it describes the
majority of the variability in the joint kinematics. While a simplified approach is explored for the purposes
of'this paper, future modifications could consider more complex multi-coordination approaches for novel
task training interventions.

3.4. Exoskeleton control mode 2: null space coordination constraint

The null-space coordination intervention complements the desired coordination assistance intervention
described in the previous section. Rather than constraining the robot’s movement to a desired coordina-
tion, the movement is constrained to the null space of the predefined coordination vector.

Thus, the desired joint angles may be calculated as

Odes = (0(1) = Orer) — (6(2) — Orer) Cates.1 Clg s + Orer 5)
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Initial Training Learned

Figure 4. Experimental protocol followed for the current study. Each group of participants completed
200 attempts. The first 50 and last 50 were completed without kinematic constraints. Depending on the
group, participants received different interventions during thw 100 training attempts.

where (H(t) — Href) is the vector from the origin (centered on 6,.) to the current configuration, and the
second term is the yellow vector perpendicular to the coordination vector. The perpendicular component
of (6(r) — b,r) is then given by

Oues = 0(1) — (6(1) — Orer) Cates,1 Cigs (6)

This coordination control is also depicted in Figure 3 (right). The null-space controller identifies the
surface perpendicular to the desired coordination. For a 3-dimensional human-robot system, this null-
space is a plane. The coordination null space assistance moves the system toward the nearest configuration
on the null-space plane, represented by the yellow lines.

3.5. Experimental protocol

Our goal was to quantify the feasibility and effect of coordination-based interventions in dynamic task
learning. We do this by quantifying the learning effects in terms of extrinsic and intrinsic performance
metrics for the Kendama task while wearing the Harmony exoskeleton under different coordination-based
interventions. We present results from a human subject study with a total of 43 participants (13 female, age
=24.9+6.2) in four different training groups. In each group, participants trained on the frontal-plane
strategy for the Kendama task for a total of 200 attempts while wearing the Harmony exoskeleton. The
first 50 and last 50 attempts of the session were performed in the exoskeleton’s gravity support mode,
where the robot compensates for its own weight, giving the sensation of moving in water due to the
inherent inertia and friction. The first group (13 participants, 4 female), also referred to as the Control
group, always used the gravity support mode throughout their training. Note that the data from this group
of participants was collected prior to the exoskeleton-intervention groups and has been presented in prior
work (Ghonasgi et al., 2022). The performance of this first group led to the construction of an expert-
correlated frontal-plane kinematic coordination using the clustering method described earlier. We
previously introduced a joint angle coordination control more (Ghonasgi et al., 2023b) which allows
the Harmony exoskeleton to impose a set coordination behavior during movement. The current work
focuses on leveraging these prior works (expert coordination and coordination-based constraint) as
interventions for exoskeleton-based training. The stiffness of the impedance controller at each joint
was set beforehand (as per Ghonasgi et al., 2023b) and was not varied across participants or tasks.

The second group (10 participants, 1 male left-handed, 2 female), referred to as the preferred constraint
or PC group, trained with individual-specific coordination behaviors during the 100 training attempts.
The individual-specific coordination is identified using the clustering method described earlier on the first
50 attempts for each participant, where they perform the task in gravity support mode. Each participant in
this group is trained on a different individual-specific coordination behavior. The across-participant
frontal-plane kinematic coordination identified from the control group is used to construct the interven-
tion for the third and fourth groups. The third group (10 participants, 1 male left-handed, 4 female),
referred to as the fixed constraint or FC group, trained with the task-specific coordination imposed during
their 100 training attempts. For the second and third groups, the fixed coordination constraint control
mode was used to impose the target coordination. The fourth group (10 participants, 1 male left-handed,
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3 female), referred to as the null-space constraint or NC group, trained with the same task-specific
coordination behavior but with the null-space coordination constraint control mode during training. All
participants fell within 3 standard deviations for their arm measurements, except 1 in the null-space group,
whose forearm was longer than expected but still under five standard deviations from the mean.

The experimental protocol was reviewed and approved by The University of Texas at Austin IRB
(Study 1215). Participants were informed of the experiment protocol prior to the experiment and signed a
consent form allowing the collection of experimental data. All data was collected in accordance with the
approved protocol and the relevant COVID-19 guidelines on human-subject experimentation.

3.6. Outcome measures and analysis

Evaluation metrics for dynamic motor learning tasks can be categorized into extrinsic and intrinsic metrics
(Magill & Anderson, 2010; Ghonasgi et al., 2021). Extrinsic metrics capture the outcome of the task
performance, while intrinsic metrics capture the inherent properties of the execution (Ghonasgi et al.,
2022). For the Kendama task, we select success rate, or number of successes in a block of 50 attempts, as
the extrinsic performance metric. We define a second extrinsic metric called ‘close attempt rate’,
equivalent to the number of attempts within a block of 50 that were close attempts. A close attempt is
defined as one where the ball comes very close to the Kendama cup (within a radius of 5 cm, the sum of the
radii of the bowl and ball with a small margin of error). All successes are close attempts, but not all close
attempts are successes. The close-attempts rate is less sparse than the success rate metric. This metric
allows us to compare performances across individuals with different learning rates in a relatively short
training session. We hypothesize that the participants will learn the Kendama task in all conditions, but
that there may be an effect of the training group type on the extent of performance improvement. As the
fixed constraint group train with the task-specific coordination, we expect to see steeper improvement in
this group compared to the others.

Three intrinsic metrics are also considered. First, the method described is used to identify the initial
successful coordination for a given participant using only their initial block (first 50 attempts) and this
coordination is compared to every attempt, referred to as the distance to participant initial coordination.
Second, the same method as used to construct the first control mode is used to identify the learned successful
coordination for each participant using only their learned block (final 50 attempts). This coordination is also
compared to every other attempt at the task and the averaged results from a given block are referred to as the
distance to participant learned coordination. Finally, the third metric compares joint angle coordination for
each attempt to the task-specific coordination observed in the ‘Control’ group data, referred to as the
distance to task-specific coordination. A lower distance indicates that the coordination for that attempt is
similar to the coordination observed in the control participants learning the frontal-plane task.

We hypothesize that all participants will converge toward their participant-specific learned coordina-
tion as they train (H1). Parallelly, we expect that all participants will move away from their initial
coordination, except those in the preferred constraint group, as these individuals will train with their initial
coordination as the training constraint (relating to H2 and H3). Finally, we hypothesize that participants in
the fixed constraint group will converge toward the task-specific coordination they train with, while the
null-space constraint group will move away from this coordination (relating to H2).

3.7. Statistical analysis

Two-way repeated measures ANOVA is used to compare performance metrics averaged over the initial
phase (first 50 attempts) and the initial training phase (attempts 51-100). This comparison is conducted to
test whether the different training interventions affected the movement behaviors and corresponding
outcomes. Next, two-way repeated measures ANOVA is used to evaluate the overall effect of training and
cross effects of each intervention mode on participant-specific metrics. For comparison across interven-
tion groups on intervention- and task-specific metrics, one-way ANOVA is used to compare learned
performances across participants in all four intervention groups. The Shapiro—Wilk test is conducted to
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test for normality. When normality is violated, we will use a Wilcoxon rank-sum test to assess
significance. Finally, when normality is not violated, one-tailed t-tests are conducted to reveal specific
trends between different session phases and intervention groups. A statistically significant effect is
identified by a p-value less than a=0.05. The two factors are between-subject intervention type
(control, fixed constraint, preferred constraint, and null-space constraint) and within-subject phase type
(initial or learned).

4. Results

A total of 43 novices learned the virtual Kendama task under four different intervention conditions while
wearing the Harmony exoskeleton. Of these, 13 participants are part of the control group, whereas the
three intervention groups each consist of 10 participants. Note that experimental results from the control
participants inform the design of interventions for two of the intervention groups, the fixed and null-space
constraint groups. Participants in the intervention group are randomly assigned to one of the three groups
described in the previous section.

4.1. Comparing initial performance to training

There is a statistically significant cross-effect of the intervention and phase on success rate (p=0.001,
effect size =0.62), as seen in the left panel of Figure 5. One-tailed paired t-tests reveal that participants
in the control group increased in success rate (p <0.001) while those in the fixed constraint group
decreased in performance (p <0.001). There is no significant difference in the null-space and preferred
constraint groups. The same result is identified in the close attempts rate. As participants’ initial
reference coordination is imposed during training for the preferred constraint group, we saw a
statistically significant decrease in distance to their initial coordination during training (» <0.001).
Further, participants in the null-space constraint group move away from their initially preferred
coordination during the intervention (p <0.001). Analysis of the distance to task-specific coordination
(depicted in the right panel of Figure 5) shows a significant effect of both intervention (p <0.001, effect
size =0.59) and training (p =0.011, effect size =0.15), as well as a significant cross-effect (p <0.001,
effect size =0.85). Specifically, we find that participants show a decrease in their distance to the task-
specific coordination in both the fixed constraint (»p <0.001) and the control (p = 0.023) groups, whereas
they show an increase in this distance in the null-space group (p<0.001). Note that as the fixed
constraint imposes the fixed coordination, and the null-space constraint imposes the null space of the
fixed constraint, these results validate the implementation of the controller.
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Figure 5. Comparing initial to training performance: (a) Success rate, and (b) distance to task-specific
coordination. Significance is indicated as p<0.001: ***’ p<0.01. **’ p<0.05: *".
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4.2. Comparing initial to learned performance

This subsection compares the initial to the learned performance in participants across the four intervention
groups.

4.2.1 Extrinsic metrics

Two extrinsic performance metrics are considered: the success rate (number of successes in a 50-attempt
phase) and close attempt rate (number of attempts where the ball came close to the cup in a 50-attempt
phase). The results are presented in Figure 6. The success rate results reveal a significant effect of the
phase type across groups (p <0.001, effect size =0.41) as well as a cross-effect of the intervention and
phase (p <0.001, effect size =0.51). A comparison of close attempt rate reveals a similar effect of phase
type (p <0.001, effectsize = 0.45) and cross-effect of phase and trial (p = 0.002, effectsize =0.32). Post-hoc
paired #-tests are conducted to compare initial and learned metrics to identify which specific intervention
groups saw significant changes in performance. Using a one-tailed -test, we tested for an increase in
performance from the initial to the learned phase within each intervention group. The results show an
improvement in success rate in the control group (p<0.001) and in the preferred constraint group
(»p=0.0049). The fixed constraint group does not show statistically significant improvement in success
rate after training. Data from the null-space constraint group failed the Shapiro—Wilk test of normality.
Thus, an additional Wilcoxon rank-sum test is used. The result shows that participants in this group did not
significantly improve their success rate either. It is worth noting that data from the fixed constraint group
was also close to failing the normality test (p = 0.09). The success rate phase means are: control group="7.9
+ 3.3, preferred constraint group =2 + 0.55, fixed group =0 * 0.82, null-space group=0.6 = 0.29. The
close attempt rate improvement showed no statistical difference between the control, preferred constraint,
and null-space constraints group, though the fixed constraint group improvement was significantly lower
than the other three (p <0.001).

4.2.2 Intrinsic metrics

Three participant-specific intrinsic metrics of performance are compared from the initial to learned phase:
distance to participant-specific initial reference, distance to participant-specific learned reference, and
distance to the task-specific reference identified from the control group. The results are presented in
Figure 7. In each case, the participant-specific or task-specific reference is identified using an unsuper-
vised clustering method and using the centroid of the cluster as described in the methodology section. The
ANOVA results show that there is a statistically significant effect of phase on the distance to both
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Figure 6. Extrinsic performance metrics comparison across the different intervention groups: (a) success
rate and (b) close attempts rate.
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participant-specific learned reference (p <0.001, effect size =0.73) and initial reference (p <0.001, effect
size =0.53) behaviors.

Additional t-tests reveal that participants tended to move away from their initial coordination behavior
(increase distance) except in the preferred constraint intervention group (p=0.21). There was no
statistically significant effect observed of the training phase or intervention on the distance to the task-
specific coordination behavior. The participant-specific results are presented in Figure 8 for the fixed and
null-space constraint groups. 6 out of 10 participants in the fixed constraint group show the expected
decreasing trend in the distance to the task-specific coordination metric. Similarly, 6 out of 10 participants
in the null-space group show a trend of moving away from task-specific coordination. The relatively small
number of participants and the highlighted individualized trends indicate a need for longer interventions
with a larger number of participants.

5. Discussion

Prior research (Bockemiihl et al., 2010; Magill & Anderson, 2010; Ghonasgi et al., 2022) suggests that
novel motor skill acquisition is accompanied by consistent coordination of joint kinematics. Our prior
work demonstrated that such coordination behaviors are indeed learned over time as individuals learn a
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Figure 8. Participant-wise distance to task-specific coordination: Each pair of bars compares initial
(red) versus learned (green) coordination distance for the 10 participants in the fixed constraint group
(top) and null-space constraint group (bottom), respectively. Note that the subject IDs are anonymized

and not necessarily in the order of data collection.
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dynamic task. We also find evidence that experts converge on the same task-specific coordination
behaviors as they learn. Further, assistance of a task and participant-specific coordination behaviors
has been found to improve task performance for a straight-line reaching task (Ghonasgi et al., 2023b).
These results motivate our interest in coordination-based exoskeleton control as a mode of assistance and
training intervention for the human—robot system.

We selected the previously described virtual Kendama task as the testbed for our training environment.
The dynamic nature of the task sets it apart from previously studied static reaching tasks (Proietti et al.,
2017; Ghonasgi et al., 2023b). We also ensure that participants are relatively unfamiliar with the task to
allow the observation of motor learning, further differentiating this study from previously conducted
reaching studies. We explore the effect of training with three training interventions that constrain the
participant either to their own observed behavior, to the coordination identified from the side-swing
control group, or to the null space of the side-swing coordination. Specifically, we aimed to address three
key questions relating to the feasibility and effect of the intervention: /) Can participants perform and
learn the dynamic task under a coordinaiton-based constraint during training?, 2) Does learning with the
constrain help or hamper task performance and learning?, and 3) How does training with task-specific
and participant-specific behavioral constraints affect the learned behavior?.

The extrinsic metrics, success rate, and close attempts, both show statistically significant effects of the
intervention on performance improvement from before to after training (Figure 6). Participants improve
on the sparse success rate metric only in the preferred constraint and control groups, suggesting that
introducing an unfamiliar coordination behavior affected the learning of the dynamic task. This finding
partially supports H1, indicating that participants can learn the task under different intervention condi-
tions. However, simultaneously, the lack of improvement in the remaining constraint groups suggests
both interventions impeded learning (supporting H2). This effect is particularly pronounced in the fixed
constraint group in the close attempts metric, but less in the null-space constraint group, suggesting further
that the fixed constraint intervention was more detrimental to learning. These observations may be
explained by the reduced exploration during training, thereby restricting participants from learning the
dynamics of the environment well enough to improve overall performance outside the intervention. At the
same time, the preferred constraint group receives a similar level of restriction to the fixed constraint
group, but participants still improve their performance after training. This result suggests that the preferred
coordination behavior identified in the initial phase of the session is familiar enough to participants that
they do not suffer the same level of restriction as those in the fixed constraint and null space constraint
groups.

It should be noted that the improvement in success rate in the control group is higher than that in the
preferred constraint group, though the close attempt rates are equivalent. These results indicate that the
coordination-based intervention during learning made the task harder for participants to learn. At the same
time, the imposition of a weak (null-space) or personalized (preferred) constraint did not hinder learning
as much as an unfamiliar strong constraint (fixed) (relating to H3). The three intervention modes may be
ordered in terms of the corresponding impact on the improvement of extrinsic performance as preferred
constraint ~ null-space constraint > fixed constraint. This ordering may be inversely proportional to the
effective task difficulty based on the observed extrinsic outcomes.

Three intrinsic performance metrics are considered as they pertain to the learned kinematic behavior
we aim to affect. The first metric, distance to learned successful coordination behaviors has previously
been established as an indicator of learning (Ghonasgi et al., 2022; Ghonasgi et al., 2023a). Specifically, a
decrease in distance from before to after training suggests that participants learn to move in a more
consistently coordinated manner. The same trend is observed in all intervention groups and the control
group, indicating that although some participants may not have improved in terms of their extrinsic
performance, they all converge to participant-specific coordination behaviors. Thus, all participants
learned to move more consistently, if not more successfully, regardless of the constraints from the
exoskeleton (relating to H1, Figure 7b). Second, we consider the effect of the training on the distance
to a participant’s initial preferred kinematic coordination (Figure 7a). This preferred coordination is used
to design the training intervention for the preferred constraint group, and we expected to see that
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participants would remain close to their initial coordination. The results show that participants in this
group did not change their distance to initial coordination from the initial phase to the learned phase
(relating to the effect of personalized intervention, H3). In contrast, participants in the other two
intervention modes and the control group all move away from their initial coordination after training
(relating to H2 and H3). Thus, participants tend to move away from their initial coordination as a result of
training, but this change is affected by imposing the initial coordination during training. Third, we
consider the distance to the task-specific learned coordination behavior identified by observing the control
group (relating to H2 and H3). We expected the fixed constraint group participants to learn the task-
specific coordination imposed during training. However, none of the three intervention groups shows
statistically significant effects of training on this metric, comparing the initial to the learned phase
attempts.

Taken together, these results allow us to answer the initially posed questions. The first question is
answered readily: participants can learn a novel dynamic task under a coordination-based constraint,
though the constraint may be detrimental to the magnitude of performance improvement. At the same
time, we find that coordination-based interventions may prove to be a novel means of introducing task
difficulty modulation for motor training. Even when participants do not improve in their extrinsic
performance, they converge to a kinematic coordination behavior, suggesting they learn a non-optimal
motor behavior. The answer to the second question can be split into two parts based on the results of the
current study. First, participants learn to become more consistently coordinated in their joint behaviors,
but there need not be a direct impact of the imposed coordination on the learned coordination behavior
with this short training period. Second, the extent to which movement is constrained during training
affects how difficult the task appears and how well learning translates from training to post-training. The
imposition of familiar kinematic constraints did not make the task as difficult as constraining to an
unknown coordination behavior. Finally, more than half the participants in the fixed constraint and null-
space groups show the expected trends in the distance to task-specific coordination. The high inter-person
variability suggests that the lack of significance may be due to short training periods, a small dataset of
participants, and highly individualized learning trends across various types of learners. Other factors, such
as experience with virtual reality, Kendama-like tasks, or high athletic skill could also result in variability
in the effects of the exoskeleton’s intervention on the learned behaviors. Future exploration of such
interventions that are aimed at teaching coordination behaviors should consider longer training sessions
and multiple sessions to investigate the effect of the training, as well as controlling for other potential
factors (such as familiarity with dynamic sports) in addition to ensuring task novelty.

These observations give us some key takeaways that should be considered when designing interven-
tions for motor training in the future. First, while participants are able to perform dynamic tasks, the
exoskeleton’s intervention, if not personalized, could result in an increase in task difficulty. Second,
learning with a constraint typically resulted in decreased learning efficiency. Third, participant-specific
training interventions may be more suitable for task learning than task-specific behaviors. At a high level,
these observations may be explained as a consequence of the exploration-exploitation trade-off during
training. Prior work indicates that pushing learners out of their comfort zone could enhance exploration,
especially when directed towards desired behaviors (Komar et al., 2019; Hacques et al., 2021). Coun-
terintuitively, our participants who were provided such constraints struggled the most to learn, suggesting
that the selection of these constraints needs to be more nuanced. Specifically, participants in the control
group are given the most freedom to explore during training, while those in the intervention groups are
constrained. The interventions appear to significantly decrease exploration for the fixed and null-space
groups so that participants do not learn the task dynamics as easily. However, interestingly, when the
constraint is tailored to a participant’s own initial behavior, their exploration is not as significantly
impacted. We know that participants tend towards certain participant-specific learned behaviors as they
progress through the training (Ghonasgi et al., 2022; Ghonasgi et al., 2023a) and that when left to explore
freely, they will move away from their own initial behaviors as seen in the results comparing the initial and
learned attempt distances to the initial preferred coordination. Future iterations of this experiment could
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explore a null-space constraint using participant-preferred initial coordination behaviors as a mode of task
training. Such an intervention would allow participants to more steeply converge on their own learned
behaviors in the same training period.

Another limitation of the current study is the task that was selected, and the uncertainty of the
generalization of our findings to other tasks. For example, the Kendama task requires two principal
kinematic coordination behaviors to achieve success. The interventions discussed here may be challeng-
ing to extend to a task that requires more degrees of freedom for success or different coordination for
different phases of the movement. Alternatively, the training intervention could be more effective in a
dynamic task where a single coordination behavior is necessary for task success. Future work will use
similar coordination-based interventions for training dynamic tasks with varying levels of complexity, as
well as longer training sessions for tasks like Kendama. Further studies must also be conducted to identify
how the time-independent coordination imposition correlates with the learning of a specific time-
dependent behavior across participants trained with the same intervention.

An important application of such a training intervention is for the physical rehabilitation of impaired
populations. Our prior work has shown that kinematic coordination can provide assistance in performing a
reaching task. The coordination mode may be more suitable as an assistive intervention for participants
who are unable to perform the task without any robot assistance. Participants suffering from neurological
impairments, who thus cannot maintain a task-specific movement coordination, could potentially benefit
from training with such an intervention.

6. Conclusion

This paper explores how a robotic exoskeleton could leverage joint-level coordination in the assistance
and training of individuals with varying levels of ability. Our findings suggest that coordination-based
intervention can have varying effects depending on the task and the individual, suggesting the need for
personalization of intervention design. When applied to the broader context of exoskeleton-based
motor training intervention design, this paper provides two key insights. First, interventions should be
designed and modulated to ensure task difficulty is not increased artificially. Modulation of the
intervention to support exploration early in the training, but encouraging exploitation in the latter
phase, may be beneficial to the learning process. Second, personalization of the intervention is likely to
result in larger benefits in the motor learning process compared to training with unfamiliar task-specific
constraints. Together, these insights suggest that motor training interventions may benefit from
personalization and adaptive design. Such adaptive motor training protocols, or curricula, could be
key to exoskeleton-based motor training and physical rehabilitation in individuals post neurological
injury, such as stroke.

Although certain robotic interaction modes can appear to be assistive for well-known tasks and
movement behaviors, the same may not be true when training naive individuals to learn a dynamic task.
In particular, our observations suggest that training only in a single training environment, thus restricting
exploration of the available motor control space, can be detrimental to learning as it may not transfer well
to the true task environment. However, participants may benefit from training under different intervention
conditions that allow and even encourage certain types of exploration. This study brings to light the
challenges of generalizing exoskeleton-based interaction for motor training and, thus, physical rehabil-
itation. Specifically, our results suggest that such training design should enable both exploration and
exploitation of movement strategies for novice learners while allowing for personalization of the training
interventions. Future work should thus explore the development of personalized curriculum-like motor
training frameworks for enabling exoskeleton-based motor training.

Data availability statement. Data for this paper are available from the authors upon request and will be made accessible in
compliance with the protocol approved by the IRB at the University of Texas at Austin.

Acknowledgments. The authors thank Nisha Bhargava, Anna Bucchieri, and Alex Khair for assistance in data collection, analysis,
and processing at various stages, and all our participants for volunteering their time and effort for this study.

https://doi.org/10.1017/wtc.2025.10028 Published online by Cambridge University Press


https://doi.org/10.1017/wtc.2025.10028

e52-16 Keya Ghonasgi et al.

Authorship contribution. Conceptualization: K.G., R.M., AM.H, P.S., A.D.D; Methodology: K.G., RM., AM.H, P.S., AD.D;
A.B. Data curation: K.G.; Data visualisation: K.G., R.M.; Writing original draft: K.G.; All authors approved the final submitted
draft.

Funding statement. This work was carried out jointly by the ReNeu Robotics Lab and Learning Agents Research Group (LARG)
at UT. Effort in the ReNeu Lab is supported, in part, by NSF (1941260, 2019704) and Facebook. LARG research is supported in part
by NSF (CPS-1739964, 1I1S-1724157, NRI-1925082, CMMI-2019704), ONR (N00014-18-2243), FLI (RFP2-000), ARO
(W911NF-19-2-0333), DARPA, Lockheed Martin, GM, and Bosch.

Competing interests. Peter Stone serves as the Executive Director of Sony Al America and receives financial compensation.
Ashish Deshpande serves as the Chief Research Officer for and has equity shares in Harmonic Bionics, a company that aims to
commercialize the Harmony exoskeleton. The terms of these arrangements have been reviewed and approved by The University of
Texas at Austin in accordance with its policy on objectivity in research.

Ethical standard. The research meets all ethical guidelines, including adherence to the legal requirements of the United States. The
study (1215) was approved by the Institutional Review Board at the University of Texas at Austin.

References

Averta G, Valenza G, Catrambone V, Barontini F, Scilingo EP, Bicchi A and Bianchi M (2019) On the time-invariance
properties of upper limb synergies. [EEE Transactions on Neural Systems and Rehabilitation Engineering 27(7), 1397-1406.

Bazzi S and Sternad D (2020) Robustness in human manipulation of dynamically complex objects through control contraction
metrics. IEEE Robotics and Automation Letters 5(2), 2578-2585.

Bockemiihl T, Troje NF and Diirr V (2010) Inter-joint coupling and joint angle synergies of human catching movements. Human
Movement Science 29(1), 73-93.

Crocher V, Sahbani A, Robertson J, Roby-Brami A and Morel G (2012) Constraining upper limb synergies of hemiparetic
patients using a robotic exoskeleton in the perspective of neuro-rehabilitation. /EEE Transactions on Neural Systems and
Rehabilitation Engineering 20(3), 247-257.

de Oliveira AC , Rose CG, Warburton K, Ogden EM, Whitford B, Lee RK and Deshpande AD (2019) Exploring the
capabilities of harmony for upper-limb stroke therapy. In 2019 IEEE 16th International Conference on Rehabilitation Robotics
(ICORR). 1IEEE, pp. 637-643.

Ding S, Francisco AR, Li T and Yu H (2023) A novel passive shoulder exoskeleton for assisting overhead work. Wearable
Technologies 4, €7.

Elangovan N, Cappello L, Masia L, Aman J and Konczak J (2017) A robot-aided visuo-motor training that improves
proprioception and spatial accuracy of untrained movement. Scientific Reports 7(1), 17054.

Franks PW, Bryan GM, Martin RM, Reyes R, Lakmazaheri AC and Collins SH (2021) Comparing optimized exoskeleton
assistance of the hip, knee, and ankle in single and multi-joint configurations. Wearable Technologies 2, el6.

Ghonasgi K, Mirsky R, Bhargava N, Haith AM, Stone P and Deshpande AD (2023a) Kinematic coordinations capture learning
during human—exoskeleton interaction. Scientific Reports 13(1), 10322.

Ghonasgi K, Mirsky R, Haith AM, Stone P and Deshpande AD (2022) Quantifying changes in kinematic behavior of a human-
exoskeleton interactive system. In 2022 [EEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.

Ghonasgi K, Mirsky R, Haith AM, Stone P and Deshpande AD (2023b) A novel control law for multi-joint human-robot
interaction tasks while maintaining postural coordination. In 2023 I[EEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, pp. 6110-6116.

Ghonasgi K, Mirsky R, Narvekar S, Masetty B, Haith AM, Stone P and Deshpande AD (2021) Capturing skill state in
curriculum learning for human skill acquisition. In 2021 IEEE International Conference of Intellingent Robotics and Systems
(IROS). IEEE.

Hacques G, Komar J and DicksMand Seifert L (2021) Exploring to learn and learning to explore. Psychological Research 85(4),
1367-1379.

Hailey RO, De Oliveira AC, Ghonasgi K, Whitford B, Lee RK, Rose CG and Deshpande AD (2022) Impact of gravity
compensation on upper extremity movements in harmony exoskeleton. In 2022 International Conference on Rehabilitation
Robotics (ICORR). 1IEEE, pp. 1-6.

Hassan M, Kadone H, Ueno T, Suzuki K and Sankai Y (2015) Feasibility study of wearable robot control based on upper and
lower limbs synergies. In 2015 International Symposium on Micro-NanoMechatronics and Human Science (MHS). 1EEE,
pp. 1-6.

He C, Xiong CH, Chen ZJ, Fan W, Huang XL and Fu C (2021) Preliminary assessment of a postural synergy-based exoskeleton
for post-stroke upper limb rehabilitation. /EEE Transactions on Neural Systems and Rehabilitation Engineering 29, 1795-1805.

Heuer H and Luettgen J (2015) Robot assistance of motor learning: A neuro-cognitive perspective. Neuroscience & Biobehavioral
Reviews 56, 222-240.

Huang B, Xiong C, Chen W, Liang J, Sun BY and Gong X (2021) Common kinematic synergies of various human locomotor
behaviours. Royal Society Open Science 8(4), 210161.

https://doi.org/10.1017/wtc.2025.10028 Published online by Cambridge University Press


https://doi.org/10.1017/wtc.2025.10028

Wearable Technologies e52-17

Khanafer S, Sveistrup H, Levin MF and Cressman EK (2021) Age-Related Changes in Upper Limb Coordination in a Complex
Reaching Task. Experimental Brain Research, pp. 1-10

Kim B and Deshpande AD (2017) An upper-body rehabilitation exoskeleton harmony with an anatomical shoulder mechanism:
Design, modeling, control, and performance evaluation. The International Journal of Robotics Research 36(4), 414-435.

Kleim JA and Jones TA (2008) Principles of experience-dependent neural plasticity: implications for rehabilitation after brain
damage. Journal of Speech, Language, and Hearing Research 51(1), S225-S239.

Komar J, Potdevin F, Chollet D and Seifert L (2019) Between exploitation and exploration of motor behaviours: Unpacking the
constraints-led approach to foster nonlinear learning in physical education. Physical Education and Sport Pedagogy 24(2),
133-145.

Krakauer JW (2006) Motor learning: Its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology 19(1),
84-90.

Krakauer JW, Hadjiosif AM, Xu J, Wong AL and Haith AM (2019) Motor learning. Comprehensive Physiology 9, 613—663.

Losey DP, Blumenschein LH and O’Malley MK (2016) Improving the retention of motor skills after reward-based reinforcement
by incorporating haptic guidance and error augmentation. In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE
International Conference on. IEEE, pp. 857-863.

Magill R and Anderson D (2010) Motor Learning and Control. New York: McGraw-Hill Publishing

Nasr A, Hunter J, Dickerson CR and McPhee J (2023) Evaluation of a machine-learning-driven active—passive upper-limb
exoskeleton robot: Experimental human-in-the-loop study. Wearable Technologies 4, e13.

Pei D, Adali T and Vinjamuri R (2021) Generalizability of hand kinematic synergies derived using independent component
analysis. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE,
pp. 621-624.

Proietti T, Ambrosini E, Pedrocchi A and Micera S (2022) Wearable robotics for impaired upper-limb assistance and
rehabilitation: State of the art and future perspectives. [EEE Access 10, 106117-106134.

Proietti T, Guigon E, Roby-Brami A and Jarrassé N (2017) Modifying upper-limb inter-joint coordination in healthy subjects by
training with a robotic exoskeleton. Journal of Neuroengineering and Rehabilitation 14(1), 1-19.

Rose CG, Deshpande AD, Carducci J and Brown JD (2021) The road forward for upper-extremity rehabilitation robotics.
Current Opinion in Biomedical Engineering 19, 100291.

Sans-Muntadas A, Duarte JE and Reinkensmeyer DJ (2014) Robot-assisted motor training: Assistance decreases exploration
during reinforcement learning. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, pp. 3516-3520.

Schmidt RA, Lee TD, Winstein C, Wulf G and Zelaznik HN (2018) Motor control and learning: A behavioral emphasis. Human
Kinetics.

Vallery H, Ekkelenkamp R, Buss M and Kooij H van der (2007) Complementary limb motion estimation based on interjoint
coordination: Experimental evaluation. In 2007 IEEE 10th International Conference on Rehabilitation Robotics. IEEE, 798-803.

Wu HG, Miyamoto YR, Castro LNG, Olveczky BP and Smith MA (2014) Temporal structure of motor variability is dynamically
regulated and predicts motor learning ability. Nature Neuroscience 17(2), 312-321.

Young AJ and Ferris DP (2016) State of the art and future directions for lower limb robotic exoskeletons. /EEE Transactions on
Neural Systems and Rehabilitation Engineering 25(2), 171-182.

Yun Y, Na Y, Esmatloo P, Dancausse S, Serrato A, Merring CA, Agarwal P and Deshpande AD (2020) Improvement of hand
functions of spinal cord injury patients with electromyography-driven hand exoskeleton: A feasibility study. Wearable
Technologies 1, €8.

Cite this article: Ghonasgi K, Mirsky R, Haith AM, Stone P and Deshpande AD (2025) Joint coordination constraints using an
upper limb exoskeleton impact novel skill acquisition. Wearable Technologies, 6, €52. doi:https://doi.org/10.1017/wtc.2025.10028

https://doi.org/10.1017/wtc.2025.10028 Published online by Cambridge University Press


https://doi.org/10.1017/wtc.2025.10028
https://doi.org/10.1017/wtc.2025.10028

	Joint coordination constraints using an upper limb exoskeleton impact novel skill acquisition
	Introduction
	Related works and motivation
	Methods
	The harmony exoskeleton and the Kendama task
	Kinematic coordination identification
	Exoskeleton control mode 1: fixed coordination constraint
	Exoskeleton control mode 2: null space coordination constraint
	Experimental protocol
	Outcome measures and analysis
	Statistical analysis

	Results
	Comparing initial performance to training
	Comparing initial to learned performance
	Extrinsic metrics
	Intrinsic metrics


	Discussion
	Conclusion
	Data availability statement
	Acknowledgments
	Authorship contribution
	Funding statement
	Competing interests
	Ethical standard
	References


