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Abstract

We solve a problem posed by Calabi more than 60 years ago, known as the Saint-Venant compatibility problem: Given
a compact Riemannian manifold, generally with boundary, find a compatibility operator for Lie derivatives of the
metric tensor. This problem is related to other compatibility problems in mathematical physics, and to their inherent
gauge freedom. To this end, we develop a framework generalizing the theory of elliptic complexes for sequences of
linear differential operators (As) between sections of vector bundles. We call such a sequence an elliptic pre-complex
if the operators satisfy overdetermined ellipticity conditions and the order of Ay, Ay does not exceed the order of
Ay. We show that every elliptic pre-complex (A,) can be ‘corrected’ into a complex (A,) of pseudodifferential
operators, where Ay — Ay, is a zero-order correction within this class. The induced complex (.As) yields Hodge-
like decompositions, which in turn lead to explicit integrability conditions for overdetermined boundary-value
problems, with uniqueness and gauge freedom clauses. We apply the theory on elliptic pre-complexes of exterior
covariant derivatives of vector-valued forms and double forms satisfying generalized algebraic Bianchi identities,
thus resolving a set of compatibility and gauge problems, among which one is the Saint-Venant problem.
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1. Introduction, main results and applications
1.1. Statement of the problem

This paper was originally motivated by a study initiated by Calabi more than sixty years ago [Cal61].
At the center of his study is the following problem:

Let (M, g) be a compact Riemannian manifold (generally with boundary). What are necessary and
sufficient conditions for a symmetric (2, 0)-tensor on M to be a Lie derivative of the metric?
Restating the question in local coordinates, given a tensor field (o )fj: | satisfying o;; = o7j;, what

are necessary and sufficient conditions for the existence of a vector field (Yi)l.d: |» such that
oij = (Lyg)ij = Viw;j + Vw;, (1.1)

where w; = g;;Y 7 and V is the covariant derivative?

The operator Y +— Ly g from the space of vector fields over M to the space of symmetric tensor
fields is also commonly known as the Killing operator, or sometimes the deformation operator. Thus,
in other words, the aim of the problem is to characterize the range of this operator.

Calabi provided an answer for (M, g) closed, simply-connected, and having constant sectional
curvature. In particular, he commented at the end of his paper:

‘In a subsequent article. . . (the) theorem will be supplemented by an analogue of Hodge’s theo-
rem. . . satisfying globally certain elliptic systems of equations.’

As far as we know, such an article has never been published.
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1.2. History of the Saint-Venant compatibility problem

The Euclidean version of the above problem arises in the theory of linear elasticity under the name
‘Saint-Venant compatibility’: Let Q be a Euclidean domain modeling an elastic bulk of material under
strain; the stress field o-, which represents internal forces, is a symmetric (2, 0)-tensor field satisfying
the so-called Saint-Venant compatibility condition [Gur72],

VXVxo =0, (1.2)

where V X VX is the curl-curl operator, mapping symmetric (2, 0)-tensors into (4, 0)-tensors satisfying
the Bianchi symmetries of algebraic curvatures. In Euclidean coordinates,

(VX VX0)ijki = 0ix0ji — 0jxoi — 010 ji + 0j10ik.

Itis a classical result that when Q is a simply-connected domain, oo = Lye for some Y € X(Q) if and only
if VXV xo = 0, where X(Q) denotes the space of vector fields on Q, and e is the Euclidean metric. Thus,
for Q Euclidean and simply-connected, the Saint-Venant compatibility condition (1.2) is a necessary
and sufficient condition for a symmetric (2, 0)-tensor to be the symmetrized gradient of a vector field.

Over the years, several authors generalized the Saint-Venant compatibility condition to the Rieman-
nian setting by relaxing the assumptions on either the topology, the geometry or the regularity of the
fields in question. Specifically,

(a) Calabi identified a compatibility condition for (M, g) when the manifold is closed, is simply-
connected, and has constant sectional curvature [Cal61, Prop. 3]. Much later, it was shown how
Calabi’s insight [EasO0] enables the problem to be framed within the framework of BGG com-
plexes [CSSO1], leveraging the specific symmetries of the Killing operator in the constant sectional
curvature case.

(b) Gasqui and Goldschmidt improved Calabi’s result by extending it to closed, simply-connected
symmetric spaces [GG88a, GGE8b].

(c) Several authors [Khal9, Pom22, CELM21, CELM23] have recently extended this condition to
certain classes of locally-symmetric spaces without boundary and to certain Lorentzian manifolds
arising in general relativity (Minkowski, Schwarzschild and Kerr).

(d) Inaseries of works, Ciarlet, Geymonat and co-workers addressed the Saint-Venant problem for three-
dimensional Euclidean domains having Lipschitz boundary and o having L?-regularity, obtaining
weak versions of condition (1.2) ([CCGKO07, GK09] and references therein).

(e) Yavari and Angoshtari showed how similar results can be obtained in a locally-flat setting by using
the Hodge decomposition for scalar differential forms [Yav13, YA16].

(f) The authors of the present paper obtained compatibility conditions for compact manifolds with
boundary having constant sectional curvature and arbitrary topology, and they connected this analysis
to an elliptic theory and other problems in elasticity, such as the representation of stresses by stress
potentials [KI.22, KLL.21].

As is apparent from this brief survey, no one has managed to relieve the assumption that the underlying
Riemannian manifold has, at the very least, a parallel curvature tensor (the Lorentzian cases involve
symmetry assumptions as well). All aforementioned work recognizes that at the heart of the Saint-
Venant problem is a search for a second-order linear differential operator acting on symmetric tensor
fields, which annihilates the image of U +— L g. In other words, all attempts to resolve the Saint-Venant
problem funneled towards a search for a complex,

x(m) —L2EUE gl L %22, (1.3)

where & 11‘/}1 denotes the space of symmetric (2, 0)-tensor fields and %12\,}2 denotes the space of (4, 0)-tensor
fields satisfying algebraic Bianchi symmetries (these notations will be clarified below). The difficulty
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in constructing such a complex in general Riemannian geometries is essentially what has been limiting
the progress on the Saint-Venant problem. Such a complex, in cases where it has been constructed, has
become known in the literature as the Calabi complex [GG88a, Eas00].

From the point of view of the theory of partial differential equations, the Saint-Venant problem
(1.1) is an overdetermined system of partial differential equations ([Gol67, Spe69, BEG9]; see also the
encyclopedic entry [DS96] and references therein). In such systems, a diagram of the form (1.3) is
typical: Given an overdetermined differential operator Ag : I'(Ey) — I'(E;) between sections of vector
bundles, one seeks for a differential operator A} : I'(E;) — I'(E;) such that Ajo = 0 if and only if
o € Range Ag. The operator A is called a compatibility operator for Ay. The complex

0 —2% (o) —2% I(E)) —25 T(By) —22 -

is then called a compatibility complex for Ay.

There are known local methods for verifying the existence of a compatibility complex for a given
operator Ag, applicable only under quite restrictive conditions on its coefficients [Gol67, Spe69, DS96].
For example, a differential operator with constant coefficients always admits a compatibility complex;
in the context of the Saint-Venant problem, the Killing operator has constant coefficients in Euclidean
space. In fact, such a procedure was applied in [GG88a, GG88b] to obtain a compatibility condition in
symmetric spaces. The Killing operator, however, does not satisfy the required conditions in a general
Riemannian manifold and, in particular, in one having a boundary and a nontrivial topology, an area of
study having scarce literature.

Thus, the resolution of the Saint-Venant problem is expected to impact the more general area of
overdetermined systems (and their dual counterpart, underdetermined systems), which is a subject
gaining a renewed interest not just from an abstract perspective but also motivated by applications in
elasticity and general relativity [Khal9, KIL.22, Pom22, Sch23, Hin23, CELM23]. Specifically, it is
expected to be applicable in gauge fixing in various potential theories.

As a classical example, consider the theory of electromagnetism, where the electromagnetic field
F € Q*(M) satisfies the system,

0F=J and dF=0.

The equation dF = 0 turns into a compatibility condition for the existence of a potential A € Q' (M),
which satisfies the system,

0A=0 and dA=F.
The choice of a gauge §A = 0 results in an elliptic system AA = J, which can then be solved by standard

methods. The exploitation of similar gauge freedoms has long been sought in elasticity and in general
relativity, and has been recognized to be related to the Saint-Venant problem.

1.3. A nonlocal, zero-order correction

As Calabi first found out, for (M, g) having constant sectional curvature ¥ € R, the following linear
%}V}l — %12\,}2 operator,

o (Ho) g — k(8ikTj1 — gjkTit = gitTjk + &j10ik ) (1.4)
annihilates the range of the Killing operator, where

(Ho)ijii = Y(Vikoji = Vo = Vaojx + Vo) + 3 (Viiory = Viiok; — Vigoy + Vijow).
(1.5)
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The second-order differential operator H : ‘gllv;l — ‘glzv;z is the covariant generalization of the curl-
curl operator, with the Euclidean derivatives replaced by covariant derivatives and imposing symmetry
preservation in the indices (ij) < (kl).

Steps toward extending Calabi’s construction to a general Riemannian setting were made in [KI1.22],
observing that (1.4) arises from the variation formula of the (2,2) curvature operator g — R, about
a metric having constant sectional curvature [Tay11b, pp. 559-560]. A candidate for generalizing the
Calabi operator is obtained from the variation formula about a general metric, resulting in

o (H+D)o,

. oolil 2,2 . .
where D : €,, — &, is the tensorial map

Do = = (trg(Rmg Ac) — trg Rmg Ao — Rmg Atrg ),

1
2
and Rmy is the (4, 0) Riemann curvature tensor. However, for every U € X(M),

(H+D)Lyg=2LyRmg+2DLyg. (1.6)

Thus, unless Rm, satisfies restrictive symmetries, this operator does not annihilate the range of the
Killing operator.

Yet, in certain instances, the operator H may be ‘corrected’ by lower-order terms, to annihilate the
range of the Killing operator (or subspaces of that range). Moreover, while in general, HLyg # O,
the right-hand side of (1.6) differentiates the vector field U only once, even though the left-hand side
differentiates it (formally) three times. Thus, even though the sequence

UL
X(M) U8 (gllv,ll H %[2‘/,]2

does not form an exact sequence, it satisfies a weaker property: the order of H composed with the Killing
operator does not exceed the order of the latter. This phenomenon occurs in several other situations in
geometry. For example, let U — M be a Riemannian vector bundle endowed with a connection V; the
sequence of exterior covariant derivatives acting on U-valued forms [Pet16, pp. 362-363],

o QR D) —L QM (M)~ QP (MT) — -

satisfies dVd" = RVA, where RY € Q2(M;End(U)) is the curvature endomorphism of the connection
V. Hence, the order of d¥d" does not exceed the order of dV. Note that unless RV = 0, d¥ does not fall
into the theory of compatibility complexes discussed above.

Motivated by the study of compatibility conditions for overdetermined systems, yet retaining H as
an initial guess for a compatibility operator, we combine the above insights into the following question:
is there a lower-order correction operator G : %}V}l - %12‘/}2, such that

(H+G)Lyg=0 for every U € X(M).
A comparison with (1.6) implies that such a G must satisfy the operator-valued equation
GLyg=-2LyRmy-DLyg for every U € X(M). (1.7)

Since the right-hand side differentiates U once, the correction operator G is expected to be of order zero.
The only differential operators of order zero are tensorial; there are, however, no tensorial operations
satisfying the above identity unless Rm, satisfies restrictive symmetries. Thus, a solution G to (1.7), if
it exists, must be nontensorial, and hence nonlocal.
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1.4. Elliptic pre-complexes

We recall the definition of an elliptic complex on a compact manifold with boundary (our exposition is
based on [Tay! 1b, Ch. 12.A]). Consider the following diagram:

0 Ao Ay Az
N P N T N
0 I["(Eo)
\/
0
By
0
0 ['(Go)

where E; — M and G, — 0 M are sequences of vector bundles, I stands for the global sections functor
[Leel2, Ch. 10], (A.) = (Ax)ken, is a sequence of first-order differential operators, Ay : T'(Ex) —
['(Eg+1), and By : T'(Ex) — T'(Gy) and By, : T'(Ex+1) — T'(Gy) are differential boundary operators,
such that the following analog of Green’s formula hold,

(Axym) = W, Agm) + (B, By forevery i € I'(Ey) and € I'(Eg1),

where (-, -) denotes the L?-pairing of both interior and boundary sections. We call the sequence (A,)
an elliptic complex if

(a) The system (D’;(D x> Tx) is elliptic, where
D, = Alt—l @ Ag and T = Bz—l D BZA](.

Alternatively, the system (D} Dy, Ty) is elliptic, where T, = Bx—1 A} @ By.
(b) AxAg-1 =0.

In the literature, the common definition for an elliptic complex uses the notion of exactness of the
corresponding sequence of symbols of (A,). However, the ellipticity condition above together with
Ak Ak-1 = 0 contain this exactness as a byproduct.

The prime example of an elliptic complex is the de Rham complex,

/""EZ‘“N //”‘i“'\s
.. Qk—l(M) Qk(M) Qk+1(M)
\_/ ™ \/
Pt pt Pt
4
Qk-1(aM) Qk (M) Qk*(aM)

where D) Dy = dé + 6d is the Hodge Laplacian, and the boundary conditions 7 and 7, are Neumann
and Dirichlet boundary operators, respectively [Tay11b]. The central result concerning this sequence
is the Hodge decomposition theorem (of either Dirichlet or Neumann type), which among other things
identifies the cohomology groups of the complexes (A.) = (d) and (A) = (9). These classical results
can be generalized to every elliptic complex [Tayl1b, p. 463]. We note that a sequence of operators
(A.,) satisfying (b) cannot always be supplemented with boundary operators that turn it into an elliptic
complex [Tay11b, SS19]. In our study, however, such boundary operators arise naturally.

Motivated by the observation that composition with H does not annihilate the Killing operator, but
yet does not raise the order, we generalize the notion of an elliptic complex and define a new notion of
elliptic pre-complex, by loosening the following assumptions in the above diagram:
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(a) The operators Ax may be of arbitrary and varying orders my (this has already been considered in
the literature of elliptic complexes, in the context of Douglis-Nirenberg systems [RS82, SS19]).

(b) The ellipticity of the boundary-value problem (D} Dy, Tx) is replaced by a notion of overdeter-
mined ellipticity of the boundary-value problem (Ax ® A;_,, B} _,), along with the surjectivity
of the boundary operators By, B. Overdetermined ellipticity amounts to its symbol satisfying an
injectivity condition instead of a bijectivity condition in elliptic systems.

(c) The condition Ax.1Ax = 0 is replaced by the weaker condition that the order of Ay, Ay does not

exceed the order of Ay.

In particular, every elliptic complex of first-order operators is an elliptic pre-complex.

1.5. Main results

Our main result is that every elliptic pre-complex (A,) can be corrected into a complex, which we denote
by (A.), such that G, = Ay — Ay is a linear operator of order zero (a notion which is elaborated below).

The procedure turning an elliptic pre-complex into an elliptic complex involves some substantial
delicacies. First, as discussed above, the correction Gy = Ay — Ay, is generally not tensorial. It is a linear
operator belonging to a class of so-called Green operators [RS82, Gru96], arising as solution operators
for pseudodifferential boundary-value problems. Green operators are nonlocal, which on a manifold
with boundary implies that they are characterized both by an order (loosely speaking, accounting for
the maximal number of derivatives) and a class (loosely speaking, accounting for the number of normal
derivatives at the boundary). Green operators form their own algebra [Bou71], with notions of adjoints
and inverses, which are complicated by the need to track both orders and classes.

The fact that the correction Gy is of order zero is an indispensable element of the theory. First and
foremost, it guarantees the existence of an adjoint, A7, which is also a Green operator differing from
A} by an operator of order zero. The sequence of operators (.A,) inherit the integration by parts of the
original sequence,

(A, m) = W, Agm) + (Biy, Byn),

with unaltered boundary operators.
Our main theorem is the following:

Theorem (Induced elliptic complex). Every elliptic pre-complex (A.) induces a complex of Green
operators (As), uniquely characterized by the following properties:

(@) AraAr =0.
(b) Ags1 = Apy1 on N (AL, BZ) = kel‘(.A*k ® BZ)

In particular, since A*_l =0 and Bil = 0, it holds trivially that Ay = Ag (i.e., the first operator in
the sequence in unaltered). Moreover, since every elliptic complex is an elliptic pre-complex, by the
uniqueness clause, every elliptic complex is its own induced complex.

The fact that (A.) differs from (A.) by terms of order zero also implies that (A; _, & Ag, B;_,) is an
overdetermined elliptic system within the calculus of Green operators. As a result, we have the following:

Theorem (Hodge-like decomposition). For every k € Ny, there exists an L*-orthogonal, topologically
direct decomposition of Fréchet spaces,

T(Bx) = RB(Ax-1) ® R(A;; By) @ XX (AL), (1.8)

where R(Ak-1) is the range of the map Ax—1, R(A; By) is the range of A} |kerp;, and H*(A) =
ker(A;_, ® Ax ® By _)) is finite-dimensional.

These decompositions extend to the W*-P-Sobolev setting for s € Ny and 1 < p < oo by showing
that the L?-orthogonal projections onto the direct summands in (1.8) belong to the pseudodifferential
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calculus of boundary value problems. This ensures they have continuous extensions between Sobolev
spaces [Gru90], allowing us to obtain the W*-P-versions through a standard density/continuity argument.
Specifically, for every 1 < p < oo, we establish the topologically direct decomposition

LPT(Bx) = ROP (Ar-1) @ ROP (A By) @ X (Ad), (1.9)

where the ranges in the decomposition are closed. In the body of the paper, we discuss how these
compare with other L”-Hodge decompositions in the literature, particularly those developed in [AKMO06,
HMPOS8].

The Hodge-like decompositions (1.8) imply that the finite-dimensional modules %% (.A,) are the
cohomology modules of the complex (A,), analogous to the harmonic modules in classical Hodge
theory [Sch95]. Denoting A (Ay) = ker(Ayg), we obtain the compound decompositions:

N (Ag)

[(Er) = R(Ax-1) ® 5 (A) © R(A;; B .

N (A -Biy)

Theorem (Cohomology groups). The finite-dimensional modules Z*(As) are both the cohomology
groups of the complex (A.), and the cohomology groups of the complex (A} |ker g:); that is,

v € R(Ax_1)  ifand only if Ay =0 and w LI*(A),
W € R(A,;B}) ifand only if A hers; =0 and ¢ LI*(A).

The Hodge-like decompositions yield explicit existence and uniqueness results for the corresponding
overdetermined boundary-value problems:

Theorem (Overdetermined boundary-value problem). Consider the list of data,
X €C(Ers1)  E€D(Br1) and ¢ €T(Ey).
There exists a solution y € I'(By) to the boundary-value problem

A Ww=¢ and Ay=x inM
B, W =B,_¢ on oM

if and only if the following integrability conditions are satisfied:

Akix =0 and (x,0)=0  forevery{ e #*'(A.)
E- A9 € N(A 5 B ,)
(&,v) = —(Bj_19, Bk-1v) for every v € Z*1(AL).
The solution is unique modulo an arbitrary element in the finite-dimensional module I*(As,).
The results extend to W*-P-regularity, s € Ny, 1 < p < oo, with a priori Korn-like estimates,

mk_l—l

W lls.p S NAY lsmpp + 1A Wl rp + D I1B] i yllsic1jop + 1o, ps

i=0

for every s > max(my-y,my) and B? , | are the components of the boundary operator, each of order i.
Throughout this work, we use the symbol < to denote inequalities up to a multiplicative constant.
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In analogy with electromagnetism, the existence and uniqueness clauses resolve the gauge freedom
in the equation A; ¢ = . This fact can be exploited in the representation of stress fields by stress
potentials [Pom15, Pom18, KLL.22].

1.6. Application: covariant de Rham complexes

The most familiar occurrence of a nontrivial elliptic pre-complex is the sequence of exterior covariant
derivatives dV : QF (M;U0) — Qk+l (M;U) mentioned above. Indeed, d V and its Lz-adjoint, the
covariant codifferential 6V : QK1 (M;U) — Q¥ (M;U), satisfy a Green’s formula,

(dV.n) = (b6 ) + (B'y. P"y), (1.10)
where
P': QY(M;U) - QX(0M;;"U)  and  P": QMN(M;U) - QX (9M; ;D)
are the tangential and normal boundary projection operators, j : M — M being the inclusion of the
boundary in M.

Set I'(Ex) = QX(M;U), I'(Gx) = QK(0M; )*U), Ak = d¥, By = P' and B} = P", yielding the
following diagram:

. Qk+l(M;U) A

D
]Pt

/
Qk1(oM; j*U) Qk(oM; j*U) Q& 1(oM; )

The verification that (dV) is an elliptic pre-complex is straightforward: Pt and P" are surjective;
d¥dY = RY is tensorial, and hence, its order is lower than that of dV; the fact that the system
(d¥ ® 6Y,P") is overdetermined elliptic follows an elementary calculation, identical to the calculation
showing that (d @ &, P") is overdetermined elliptic [Sch95].

The induced complex is the unique sequences of operators dV : QX (M;U) — QK+ (M; U) satisfying

(@) d¥d¥ =0
() d¥V =dY on ¥ (6Y,PY),

where 6 = (d¥)*. In particular, d¥ = V on Q°(M; U). We call the induced complex (dY) a covariant
de-Rham complex. The associated family of Hodge-like decompositions assumes the form

N (dY)
—_—

QN (M;U) = R(dY) ® Z (M) ® R(87;P"),

N (6 ,PY)
where

HE (M) =ker(d' @ 8% @ P").
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%’Alj (M) is a covariant version of the Neumann harmonic module, and %’ ,8 (M) = kerV is the space of
V-parallel sections of U. The cohomology theorem for £ = 1 yields

W =Vv if and only if d‘7¢f=0 and lﬂJ-?f,l/(M)-

If the connection V is flat, then d¥d" = 0; hence, d¥ = d" by the uniqueness of the induced complex.
If, in addition, M is simply-connected, then U ~ M x R" and %’1\1] (M) = {0}.

1.7. Application: Bianchi complexes

It was Calabi who first formulated the Saint-Venant problem in the framework of double forms, Q’;/;m,

k,m € Ny, which are A™T*M-valued k-forms (i.e., sections of the vector bundles Aﬁ/}m = AT*M ©
AN"T*M [Cal6l, Gra70, Kul72]). For introductory reasons, we briefly refer here to properties and
constructions pertinent to double forms; full details are presented in the body of the work and in the
cited references.

Double forms constitute a graded algebra equipped with a natural wedge product A : Qﬁl’" X Qij’ —
Qﬁf"’”" and an involution ()7 : Qﬁ,;m - Qé",l’k obtained by interchanging the ‘vector’ and ‘form’
parts. A (k, k)-form y is called symmetric if "' = .

Many objects in differential geometry can be cast as double forms. Riemannian metrics, Hessians of
scalar functions, and Lie derivatives of the metric can be viewed as symmetric elements of Q}\;Il; for
higher-order examples, the Riemannian curvature tensor Rm, can be viewed as a symmetric element of
Qﬁf. Curvature tensors satisfy additional symmetries — algebraic Bianchi identities. Calabi introduced
an algebraic symmetry pertinent to all double forms, generalizing the algebraic Bianchi identity. This
symmetry is the kernel of a smooth bundle map ® : A]’;}m — Aﬁ;l’m_] for k > m and the kernel
of its vector counterpart Gy : A’;,}m - AII‘VI_ Lmtl for k < m. We call double forms satisfying these
symmetries Bianchi forms and denote them by %]’;I’m. We denote by Pg : QIX/}’" — %]"‘/[’m the orthogonal
projection of double forms onto the space of Bianchi forms (the ‘Bianchization’ operator).

The exterior covariant derivative, which is defined like for every other vector-valued form, is a first-
order differential operator

dv: QIX/}m — Qﬁ;l’m,

with a formal L?-adjoint 6" : Qﬁ;l’m - Q’;/}m. Differential operators can also act on the vector part via
involution. We define

V . k.m k,m+1 vV . ok,m+l k,m
dy, .QM —>QM and Oy .QM —>QM
by dyy = (dVyT)T and 67y = (6Vy 7).
The exterior covariant derivative d¥ commutes with the Bianchi sum ®, however not with Gy,

implying that 4¥ maps Bianchi forms into Bianchi forms for k > m, but not for k < m. A first-order
differential operator preserving the Bianchi symmetry is the Bianchi derivative,

d9 65" — @i definedby  d9y =Pgd"y.
We further define d\g/ : “gllf/;m — ‘E?[]f/[’mﬂ via the natural involution, and then 89 : %’,’f;l’m — ‘g,ﬁm

and 0 ‘g, : ‘“6};;'"“ - “6]"‘,["" as their formal L?-adjoints. These first-order operators satisfy integration by
parts formula,

(d%9.n) = (W, 690) + (Bgy, Bgn),
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where Bg and By; are tensorial boundary operators onto corresponding spaces of Bianchi boundary
forms. On %}CI”” with k < m, 69 = 6V is the covariant codifferential, and B*g = P" is the contraction by

the boundary unit normal; for k > m, both ¢V and P" are supplemented by a projection onto Bianchi
forms.
The operator

G 4G . pk.m k+2,m
d949 : gk - gk

turns out to be tensorial for every k, m except for when k = m — 1. The lack of tensoriality of d949 :
%]’;I_l’k — %]’\(;l’k has significant implications, notably in the resolution of the Saint-Venant problem.

Indeed, the operator d9 : ?51?/’[1 — %}V’[l coincides with the Killing operator (up to a multiplicative
constant),

dw =1L 8, (1.11)
where w* is the vector field corresponding to the 1-form w. Thus,
ddw = 3d" L 8,

which is a second-order operator (and in particular nonzero) even in a Euclidean setting. Hence, the first-
order operator d¥ fails to ‘detect’ the Killing operator, which is why one must resort to a second-order
compatibility condition.

In [KL21], we rewrote the curl-curl operator and its adjoint as second-order operators acting on
Bianchi forms, H : ‘[51]“4'" — ‘gﬁl’mﬂ and H* : %}\‘;l’m“ — %1"‘,1’"’, given by

H=1(d"dy +dydY)  and  H'=1(6"6y +05y6").

These operators satisfy integration by part formulas involving both tensorial and first-order surjective
boundary operators, which we denote by By and B,

(Hy,n) = (W, H'n) + (Buy, Byn).

An explicit calculation shows that Hd9 and d9 H are differential operators of order 1, and that for every
1 < m < d, the following sequence, which we break into two lines, constitutes an elliptic pre-complex:

0 d9

m,m m+1,m+1
G €
D
By Bg
H
(%m,m)Z %m+1,m+1 ® %m+1,m
oM
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We name the induced complexes Bianchi complexes. Specifically, there exists a uniquely determined
chains of operators,

g . k,m k+1,m _
d .%M —>Y€M k=0,....m-1
. gpm,m m+1,m+1
H: 6" —@n
g . k,m+1 k+1,m+1 _
d .%M —>%M k=m+1,...,d-1,

satisfying
d?d°=0 d°H=0 HdY=0,

such that d9 — d9 and H — H are Green operators of order zero, vanishing on %g,;m. We denote the
corresponding adjoints by 69 and H*, with 69 — 69 and H* — H* of order zero as well. Thus, for
every 0 < k,m < d, there corresponds a Hodge-like decomposition (1.8), together with integrability
conditions and uniqueness clauses for the corresponding overdetermined boundary-value problems. We
name the corresponding cohomology groups the Bianchi cohomology groups, denoted by BX (M, g).
This notation emphasizes that dim %X (M, g) is an invariant of the Riemannian structure (by the
uniqueness of the induced complex and the fact that all the operators are Riemannian constructions).
We next list some important cases.

1.7.1. The Hessian complex

We start with the Bianchi complex associated with m = 0, naming it the Hessian complex, since the first
operator in the chain is the Hessian of functions, H : %1?/;0 - %Il\il. The first Hodge-like decomposition
obtained from this complex decomposes scalar functions,

%2/;0=.%‘8(M,g)699?(H*;B’;1) where .%’8(M,g)=kerH.

Thus,

Theorem 1.1. For f € C®(M),
feRH";By) if and only if fJ.%’S(M,g).

Sobolev versions for f € W*P (M) hold with R(H"; B}, ) replaced by the image of WS*2:P sections.

The operator H* = ;. JIE i):fj VE, VEj, also known as the div-div operator and sometimes denoted
by 66 or 6%, appears in variation formulas for scalar curvatures [BE69]. In a Euclidean domain, H f = 0
implies that f is a linear function; hence, dim 938(9, ¢) = d + 1. In a general Riemannian geometry, it
always holds that dim %’8(M ,8) <d+1,since f € =%’(())(M , &) implies that df is a global parallel form,

which greatly restricts the curvature tensor [Pet16, p. 76].
Next, still in the context of the Hessian complex, is the decomposition of symmetric (1, 1)-forms:

N (d9)

€, = R(H) ® By(M,g) ® R(69; BY) .

N(H*,B})
where

By (M, g) =ker(H* ® d’ & By,),
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This yields the following characterization of Hessians:

Theorem 1.2. For o € € [1‘/}1,
o€ R(H) ifand only if d%0 =0 and UL%’&(M,g).

Sobolev versions for o € W*P %}V}l hold with the required adjustments.

The characterization of Hessians among symmetric tensors in a general Riemannian manifolds has
also been an open question [BE69, Bry13]. Since the Hessian of a function is in particular in the range
of the Killing operator, this problem can seen as a partial instance of the Saint-Venant problem. In
simply-connected Euclidean domains, the solution follows from the Poincaré Lemma and amounts to
the condition that d¥ o~ = 0. By the uniqueness clause of the induced complex, d9 = d" in a Euclidean
domain; hence, Theorem 1.2 generalizes this condition. This in turn implies that 95’01 (Q,e) = {0} for
(Q, ) simply-connected and Euclidean.

1.7.2. The Calabi complex
We proceed with the Bianchi complex associated with m = 1, which brings us to the original motivation
of this work; in compliance with the literature, we call the resulting complex the Calabi complex.

The first decomposition concerns (0, 1)-forms (i.e., one-forms):

Gy = BN(M,g) ® R(69;B;;) where  B)(M,g) =kerd".
In this case, B*g =P" and 69 = 5V hence,
Theorem 1.3. For & € %221,
£e R(VPY ifand only if £ L BY(M,g).

Sobolev versions for & € WP ?511\,}1 hold with the required adjustments.

By (1.11), the finite-dimensional module Q‘??(M , 8) is the space of Killing 1-forms. It is worth noting
that Theorem 1.3 essentially amounts to the integrability conditions for the elliptic differential system
(6949, B*gdg), which is well-known in the literature and is central in the theory of linear elasticity
(e.g., [Taylla, pp. 465-466] and [SS87]). Hence, the machinery of elliptic pre-complexes is not needed
to prove it. The theorem also shows that the range of the operator 6% exhausts ‘62,}1 up to a finite-
dimensional module, which is related to the fact that it is underdetermined elliptic [Hin23].

The next decomposition concerns (1, 1)-Bianchi forms, which coincide with the (1, 1)-symmetric
forms:

W (H)

@, = R(d) © B} (M, g) ® R(H"; B}),

N (89.B%)
where
B (M,g) =ker(Ho 69 ® By).
The decomposition of ‘g}v’ll refines and generalizes the decomposition obtained in [BE69] for a

closed manifold. The cohomology groups theorem associated with this decomposition resolves the
Saint-Venant problem:
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Theorem 1.4. For o € ‘gllv;l,
o€ R(dY) if and only if Ho =0 and O'Lgf?ll(M,g).

Sobolev versions for o € W*P %I]\,}l hold with the required adjustments.

As in the Hessian complex, the classical theorem for simply-connected Euclidean domains together
with the uniqueness of the complex imply that H = H and %11 (Q,e) = {0}. Moreover, this same
decomposition resolves also the existence of stress potentials with normal boundary conditions:

Theorem 1.5. Let o € ‘g}v‘[] satisfy
Vo =0, P'oc =0 and ol 9311 (M, g).
There exists ay € ?51%,}2 satisfying
o=Hy and By =0.

Sobolev versions for o € W*P "”611\/}1 hold with the required adjustments.

The next decomposition associated with the Calabi complex concerns (2, 2)-forms:

N (d9)

€y = %H) © BH(M,g) & R(69; BY),

N (H*,Bj,)
where
B>(M,g) = ker(H* ® dY @ B},).

Using this decomposition, one is able to solve nonhomogeneous boundary-value problems, general-
izing results obtained in [KL.22] in the context of linearized stress equations:

Theorem 1.6. Consider the data,

R e ??,%,}2 ¢ e gﬁ/}l and o€ ‘g}v’]l.
There exists a solution o € %11\/}1 to the boundary-value problem

Vo=¢ and Ho=R inM
P'o =P"¢ on OM

if and only if the following integrability conditions are satisfied:

d°R=0 and (R,()=0  forevery( e 93%(M,g)
(&,v) = —(P"¢, Pty) foreveryv e =%’?(M,g).

The solution is unique modulo an arbitrary element in 9311 (M, g).

The next level in the Calabi complex concerns the problem

HYy =0 and d% =y inM
B, = B0 on oM.
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This in turn motivates the revisiting of Theorem 1.5, where we find that the existence of stress potentials
can be enhanced with a canonical choice of gauge and a uniqueness clause, also generalizing results
obtained in [KL22]:

Theorem 1.7. Let o € &), satisfy
Vo =0, P'"oc =0 and a'J_ng(M,g).
There exists a y € %]2\,’[2 satisfying
oc=HYy and By =0.
Moreover,  can be chosen to satisfy the gauge condition,
d% =0.

In this case, \ is unique up to an element in @f(M, g)- Sobolev versions for o € Wx’p%'[lv}l hold with
the required adjustments.

1.8. Main open question: geometric meaning of the cohomology

As noted above, the Hodge-like decompositions identify cohomology groups, which are finite-
dimensional modules consisting of smooth sections. These modules generalize the harmonic modules
in Hodge theory. As is well-known, the dimensions of the harmonic modules are topological invariants
and, in particular, independent of the metric. In general, the modules %% (.A,) cannot be expected to be
topological invariants. For example, in the covariant de Rham complex, %]8 (M) is the space of paral-
lel sections, which is connection-dependent; in the Calabi complex, %?(M ,8) is the space of Killing
forms, which is metric-dependent. Of special interest for applications is to know whether the modules
concerning the Saint-Venant problem are topological invariants.

1.9. The structure of this paper

Section 2 contains a brief review of pseudodifferential operators in the context of boundary-value
problems. There is a huge body of literature on this subject; we only review those details that are
relevant to the scope of this work and slightly extend some of them to better suit our framework later on.
Section 3 starts with a review on a specialized class of Green operators (Section 3.1). We then define in
Section 3.2 elliptic pre-complexes. The main theorem regarding the existence of an induced complex is
stated in Section 3.3. In Section 3.4, we present the central consequences of our main theorem, notably
the Hodge-like decomposition and the solution of boundary-value problems. Section 4 is devoted to the
proof of our main theorem, divided into six subsections. Finally, the main applications are presented in
Section 5, with notably the resolution of the Saint-Venant problem in arbitrary geometries.

2. Preliminary survey: pseudodifferential boundary-value problems

This section contains a brief review of pseudodifferential operators in the context of boundary-value
problems. There is a huge body of literature on this subject; we only review those details that are relevant
to the scope of this work and slightly extend some of them to better suit our framework later on.

2.1. Pseudodifferential operators having the transmission property

Let (M, g) be a closed d-dimensional Riemannian manifold, endowed with a volume form dVolz €
Q4 (M); our study can be extended to noncompact manifolds, but for simplicity, we restrict our attention
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to compact ones. Let M < M be a compact embedded submanifold of the same dimension having a
smooth boundary. Since every compact Riemannian manifold with smooth boundary can be embedded
in its closed double [Lee 12, p. 226], we will henceforth view every compact Riemannian manifold with
smooth boundary M as smoothly embedded in a closed ambient Riemannian manifold M.
Let E,F — M be Riemannian vector bundles over M; denote by E = E|3; and F = F[, the pullback
bundles, which are vector bundles over M. Let J, G — d M be Riemannian vector bundles over 0 M.
For ¢, € L’T'(E), we denote their L’-inner product by

o= [ @z avos.

We use the same notation for the L2-inner product associated with sections over M. Likewise, for
p,T € L*T'(G), we denote the induced L?-inner product on the boundary dM by

{(p,T) :/ (p,T) dVol g,
oM

where j : M — M is the inclusion map of the boundary, and dVol -, is the volume form associated
with the pullback metric at the boundary, obtained by inserting the unit normal vector into the first entry
of dVol,.

A differential operator I'(E) — TI'(F) is a linear map that can be represented as an RV — RN
differential operator in any local trivializations of E and F. Since this definition is local, it extends to
linear maps I'(E) — T'(F) and boundary differential operators I'(E) — T'(G).

Differential operators are the prominent example of a larger class of linear operators, known as
pseudodifferential operators. In R4, pseudodifferential operators are defined through their action on the
Fourier transform i (¢) of their argument u(x) via a so-called symbol matrix A(x, ). On a manifold, their
definition is based on their definition in R via the pullback by coordinate charts. A pseudodifferential
operator is said to be of order m € R if its associated symbol matrix satisfies a growth condition with
exponent m. We adopt the notation of [RS82] and denote by L™ (M, E, F) the space of pseudodifferential
operators of order m. By definition, a pseudodifferential operator of order m is also of any order greater
than m. We denote by

L(M,E, ) = LJ L™(M,E,F)

mezZ

the space of all pseudodifferential operators and by

UWME@zﬂLWME@
mezZ
the space of so-called smoothing operators. We denote by ord(A) the set of m € Z U {—o0} such that
A € L"(M,E, F); we say that ord(A) < ord(Q) if ord(Q) < ord(A).

Pseudodifferential operators were introduced as a class of operators, rich enough to encompass both
differential operators and singular integral operators arising as inverse operators (parametrices) for el-
liptic differential systems. We refer the reader to the abundant literature on the subject [H6r94, RS82,
WRLO5, Gru96, Tayl1b, Tayl 1c]; in the following, we will only list those properties of pseudodiffer-
ential operators that are of relevance to the present work.

Every pseudodifferential operator A € L™ (M, E,F) is associated with a symbol, generalizing the
principal symbol of a differential operator [Tay 1 I a, pp. 176—-178] or [RS82, Sec. 1.2.4.1]. On a manifold,
unlike in R?, the symbol is an equivalence class of smooth bundle maps o4 : T*M @ E — F,

oA (0, E,v) > oalx, v forx € M, ¢ € TiMandy € E,.
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The primary role of symbols is to reduce analytical properties of pseudodifferential operators into
algebraic properties of their symbols; notably, it allows for a functional classification of pseudodiffer-
ential operators. Adopting the notation of [RS82], the space of all symbols of order m is denoted by
S™(M,E,F), where o4 € S™ (M, E, F) implies m-growth conditions with respect to the variable £. Sym-
bol are defined up to lower-order terms, which is to say that if A, Q € L(M, E, F) with ord(A) > ord(Q),
then

Taro(x,8) = 0a(x,§).
An operator A € L™(M,E,F) is said to be homogeneous if for every A > 0 and |¢| large enough,
oa(x,A€) = A" oa(x, E).

Homogeneity holds trivially for differential operators, but does not for general pseudodifferential op-
erators. Operators having symbols that possess locally, as & — oo, an asymptotic expansion of homo-
geneous symbols are called classical. Sticking with the notation of [RS82], we denote by LZ;(M ,E,F)
the space of classical pseudodifferential operators of order m. The importance of this class is in the
homomorphism properties satisfied by their symbols, which is used repeatedly in this work.

A pseudodifferential operator A € L(M, E,F) is first and foremost a continuous linear map between
Fréchet spaces,

A:T(B) - I(E),

with the topology induced by the uniform convergence of sections along with all their derivatives.
Pseudodifferential operators are closed under composition

AQ € L™ame (3 B, F) 2.1

for every A € L"™A(M,F,F’) and Q € L™ (M,E,F). Moreover, every A € L™(M,E,F) admits a
formal adjoint A* € L™ (M, F,E), given by the property that

(Ay,n) =y, A'n)  foreveryy € I'(E) and n € I'(F). (2.2)

The class Lcl(M JE, ]13‘) of classical operators is closed under composition and adjointness as well, with
the additional property that classical symbols satisfy the homomorphism properties [RS82, p. 74],

O-AQ(X’ f) = O-A(x’ §) o O-Q(x’ f) and g (X, 'f) = (O-A(x’f))*'

This work is concerned with Sobolev sections of vector bundles, W*:P F(E) defined for s € R and
1 < p < co. The definition goes through first defining scalar-valued Sobolev functions on R¢, then on
domains Q c R¢, and then on closed manifolds by means of partitions of unity and coordinate charts.
Finally, Sobolev sections of vector bundles over closed manifolds are defined [RS82, Sec. 1.2.1.2].

There are several variants of Sobolev spaces. The spaces H*PT'(E) (also known as Bessel-potential
spaces) are defined for every s € R and 1 < p < oo by means of the Fourier transform [RS82, pp. 42—
461, [Gru90, pp. 291-293]. For s € Ny, H*"PT'(E) is the completion of I'(E) with respect to the Sobolev
norm,

lllsp = > IV,

No2a<s

where V is any connection on E.
Our eventual goal is to pass to manifolds with boundary, where trace theorems are being invoked. For
s € Ry \ Ny, the spaces H*-PT'(E) are insufficient for these theorems to hold. This is where Besov spaces
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BS’PF(E), se€Rand 1 < p < oo, come in [Gru90, p. 293], [RS82, p. 45-46]. As in [Gru90], we set

B*PT'(E) seR\Z
Our results will be formulated for W*-P-spaces for s € Ny (i.e., for ‘standard’ Sobolev sections).
References to noninteger s are needed because of the mapping properties of trace operators.
Pseudodifferential operators satisfy various mapping properties with respect to these Sobolev spaces.
Most prominently, A € L™(M;E, F) extends to a continuous linear map [Gru90, p. 312],

A WSPT(E) - W™ PT(F) (2.3)
for every s € Rand 1 < p < co. In particular, every A € L= (M, E, F) extends into a map
A:D'T(E) — ['(F).

A pseudodifferential operator E € L(M,E,F) is called elliptic if og (x, ) : By — F, is an isomor-
phism for every x € M and for every |&| large enough. A parametrix (also known as an approximate
inverse) for E is an operator P : I'(F) — I'(E) satisfying

PE —1d e L™(M,E,E) and EP-1d e L™(M,E F).

Every elliptic E € L™(M JE, P) admits a parametrix P € L™(M JF, E), which is unique modulo
L™°(M,F,E) [RS82, p. 76].

Pseudodifferential operators are generally defined on a manifold without boundary. We are interested
in a subclass of pseudodifferential operators over M that truncate ‘nicely’ to M while retaining the
closure of the calculus to adjoints, compositions and parametrices. Such operators were introduced by
Hormander [Hor94, p. 105]; our exposition is based on a combination of [Gru96, p. 23], [RS82, Sec.
2.3] and [WRLO95, p. 512].

Let r, : D'T'(F) — D’'I'(F) be the restriction operator,

r =Yy

(i.e., the restriction of i acting on test functions with support in M), and let e, : T'(E) — D'T'(E) be
the extension-by-zero operator,

{w in M
ey = ~
0 inM\M.

A pseudodifferential operator A € L(M,E, F) is said to have the transmission property with respect to
M when its truncation,

A, =ryAe, :T(E) » D'T(F),
is a continuous map A, : I'(E) — ['(F).
We adopt the notation of [RS82] and denote the space of all classical operators of order m over M

having the transmission property with respect to M by OP(U")(E, F), or by OP(A™) when there is no
ambiguity, and let

OP(%) = U OP(A™).

mez,
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There is ample discussion in the cited literature on sufficient conditions for a pseudodifferential op-
erator to have the transmission property. For our purposes, we will only mention that every differential
operator is in OP(2), and that OP() is closed under adjoints, compositions and parametrices [RS82,
p. 136] (Proposition 2 requires the elements to be properly-supported [Hor94, p. 86], but every pseu-
dodifferential operator is properly supported in a compact manifold).

Truncations of operators in OP(™) satisfy mapping properties as well, which requires defining
Sobolev spaces on manifolds with boundaries. For s < 0, we note that the spaces W*-?T'(E) consist of
distributions. We define [Gru90, pp. 294-297],

W5PT(E) = WSPT(E) /{w € W*PT(E) : suppw C M \ M},
and
Wy PT'(E) = {w € WWPT'(E) : suppw C M}.
Forl/p+1/q =1,
(W IT(E))* = WPT(B).
The mapping properties of A € OP(UA™) are given in [Gru90, p. 312],
Ay WSPT(E) —» W™ PT(F) (2.4)

foreveryZ> s> 1/p—1and 1 < p < co. Henceforth, we remove the ‘+’ subscript from the truncation
of a differential operator. Since these always act locally, this should cause no confusion.

2.2. Integration by parts, trace operators and normal conditions

As mentioned in the previous section, the space OP() of classical operators having the transmission
property is closed under adjoints (i.e., if A € OP()(E, F) then A* € OP(A)(F, E), where A* is defined
by (2.2)). Consider the truncation of the adjoint,

(A", =r A%e,.

The question is whether the truncation (A*), of A* is in some sense adjoint to the truncation A, of A;
for example, does it hold that

(A.m) = (W, (")) forevery y € T(E) and € [(F)?

[Gru96, p. 36] shows that every A € OP(U) can be written as a sum
A=D+0Q,

where D € OP(A™) is a differential operator and Q € OP(A™) satisfies

(Qutr.m)y = . (Q")sm)  forevery ¢ € I'(E) and np € T'(F).
Since D is a differential operator,

(Dy,m)y = (¥, D*n) for every ¢ € I'(E) and n € T'..(F),

from which it follows that

(Awr,m)y =, (A")n)  forevery y € I'(E) and n € I'c (F).
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This formula holds also for noncompactly supported sections when ord(A) < 0 since in this case,
A, : L’T'(E) — L’T'(F) continuously, and hence admits an L?-adjoint, (A,)*, and by the uniqueness
of the adjoint, (A4+)* = (A*),. Throughout this work, compactly supported in a manifold with boundary
means compactly supported in its interior. We henceforth denote (A*); simply by A%, recalling that the
adjointness property is only with respect to compactly supported sections.

[Gru96, pp. 37-38] denotes by pn : ['(E) — (I (;*E))Y the Cauchy-boundary operator,

pny = (DS, Dy, ..., DN 1y),

where D, is the normal covariant derivative (which is well-defined in a collar neighborhood of M,
and hence can be iterated) evaluated at the boundary, and D?I is the trace on the boundary; the choice of
connection on E is immaterial. Given A € OP(), there exists a unique matrix of tangential differential
operators Uy = (Ug)a,,ﬁ:o ,,,,, m—-1 of orders < m — @ — 1 such that the following Green’s formula holds
[Gru96, pp. 37-38]:

(A, m) = (W, Ain) + Uapm¥, pmi) (2.5)

for every ¢ € I'(E) and n € T'(F).

In the sequel (e.g., Definition 3.1), we will encounter integration by parts formulas such as (2.5),
where the operator A belongs to a class of operators larger than OP(2), which requires the expansion
of the class of differential boundary operators. A trace operator T of order m € R and class r € Ny is a
linear map 7 : T'(E) — I'(G) of the form

r—1
T= ZSjD{l + 704, (2.6)
=0

where S; € LZ'IL_J (0M, JE, G) is a pseudodifferential operator on the boundary (which is a closed
manifold) and Q € OP(A™) [Gru96, pp. 27-28, 33]. The operator p,, is an instance of a trace operator
of order m — 1 and class m with G = (j*E)"™, S;(¢) = (0,...,0,£,0,...,0) and Q = 0.

The order of a trace operator is an extension of the order of a pseudodifferential operator (by (2.1),
ord(S ij() < m for every j), whereas its class retains (one more than) the number of normal derivatives.
We denote the set of trace operators of order m € R and class r € Ny by OP(T™"), as in [RS82].
The class of trace operators can be extended to negative values [Gru90, pp. 309-311]. In simple terms,
T € OP(T™ ") if T € OP(T™") and TD! € OP(T"™"). We denote the union of all OP(I™")
of order m € R and class r € Z by OP(Z). Trace operators have well-defined symbols, much like
pseudodifferential operators. However, unlike operators with the transmission property, the mapping
properties of trace operators depend on both the order and the class; for every T € OP(ZT"") [Gru90,
p. 312],

T : WOPT(E) — WS 1/P-PT(G) .7

foreveryZ>s>r+1/p—1and 1 < p < oo (for example, for p = 2, the restrictions to the boundary,
which is an operator of order zero involves a loss of regularity of 1/2). Note how the class r limits the
mapping properties: a trace operator of order m reduces the regularity of a W*-P-section by m + 1/p,
as expected, but only for s large enough. However, a negative class allows mapping between negative
Sobolev spaces.

We next specify a particular class of trace operators: A system of trace operators associated with
order mis a trace operator of the form 7 = Ty ®T; & - -®T,,,_; € OP(I™~ ™), where T; : I'(E) — I'(J;)
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is in OP(T"™) and J; — 0M is a vector bundle [Gru96, pp. 45-46]. As stated above, every component
T; can be written as

.
T;= » SiiD} + 7" (Qi)s (2.8)
J

3

1l
(=}

where S;; € Lil_‘i(OM,]*]E, J;) and Q; € OP(AY). Since T; € OP(ZI"™), and since the mapping
property (2.7) applies to each T; separately, systems of trace operators associated with order m satisfy
the compound mapping property

m—1
T : WSPT(E) —> @ ws=i=1/ppT (1)
i=0

foreveryZ>s>m+1/p—1.

Definition 2.1. A system of trace operators To ® 7| @ - - - ® T,,,—| associated with order m is said to be
normal if each T; of the form (2.8) satisfies that S;; : T'(;*E) — I'(J;) is surjective.

The normality of a system of trace operators implies surjectivity [Gru96, p. 80]:

Proposition 2.2. Let T € OP(X"~ 1) be a normal system of trace operators associated with order m.
ThenT :T(E) — I'(G) and T : W™?T'(E) — EDZB] Wm=i=11221(T,) are surjective.

The canonical example of a normal system of trace operators associated with order m is p,,, defined
above.

Consider the integration by parts formula (2.5) for A € OP(UA™). We are interested in a setting where
there exist differential operators, B4 : T'(E) — I'(G) and By4- : I'(F) — I'(G), which are normal
systems of trace operators associated with order m, such that

(Awp.m) = (W, Ain) +(Bay, Barm) (2.9
for every ¢ € I'(E) and n € I'(F). Not every A € OP(2) has this property. In our work, however,

formulas such as (2.9) emerge naturally; hence, we omit this discussion.

2.3. Green operators and elliptic boundary-value problems

Let E € OP(A™) be elliptic and let T € OP(T™ "), Consider the problem of finding a linear map
R : T'(F) — I'(E) satisfying

E.R=1d inM
{* n (2.10)

TR=0 on oM

(i.e., a solution operator for a pseudodifferential boundary-value problem

Ty =0 onodM,

with p € T'(F)). Since E € OP(A™) is elliptic, it has a parametrix P € OP(A~""). However, its

truncation P, is generally not useful for finding R for two reasons: first, the boundary condition 7R = 0
has to be taken into account; second, for general A, Q € OP(N),

(AQ)s — A+Q+ %0, 2.11)
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and in particular, £,P, # Id (modulo a smoothing operator). In fact, the expression (2.11) is not
necessarily the truncation of an element in OP(2), and hence is not subject to the theory surveyed in
Section 2.2.

This motivates the introduction of an even larger class of operators, which allows among other things
to classify operators such as A, Q., and solution operators for (2.10). This new class retains some of the
desirable properties of pseudodifferential operators. The idea, originating in work by Boutet de Monvel
[Bou71], is to construct a class of operators representing boundary-value problems, which is closed
under its own algebra (the so-called Boutet de Monvel algebra).

A Green operator of order m € R and class r € Z is a system of operators A, which can be written
in matrix form as

_ (A, +G K\ (T(E) I'(F)
A—( T K;)‘(F(J))_’(F(G))' (2.12)

Here, A € OP(UA™), T € OP(%””]”) and K, € LZ’{(&M,J, G), which all belong to classes of operators
that have already been introduced. The operator K; is known as a potential operator (of order m); it
maps boundary sections into interior sections. The operator G is known as a singular Green operator.
Singular Green operators are non-pseudodifferential operators, which are associated with a principal
symbol much like pseudodifferential operators [Gru96, pp. 30-32]. They can also be characterized as
classical in the sense of possessing an asymptotic expansion of homogeneous terms. Just like trace
operators, they possess both an order and a class. They were introduced in order to obtain good
composition rules (e.g., to rectify elements such as A,Q. and possibly their approximate inverses).
Specifically, if A € OP(A™4) and Q € OP(A™2), then (AQ); — A.Q- is a singular Green operator of
order mg +mg — 1 and class mg [RS82, p. 152].

The singular Green operator G in (2.12) is assumed to be of order m — 1 and class r € Z, in which
case [Gru90, p 312],

G : WSPT(E) — W™ PT(F) (2.13)

foreveryZ > s >r+1/p—1land 1 < p < oo.If r = 0, since a singular Green operator is L -continuous,
it has an adjoint of the same order [Gru96, p. 32]. For r > 0, this is, however, not true, so we have to
keep track of the class of singular Green operators as we compose them with other operators.

Green operators of the form (2.12) satisfy the following mapping properties: If A is of order m and
class r, then

) WS-PT(E) WS="-PT(F)
A: (Ws+l—1/p,p1—*(J)) — (Ws—m+1—1/p,pF(G) (2.14)
for every Z > s > r + 1/p — 1. Green operators are associated with a pair of symbols,
0(A) =om(A) ®oam (A, (2.15)

where o (A)(x, &) = oa(x, &) : BEx — Fy, which is defined for every x € M and £ € Ty M, is the
interior symbol of A € OP(), and ops (A) (x, £”), which is defined for every x € M and &’ € Ty M,
is the boundary symbol of A, the latter is a continuous linear map

(2.16)

Tomt (A)(x, &) - (é’(&; Ce Ex)) N (5(R+; Co® Fx))’

C®lJy C® Gy

where for a vector bundle U —» M, & (]?RJr;C ® U,) denotes the space of C ® U,-valued Schwartz
functions on the half line R, = {s € R : s > 0}. We shall elaborate below upon how one obtains the
map (2.16) from the Green operator A when both K; and K, are zero, in which case its domain is just
S(R4;C®E,). A general definition is found in [Gru96, pp. 23-34].
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Green operators form an algebra closed under composition, with their symbols satisfying a homo-
morphism property [RS82, p. 175]:

Theorem 2.3. Let A, Q be Green operators of orders m, mg and classes ra, ro. Then QA is a Green
operator of order m + mg and class max(ma +ro,ra). The symbol of QA is given by

0 (QA) =0 (Q) oo (A) = (om(Q) o om(A) & (dam(Q) © oom (A)).
Moreover, if A is a Green operator of order m and Q is a Green operator of order < m, then,
oc(A+ Q) =0c(A). (2.17)

A Green operator A is called elliptic when o (.A) is invertible. It should be noted that the notation
om (A) ® oan (A) is formal; the invertibility of the symbol amount to the separate invertibility of each
component. Generalizing elliptic pseudodifferential operators on a closed manifold, an elliptic Green
operator A benefits from the existence of a parametrix in the calculus, such that AP —Id and PA — 1d
are both Green operators of order —co. If A is of order m and class r, then its parametrix P is of order
—m and class r — m [Gru90, pp. 335-336].

Property (2.17) of the symbol raises a problem when considering systems of trace operators 7 =
To®T®- - -@®T,— associated with order m, since by the definition of the symbol, the only contribution to
o (T) is that of o (T;,,—1). The notion of ellipticity can be extended to encapsulate operators decomposing
into direct sums € = &;&; and T = &;T; of operators having different orders (such systems are known as
Douglis-Nirenberg boundary-value problems). The inclusion of such systems within the elliptic theory
is justified by an order reduction argument, which will be elaborated below.

Consider the upper left term, £, + G, of the Green operator. We denote all operators of this form
where E € OP(A™) and G is a singular Green operator of order m — 1 and class r by OP(&™"). We
further introduce the class

OP(S) = U OP(&™").

meZ,r >0

Note that an element £, + G € OP(S) can be identified with the Green operator

_(E.+G 0\ (T(B) I'(F)
=[0G ()= ()

For conciseness, whenever there are no other nonzero entries, we will henceforth write A = E, + G.

We set OP(S™") = (),,ez OP(&™7") as the operator class of smoothing operators of class r and
set OP(S™) = (U, 59 OP(&™>") [RS82, p. 171]. As stated in the last reference, mappings in these
classes map distributive sections into smooth ones and, as such, are always compact. When it comes to
composition, since an OP(&) operator can be viewed as a Green operator with all other terms equal
zero, Theorem 2.3 implies the following:

Proposition 2.4 (Composition rules). Let £ € OP(G™E"E), Q € OP(&"2-"2) and T € OP(I"T'T),
Then, the following composition rules hold:

(a) QF € OP(G) is of order mg + mg and class max (mg +rg,rg).
(b) TE € OP(X) is of order mg + my and class max (mg +rr,rg).

Operators in OP(S) benefit from Sobolev mapping properties with respect to their order and class,
as inherited from (2.14). In particular, the mapping properties of operators in OP(S) are limited by
their class. Most importantly, for » > 0, elements in OP(&"") are not L?-continuous, and hence do
not admit adjoints. Since OP(U) operators are L”-continuous, this failure is due to the singular Green
part. In fact (see the sharpness comment in [Gru90, p. 312]),

Proposition 2.5. For everym € Z, £ € OP(S"™7") is LP — WP continuous if and only if r < 0.
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Proof. The LP-continuity for » < 0 follows from the mapping property (2.14). In the other direction,
suppose that £ = E, + G € OP(&™") is L”-continuous. Since E, is L”-continuous, it follows that G is
LP-continuous. By [Gru90, p. 306], every singular Green operator of order m and class r can be written
as

r—1
G=) K;Dh+G,
j=0

where G’ is a singular Green operator of order m and class < 0 and K; are potential operators of order
m — j (the precise definition of K; is immaterial here).

Let ¢ be smooth, and let i, be a sequence of smooth, compactly supported sections converging to
y in LP. Since G is L”-continuous, and since Dy, = 0 (as ¢, is compactly supported and Dy, are
traces) for every j and n, it follows that

Gy, =Gy, — Gy in WP,
Since G’ has class zero, it follows from the mapping property (2.14) that
Gy, — Gy in WP,
from which we conclude that G = G’, and hence r < 0. m]

A very important case is £ € OP(&?), in which case it is LP-continuous and as such has an adjoint
&* of the same order and class [RS82, pp. 175-176]. We introduce the notation,

6° = oP(&"Y).

By Proposition 2.4, §° is also closed under compositions.
Consider now Green operators of the form
0
TO)

with £ = E; + G, which for typographical reasons we denote (£, 7). As stated above, the symbol of
(&,T) decomposes into

oc(ET)=om(ET)®oom (E,T),

where o (E,T)(x, &) = 0g(x,£). More specifically, we consider the case where

(a) the order and the class of G are strictly less than m — 1.
(b) the order of the O, component of T in (2.6) is strictly less than m.

In this case, G and Q. do not contribute to the boundary symbol ogps (€, T), which is only determined
by the pseudodifferential operators £ and S;: Let x € 0M, and write ¢ € Ty M inthe form & = &' +&,4 dr,
where ¢’ € T;0M and dr is the unit covector normal to the boundary, so that £; € R is the normal
component of £. Consider the map

(oot xatr) o (5]
or(x,¢" +&adr)] " Gy)’

where o (x, & + £4dr) is obtained from (2.6) by [Gru96, p. 27]

o7 (6,€ +éadr) = ) £, (x,E),

0<j<m
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(Since S; € L}~ 7(0M, J*E, G), it follows that 0s; (x,&") : Bx > Gy forx € OM and &’ € T;0M.)
If one con51ders ¢4 € R as an independent Varlable then this map can be extended to operate on
complexified vector-valued functions,

C®F,
F :Func(R;C®E,) — Func(R (C@G ))

given by

_(oe(x, & +tdr)y(t)
Fl @) = (a'f(x,f’ +tdr)lﬁ(t))'

We then perform, formally, a one-dimensional Fourier transform, replacing ¢t +— ¢ds. This yields a
differential map, ¥, given by

(TR E iy ()
F(lﬂ)(S) = (O'f(x,fl +10, dr)w(s))

This map can be restricted to one-sided Schwartz functions, yielding a map

F:S8R,;CRE,) — §(@+; (ggéx))
X

The boundary symbol of (£,T) is the map

given by

ny _ ({5 oE(x & + 105 dr)y(s)}
oam (€, T)(x’é: )lﬂ = ( JT(§,§’+L65 dr)glr(O) )

The notion of ellipticity for Green operators (£, T) reduces to two ingredients: the ellipticity of E €
OP(9) as a pseudodifferential operator over M, supplemented by the requirement that o557 (€, T) (x, &)
be a bijection [Gru96, p. 34]. This condition generalizes the classical Lopatinskii-Shapiro condition,
which is a sufficient condition for differential systems. Indeed, when £ and T are differential operators,
then the boundary symbol oy (€, T)(x, &") can be viewed as the restriction of an ordinary differential
operator,

oE(x, & +105dr) : C¥(Ry;C®E,) = C*(Ry;C®F,),
to Schwartz functions, supplemented by an initial condition map
Bxer =07 (X0, & + 105 dr)ls=o : C®(R;;C®E,) — C®G,.

These mappings coincide with the ones defined in [Ho6r94, pp. 233-234] in the statement of the
classical Lopatinskii-Shapiro condition. The following proposition demonstrates how the invertibility
of ogp (€, T)(x, ") extends this condition:

Proposition 2.6. Consider a system (E,T), where E and T are differential operators. Suppose that
o (x,€) : Ex — Fy is injective for every ¢ € TyM \ {0}. For ¢’ e Ty0M, letM+ , CC*¥(Ry;C®E,)
denote the space of decaying solutions of the linear C ® Ex-valued ordinary dlﬁ”erentzal equation

oe(x, & +10; dr)y(s) =0. (2.18)
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Then, the boundary symbol oop (E,T)(x,&") is injective if and only if the restriction of Ex ¢ to M oy
is injective. If, in addition, dimE, = dimF,, then the boundary symbol ogp; (E,T)(x,&’) is a bz]ecnon
if and only if dimc MX & = = dim G.

Proof. We start by relating the Schwartz functions in the definition of ogar (€, T)(x, &) with the space
Mt & in the Lopatinskii-Shapiro condition. The solutions of the ordinary differential system (2.18) are

spanned by elements of the form y(s) = s e y,, 1. Hence, M; & 18 spanned by all those elements

for which the real part of A is negative, which implies that M+ , C S(Ry;COE,).

Suppose that the boundary symbol ogps (€, T) (x, ) is mjectlve and let y € M} g be in the kernel
of Ey ¢. By definition, ¥ € kerog (&’ + 10, dr), and hence € keroapn (€,T)(x, g—“ ), which implies
that » = 0, thus proving that the restriction of Zy ¢ to M; & is injective.

Conversely, suppose that the restriction of Z ¢ to M Y& s injective, and let ¢ be in the kernel
of oanm (E,T)(x,&"). Since ¢ is a Schwarz function solving (2.18), it is in M, e and since moreover
Ex, e = 0, it follows that ¢y = 0, thus completing the proof of the first part. The second clause is the
classical Lopatinskii-Shapiro condition. O

2.4. Overdetermined elliptic systems

In the sequel, we invoke a degenerate form of ellipticity of Green operators [RS82, p. 237], [Gru90,
p- 315]:

Definition 2.7. A Green operator A is called overdetermined (OD) elliptic if its symbol - (A) is injective.

By (2.15), the OD ellipticity of .4 amounts to the injectivity of the interior symbol o4 (x, &) for every
x € M and ¢ € Ty M \ {0}, and the injectivity of osas (A) (x, &) foreveryx € M and ¢’ € T;0M \ {0}.
By Proposition 2.6,

Corollary 2.8. In the notations of Proposition 2.6, a Green operator of the form (E,T), where E and T
are differential operator, is OD elliptic if and only if og (x,€) : BEx — Fy and Ex ¢ : M, P C® Gy
are injective.

OD elliptic Green operators of the form (£, T) imply a priori Sobolev estimates and the existence of
left-inverses [Gru90, pp. 335-336]:

Proposition 2.9. Let (€, T) be OD elliptic of order m € Z and class r € Z. Then there exists an a priori
estimate

1Wlls.p < N1EGNs-m.p + 1T ls—ms1-1/p.p + 1¥llo.p (2.19)

foreveryZ > s > r+1—1/p. In particular, ker(E,T) € WS PT'(E) is finite-dimensional, is independent
of s, p and consists of smooth sections. If, furthermore, (E€,T) is injective, then it has a left-inverse of
order —m and class r — m within the calculus of Green operators.

Note that OD ellipticity is defined as the injectivity of the symbol, which only implies the existence
of an approximate left-inverse, yielding the a priori estimate. The injectivity of the operator is a stronger
requirement.

Since ker(€,T) C L’T'(Ey), it admits an L2-orthogonal projection onto it, which we denote by
S : L’T'(E) — L’T'(E). Since ker(E,T) consists solely of smooth sections, S : T'(E) — TI'(E)
continuously as an integral operator with a smooth integral kernel. As such, S € OP(&~*) [RS82,
p. 196], and by continuity, the projection & : WSPT'(E) — WS PI'(E) is a compact operator with
a finite-dimensional range, Range(S) = ker(£,7) € WS PI'(E). A standard procedure, using the
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finite-dimensionality of ker(&, T') and the Rellich compact embedding theorem [Brel I, p. 51] yields a
refinement of the estimate (2.19), replacing || |lo,, by IS¢ |lo, .

W lls.p < NEGNs—m.p + 1T ls-ms1-1/p.p + IS¢ ll0.p

foreveryZ>s>r+1-1/p.

We next focus on systems £ = GBL Eand T = 69;.":51 T;, where &; and T} are of varying orders. This
extension uses the so-called ‘simple reduction of order’ [RS82, p. 208, pp. 234-235]; we provide all the
details for self-containment.

We start with the boundary operators 7;: Since dM is a closed Riemannian manifold, there ex-
ists for every vector bundle S — OM and every ¢+ € Z an invertible pseudodifferential operator
US € Lél((')M, S, S), with inverse within the calculus (e.g., (Id + V*V)?/2, where V is any Riemannian
connection on S). Due to the mapping property (2.3), this operator extends to an isomorphism

L WOPT(S) - WS PT(S)

forevery s € Zand 1 < p < co. On a vector bundle U — M over a compact manifold with boundary, the
existence of such an isomorphism is not trivial. This fact is proved in [Gru90, Secs. 4,5]: for every m > 0,
there exists an OP(G&™%) operator £, which extends to an isomorphism W*?T'(U) — W*~"-PT'(U)
for every s > 1/p — 1. Its inverse is an OP(S~"0) operator.

With these noted, the following is an adaptation of the construction in [RS82, pp. 234-235] for
elliptic systems of varying orders to OD systems of varying orders. This is essentially what is done in
[Gru90, pp. 331-338], restated here to better suit the framework we develop later:

Definition 2.10. Let (£,7) be a Green operator, with F = &!F; and £ = &!_ &, where & :
I'(E) —» I'(F;) are OP(&""i), and T = @7:0Tj, where T; € OP(X7iYi*!). Set m = max; m; and
r = max; ; {ri, v+ 1}. The system (&, T) is called OD elliptic of varying orders (we later usually omit
the suffix ‘of varying orders’) if

(a) foreveryx € M and ¢ € Ty M \ {0}, the map

1
@O-Ei(x’é‘:) :Ex — Py
i=1

is injective.
(b) forevery x € M and &’ € Ty0M \ {0}, the map

@i’:l o, (x,& +105 dr)

: SRy S(R;C®F,)
Do or; (x. & +10; dr) :S(Ry;COEx) — (

Co® Gy
is injective.

Proposition 2.11. Let (£,T) be OD elliptic of varying orders. Then there is an a priori estimate,

! q
Wlls.p < D WD Nsmep + D ITllsy,-1/p.p + 1S llo.p» (2.20)
i=1

J=0

foreveryZ s s>r+1/p—1,and 1 < p < co. Here, S € OP(&™) is the L*-orthogonal projection
onto the finite-dimensional space ker(E,T) € W*PT'(E), which is independent of s, p and consists of
smooth sections. If, furthermore, (€, T) is injective, then it has a left-inverse of order —m and class r —m
within the calculus of Green operators. Conversely, if (€,T) has a left-inverse of order —m and class
r —m, then it is injective and OD elliptic of varying orders, with maximal order m and maximal class r.
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Proof. Using the order reduction operators L , £ and L, consider the modified system:

S}
Il

Lo E L

i=1

~
Il
Q

m=yj=lp ~-m
T 7o)

o

Jj=

By the homomorphism property of the symbols of Green operators,

1 m—m; -

) L o (LI LM, 0)

o&T)= @m—} H i m
By o0, L7 Tz

_ ( Prey o (LE™) 0 ()

D oLl o a(Tn) B

It is a straightforward yet tedious calculation to show that the fact that symbols of the order reduction
operators are isomorphisms, and the fact that the direct sum of the symbols o-(&;,0) and o (0,7}) is
injective, implies that o(€, T is injective. We conduct it only for the interior symbol, as the argument
for the boundary symbol follows the same lines.

Letx € M, & € T:M \ {0}, and suppose that ¢ € ker ops (€, T); that is,

l
B o (L2 (x,8) © 0w (£)(x,€) 0 oar (L™ (x,£)r =0,
i=1

By the assumptions, o (&;) = 0, , and hence, the above identity for i reads

!
D ow (L5 (x,6) 0 o, (x,€) 0w (L5™) (x, E)y = 0.
i=1

This implies
om (L) (x,€) 0 op, (x, &) (om (L") (x,€)¢) =0 for every .
Since oy (E]gz_m")(x, £) is bijective,
g, (x, &) (om (LF™") (x, E)Y) =0 forevery .
Since @5:1 o, (x, &) is injective, it follows that
o (L") (x,§)Y =0,
and since oy (L) (x, £) is bijective, ¢ = 0, thus proving that oz (x, £) is injective.
The fact that the kernel of the problem is finite-dimensional and admits a left-inverse follows from

Proposition 2.9, by a simple composition with isomorphisms. We turn to the a priori estimate. Since
(&,T) is of order zero and class r, the a priori estimate (2.19) assumes the form

! q
—m; - m—y;j—1 - 5
W lls,p < D ILE ™ ELT Wllsp + D ILT " LT W11/, p + 180 N0,

i=1 j=0
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foreveryZ 3 s > r+1/p—1, where S € OP(&~®) is the projection onto ker(&, T'). By the isomorphism
property of L™,

1 lls.p < NLE Y ls—m.p
l

m—m m—y;j—1
< D IEE Ewlls- mp+Z||£ YT et + IS LEW o, p
i=1 Jj=0

q
Z |5i¢’||s—mi,p + Z ”lep”s—yj—l/p,p + ”Slp”m,p

J=0

The replacement of the last term by [|¢/|o, , follows from the equivalence of norms on a finite-dimensional
vector space.

In the other direction, suppose that (€, T') has a left-inverse of order —m and class r —m. It is therefore
injective. By using the order-reducing operators, we may assume that all the & and 7} are of the same
order. By the homomorphism property of the symbols, o-(€, T) is invertible, and hence injective. The
order and the classes are inferred by reverting the order reduction. o

We next combine Proposition 2.6 and Proposition 2.11:

Theorem 2.12. Let (€,T) = (E,T) be a differential system of varying orders, where E = @leE,- and
T =@ \T;. It is OD elliptic if

(a) foreveryx € M and & € T:M \ {0}, the following map

1
P e (x.6) B > F,

i=1

is injective.
(b) foreveryx € OM and &' € T;0M \ {0}, the following map

m—1
Brer = D) o, (0, + 10, dr)s=o
J=0

is injective when restricted to M
system,

& the space of decaying solutions for the ordinary-differential

1
P o (. & +10,dry(s) =0,y e C(R:CRE).

i=1

Proof. We argue that Items (a), (b) imply that (E, T') satisfies the requirements of Definition 2.10 (i.e.,
that

i
EBO'Ei(x,f) :E, — F,
i=1

and

1 ’
@H‘UE'(X &7 410, dr) . S(R,;C®E,) _>(

§(R+;C®Fx))
P o (6, & +18; dr)ls=o

Co Gy
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are injective). The first requirement is Item (a). The second requirement follows from Item (b), along
with Corollary 2.8, which extends to operators in the form of direct sums. O

3. Elliptic pre-complexes
3.1. Adapted Green operators and auxiliary decompositions

In the sequel, we study the splitting of spaces of sections into ranges and kernels of OP(&) operators,
reminiscent of a Fredholm alternative, which occurs in many elliptic boundary-value problems. Such
operators satisfy integration by parts formula with surjective boundary operators, due to the noncharac-
teristic property satisfied by elliptic problems ([Tay 1a, p. 470] and [Gru96, Sec. 1.4]). This motivates
the following definition:

Definition 3.1. We call a map A : I'(E) — I'(F) an adapted Green operator of order m € Ny if

(@) A=A+G e OP(&™Y), with A a differential operator and G € &°.
(b) the differential operator A satisfies an integration by parts formula (2.9), with differential boundary
operators B4 and B 4+, both normal systems of trace operators associated with order m.

If G = 0, we say that A = A is an adapted differential operator.

We remark that if A = A is a differential operator, it obviously satisfies Item (a) in Definition 3.1,
but not necessarily Item (b).

Due to the closure of both G° and the class of differential operators to adjoints, and the symmetry
between the requirements on B4 and By«, A is an adapted Green operator if and only if A* is an
adapted Green operator. In particular, the mapping properties of Green operators in ®° implies that
G : L’T'(E) — L*I'(F), and

(Gy,m) = (¥, G™n)

for every € T'(E) and n € I'(F). Thus, A and its adjoint A* inherit the integration by parts formula
(2.9),

(A, m) = (b, A'n) + (Bay, Baen). @B.1

We introduce several definitions associated with adapted Green operators: Let A € OP(&™?) be an
adapted Green operator. The Banach dual of A : W"4T(E) — L9I'(F) is the operator .A;, : LPT'(F) —
(W™4TI'(E))* given by the pairing

Apn () = (n. Ap)

for every n € LPI'(F) and ¢ € W™9T'(E), where 1/p + 1/q = 1. The kernel of Aj, is the closed
subspace of LPT"(F) consisting of sections 7 satisfying

n, Ay) =0

for every y € W™4I'(E). For n € ker A}, N W™-PI'(F), it follows from the integration by parts formula
(3.1) that

(A'n.¢) + (Bay, Ban) =0

forevery ¢ € W™ 4T"(E). Taking ¥ compactly supported, using the fact that B 4 is a differential operator,
and hence Bay = 0, yields

(A, ) =0
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for every y € W"T'(E). Since W;"“T'(E) is dense in LYT'(E), it follows that .A*p = 0. Using the
surjectivity of B4 to prescribe Bay arbitrary yields Ba-n = 0. Thus, ker A7, N W™4:PT’(F) coincides
with the intersection of the kernels of .A* and B 4-. This motivates the following notation for the kernel
of A;,,
NOP (A", Ba) = ker A,
In a similar fashion, consider the Sobolev space,

Wi’pF(E) = W%PT(E) Nker Ba,

fors >mand 1 < p < c0. By (3.1),
(Ay,m) =y, A'n)

for every ¢ € W),"’I"(E) and € W4T '(F). Consider the restriction of .4 to ker B4,

Alker B4 W/:"’ql"(E) — LIT(F).
By definition, its Banach adjoint

Al ot LPT(F) — (W,"T(E))"
is given by the pairing

A () = (n, Ap) for every € LPI'(F) and ¢ € W,"T'(E),

where we used again the isomorphism LPT(E) ~ (L9T'(F))*. The kernel of A;, 4 is the closed subspace
of LPT'(F) consisting of sections 7 satisfying

n, Ay) =0

for every y € W'"“T"(E). We denote this space by
A
NOP(A) = ker AL, 4. (3.2)

Comparing with (3.1), # %P (A*) "\W™PT'(F) coincides with the classical kernel of A* : WPT'(F) —
LPT(E).
For the next definitions, we recall the mapping properties (2.4) and (2.13).

Definition 3.2. Let s € Ny and 1 < p < oo, and let A € OP(&™°) be an adapted Green operator
I'(E) — I'(F). We define the following subspaces of W*-PT"(E) and W*PT'(F),

RP (A) = A(WSH™PT(E)) NP (A) = WPT(E) 0 #OP (A),
RP(A:Ba) = AW, PT(E)) NP (A, Ba) = WHPT(E) N #*P (A, Ba),

along with their smooth versions,

R(A) = A(T'(E)) N (A) =T(E) Nker A
R(A;Ba) = AT'(E) Nker Ba) N(A,Ba) =T(E)Nker(A® Ba).

The closed range theorem asserts that for a bounded linear map 7' : V. — W between Banach spaces,
ker 7’ = (T(V))*, where L is the Banach annihilator functor [Tay11a, p. 575]. Applying this theorem
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to A: W™4T'(E) — L9T(F) and its Banach dual A, : LPT'(F) — (W"™9T(E))* yields
(1A = HOP (A", Ba). (3.3)
ili;ljatﬂg}a ;[E%l)yig(t‘;)/ f};);(a(% )r)afsi:elt(}ll:orem to A : W;"’qF(E) — L9T'(F) and its Banach adjoint
(RU(A Bt = HOP(AY). (3.4

Adapted operators were introduced for the purpose of the following definition:

Definition 3.3. Let A € OP(&™") be an adapted Green operator. We say that A induces an auxiliary
decomposition if the following holds:

(a) There exists an L>-orthogonal, topologically direct decomposition of Fréchet spaces,
['(F) = Z(A) & #/ (A", Ba). (3.5)

(b) There exists an operator P4 € OP(&™0) : I'(F) — I'(E), such that the operator AP 4 : I'(F) —
I'(F) is the projection onto Z(.A).

Equation (3.5) can be viewed as a Fredholm alternative induced by the (generally non-elliptic)
operator A, supplemented with a clause establishing its connection with the calculus of Green operators.
In this setting, the composition rules in Proposition 2.4 imply that AP 4 € G°, and hence,

AP 4 : WHPT(F) — WSPT(F)

continuously forevery s € Npand 1 < p < co. Since I'(F) is dense in W*-PT'(F) and AP 4 is a projection,
by an approximation/continuity argument, we deduce the existence of a W*-P-direct decomposition,

WSPT(F) = %P (A) @ /5P (A", By-), (3.6)

for every such s, p. Conversely, if (3.6) holds for every s, p, then the smooth version (3.5) also holds.

The existence of an auxiliary decomposition implies in particular that #%-P (A) and %P (A*, B a~)
are closed subspaces of W*PT'(F). For s = 0 and p = 2, the closedness of the ranges suffices for the
existence of an L2-direct decomposition, but this is not true for general s, p:

Proposition 3.4. Let A € OP(S™°) be an adapted Green operator. There exist L*-orthogonal decom-
positions

L’T(F) = %02(A) @ /02 (A", By-)
L*T(F) = %02(A; Ba) ® /2 (AY),

where the overline stands for the closure in the L*-norm.

Proof. In view of the isomorphism L>I'(F) =~ (L?T'(F))*, the Banach annihilator of a closed subspace
coincides with its orthogonal complement. Thus, (3.3) reads

NOH(AY, Ba) = (B2 (A)*.
Since every closed subspace of a Hilbert space induces an orthogonal decomposition, we obtain
L’T(F) = (%2 (A)* @ (R (AN = /92 (A%, Bar) @ RO2(A).

The proof of the second clause follows similar lines, starting with (3.4). O
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A decomposition of a Banach space is topologically direct if it is algebraically direct and both
subspaces are closed. In a Banach space, unlike in a Hilbert space, a closed subspace may fail to induce
a direct decomposition. It induces a direct decomposition if and only if the closed subspace admits a
continuous projection onto it. As will be seen below, auxiliary decompositions are a first step towards a
more refined Hodge-like decomposition, whence the adjective auxiliary.

3.2. Elliptic pre-complexes

We consider chains of operators between spaces of sections, as depicted below:

0 AO Al A2
TN T N TS
0 I"(Eo) I'(Eyp) I'(Ez) ['(Es3)
A S— S e S e
0
By B B B3
0
0 ['(Go) ['(Gy) ['(Gp) ['(Gs)

where (A.) = (Ar)ken, is a sequence of adapted differential operators Ay : T'(Ex) — I'(Eg41) of
orders mj. We denote the corresponding normal systems of trace operators by By : I'(Ex) — I'(Gy)
and B} : ['(Eg41) — I'(Gg) — namely,

(A, m) = (W, Agn) + (Bir, Bym)
for every ¢ € T'(Ey) and n € T'(Eg41).
Definition 3.5 (Elliptic pre-complex). A sequence (A,) is called an elliptic pre-complex if

(@) (A;_, ® A, By_,) is OD elliptic, generally of varying orders.
(b) ord(AgAg-1) < ord(Ag—1) (i.e., the minimal order of Ay Ag—; is at most my_p).

There are several distinctions between this definition and the classical notion of an elliptic complex.
Most prominently, elliptic complexes are algebraic complexes (i.e., Ax Ax—1 = 0). In many applications,
however, Ay Ax—1 does not vanish, satisfying instead Condition (b). This order reduction enables the
‘correction’ of (A.) by lower-order terms into a complex, whence the terminology of a pre-complex.

Secondly, in classical elliptic complexes, ellipticity is usually a property of the ‘Laplacian’ system
([Tay11b, pp. 460-465] and [SS19]),

Ak_lAz_l + AZAk
B :,Z_ % B ZA k
The notion of OD ellipticity of varying orders replaces this ellipticity and enables the consideration of
chains in which the operators are of variable order, verifiable by a relatively simple criterion (Theorem
2.12). Elliptic complexes of variable orders have been considered in the literature, in particular in closed
manifolds where an order reduction argument can be applied with relative ease [RS82, p. 279-280].

In manifolds with a boundary, however, the picture is more involved, and this is where Theorem 2.12
provides a significant simplification.

3.3. The induced elliptic complex

The next theorem is our main result concerning elliptic pre-complexes.

Theorem 3.6 (Induced elliptic complex). Every elliptic pre-complex (A.) induces a complex of adapted
Green operators (Aa), with Ay : T'(Ey) — T'(Eg41), uniquely characterized by the following properties:
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(@) Ags1Ax =0.
(b) A+1 = Apr1on N (A, BZ)

We call (A.) the elliptic complex induced by (A,).
Note that by convention, # (A* |, B*|) = I'(Eop), which forces Ay = Ag. Moreover,

Proposition 3.7. In the setting of Theorem 3.6, each Ay induces an auxiliary decomposition,
['(Ex1) = Z(Ar) ® N (AL, BY). (3.7)

We denote by Pr = Pa, : I'(Bks1) — I'(Ex) the operator associated with this decomposition (see
Definition 3.3) (i.e., Px € OP(G0) and A; P € ® is the projection onto F(Ay)).

The following proposition shows that the induced elliptic complex (A.) is a ‘correction’ of the
elliptic pre-complex (A.) by lower-order terms and gives an explicit formula for the difference:

Proposition 3.8. In the setting of Theorem 3.6, the induced elliptic complex (A.) satisfies
Gr=Ar—Ap € 6° for every k,
with G given by the recursive formula,

Go=0

(3.8)
G = —ArAi_1Pio1 — AkGr-1Pi-1.

It follows from Proposition 3.8 that A, and A} satisfy the same integration by parts formula as Ag
and A7
k b

(A, m) = W, Agn) +(Bryr, Bym). (3.9)

Theorem 3.6, Proposition 3.7 and Proposition 3.8 are proved simultaneously by induction on k in
Section 4, Moreover, since Ay — Ay € ®°, the systems (A} _, ® Ax, B} _,) are also OD elliptic.

3.4. Applications of the induced elliptic complex
The defining properties of the induced elliptic complex (.A,) imply the following additional properties:
Lemma 3.9. In the setting of Theorem 3.6 and every s € Ny

(@) For p > 2, the subspaces N*P(Ay) and R*P (A} ; By) are L?-orthogonal, and hence intersect
trivially.

(b) R¥P(Ak-1) € NP (Ag).

(c) For p 2 2, the subspaces R*P (Ay-1) and R*P (A} ; By) are L?*-orthogonal, and hence intersect
trivially.

Proof. The spaces 4P (Ax) and %% (A;;B;) > R*P(A;;B}) are L*-orthogonal by the very
definition (3.2) of /%P (Ay), with A = A*; hence, Item (a) holds for every s € Ny. For s > my_| +my,
the second item follows from the property Ax Ax—; = 0; the extension to every s € Ny follows from an
approximation argument. The third item is an immediate consequence of the first two items. O

The auxiliary decomposition refines into a Hodge-like decomposition:

Theorem 3.10 (Hodge-like decomposition). In the setting of Theorem 3.6, there exists a W*-P -direct
decomposition,

WSPT(By) = B8P (Ax-1) ® RSP (AL By) @ 5 (A.) (3.10)
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for every s € Ng and 1 < p < oo, where the subspace
H*(AL) = ker(Ax ® A}, & B}_))

is finite-dimensional, independent of s and p, and consists of smooth sections. In particular, comparing
with the auxiliary decomposition (3.7),

NEP (A5 | Bi_ ) = RVP (A By) @ 5 (AL). (3.11)
The smooth version of this decomposition follows immediately:
T(Ex) = R(Ar-1) @ R(A}; By) @ I (As). (3.12)

The proof of this theorem relies on some of the constructs developed in Section 4; hence, we present
it in that same section, after the construction of the induced elliptic complex.
A particular instance of the W*-P-version is for s = 0, yielding the decomposition mentioned in (1.9):

LPT(By) = RO (Ax-1) ® ROP (A3 By) @ 5 (AL).

We take a moment to compare these decompositions with other L”-Hodge decompositions in the
literature, particularly those in [AKMO06, HMPO8]. These works aim to study rather general nilpotent
operators D (denoted there by I') and rely on assumptions about their spectral properties to obtain
Hodge-like decompositions of the form

LP (R, xN) = 0P (D) @ %P (D*) @ ker(D & D*), (3.13)

where X is a reflexive Banach space, and %%P(-) denotes the closure of the range in the L? norm.
Certain elliptic operators are known to satisfy the spectral conditions required for these constructions
([HMPOS, App. A], [Tayl1c, Ch. 13.7]).

The starting points of the approaches are quite similar, as both rely on an ‘auxiliary’ decomposition
of the schematic form L? = ¥ & % before refining it further into a full Hodge decomposition. However,
whereas in [AKMO06, HMPOS] these auxiliary decompositions are obtained using spectral theory, here
we use the additional structure provided by the encompassing framework of the elliptic pre-complex.

Thus, while the structural form of the decompositions is similar, the assumptions and techniques differ.
Our results focus on overdetermined elliptic systems within the framework of elliptic pre-complexes
rather than operators analyzed in isolation using spectral theory. This has both advantages and limitations.
On the one hand, our approach provides a richer theory for operators that fall within the scope of this
framework. Specifically, our Hodge-like decompositions are orthogonal, the ranges of the operators are
always closed, and the results extend to all W*-? spaces, not just s = 0. On the other hand, the theory in
[AKMO6, HMPOS] applies, in principle, to more general systems without requiring an encompassing
framework, offering a non-orthogonal Hodge-like decomposition valid in L” — a generality that is
applicable in other contexts.

The refinement of the auxiliary decomposition into a Hodge-like decomposition identifies % (A,)
as the cohomology groups of the complex (A.):

Theorem 3.11 (Cohomology groups). Let € W PT'(Ey), with s € Nyand 1 < p < co. Then,
Y€ RVP(Ag-1)
if and only if

UeNTA) and  W,0)=0  forevery € TH(A).
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Equivalently,
NP (A) = RSP (Ar-r) @ 5 (AL, (3.14)
or in the smooth case,
N (Ap) = B(Ax-1) ® ZF(A).

Proof. First, note that since elements in %% (A,) are smooth, the coupling (i, ¢) is well-defined for
every ¥ € BP(Ax_1) and £ € H*(A)). Let ¢ = A_yw € RSP (Ax_1). Then, y € NP (Ay) by
Lemma 3.9(b). Its L?-orthogonality to #* (A,) follows from the Hodge-like decomposition (3.10).

In the other direction, let y € #5P(A;) be L?-orthogonal to #*(A,). Decompose ¢ according
to (3.10). Its #*(.A,) component vanishes, whereas by Lemma 3.9(a), its #*P (A*; B}) component
vanishes as well, remaining with y € #*?(Ax_;) (for p < 2, an additional approximation argument is
needed, using the closedness of the subspaces).

To prove (3.14), we note that the inclusion

REP (A1) ® HE(AL) € W 5P (Ay)

is trivial. The reverse inclusion is an immediate corollary of the decomposition (3.10) and Lemma 3.9(a)
(see above comment for p < 2). O

Combining Theorems 3.10 and 3.11, we obtain the following compound decompositions:

5P (Ag)

WSPT(Ex) = B5P (Ar1) © 5 (As) @ RSP (AL By)

NP (A B )

Generalizing the technique introduced in [Sch95], Hodge-like decompositions bestow us with the
ability to solve nonhomogeneous, OD elliptic boundary-value problems:

Theorem 3.12 (Overdetermined boundary-value problem). Given an elliptic pre-complex (A.), con-
sider the list of data,

X € WHPT (Egy) EeWTTELP(Er ) and ¢ € WOPT (Ey),
where s > m = max(my, my—_1). There exists a solution y € W*PI'(Ey) to the boundary-value problem
(Ax® Ap_ @ By ¥ = (x.€, By _19), (3.15)

if and only if the following integrability conditions are satisfied:

X € NP (Ars) and (x,0)=0  forevery € Z*(A,) (3.16a)
E— A, e NOP(A; , BL ,) (3.16b)
(£,v) = —(B}_,¢, Bx_1v)  foreveryv e Z*(A.). (3.16¢)

The solution is unique up to an arbitrary A € I*(A,). Moreover, there is an a priori estimate

my—1—1

”‘//”S,p < ”Ak‘//”S—mk,p + ”A#};_llplls—mk_l,p + Z ”Bz:k_lt//”s—i—l/p,p + ”/11//”0,]7’ (317)
i=0
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where B;.k’ «_1 are the components of the normal system of trace operators B, _,, and 1y, is the projection

of W onto ¥ (A,).

In the same spirit as the discussion following (3.10), comparing between the Hodge decomposition
obtained in this work and in other works, it is important to note that, while the boundary value problems
considered here encompass multi-order, nonlocal systems and boundary conditions, this work does not
aim to provide a systematic characterization of the necessary setting for the solvability of boundary
value problems in general. Such broader investigations are surveyed in [Gru96, Ch. 1] and studied in
works such as [BB12, BB22], where, relevant to our approach, the interactions of solvability conditions
with L2-direct decompositions of section spaces are analyzed in a general first-order setting.

Proof. The idea of the proof is as follows: the Hodge-decompositions provide us with an immediate
solution, denoted below by w, for the case &€ = 0 and ¢ = 0. The method adapted from [Sch95] is to add
to w an ansatz of the form a + ¢, where the existence of an appropriate @ hinges on the integrability
conditions of the data.

We start by noting that for every v € %%~ (A,),

(Byp_19, Bi-1v) = (@, Ar—1v) = (Aj_ 18, v) = (A9, v),
and hence, the integrability condition (3.16c) may take the alternative form
(E-A_10,v)=0 for every v € Z*1(A.). (3.16¢-2)
We first verify the necessity of the integrability conditions. Let ¢ € W¥%PI'(E;) be a solution

to (3.15). Since y € BS"P(Ar) < R%P(Ay), then (3.16a) follows from Theorem 3.11. Since
Y — ¢ € kerB;_,, then

k-1°
E= A 0= A (b —¢) € BTN (AL 5By ) € ROP (AL By,
which by (3.11) implies both (3.16b) and (3.16c-2).
To prove sufficiency, it is enough to do it for smooth data, as the same claim in Sobolev regularity
follows from the continuity of all the operators, along with an approximation argument.
The second integrability condition (3.16b) asserts that
E=Ap1b € V(A Biy) = R(A_ B @ 7 (AL,

where the equality follows from (3.11), whereas the third integrability condition, in its form (3.16c-2)
implies that € — A | ¢ is L*-orthogonal to %~ (A,), and hence,

E-AL_ 0 € R(AL_:Br_))-
Let
E-A_0=A_a, where @ € ker B} _.

By Theorem 3.11, the first integrability condition (3.16a) implies that y € %#(Ax). By the Hodge-like
decomposition for I'(Eg), we may write

x — Ar(a+¢) = Arw, where w € R(Ay;By) € N (Ay_y, Bi_y),
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and the inclusion follows once again from (3.11). Let = w + @ + ¢. Then,

Ar = Arw + A(a + ¢) =
¥ = Ao+ A _(a+¢) =&
By ¥ =B,_jw+B;,_(a+¢)=B;_,¢
(i.e., ¥ is a solution to (3.15)). The uniqueness clause is immediate.

Finally, the system (A};_, ® Ay, B;_,) is OD elliptic, and hence yields an a priori estimate (2.20),
which takes the form (3.17). O

4. Construction of the induced elliptic complex

In this section, we prove jointly Theorem 3.6, Proposition 3.7 and Proposition 3.8 by induction on k.
The proof is partitioned into five stages. In the last subsection, we prove the Hodge-like decomposition
(Theorem 3.10).

4.1. Stage 1: Base and setup of induction step

For the base of the induction, it is convenient to append an extra level to the sequence (A,), as in the
diagram in Section 3.2, setting E_; = M x {0}, G_; = 0M x {0} and A_; = A_; = 0. The base of the
induction requires that

(a) A_j induces an auxiliary decomposition,
T(Ep) = (A1) & N (A7, BY).

(b) ApA_; =0.

() Ap=Agon N (A" ,B")).

(d) Ao = Ao+Gy is an adapted Green operators with G satisfying the properties specified in Proposition
3.8.

This is satisfied trivially by observing that #(A-1) = {0} and I'(Eg) = A4 (A" ;B",), and hence,

Conditions (a) and (b) are satisfied. Condition (c) determines .4y = Ag uniquely. Finally, Condition (d)

is satisfied as Ay has a Green part Gy = 0.

Induction step
We assume that A; and A;_; have been defined for some k > 0, such that

(a) Ag_; induces an auxiliary decomposition (i.e., there is a map Pj_; € OP(S"%1-9)), such that
Ai-1Pr-1 € 6 is the projection onto % (Ax_1) in the topologically direct decomposition,

I'(Ex) = A(Ak-1) ® ‘/V('AZ—I’BZ—I)' “.1)

b) ArAx_1 =0.

(©) Ax=Aron N (A;_,B;_)).

(d) A = Ax + Gy and Ay_; = Ag_ + G are adapted Green operators with Gy and Gy_; in O,
satisfying the recursive formula

Gi=-ArAk1Pro1 — ArGr1Pr-a-

4.2. Stage 2: Additional elliptic estimates

Since the system (A} | & Ay, B;_,) is OD elliptic and A} | — A% |, Ax — Ax € 6, it follows that
the system (A;_, ® Ax, B;_,) is also OD elliptic (we use here the closure of 6° to adjoints). By
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Theorem 2.12, this implies the finite-dimensionality of the space
H*(A.) =ker(A;_| & Ay @ B}_)),

along with the a priori estimate,

my-1—1

W lls.p < WA W ls—mirp + NARY s—mpe.p + Z 1B} k-1 lls=i=1/p,p + ISk llo, p. 4.2)

i=0

for every Ng 3 s > m, where Sy € OP(&™) is the L?-orthogonal projection onto #*(.A,), and
m = max (mg—1, mg). As a consequence of (4.2), the system (A;_, & Ax & Sk, By _,) is OD elliptic and
injective, and hence, by Proposition 2.11, admits a left-inverse or order —m and class my_; — m within
the calculus of Green operators.

In the sequel, we need to estimate [|¢||m,,, in terms of || Axi|lo,, When i is restricted to the
subspace ker(A; _; @ B;_; ® Sx). While this seems to follow from (4.2), this estimate cannot be used
when my < myg_1, since in this case, the left-inverse has positive class. To overcome this difficulty,
we derive an additional elliptic estimate, which uses the inductive assumption regarding the auxiliary

decomposition induced by A_;:

Proposition 4.1. The following estimate holds:

W lls.p < 1A-1Pr1¥lls,p + 1 ARE sy, p + 1Sk lo, - 4.3)

valid for everyZ > s > 1/p—1and 1 < p < oo, where Py_ is the operator mentioned in the induction
step. (Note the absence of a boundary term, which is embodied in the projection Pi_1.)

Proof. By Proposition 2.11, if (£, T) has a left-inverse of order —m and class » — m within the calculus
of Green operators, then it is OD elliptic (of varying orders) and injective, with (maximal) order m and
class r.

The auxiliary decomposition (4.1) induced by Ay and the property of Py imply that (Id—Ay_; Pr—1)
is the projection onto /' (A} _,, B} _,), which implies that for every ¢ € I'(Ey),

k-1’
Ay (A1 Pry = Ay and By _ A1 Pe1y = By _ .
Hence,

(Ap_1 ® A ® S, By _)) = (A} Ak-1Pro1 @ Ax © Sk, By A1 Pr-1).-

As stated above, the system on the left-hand side is injective and admits a left-inverse or order —m and
class my_; —m. The system on the right-hand side can be rewritten in the form

Az_lAk—IPk—l oA & Sk) _ ("42—1 olde Id

By Ak-1Pr- B;_,+0+0 )(Ak‘lpk—l ® Ar @ Si),

where we revert to the matrix notation for typographical reasons; here, (A & B)(C @ D) = AC @ BD,
and (A + B)(C @ D) = AC + BD. Hence, the system (Ag_1Pr-1 ® Ar & Sk) has a left-inverse, and
is therefore OD elliptic. Since Aj_1Pi-1 € ®Y, it is of order my and class zero, yielding the elliptic
estimate (4.3). m]

We identify another OD elliptic system (of varying orders), which will be used to obtain yet another
a priori estimate:

Proposition 4.2. The system (A;_, ® A{Ax,B;_, ® By Ax) is OD elliptic of order and class
max (mg_1, 2mg).
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Proof. In the notation of Definition 2.10,

& = ./47{7] & = .Az.Ak Ty = 3271 and T, = BZAk-
By the composition rules (Proposition 2.4), & € OP(&™-1.0) & e OP(&¥™) T, €
OP(I™k-17Lmi-1y and Ty € OP(T?™~1.2mk)  thus satisfying the preamble to Definition 2.10, with
m = r = max(mg-1, 2my). Moreover, the leading OP() parts of A} Ay and A; | are Ay Ay and A} _ |,
respectively, and the leading differential part of B} Ay is B} Ak.

It remains to show that Conditions (a) and (b) of Definition 2.10 are satisfied. We only verify
Condition (a): given x € M and ¢ € T;M \ {0}, we prove that the map

oar (68 @ oaa (6.8) 1 (Br)y = (Br-1)x @ (Bi)x

is injective. The verification of Condition (b) follows the same lines.
Since the order of Ay Ay is strictly less than the order of Ag, it follows from (2.17) that

O, (X, 804, (x,6) =0. “4.4)

Let ¢ € (Eg)y satisfy
Y € ker(oa;_ (x,8) @ oara, (x,6)),
which implies, combining (4.4) and the homomorphism property of the symbols, that
¥ e ker(oay,, (x,§)oa, (x,8) ® oa (x,§)0a, (x,8));
that is,
A, (6, O € ker(0ay,, (5, €) ® 7 (x,)).
Since, by assumption, o4, ,, (x,£) & oA (x, &) is injective, it follows that o4, (x, £)y = 0, and hence,
¥ eker(oa,  (x,8) ® 04, (x,)).

Since o4 (x,8) ® 0a, (x, §) is injective, it follows that ¢ = 0, as required. O
Proposition 4.3. The kernel of the OD elliptic system (A;_, & Ay Ak, By_, ® B Ax) coincides with
the kernel %*(A,) of the OD elliptic system (Ay_, ® Ak, By_,). Moreover, the system (A;_, &

Ap Ak @ Sk, By, ® B Ay) is OD elliptic and injective, and hence admits a left-inverse of order
—max(mg—i,2myg) and class 0.

Proof. The inclusion
H*(A.) C ker(A;_, ® AL Ar @ B, ® B} Ay)
is immediate. In the reverse direction, let s € ker(A;_, & A} Ax ® B;_, ® By Ax). Applying (3.9),
(Aryr, Ay = (ALAY ) + (B AY, Biy) =0,

which implies that € ker(Ay), and hence, € #*(A.). The second clause is immediate once we
established that Sy is the projection onto ker(A;_, & A; Ay ® B;_, ® B} Ay). m|
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Similarly to Proposition 4.1:

Proposition 4.4. The following estimate holds:

my—1

lls,p < A1 Pertrlls p + AR AW 52y p + D 1B Ak lsmijotjp.p + ISk llo,
j=0
4.5)

valid for every Z. 5 s > 2my and 1 < p < co.
Proof. We write

Ao AL A0S _ (A eldeld 0)(Ax-1Pr-1 & AL Ax © Sk
By _, ® B} Ax B B, ,+0+0 Id By Ak '

Since the left-hand side has a left-inverse, it follows that the system (Ax—1Pr-1 ® A} Ax ® Sk, B} Ax)
has a left-inverse, and hence is OD elliptic. By the composition rules, it has order and class 2m, yielding
the elliptic estimate (4.5). m]

4.3. Stage 3: Closed range argument and a priori estimates for Ay

The space % (A,) is a finite-dimensional subspace of 457 (A% _y» By_y)- Writing Id = (Id — Sx) + Sk

when restricted to 4P (A} _,, B} _,) yields for every s € Ny and 1 < p < oo the topologically direct
splitting,

NP (Ar_ | By ) = NP (A B_) @ I (AL),
which in turn yields a direct decomposition of Fréchet spaces,

N (Ap_ By y) = Ni(Ai By ) @ ZF(Ad),

where W, (A;_,,B;_,) is the complement of H*(A.) in N (A5, By_,) with respect to the L*-

orthogonal projection Si. Combined with the auxiliary decomposition (4.1) induced by A, _1, we obtain
the topologically direct decomposition,
T(By) = B(Ak-1) ® N (A, B;_)) & I (AL). (4.6)

The projection onto A (A} _, B} _,) is the map P, = (Id — S)(Id — Ag-1Pk-1). By the composition

rules, P, € 6. Since all projections on the closed subspaces in (4.6) are in G°, it follows from a
density/continuity argument that
WSPT(By) = B5P (Ag—1) @ NP (A5, Bi_) ® ZF(AL). 4.7

By definition, for s € Ny,

N (Aprs Bioy) = NP (AL, By ).
Applying the projection Id — Sy on both sides,

Ni(Af s Bioy) = NP (A, By
Lemma 4.5. Forall 1 < p < o0 and s € Ny, the continuous inclusion,

N (A Biy) = WP (AL B )

is dense.
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Proof. Letu € NP (A;_y» B;_,) be given. Since I'(Ey ) is dense in W*-PT"(Ey ), there exists a sequence
U, € T'(Eg), such that

d’n — M in WS,[).
Since P, € Y, itextends to a continuous map P, : WSPT'(Ey) — W*PT'(Ey) forevery s and p. Hence,
N (A Biy) 2 Pupn = Pipg=p inW™P,

which completes the proof. O

Proposition 4.6. For every s € Ny and 1 < p < co, B5P (Ay) is a closed subspace of WS PT (Bg41).
Moreover,

1 llsempe.p < 1AW s, p (4.8)

s+my,p % %
for every g € /TP (AL By _)).
Proof. For s € Ny,

RO (Ag) = Ag(WS™oPT(By)) = A (WP (A5, Bi)),

where in the last passage we substituted the W**"«-P version of (4.7) and the fact that Az Ax_; = 0.
For y € 47" P (A: |, B;_,), the elliptic estimate (4.3) reduces to (4.8). This in turn implies that
A (WP (Ax | B} ) is a closed subspace due to [Tay11a, Prop. 6.7, p. 583]. O

Since Ay € OP(S&™9), it operates continuously as Ay : LPT(Ey) — W™ PI'(Ex.). The

*

following proposition addresses the case where ¥ € /Vf’p (A _,» B}_,); however, Ay is of higher
regularity than guaranteed by this mapping property:

Proposition 4.7. Let y € /Vf’p (A5_;» By_)) for 1 < p < co. For every s € Ny,

Ay € WSPT (Bgy1) implies Wy € NP (AL B_)).

Proof. Consider the operator V* : I'(Eg41) — F(®f:lT*M ® Eg+1), which is a differential operator of
order s, and hence has an adjoint V** : I'(®:_ | T*M ® Eg41) — I'(Eg41) which is also a differential
operator of order s.

By iterating the integration by parts formulas for V* and A, using the L”—L4 duality, we may extend
the operation of V*A4; to a continuous map,

VS Ay 1 LPT(Bx) — W™ PL(®, T"M ® Ejy1)
defined by
(VP Apd, )y =, A V) e W™ ID(@, T"M ® Ep).

Since M is compact, the W*P norm is equivalent to the sum of the L” norm and the L” norm of the
s-derivative,

IV? Axllo,p + 1Ak llo,p < 1Ak lls,p < IVFArrllo,p + 1A Mo, p- (4.9)

Lety € /Vf’p (A _y» By_) satisfy Agyp € WHPT (Egyy). Using Lemma 4.5, letyr, € 4, (A}, By )

converge to ¢ in LP. For all n € Wy ™™ T (®%_ T*M ® Ex41),

(VA ) = Wn, ALV) — W, ALV ) = (V2 Ak, ).
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By assumption, V¥ Ay € LPT(®;_ T*M ® Ey41), and hence, V¥ Axi),, weakly converges to VS Ay
in LP. It follows that V¥ Ax ¢, is LP-bounded, and from (4.9), Axy,, is W*-P-bounded. It follows from
(4.8) that i, is a bounded sequence in W**"-P and hence has a weakly converging subsequence. By the
uniqueness of the limit, yy € WS- pF(Ek)ﬂ/VO p(Ak By (e, ¥ € N p(.Ak »Br_). O

By invoking a slightly modified procedure for the OD elliptic system (A} Az ®Ag—1Pr—1®Sk, B} Ax)
and using the estimate (4.5), Proposition 4.2 yields the following analog of Proposition 4.7:

Proposition 4.8. Let y € N * 0. (A;_;»Br_y), 1 < p < oo, and let s € Ny. Suppose that there exists an

kl’

n € WSmePT(Byyy) such that Ay —n € VP (A3, By). Then ¢ € -/Vsumk P(A;_.B;_)). and
M-
”‘p”s+2mk,p < ”AZAklﬁHs,p + Z ||B;"k-’4klﬁ”s+mk—j—l/p,p- (410)
=0

Proof. First, it follows from Proposition 4.7 that y € 4" (A% |, B; ). It suffices to show that if

k-1’
(A =, Axd) =0 for every A € W4T (Ey), 4.11)
then for every W”*-P-approximating sequence ¢, € I'(Ey) for ¢,

sup ”AZAk’vl’n”sp < 0 and sup mjax “B;,]@Aklpn||s+mk—j—l/p,p < 00,
n n

as (4.5) and the density of /. (A}, B} ) in /" (A;_|, B;_,) thenimply thatyy € Ws*2m«-PT(Ey)
along with the estimate (4.10). The umform boundedness of the boundary sections can be replaced by
the equivalent

sup [|Lx By Axtrnllo,p < oo,
n

where

mk—l
Li: @ wremdUPPr(y; 1) — LPT(Gy)
j=0

is the isomorphism given by
my—1

£k - @£¥+mk -j- l/p

and L’ , are the boundary order reduction operators.

Thus assume that (4.11) holds and let ¢, be an Wk-P-approximating sequence for . Recall that
Aj t LPT(Bgy1) — WPT'(Ey) continuously as elements in OP(&": ) by

(Arw, 1) = (w, Axd) for every 1 € W™ T (Ex).
Comparing with (4.11),
(AL A — Agn, 1) =0 forevery 1 € W™ T (Ex),
which implies that

AL Ay = Aty € WOPT(Ey). 4.12)
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As in the proof of Proposition 4.7, the continuous map
VAL Ak WRPT(Ey) — W™ PT(@F T M ® Ex)
is defined by
(VP A A ) = (A, AkVP™n) - Ve W™ 9T(®F T*M ® Ex).

By the same argument as in Proposition 4.7, V* A7 Axiy,, weakly converges in L? to V¥ A; Agyr. Thus,
VEAL A is LP-bounded, which by an equivalence analogous to (4.9) translates into the W*P-
boundedness of A} Aty

Next, for every A € I'(Gy), since By is surjective, there exists a & € I'(Ey), such that

Bié = (Li)"A,
where (L) is the adjoint of the pseudodifferential operator Ly € L (OM; Gy, Gy ). Then,
(LB Axn, ) = (B Axn, (L) A) = (Axn, Ar€) — (A AP, €).

Since Ay, converges to Axy in LP and A} Ay, weakly converges in LP to A} Axy, it follows that

Jim (Li By Axn, A) = (A, Ar) = (ALARY, €)

= (n, Axé) = (AL Ay, &)
= (A, &) + (Bin, Bré) — (AL Ay, &)
=(LiBpn, ) — (AL (Ary — 1), ).

The second term on the right-hand side vanishes by (4.12); hence, Ly B} Ay, converges weakly in L?
to Ly B} n and hence is uniformly L?-bounded. This completes the proof. O

4.4. Stage 4: Auxiliary decomposition induced by Ay,
We first establish Condition (a) in Definition 3.3 of an auxiliary decomposition:

Proposition 4.9. There exists a topologically direct decomposition of Fréchet spaces,
[(Ek+1) = R(Ay) & N (AL, By). (4.13)

The decomposition is L*-orthogonal, and the smooth projection onto R(Ax) continuously extends to
the L*-orthogonal projection onto R%*(Ay).

Proof. Proposition 4.6 implies, in particular, that %#%2(Ay) is a closed subspace of L’T'(Egy;). By
Proposition 3.4,

LT (Bgs1) = B2 (Ar) @ /O2(AL, B}) (4.14)

is an L?-orthogonal decomposition.

Let s € Ny. On the one hand, %°*"-2( A ) is a closed subspace of W**"-2I"(E;,) by Proposition
4.6. On the other hand, 4 ”mk’z(A* s B’,‘() is a closed subspace as the kernel of the continuous linear
operator A; @ Bj. By (4.14), these two closed subspaces intersect trivially and are mutually L*-
orthogonal. Thus, in order to prove that

W2 (By,p) = B2 (A) @ ./V‘S‘*'mkvz(A*,BZ)’ (4.15)
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itremains to prove that the sum Z5+7%2 (A )+ 52 (A* B}) exhausts the whole of W**" 2T (Bgs1)-
If (4.15) holds for every s € Ny, then (4.13) holds.
Let 7 € WS*"%2I"(Ey,) be given. Decompose it as an element in L?T"(Ey,1) according to (4.14),

n =AY+ u,

where Axy € B2 (Ay) and p € #O2( A7, By). Since AxAx—; = 0, it follows from (4.6) that
W € W"2I"(Ex) can be chosen in /Vlmk’z(/lz_l, B;_)).

Since n—Ary € /VO’Z(A*,BZ), Proposition 4.8 implies that ¢ € /Vf+2mk’2(A271, B} _,),and hence,
Ary € RS2 (Ag). Thus, p € /02 (A7 By) N WSMe2D(By) = 4542 (A By ). This completes

the proof. The L>-continuity clause regarding the projection is apparent from the construction. O

Theorem 4.10. Ay induces an auxiliary decomposition.

Proof. In view of Proposition 4.9, it remains to show that there exists an operator P, € OP(G~"%:0) :
['(Ei+1) — T'(Eg), such that Ag Py : T'(Egy1) — T'(Eg4p) is the projection onto #(Ay).

The decomposition (4.13) implies the existence of a projection Pr : T(Egs1) — I'(Ers1) onto
R (Ay), which is continuous in the Fréchet topology. By Proposition 4.9, it continuously extends into
Pr : LT (Epy1) — L*T(Ey). Since Ax Ai_; = 0, and in view of (4.6),

R (Ar) = Ar(WP (A, By ).

The estimate (4.8) implies that the continuous map Ax : AP (A By ) — RSP (Ay) is a
bijection. By the open mapping theorem, it is an isomorphism of Banach spaces [Tay 1 1a, p. 574]. Since
this is true for every s € No and 1 < p < oo, this implies that Ay : A1 (A;_|, B;_;) — R(Ay) is an
isomorphism of Fréchet spaces. Let (Ax) ™! : Z(Ax) — N (A By _,) be the continuous inverse of

k-1°
this isomorphism, and define Py : I'(Eg41) — I'(Eg) by
Pt = (Ax) ™' Pry,

which is a continuous map as the composition of continuous maps. Also, Ay Py = Pry; hence, A Py
is indeed the smooth projection onto % (A ) as required by Condition (b) in Definition 3.3. It remains
to prove that P, € OP(S"%-0),

Since (Ax)™" 1 BO2(Ax) — H[™P (AL, B;_,). and since Py extends to an L>-continuous map,
then Py : L’T'(E;) — W™ 2I"(Ey) continuously. By the decomposition (4.13) and the fact that Ay Py
is the projection onto & (Ag),

AL AP = Ay and B, AxPr = B;..

*

However, since Py takes its values in A (A} _,, By _,),
Ak—lpk—lpk =0 and SkPk =0.
Summarizing,

A1 Pr_1 EB.AZ.Ak ® Sk P, = 069./47( @0
Bz.Ak k= Bz ’

By Proposition 4.4, the system (Ag-1Pr-1 & Aj Ak & Sk, By Ax) is OD elliptic and injective of order
and class 2my .. Hence, it admits a left-inverse of order —2m and class 0 within the calculus. Thus, Py
is the composition of a Green operator of class —2m and class 0, and a Green operator of order and
class my. By the composition rules, Py is a Green operator of order —mj and class at most my. Finally,
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since Py is in particular L> — W™*-2 continuous, it follows from Proposition 2.5 that it is of class zero.
This completes the proof. O

4.5. Stage 5: Construction of Ay

We complete the induction step by proving that there exists a unique operator 4;,; with the properties
outlined in Theorem 3.6 and Proposition 3.8. We define A1 : ['(Egy1) — ['(Egy2) by

Aps1 = A (Id = A Pr).

‘We need to show that

(@) Ags1Ax =0.
(b) the restriction of Ay to # (A}, By) acts as Ag4.
(c) the operator G4 = Ags+1 — Ay belongs to ®° and is given by

Gi+1 = —Akn1 APk — Ak G Pk
The first two items follow from the auxiliary decomposition
['(Exs1) = Z(Ar) ® N (AL, By)
and the fact that A Py is the projection onto #(.Ay), or equivalently, Id — A Pk is the projection onto
N (A}, By). The uniqueness of Ay as an operator satisfying these two properties is evident from the

direct decomposition.
For the third item, by the definition of A1,

Gt = Aks1 = Ars1 = —Apt A Pr = —Ar1 AP — Ag1 Gi P
By the definition of an elliptic pre-complex, A1 Ax is a differential operator of order < my. Since Py is

of order —my and class 0, by the composition rules, Ag+1 Ax Pk € ®°. In the same way, by the induction
hypothesis (3.8) on G,

Ap1GrPr = — A Ak A1 Prct P —Ag Ak Gier Prer P
——————— — . e — — —— ——
<my 0 —ny <mp <0 -my_y —my

where the expressions under the braces represent the orders the operators, whereas all the classes are
zero. By the composition rules, Ax4+1 G Pr € ®°, and hence, s0 is Gg4.

4.6. The Hodge-like decomposition

In view of (4.7), Theorem 3.10 asserts that
NP (AL By) = REP (AL By )
for every s € Ny and 1 < p < co. We prove it in several steps.

Proposition 4.11. Forevery s e Ngand 1 < p < oo,

RPN BY) € NP (A, By,
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Proof. Lety € I'(Eg41) satisfy By = 0 and let 7 € I'(Eg-). Iterating twice the integration by parts
formula (3.9), using the fact that A; Ax_; =0,

<AZ_1 Zw’ 77) = _<B7(_1 ZW, Bk_]T]>.
Taking By_in = 0, using the density of such elements in L’I'(Ey_,), it follows that A A = 0.
Prescribing By—17 arbitrarily, as By is surjective, it follows that B; _, A; ¢ = 0. Hence, #(A;}; B}) €

N (A Biy)-
To show that Z(A;; B}) L H*(AL), let Ay € R(Ay;By) andn € " (A,). Integrating by parts,

(Azlﬁ’ TI) = (lﬁ’ Ak’]) - <BZW,BkTI> = 07

where we used the fact that Z*(A,) c ker Ay and B = 0. The proof easily generalizes to arbitrary
Y€ WZLPF(E]H]). O
k

Proposition 4.12. For all s € Ng and 1 < p < oo, the space R*P (A} ; By) is a closed subspace of
WS-PT(Ey). Moreover,

RSP (A By) = ROP (A By) N WSPT(Ey).
Proof. By definition,
R*P (A By) = {Agn = n € WP (Egyy), Byn =0}
In view of the decomposition (4.7),

WP (Bpy) = R (Ar) @ )P (AL By) © 74 (AL

WP (B ) = ROFPMP (Ar_y) @ NP (AS_ B ) @ 5 (AL),
and the fact that A, Ax_; = 0, it follows that

R (A By) = {A A« € WHPTRPT(Ey), By Ay = 0}

= (A Ay o g e NP (AL B ), B A =0}
By the estimate (4.5), for every ¢ € ,/l/f+2mk’p(A*k_l, By _,) satisfying By Axyy = 0,
”W”S+2mk,p s “AZAklﬁ”s,p,
which by [Tay11a, p. 583], considering the map
AL Ay 2 NP (AL BL ) Nker By Ay — WSPT(Ey),

implies that #*-P (A} ; By) is a closed subspace of W*PT'(Ey).
For the second clause, we need to show that

yeNP(AT B BiAwy=0  and AL Aw € WOPT(By)
implies that
We NI (AL BY),

which follows from that same inequality. m}
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Proposition 4.13. For every s e Nyand 1 < p < oo,
RP (AL By) = NP (AL Biy)-
Proof. By Proposition 3.4, with (A, Ba) = (A;; By ), and since RO (A, By) is closed,
L’T(Bx) = R**(Ay; By) @ /2 (A,
whereas from the auxiliary decomposition,
L’T(Bx) = B2 (Ak-1) ® VP (A Bi_)) © Z* (AL).
Both decompositions are L>-orthogonal. We note that from Proposition 4.7 and (4.8),
NO2 (M) N WAL Byy) = N (Ax) NN (A, By ) = {0},
By the injectivity of the system (Ax ® A;_, ® Sk, B;_,), which implies that
NOA(A;_ | By_)) € ROH(AL By,

and together with Proposition 4.11, we obtain an equality. Intersecting both sides with W*PT'(Ey),
using the second clause of Proposition 4.11, we obtain

RHAG B = N (A3 B )
for every s € Ny. Since this holds every s € No,
R(ALBy) = Ni(Ap_3Bry)-
The general W*-P version follows from the fact that the projections onto the various subspaces all belong

to &Y. o

5. Bianchi complexes
5.1. The bundle of Bianchi covectors

Let (M, g) be a d-dimensional Riemannian manifold with smooth boundary. We denote by
A" = A T*M @ A"T*M

the vector bundle of (k, m)-covectors (i.e., k-covectors taking values in the bundle of m-covectors), and

by
A = DAL
k,m

the graded vector bundle of double-covectors. The bundle Ay is a graded algebra, endowed with a
graded wedge-product,

. Ak.m t,n k+C,m+n
NN XN oA, ,
and a graded involution,

T . Ak.m m,k
()7 A = AT,
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obtained by switching the form and vector parts. A (k, k)-covector i satisfying 7 = y is called
symmetric. The vector bundle Ay, is equipped with a graded Hodge-dual isomorphism,

*g Aﬁ/;m - A‘]f,l_k’m,

defined by its action on the form part. To every operation on the form part corresponds an operation on
the vector part, via involution; in this case,

V. Ak k.d-
xg Ny = AT
is defined by xy ¢ = (x4 )" . Additional graded bundle maps are the interior products

. A k.m k—1,m .V . A k.m k,m—1
zx.AM —>AM and zX.AM —>AM s

where X is a tangent vector, ix is defined as usual via its action on the form part, and i}?(// =(i Xc,l/T)T,
and the metric trace,

d
Ak k=1,m-1 I
trg : Ay — Ay defined by tre ¥ = E B Y,
i=1

where {Ei}f: | is an orthonormal basis.
The Bianchi sum ® : AIX/}m - Aﬁ;l’m_l is a smooth bundle map given by [Kul72, Gra70],

d
®= Z ﬂi A l.gi,
i=1
where {9 ?:1 is the basis of covectors dual to {Ei}id:l- For ¢ € Afv}m and n € Ayy, the Bianchi sum
satisfies the product rule
G An) =6y An+ (1) A G

The operator Gy : A% — AN1"*1 is the smooth bundle map Gy y = (Gy”)” . The operators & and
®y are mutually dual with respect to the fiber metric,

((5% n)g = (%D’ (ﬁv 77)g

The following algebraic commutation and anti-commutation relations are readily verifiable from the
definitions:

(6, Gy 1| = (k= m)1d

[6,gA] =0 [Gy,gA] =0
[®,trg] =0 [Gy,tr,] =0
{6,ix} =iy {6,ix}=0

{Gv,ix}=ix {Gy,ix} =0,

where [A, B] = AB—BA and {A, B} = AB+ BA. The tensorial operators ®, ®v, gA and tr, are related
via the Hodge duals %, and *;,/ [KL21]. The following orthogonal decompositions are established in
[Calol]:

Ay =ker® & Im Gy =ker®y & Im ®,
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with ker ® = {0} when ® is restricted to A];/;m for k < m and ker ®y = {0} when Gy is restricted to
Aﬁ/}m for k > m. That is, ® is injective and ®y is surjective on Aﬁ/}m for k < m and ®y is injective and
® is surjective on A];/}m for k > m.

Definition 5.1. We define the vector bundles of Bianchi (k, m)-covectors,

ghm _ A'X,}mﬂker(ﬁv k<m
M Af‘;”nker(ﬁ k>m,

along with the graded bundle of Bianchi coverctors,

d
gu = P oy

k,m=0

For k = m, the kernels of ® and ®y coincide and consist of symmetric double-covectors [Gra70,
Prop. 2.2]. In particular, G 11\/’11 coincides with the bundle of symmetric (1, 1)-covectors, and szv’lz is the
bundle of (2, 2)-covectors satisfying the algebraic Bianchi identities (also known as algebraic curvature
tensors).

We denote by Pg : Aﬁ/}m - Qll“,l’m the orthogonal projection of a double-covector on Qllf/l’m; it has an
explicit representation which will not be needed. Since Gy = (Gy’ )T, it follows that Pg commutes
with the involution (i.e., (Pgy)T = PgyT).

Leté € A}\;IO. The operators i .4 and ¢ — & Ay, which are dual with respect to the fiber metric (s )e>
can be restricted to Bianchi forms. Since the first commutes with ®y, and the second commutes with ,

ifﬁ . gil:/l,m N gk—l,m
EN: Gy — Gyt k= m.

The Bianchi symmetry is, however, not preserved for arbitrary k, m. We introduce the Bianchi wedge-
product and the corresponding Bianchi interior product:

Pg(EN) : Q;I’ — gk“ m and Pgigs : gM — gk Lm

For values of k, m for which a projection is needed, we obtain the following explicit formulas:

Proposition 5.2. Let y € gl’;’". Then,

Pg(ENY) =EnYy — ——=B(&v AY) k<m

(M)

Pgigsh =igsh — @Vzéga,l/ k> m,

( m)

where a(k,m) =k —m+ 1.

Proof. We prove the second statement, as the first follows then from duality. Let y € Q;I’m fork > m
(i.e., ¥ € ker ®). Consider the right-hand side. We start by verifying that it is in ker ®; that is, it is a
Bianchi form,

Oigsy — (k. ! )(5vl§ulﬂ =Oi gy - k. ! )(®v(5+a(k m)Id)lEW
=i g4y —lfw
=iz Oy
=0,
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where in the first equality, we used the commutation relation of ® and ®v, in the passage to the second
line, we used the fact that ® commutes with i‘;ﬁ, and in the passage to the third line, we used the

commutation relation between ® and i 4. Since Im Gy is orthogonal to ker ®, the application of Pg on
right-hand side equals Pgi .4y, which completes the proof. O

5.2. First-order differential operators

We denote by Q’;/}m = F(Aﬁ,}m) the space of (k, m)-forms, endowed with the inner-product

W) = /M (6. 7)g dVol,. 5.1)

All the bundle maps defined on Aﬁ,}m extend into tensorial operations on Qlfv}m. We denote by %1"‘/["" =
F(gll\c,l’m) the space of Bianchi (k, m)-forms, and by

o - Dy
k,m
the graded space of Bianchi forms.
We denote by
d¥ Q" - Q™ and  dy QN - Q!

the exterior covariant derivative (defined in the same way as for any bundle-valued form) and its vectorial
counterpart, dy, ¢ = (d ¢ ). We denote by

V. ok+l,m k,m vV . k,m+l k,m
0" QT > Q) and oy 1 QT = Q)
the respective formal L?-adjoint of d" and dy,, where 63,4 = (6 yT)T.
These first-order operators satisfy the following commutation and anti-commutation relations with
the tensorial operators:

{d",gn} =0 {dy,gA} =0 {6¥.gny=—dy,  {6y.gA} =—d"
(d¥,trg} = =6y {dy.trgy=-6"  {6%,trg} =0 (6y,trg} =0
{d¥,6}=0 {dy,®} =d¥ 67,6} =6y, (67,6} =0
{dy,By} =0 {d",6y}=dy {6y, Gy} =67 {(6Y,6y} =0
[d¥,%xY]=0 [dy,*g] = 0.

The operators d" and ¢V can be restricted to Bianchi forms. Due to the commutation relations
{6,dV} =0and {6Gy,5"} =0,

v. k,m k+1,m
d* :6,;" — 6, fork >m

v. k,m k-1,m
0" 16" = Gy, for k < m.

The Bianchi symmetry is, however, not preserved by dV and 6" for every (k,m)-form. This can be
rectified by projecting their image onto the Bianchi bundle.
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Definition 5.3. The Bianchi derivative, d° : %”Ilf/l’m — ‘gﬁl’m,the Bianchi coderivative, §9 : %”}]f;l’m —

“61];1”", and their vectorial counterparts, d\g, : ‘gllf/l’m — %llf,l’m“ and 6‘9/ : %Ilf/l’mﬂ — %Ilf/l’m are given by
dglp = ’Pgde and 6gw = Pg(?vlﬁ, (5.2)
along with d‘g,d/ = (d%")T and 63y = (699 T)T.

The Bianchi derivative d9 and the Bianchi coderivative 69 (and likewise d‘g, and 6‘g,) are mutually

adjoint with respect to the L?-inner-product (5.1).
The following is proved in a similar way as Proposition 5.2:

Proposition 5.4. Fory € €™,

1

Gy — gV _ \4

A7y =d"y o ’k)(ﬁdva,// k<m
1

G, _ sV, v

Y =06"y (k. )(ﬁvévlﬁ k > m.

The fact that 4V d" is a tensorial operator yields the following:

Proposition 5.5. The maps d9d9 : €y — Grr>" and §969 : Grr>"™ — €N;" are tensorial for
every k,m, except when k =m — 1.

Proof. When restricted to %}f/’ for k > m, d9d9 = dVd", and hence is tensorial. When restricted to

%]’;l’m fork <m—1,d9dY is dual to 6V§", and since the latter is tensorial, so is the former. ]

Letj : 9M — M denote as before the inclusion map of the boundary. We introduce mixed projections
of tangential and normal boundary components,

Pt Q)" — Qb P' Q" — QT
tn . ~k,m k,m—1 nn . ok.m k—1,m—1
R O P Qb — Qb

The first superscript in tt, tn, nt, nn refers to the projection of the form part, whereas the second
superscript refers to the projection of the vector part. Specifically,

Ply =,  PY=jigy  PM=jtihy and Py =% ia 0,
where 0, is the unit vector field normal to the level-sets of the distance from the boundary, which is

defined in a collar neighborhood of dM, and ;* pulls back to the boundary both the form and vector
parts. For ¢ € Ql&m andn € Qﬁ;l’m,

(d¥y.n) = (.67 m) + (B @ Py, (" @ P")p). (5.3)
The definition of the Bianchi sum implies that the pullback ;* commutes with both ® and ®y . Fur-

thermore, ip, anti-commutes with ®y, and ig anti-commutes with ®. A direct calculation gives the
following commutation and anti-commutation relations,

[P, ] =0 {(P'" G} =0 (P, G} = P [P™ ®] =0
[PY6y]=0 {P"Gy}=P" {(P".Gy}=0 [P, Gy]=0.
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As a result,
pit . gkm _, gk.m for every k, m
"M oM y ks

p™ . %}“/I’m - %g;/}’m_l for every k, m
tn . ok,m k,m—1

P g, _’%ﬂaM fork > m
nt . ok,m k—1,m

PY 8, —><€BM for k < m.

For k < m, Pt" : %jlf,l’m - Qg}"/’;_] does not yield a Bianchi form since iy does not commute with Gy .
T

The same is true for P : ‘gllf/l’m — ng;}m when k£ > m. In the same spirit as in formula (5.2) for the
Bianchi derivatives, we define the following:

Definition 5.6. The Bianchi boundary operators
tt . ok,m k,m nmn . gok,m k-1,m-1
Pg 1€y — €y PG €y — €,y
tn . k,m k,m—1 nt . ok,m k-1,m
PG €y — Gy PG 1€y — Couy
are given by
tt _ ptt mt _ nt tn _ tn nn _ pnn
Pg =P Pg = PgP Pg =PgP and Pg" =P"",
where Pg : AS’A’/’; — A];’A'/'; denotes here the projection on Bianchi boundary forms.

Similarly to Proposition 5.4, we have the following:

Proposition 5.7. For y € %1’\‘4’”’,

1
Ptn - Pt]‘l _ P]‘lt
Sy v D k)(f) v k <m
mt, _ pnt, _ tn
Piy = P"y a(k’m)(ﬁvp v k > m.

Proposition 5.8. For alln € WPy and o € W-9Gy (the precise class determined by the context),
withl/p+1/q =1,

(d9n.0) = (n.690) + (Bgn. Bgo), (5.4)
where
Bg=PioPy  and By =Py ePy.
Moreover, d9 and 69 are both adapted differential operators.

Proof. Equation (5.4) is an immediate consequence of (5.3), along with the properties of Pg. Finally,
Bg and Bj; are both systems of trace operators associated with order 1; both are surjective, as direct
sums of compositions of surjective operators. O

5.3. Second-order differential operators

In [KL21], we introduced the covariant curl-curl operator, H : Qﬁ/;m — Qﬁ;l’mﬂ, and its L2-dual,
H* - Ql;;l,m+l - QI;/,[m’

H=1(d"dy +dyd") and H* = 1(6V6y +6y,6").
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These second-order operators satisfy integration by part formulas involving both tensorial and first-order
boundary operators. We also defined the first-order boundary operators,

T Qﬁ,}m — le\? and T QIX/}”‘ — Qg;‘/[]’m’l,
given by
Ty = §(BaTy - d Py ) + § (B aYy - aY Py
Ty = =3 (67w + 5Py ) - L (P™6Tu + 67 Py,
such that
(Hy,m) = (Y, H'n) + (Buy, Bym),
where

By : Q];,;m — (Qg;&")z and By, : Q’;/’Im — (Qg;/ll’m_l)z
are given by
By =P e (-3) and B, =3 @ P™.

The operators H and H* both commute with the Bianchi sums ®y, ® [KL21, Prop. 3.10], which
implies that for every k, m,

. k,m k+1,m+1 %, k+1,m+1 k,m
H:€," — €, and H*: €, -6, -
A similar calculation shows that the boundary operators also preserve the Bianchi structure:
. ook, k,my2 . ok, k=1,m=152
Bu :Gy" — (€5,) and By Gy — (65, )"

The fact that By and B, are normal systems of trace operators associated with order 2 is implied by
the calculation in the proof of [KL.21, Lemma. 5.1]. Thus,

Proposition 5.9. The operators H and H* are second-order adapted differential operators with respect
to the boundary operators By and By, which are systems of trace operators associated with order 2.

5.4. Bianchi complexes

Let 1 < m < d, and consider the following diagram, which we break into two lines:

0 o
/—\ 0,m T 1,m
0 G ¥
\/ S S
0 59
Bg Bg
B
0,m 0,m—1 1,m 1,m-1
Com © Com Com © Can
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H a9 d9 0
s P L
M M M
S ™ Mm../ \\ g R_/
69 0
By Bg Bg Bg
By Bg g

m,my2 m+1,m+1 m+l,m d,m+1 d,m
(Com') Com O Cyy Conr ©Com
Theorem 5.10. This sequence forms an elliptic pre-complex; we call the induced complex a Bianchi
complex.

Theorem 5.10 is proved in the next section. In the remaining part of this section, we examine its
implications.
Theorem 3.6 yields the existence of a unique chain of operators

dg:%llf/[’mﬁ%]’f;l’m k=0,....m—-1

H: 6" - (gnr;+1,m+1

dv gy - gl k=m+1,...,d-1,

satisfying

€y k<m :  d949=0  and d=d° on (89 BY)
G : HdY =0 and H=H on (69, Bg)
%;Tl’m“ : d°H=0 and d9=d% on.(H",B})
%llf,,’m“, k>m d°d% =0 and d°=d% on /V((Sg,B’é),

where 69 = (d9)*.
The Bianchi complex induces the following (smooth versions of) Hodge-like decompositions:

N (d9)
@k = #(d9) @ ker(d9 ® 69 @ BY) ® #(69; By k<m
N(89,BY)
A (H)

€y =A%) @ ker(69 o Ho By) © R(H': By)

g *
(89 ,BY)

N(d9)

%An'lwl,mﬂ = %(H) ® ker(H* @ d% e BL) @ %((Sg; B*g)

N (H*,B%,)
N (d9)
&) = 2(d9) @ ker(d? ® 69 @ BY) ® R(89; BY,) k> m.
N (89,BY)
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where the middle term of every direct sum is finite-dimensional and consists of smooth sections, even
in Sobolev regularity. Implications of some of these decompositions are detailed in the introduction.

Finally, we note that the theory holds verbatim if H is altered by any tensorial operator preserving
the Bianchi symmetry. This is important since if we replace H by H + D, then by the uniqueness of the
correction, H = H + D in constant sectional curvature.

5.5. Proof of Theorem 5.10

To prove Theorem 5.10, we need to prove the following two propositions:
Proposition 5.11.

(a) Fork <m—2,d%d9 : %1’;1"" - %]’f;z’m is of order 0.

(b) Hd9 : ‘Zg]\"f,_l’m — %A"f[“’m“ is of order 1.

(c) d9H : &y™ — %Anfz’m” is of order 1.

() Fork >m+1,d9d9 : €™ — @™ s of order 0.

Proof. Ttems (a) and (d) were proved in Proposition 5.5. For Item (b), take for example, for ¢ € %A”,;_l’m,
Ha% = L(d"dy + dXdV)(dV - %(ﬁd&)w
= Ldvay +dydv)d"y - 16(dVay, +dy,dV)dyy,

where in the passage to the second line we used the commutation of & with H. Since dVd" and d‘V, d‘V,

are tensorial, and so is the commutator of 4V and d‘V,, it follows that Hd¥ is a first-order operator. Item
(c) follows similarly. O

Proposition 5.12.

(@ (89 ®dY, Bg) with domain ‘g};”m, k < m, is OD elliptic.

() (69 ® H, B) with domain € ;™ is OD elliptic.

(c) (H* & dY, B};) with domain %A’Tl’m“ is OD elliptic.

(d) (69 @ d9, Bg) with domain %1'\(/[’”', k > m, is OD elliptic.

Proof. Noting the following Hodge-dualities (up to multiplicative constants),
g ky (H' @ d9, Byy) %q %y = (H® 59, By)
*o x4 (69 @ d9, BY) %g *y = (d9 ® 69, Bg),

we may equivalently prove that

(@ (89 ®dY, B) and (69 ® d9, Bg) with domain %]I;I’m, k < m, are OD elliptic.
(b) (69 ® H, BY) and (69 @ H, B) with domain &}, are OD elliptic.

Statement (a) is proved in Proposition 5.13 below. As for Statement (b), we note that 69 = 6V and
B =P"o Pt when restricted to @), and that €}, is a subspace of the symmetric (1, m)-forms;
hence, (b) can be replaced by showing that

(6¥ @ H,P" @ P") and (6" @ H, By) restricted to symmetric QY;" forms are OD elliptic.

This is proved in Proposition 5.14. O

Proposition 5.13. The systems
(69 ® dY, BY,) and (69 ® d¥, Bg)
restricted to ‘61]“/[”", k < m, are OD elliptic.
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Proof. Since all the operators, including the boundary operators are differential operators, we need
to verify that the criteria in Theorem 2.12 are satisfied: we need to show that for every x € M and
& eTM\ {0},

k, k-1, k+1,
059 (X,6) @0 (x,6) 1 Gy = Gy @Gy
is injective, and so are the maps

E;’g, = opw (x,&" +10,dr) @ Tpt (x,&" +104dr)|s=0

Ei,g/ = O (x, & +105dr) ® Tty (x, & +105dr)|s=0

for x € OM and ¢’ € T{0M \ {0}, when restricted to the space M; & of decaying solutions to the
ordinary differential system '

(056 (x, & +105dr) ® o g6 (xE,+105dr))y(s) = 0. (5.5)

Let x € M and let £ € T: M; we denote &y = &7 = Gy £; without loss of generality, we may assume
that |£]g = 1. For ¢ € Qﬁ,}mlx, k < m,

1
—10gs (X, )y =& N Y — a(m k)(ﬁ(fv AY)
1059 (.X, f)W = l{—‘ﬁw
Suppose that (o 56 (x, &) ® 040 (x,&))Y = 0. Then
1
i f/\lﬁ—m@(fv AY)|=0.

Using the fact that o750 (x, E)¢ = 0, i g4 (EA) +E AP ¢+ = Id and the anti-commutation relation between
iz and ®, we obtain

1y _
W+ml§u(fv AY) =0.

Taking an inner-product with ¢,

s + év AYlz =0,

1
a(m, k)
which implies that = 0 (i.e., 055 (x, &) ® 049 (x, &) is injective).

We proceed to establish the injectivity of the boundary symbols. Let x € M and & € T;0M. The
ordinary differential equation (5.5) takes the form of a system,

1 . 1 .
ENV - oD k)(ﬁ(gv AY) +1 drmp—m(ﬁ(drv Ag)|=0 (5.6)

ifﬁl/l + ll'grlﬁ =0. (5.7)
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To solve it, we decompose ¢ orthogonally (as an element in A];/;m lx)

Y= (oo +& A1 +dr Ao +E A dr Aos)
+&v A (Wo+EAY +dr AN+ E A dr AY3)
+dr” A (Yoo +E Aoy +dr Ao + € Adr Ays)
+&y AdrT A (Yao+ € As1 +dr Ay + € Adr Ayaz),

where
l'é;ﬂlﬂijZO i‘g/ﬁwif:() ia}_lﬂ,‘jZO and l'grlﬂiJ'ZO

for every i, j =0, 1, 2, 3. Substituting into (5.6) and (5.7), equating like terms, we obtain the following

equations:
Yoo =0 (5.8)
Yor + 12 =0 Y10 + 5o (—OWor +¢10) = 0 (5.9)
Yoo — o1 =0 Y20 + gz (—Odor +410) =0
Y1+ =0 Y2 = + o W12 = ¥21) =0 (5.10)
Y1+ =0 Yo — o1 + G W2 = ¥21) =0
var+ i =0 (5.11)
Y3 — w31 =0
and
W30 + wimen (O¥21 +¥30) — s ®dn =0, (5.12)
and
Yiz =0 fori=0,1,2,3.

The initial conditions can be orthogonally decomposed similarly (noting that terms including dr and
drT are annihilated by the pullback to boundary).
Lety € MY Pz The condition that E)l( oV = 0 results in

Y02(00=0  ¢12(0) =0 y¥22(0)=0 and ¥3(0) =0.

Substituting ¢, (0) = 0 into (5.9), along with the condition the solution is decaying at infinity, yields
Yoi(s) =0 Yoa(s) =0 yio(s) =0 and ¥20(s) = 0.

Substituting ¢, (0) = 0 and ¢, (0) = 0 into (5.10) yields
Yuls) =0 Yia(s) =0 yY2(s) =0 and Y2(s) =0.

Substituting 3, (0) = 0 into (5.11) yields

Y31(s) =0 and U (s) =0.
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Finally, (5.12) yields that
¥30(s) =0,

_ . .. P =1 .
and thus, ¥ (s) = 0, proving the injectivity of Ere when restricted to M; Pz
The condition that E)ZC oV = 0 results in

Yor(0)=0  ¢1(0)=0  21(0) + g W21(0) =¥12(0)) =0 and  ¢31(0) =0.

Substituting ¥¢; (0) = 0 into (5.9) yields

Yor(s) =0 Yoa(s) =0 Yo(s) =0 and Yao(s) = 0.
Substituting /11 (0) = 0 and ¥ (0) + m(m] (0) — ¥12(0)) = 0 into (5.10) yields

Yuls) =0 Y(s)=0  ¢Ya(s)=0 and Yn(s) =0.
Substituting 31 (0) = 0 into (5.11) yields

Y31(s) =0 and Ya(s) =0.
Finally, (5.12) yields that
Y30(s) =0,
and thus, ¥ (s) = 0, proving the injectivity of Ei & when restricted to M; & m
Proposition 5.14. The systems
(6¥ & H,P"™ @ P™) and (Vo H,P' 0 T)

restricted to the symmetric elements of Q’A’f[’m are OD elliptic.

Proof. Since all the operators, including the boundary operators, are differential operators, we need
to verify that the criteria in Theorem 2.12 are satisfied: we need to show that for every x € M and
§eT;M\ {0},

T (6. E) @ oy (1.6 1 Gy = Gy e Gt
is injective, and so are the maps

Ei"f, = opm (X, & +105dr) ® opnt (x, & +105dr)|s=0

Eif = optt (x, & +105dr) & oz (x, & +105dr)|s=0

for x € M and ¢" € T;0OM \ {0}, when restricted to the space M? & of decaying solutions to the
ordinary differential system

(osv(x, & +105dr) ® o (x, & +105dr))y(s) = 0. (5.13)

Letx € M and ¢ € T;M \ {0}; once again, we assume without loss of generality that |£ |§ = 1. The
symbols of H and 6V are

Osv (X, W =iz and OH (X EW =& NGy A
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Suppose that y € Gy;™|, is symmetric and satisfies

(osv(x,€) ® o (x, )¢ = 0.

Then,
Ipig(EAEv AY) =y =0,

proving the injectivity of o sv (x, &) @ oy (x, £) when restricted to symmetric (m, m)-covectors.
We proceed with the boundary symbols. Let x € M and ¢’ € T;0M \ {0}. The ordinary differential
system (5.13) takes the explicit form

ENEY AU +udr Néy NG +1ENdrT ANy —dr AdrT Agi=0

. L (5.14)
gay +1i,¢ = 0.

As in the proof of Proposition 5.13, we decompose ¢ orthogonally. Substituting into (5.13) and equaling
like terms, we obtain

Yoo =0, (5.15)
Yoz — o1 =0 (5.16)
Wo1 + o2 =0
and
Y+ =0
Y2+ =0 (5.17)
Yoo — 2012 — 11 =0
and

Yiz=0 and Y3 =0 fori =0,1,2,3.
Lety € MY ., satisfy E;yf,gb = 0. This results in
Y2(0)=0  ¢12(0)=0 and ¥22(0) = 0.
Substituting ¥, (0) = 0 into (5.16) yields
Yor(s) =0 and Woa(s) = 0.
Substituting ¢, (0) = 0 and ¢, (0) = 0 into (5.17) yields
U11(s) =0 yY2(s) =0 and Un(s) =0.

This proves the injectivity of E}C e = 0 when restricted to M &
Lety € M;’ & satisfy Ei oY= 0. The condition Pty (0) = 0 yields

Y01(0) =0 and ¥11(0) = 0.

Substituting the first into (5.16) yields

Yoi(s) =0 and Yoz (s) =0.
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We then note that
—103 (%, & +105dr) =0 = 1P (0) — & APy (0) — &y AP (0) =0,
yielding the additional initial condition
w11(0) = 2¢12(0) =0,
which substituted together with ¢/ (0) = 0 into (5.17) yields
Yu(s)=0  Y(s)=0 and Y22(s) = 0.

This proves the injectivity of Ei eV = 0 when restricted to M;’ Pz O
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