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ABSTRACT. T he use of well know n simple period ic solutions of th e two-d imensiona l biharmoni c stress 
eq ua tion for stud ying the flow over undulat ions o f a n ice mass of sma ll surface slope is exami ned . The model 
considered is one in which most of the shear (defo rma tion or sliding ) takes p lace near the base a nd the upper 
pa rt moves la rgely as a block, with longitudina l stra in-rates varying linea rl y with the long itud ina l stress 
dev ia tions. Fo r bedrock perturba tions of a given waveleng th the stead y-s tate surface shape consists of similar 
waves but out of phase by ~ 7T, such that the steepest slope occurs over the highes t bedrock; and the ampli tude 
is reduced by a " d amping facto r", depending on the speed , viscos ity, ice thi ckness and wavelength . 

Mi nimum da mping occurs for Am ;:::: 3 .3 times the ice thickness, while waves much longer o r m uch sho rter 
tha n this a re a lmos t com ple tely da m ped out. The energy dissipa tion and the resistance to the ice fl ow is a lso 
a max imum fo r a n undula tion sca le of severa l ti mes the ice thi ckness, whereas the effects of sma ll basa l 
irregula rities d ie ou t exponen ti a ll y with d istance in to the ice, a nd onl y have an effect in so fa r as the a,·eragc 
basa l stress is rela ted to the ave rage surface slope. As a resul t of this a revision of p resen t g lacie r slid ing 
theo ri es becomes possible. 

V a rious predic tions of the theory have been confi rmed from spec tral a na lysis of sUlface and bed roc k 
profi les of ice caps. 

R ESUME. The French resume will be lou n:! on p. 48 . 

ZUSAM MEN FASSUNG . Eisbeweglll'g uber Unebenheiteu (Ill' Ull tergrlll,d. Di e An wendba rkeit beka nntCl" periotli­
sche r Losungen der zweidimensionalen b iha rmonischen Spa nnungsg leichu ng a uf das Stud ium d er Bewegung 
einer E ismasse mi t geri nger O berflachenneigung ll be r U ncbenheiten wird unlersuch t. 1n dem bct rach teten 
:'.10d ell find et de r G ross teil der Scherung (Verformung oder G leiten) in de r Nahc der G rund fl ache stall, 
wahrend der o bere Teil sich weitgehend a ls Block bewegt. D ie Defo rmationsgeschwind igkeit in Langsrich­
lung a ndert sich linea r mi t d en Abweichungen der Uingsspa nnung. Bei U nebenheilen im U n terg rund mil 
beka nn ter W ellenla nge zeigen sich a uf der sta tiona ren Oberflache a hnliche Wellen, jedoch mit einer Phasen­
,·erschiebung von ~7T, so d ass die g ross ten Neigu ngen liber d en hochs ten Stellen d es Un tergru ndes a uftreten. 
Die Amplitude wird durch einen " Da m pfungsfaktor" verringer t, der von der Geschwind igkeit, der Visko­
sita t, der E isdicke und der Vh llenla nge a bha ng t. 

Die geringste Da mpfung tritt flir Am = 3.3 ma l der Eisdicke ein , wahrend v\'ell en mi t sehr vid g rosseren 
oder schr viel kl eineren La ngen fas t ganz verschwinden . Der E nergieverlusl und d er vVidersta nd gegen die 
E isbewegung isl ebenfa lls bei einer Wel leng rosse von mehrfacher E isdicke max ima l, wa hrend d ie Wirkung 
kleiner U nregelmassigkeite n am Unte rg rund cxponent iell zum Abstand im E is ausla ufl und nur insoweil von 
Bedeulung ist, a ls die mi ttlc re Spannung a m Unterg rund von der mi ttleren O berAachenneigung a bhangl. 
.-\I s Folge hiera us schein t cin e O berprlifung gegcnwarliger TheOl·ien des G lelscherglcilens moglich . 

Verschiedene Voraussagen d er Theori e wurclen durch Gesch windigkeilsa na lysen von O berfl achen- unci 
Unterg rund profil en in Eisschilden bestiit igt. 

1. I NTRO D UCT ION 

1 . 1 . Background and previous work 
U ndula tions on the surface of ice caps with a predomina nt wave length of the order of 

,evera l times the ice thickness, have been described by many a uthors including BOUl·goin 
( 1956), Swithinbank (1959), R obin (1958, (967 ), M a lzer ( 1964), R obinson ( 1966), I3udd 
( 1966), Clough a nd others (1968), Beitzel (unpublished ) . Severa l au thors have considered the 
inAuence of the bedrock shape on the surface profil e (e.g. Bourgoin , 1956; :\ye, 1959[b]; 
Llibou try, 1964- 65, p . 635) . Al though cer tain qua litative features have been expla ined , M ock 
(1968) indicated that the simple rela tion between surface-slope variation a nd perturba tion 
size was inadequa te in explaining a measured profil e. Robin ( 196 7) made a llowa nce fo r the 
effect of longitudina l stresses and stra in-ra tes and showed that stead y-sta te AolI' over bedrock 
\·ari a tions resulted in surface slopes compara ble with the measured slopes. The inclusion 

f the longitudina l stress changes in the ana lysis indica ted that certain features of the bed 
profil e were transmi tted to the surface profil e. Ho wever, in order to expl ain the existence of a 
predomina n t wavelength in the surface undul a ti ons it is necessary lO incl ude a fu rther term 
from the equa ti ons of mo ti on . 
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In an eadicr work the author (Budd, (969) considered ice flow over undulations using th e 
integral of the eq uations of motion for the mean longitudinal stress-deviator grad ient of a 
column , viz . 

ea~ ff 3
2 

"T xz ax- = tpg (rx - j ) - ~ dz dz ( I.I ) 

where x is the longi tudinal co-ordinate, rx is the surface slope, j = "Tb l pg is the basal fri ction 
where "Tb is the base stress, p the ice density and g the gravitational acceleration, a; is the 
m ean longitudina l stress deviator and "T xz is the sheal' stress at point (x , z) . 

With an additional assumption, based on m easurements made at Wilkes, cr. Budd ( 1968) 
a nd McLaren (1968) , that the longitudinal strain-rate gradient is proportional to the surface 
slope deviations, Equation (1. 1) was combined with the steady-state continuity equation to 
obtain the form of the ice surface slope, 

rx = ci + rx , cos WX + rx2 sin wX 
for steady-state fl ow over bedrock undulations of slope, 

(3 = (3, cos WX 
where A = wl '21T is the wavelength of the undulations. 

The resul ts of that analysis, viz. 
(3 , >/;(3, 

rx , = -- and rx, = --
1 + .p' - 1 + >/;' 

where .1 1 + pgZ2 ( 41T2 Z2) 
y} = '2BV ~ 

= pg,(2 (_I + W,() 
'2BV wZ 3 

( 1·5 ) 

( 1.6) 

where Z is the ice thickness, V is the average horizontal velocity and B is the ice flow-law 
parameter indicate that since if} is large, the surface slope is out of phase with the bedrock by 
approximately t 1T, such that the maximum surface slope occurs over the maximum b edrock 
elevation. This qualitative resu lt has been demonstrated for waves with wavelength about 
30 km by Bourgoin (1956) and was also inferred by Nye ( I959[a] ) from the simple velocity 
basal stress relationship . 

Equations (1.4) and ( 1.5 ) a lso indicate that the damping fac tor >/; ~ rx2 /f3 , increases with 
the square of the ice thickness and is inverse ly proportional to the velocity and the viscosity flow 
parametel' B . Furthermore the damping factor has a frequency dependence with a minimum 
for AI,( = '21T I V3 ~ 3.6, i .e. for wavelengths between 3 and 4 times the ice thickness. 

This result implies that both the very long and very short waves are predominantly 
damped out so that given for example a uniform distribution of bedrock elevations one may 
expect the surface undulations to have a predominant wavelength about ,\ = 3.6,(. 

Equations ( [ .4) and (1.5 ) are useful for determining how the flow parameter varies over 
a n ice mass from measurements of the surface and bedrock profil es together with the velocity V. 

Some of the predictions of this earli er theory have a lready been confirmed from the analysis 
of surface and bedrock profiles by Beitzel (unpublished ), D. Carter* and W. F . Budd and D. 
Carter· t 

The major difficulty in this construction was that a somewhat arbitrary assumption had 
to be made on how the term eZ "T xz/ ex2 of Equation ( 1. [ ) varies with depth. This term, which 
was neglected by Robin ( [ 967), is responsible for the short waves being damped out. The 
following analysis is much more general and attacks the problem by means of stress fun cti ons 
using an approach similar to that of Yosida ( 1964) . 

• Wilkes ice cap project 1967, investiga tions by radar sounding. [To be published as an A.VARE Scielltific 
Report.] 

t Ana lysis of the rel a tion between the surface a nd bed-rock of ice caps . [In prepara tion . J 
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[ .2. n :e model to be treated 
Yosida ( [ 964) considered Newtonian viscous now with no slip of a m edium of uniform 

thickness down a uniform slope with sma ll ha rmonic undula tions superimposed on it . H e 
obta ined a genel-al solution by superimposing the simple solution of uniform fl ow without the 
undula tions upon ha rmonic solutions of the biha l-monic stress eq uation . 

T he model to be trea ted here is somewha t more genera l than that considered by Yosida. 
T he aim is to a llow extension to non-Newtonian flow but because the fl ow pa rame ters in 
general depend on the tempera ture a nd stress distribu tions throughout the ice mass the 
discussion here is restri cted to a simplified mod el. I t can readil y be extended to a more 
genera l model when the tempera ture, stress, or fl ow-parameter distribution throughout the 
ice mass is known . 

Analysis of the Wilkes ice cap da ta (Budd , [968; M cLaren, [968) indicates that for small 
longi tudinal stress deviations the longitudina l stra in-rates vari ed a lmost p roportionall y. T hi s 
suggests that for these low stresses the effective fl ow law is no t fa r fro m li near . On the other 
hand m ost of the vertical shear occurs in the basal layers such that variat ion in veloc ity is of 
a high power of stress. 

H ence we consider the model of a uniform mass of ice sliding down a slope, ra ther than 
using the no-slip condition , with a power-law distribution of the horizonta l velocity in the 
ver tical a nd a constant viscosity reaction of longitudina l stra in -ra te to small p erturbations 
in longitudina l stresses caused by undulations of the bed . An extension of the ana lysis a llo\l"s 
the " viscosity" to be prescribed as a fun ction of depth (or stress a nd tempera ture) . This model 
represents a closer approximation to the case of typi cal ice masses moving down a slope with 
mos t of the shear ta king place in the lower layers, and it is no t of gr'ea t consequence whether' 
the motion consists of direc t sliding between a sharp ice- rock interface or a combina tion of 
sliding a nd high shear in various transition zones of mora ine a nd ice mi xture near the base. 

The resistance to the ice motion may be considered as made up of two pa rts. F irst there 
is the uniform basal stress a nd hori zonta l shear for fl ow down a fl at plane. T his basal stress is 
equivalent to a fri cti on coefficien t j, (1 = Tb/ pgZ ) which from the in tegration of Eq uation 
( [ . [ ) a long the ice mass can be seen to be a pproximately equa l to the average surface slope. 
Secondl y due to the irregula riti es in the bed additional stresses and strain- rates ( Gij and Eij ) 

a re se t up in the ice. 
The energy dissipation JJ GijEij d z dx over a ll such ir regula riti es throughou t the ice 

mass, corresponds to a net reduction in the rate of work done by gravity in moving the ice 
down the slope. 

The a im here is to ca lcul a te the effect of such irregula rities. Although a genera l solution 
of this problem for a non-Newtonia n mediu m a nalogous to tha t of Yosida fm a viscous 
medium is complex it will be shown in this pa per that, for the model desc ri bed a bove, elemen ­
ta ry solu tions of the biha rmoni c eq uation for the stress fun ction exist which sa tisfy the steady­
sta te continuity equation and the bounda ry stress a nd velocity conditions to a close a pproxi­
ma tion for an ice mass of sma ll surface slope. 

2. EQUAT[ONS OF MO T ION, T H E STR ESS F r-;CTION AND THE B[H A R MON [C EQUAT ION 

T he use of the stress fun ction </> and the biha rmonic equation y 4</> = 0 in two dimensions 
has been we ll es ta blished for obtaining solutions for plane stra in in elastic media (cr. 
T imosh enko, 1934; Sokolnikoff a nd Specht , [956) . Corresp onding res ults apply for so lutions 
of stresses a nd velociti es in Newtonian viscous media using stream fun ctions (cr. Lam b, 1932; 
J aeger , [962). T he a pplica tion of some of these resul ts to ice fl ow have been discussed by 
Shu mski y (1967) . 

Although sorr.e of this standa rd work is I-epea ted , the eq ua tions a re deri ved here in order 
10 indicate wh ich of the basic I-esults a pply to non-linear fl ow and at wha t slage it is necessal-y 
10 invoke the condition of constant viscosity . 
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2 . r. Steady f low down a uniform slope 

z 

z 

Fig. I . Unifortll flow down a collstant slope u. 

C:onsidel- a two-dimensional sec tion of an ice mass of uniform density p and unifonll 
thi ckness ..( on a n inclined plane of slope et. T he velocity solution for this simple model " 'as 
given by Nye ([952 ). Nevertheless a derivation is given here to emphasize the conditions 
upon w hich the velocity and stress solutions depend. Take the x-axis down the slope and .: 
perpendicular upwards. Denote the stress components with respect to these axes by Uij or 
(o x, T X Z, a z) . 

The equations of motion for slow steady flow (inertial com ponents neglected) may be 
writt en . 

OUx ihxz . 
-,,- + - -:>- + pg Sll1 et = 0 , 
ox uZ 

OUz OTxz 
--+ --- pgcos et = o. 

GZ 2x 

Le t ll, V be the velocity com ponents in the x and Z direc ti ons at the point (x, z). Th e 
components of strain-rate (Eij ) are then given by, 

211 
Ex = -::;-, 

UX 

[ ( Cll cv) 
Yx z = ; OZ -+ ex . 

For this simple model the compatability conditions are not required. Fo llowing Yosida 
we consider solu tions of the equations of motion first fOl- zero longitudina l variation and then 
for ha rmonic perturbations from thi s state. 

T he complete solution is then obtained from the principle of superposi tion. 
It is necessary to point out here that whereas the principle of superposition applies for 

linear deformation the generali zation to non-linear fl ow presents further difficulties. However. 
here " 'e consider only perturbations of stresses and regard the combined ve locity distribution 
as calculated from a flow parameter which is a fun ction of the combined stresses. 

F I · d' I .. oux OTXZ dE ' ( ) d ( ) . or zero ongltu ll1 a vana tl on ~ = ~ = 0 an quatlOns 2. r a n 2.2 ll1tegrate 

to 
O x = a~ = - pg cos a(Z - z ), T~ Z = pg sin et (Z - z ) 

where the boundary conditions a t the surface have been taken as norma l and shear surface 
st resses are zero, 

(the atmospheric pressure is for the moment neglected ) . ''''e no te here that the stress solution is independent of the flo w law and the velocity 
so luti on, depending on ly on the eq uations of mo tion, the uniformity in the x-direc tion and 
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the boundary stresses. Now, if a flow law is given , the velocity pl"Ofile may be determined, 
thus if 

where aiJ is the stress d eviator, 

. atj 
E·ij = ­

TJ 

a~ = t(a x - az), a~ = t (a z- a x), 

and '7 is a func ti on of the octahedral shear stress 

T o = HaiwiJr /' 
and the temperature of the ice. 

, 
T xZ = T .rz 

For the pal"ti cular case of a power law for flow we may write for Equation (2.6) 

. ,n- I
, 

Ei j = Bn a ij 

where B is dependent on temperature, but constant with stress. 

(2.6) 

(2.8) 

(2·9) 

Using this in the third of the stress solutions (2.4) together with Equation (2.3) gives, 

du 
d, = 2 (pg sin IX' / B)n (2.10) 

where ,= (,('- z). 
This eq uation integrates to, 

2 (pg sin IX) 11 u, = llb + -- --- (,('1<+ , _ ,,,+,) 
n+ l B 

where Ill) is an unspecified velocity of sliding at the base, z = o. 

2.2 . Harmonic perturbations from uniform flow 
~ext we consider perturbations from the uniform solution. Consider the equations of 

motion for zero ex ternal forces, 
2a x iJT xz - + -- = 0 ox oz ' 
oaz OTxz - + - - 0 oz ox - . 

The complete solution to the problem of flow over undulations can be obtained by super­
imposing solutions of these on the solutions (2-4) such that all the boundary conditions at"e 
sa ti sfied. 

To obtain solutions of Equations (2.12 ) and (2.13) we make use of the stress function. 
For any [unction </> the equations of motion (2. 12 ) and (2.13 ) are satisfi ed identi cally by 

taking stress components as, 

0' </> 
a x = oz" ' XZ = 

The function </> must also be chosen such that the boundary conditions of stress are 
satisfied. 

Since Equations (2.12 ) and (2.13) constitute two equations in three unknowns, in general 
this is not sufficient to provide a solution for the stresses. H ence it is often necessary to introduce 
a flow law (stress- strain-rate relation) and together with the equation of compatibility for the 
strain-rates a solution may then be obtained. 

The equations of compatibility are obtained by differentiations of Equations (2.3) as, 
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The flow law may be written, 

t(ux- uz) H uz- u x) 
ou/ ox ov/ oz 

T XZ T 

Hou/ oz+ av/ ox) = i = 2'1) 
(2.16) 

where 'I) is the coefficient of viscosity, which for Newtonian flow is constant throughout the 
medium . Equations (2.16) also hold for non-Newtonian and plastic flow ; however, the 
parameter 7] is then not an absolute constant, but varies with position in the medium depend­
ing on the stress and temperature according to the flow law or yield criterion . 

First let us examine the case of Newtonian flow (constant 'I) ). Direct substitution of the 
stresses from Equations (2.16) in the compatability conditions (2.15) together with the stl'ess­
fun ction equations (2.14) then yields the biharmonic equation for </>, 

o4 </> 04</> o4 </> 
\74

</> = 2X4 +4 2X2 cZ2 + (lz4 = o. (2.17) 

z 

Fig. 2. Flow down a slope with harmonic pertllrbatiolls. 

Now if the bed of our uniform model (Fig. I) has undulations of wavelength), = W / 21T 

superimposed on the uniform slope ci (Fig. 2), we may write for the bed , 

b = b, coswX where b, ~ .(. (2.18 ) 

We suppose that the surface may be given by 

.( + h = .( + h, cos wx+ h, sin wx. 

Hence, for a viscous medium, we consider solutions of the biharmonic equation which 
arc periodic in x by taking, 

</> = fl (z) cos wx+f, (z ) sin WX 

wheref, and f, are functions of z only. 
Substituting </> in Equation (2. I 7) yields the following ordinary differential eq uation for 

the is in z (the primes denote differentiation with respect to z), 

w 4 - 2w 2 f" +1"" = o. (2.20 ) 

The general in tegl'al of this equation is, 

f = (a, + a2z) ewz + (a3 + a4z) e- wZ 

where the as are arbitrary constants. 
Therefore an appropriate general simple periodic solution of the biharmonic equation 

may be obtained as, 

</> = {(a, + a2z) ewz+(a3+ a4z) c wz} cos wx+ {(a5+ a6z) ewz +(a7+ a8z) e- wz} sin wX. (2.22 ) 

It is worth noting here that since solutions for different frequencies ware additive a general 
solution of the form , 

00 

</> = ~ (l"n cos nwx+f2,n sin nwx) 
'n = , 
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may be used in conjunction with Fourier series or integrals to fit any more general form of 
bed shape. 

Solutions of the form of Equation (2.22) were used by Yosida (1964) in his study of 
viscous flow with no slip over undulations down a uniform slope. W e now consider the 
extension of this analysis to non-linear flow . This, at first sight is impeded by the equation 
of compatibility which for stresses then becomes 

'02(ax- az)/ 'rJ a2(az- ax)/ 'rJ a2(TxzITJ ) 
ax2 + oz' = 4 ox az (2.24) 

where 'rJ is not constant. 
For this study however, we are considering perturbations fwm the stress solution (2.4). 

This m eans we can consider the equations of motion (2.12 , 2.13) being in terms of stress 
deviators. 

The continuity relation for an incompressible medium, 

Ex = - Ez, 
together with the generalized flo w law (2.16) then implies 

ax = - az· 
I n terms of the stress fun c tion wc then obtain Laplace's equation, 

'0' 4> 02 4> - +- = V' 4> = 0 
az' ox' 

which is a special case of the more general biharmonic equation. The corresponding solution 
for periodic variations in x reduce to, 

4> = (AI ewz + A, e - wz ) cos wx + (A3 e wz+ A4 e - WZ) sin wX (2.28) 
which is equivalent to dropping the terms in z from Equation (2.22) . 

At this stage it has not been necessary to invoke the flow law, merely the condition that 
for a given stress the strain-rate components are proportional to the stress d eviator components 
(which applies for isotropic flow laws from constant viscosity to plastic) . 

3. THE BO UNDARY CONDITIONS 

The problem of fitting the harmonic solution (2.28) exactly to boundary values of stress 
and velocity can be very difficult. H ere we examine the boundary conditions and find that 
certain simplifications can be made which are appwpriate for small surface slopes as found 
on large ice masses. 

If an and Tnt denote the normal stress and traction at the surface then the condition tha t 
the surface traction is zero, and the normal pressure is the atmospheric pressure p, may be 
written , 

an)s = p and Tnt). = 0 (3. I ) 

where the s subscript indicates that the value is taken along the curved surface contour. 
The second of Equations (3.1 ) implies, 

where er. is the surface slope. 
This equation is difficult to satisfy exactly, but for small slopes the right-hand side simply 

becom es 2a. However , zeros in (ax- ay) still cause problems here. To avoid these we make 
use of the well known method of solutions for a surface with harmonic loading (er. Jaeger, 
[964 ; Lamb, [932 ) and suppose that for small surface slopes the first of Equations (3. [ ) can 
be replaced by, 

az )z = pgh 
= pg (hi cos wx + h, sin wx) 
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where the subscript < denotes the value at Z = <, and hI + h2 ~ <. It will be found that both 
Txz)Z and Tnt)s are small (cf. section 4.2 ) and hence this simplification involves no serious 
loss of generality. 

The velocity boundary conditions are determined by the shape of the base contour, the 
mean down-slope velocity and the equation of continuity. 

The general equation of continuity for a steady-state ice mass of thi ckness < moving with 
a mean velocity V, and where the accumulation rate at the surface is A may be written. 

or 

d ( VZ) 
-- = A 

dx 

dZ dV 
V- + <- = A. 

dx dx 

Now if we a re considering just harmonic perturbations in Vand Z from regional avet·ages 
wc may write, 

and dV 
dx" = Eo+ EI cos WX+ E2 sin wx. 

Substituting Equations (3.6) and (3. 7) in Equation (3.5) and equating individual terms in the 
sine and cosine since they apply for a ll x, yields, 

V(~- rx) + HEO = A 

f31 - (XJ = - <El / V 

(X2 ==7. ZE2/ V 

(3.8) 

(3·9) 

(3. 10) 

Equation (3.8) simply expresses the mean continuity condition for the regionally smoothed 
values independent of the undulations. Here we need only consider the effects associated with 
the perturbations. The modifications necessary in the case of associated variations in accumu­
lation rate havc been given by Budd ( 1969, section 5.4. I) . 

z z 
Since El = ~ J ~u d z = < ox 

1 J QV 
- ,( (iz d z (3. 1 I ) 

0 0 

and 
db 

f3 = -
dx 

(3. 12 ) 

where b is the bedrock elevation (above z = 0), Eq uations (3.9) and (3.10) may be a lter­
natively written , 

db 
V- = 

dx 
Vf3 = V i) (3. 13) 

dh 
a nd V- = 

dx 
V(X = Vz (3· 14) 

H ence we no\\' look for solutions of the form, 

4> = (.1 I e,uz + A, e- wz ) cos wx + (A3 ewz -j- A4 e- wz ) sin w .. \: 

subject to the boundary conditions (3.3), (3. 13), (3. 14) . These are just suffi cient to determine 
the four coeffi cients Ai, and the shape of the steady-sta te surface (X. 
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4. DETERMINATION OF STRESS- FUNCTION COEFFICIE:-iTS A TO THE FORM OF THE STEADY-STATE 

SUR FA CE 

4. I . Satisfying the boundary conditiollJ 
For a stress fun ction of the form 

c/> = (A, e- ,"z + A 2 e wz ) sin wx + (A3 cu'Z + A4 e'"Z) cos wX (4-1 ) 

the stresses from Equations (2.14) are given by, 

a x = w2(A, e- UJz + A, e"'z) sin wx + w' (AJ e- wL t- A 4 e wz ) cos wx, (4.2 ) 

az = - w' (A , e- ,"z + A, e wz ) sin wx - w2(A3 e- wz + A 4 e wz ) cos wx, (4.3) 

TXZ = w2 ( - A, e- wz + A , e'"z) cos wx - w2( - A3 e- wLj- A4 e wz ) sin wx, (4.4) 

H a x - az) = w' (A, e- 'oIz + A, e '"z) sin wx + w' (AJ e- wz + A4 e wz ) cos wx. (4.5 ) 

vu QV 
From Equations (2. 16) 21/ -;;- = - 21/-;;- = H a x- az). 

ex 0;:: -

At this stage, for the moment, we consider the medium to react to longitudinal stress 
variations with constant viscosity. If 1/ were prescribed as a fun ction of depth ;::, then this could 
-be incorporated for more general flow laws in the following integrations. 

Integrating H ax- az) then gives, with the boundaries unspecified, 

21/U = - w(A, e- wz + A , e wz ) cos wx + w(A3 e- wz + A4 ewz ) sin wx, (4.6) 

21/V = - w( - A , e- u,z + A , el"z ) sin wx - w( - A3 e- 'oIz + A 4 e wz ) cos wx. (4.7 ) 

From the boundary condition (3. I 3) Vb = Vf3 at the base;:: = o. H ence 

H ence 

and 

21]VI) = - w( - A ,+ A, ) sin wx - w( - A3+ 11 4) cos WX 
= 21] Vf3, sin wx. 

f3, = W(A2 - A, ) 
21/ V 

or 

or 

dh 
For thc upper surface, Z = <, Vz = V", = V

d
- . 

x 

H encc 

whcl'c 

H ence 

- w 
'" = - V{ ( - A, cwz + A, e wZ) sin wx + A3 (e'''Z_ c- wZ) cos wx] 

21/ 

= "', sin wx+ "' , cos wx 

and 

1 
h = -V {( - A, c- ·,z + A, cwZ) cos wx - A3 (ewZ_ c- ·JZ) sin wx} . 

21/ 

From the boundary condition Equation (3.3), 

az). = pgh 

= pgV {( - A, e- Ulz A, e wZ) cos wx - A3 (e",z - e- '"Z) sin wx} . 
21/ 

Also from Equation (4.3 ) abovc for z = Z, 

(4. 10) 

(4. 11 ) 

(4. 12 ) 

az). = - w2 ( + AJ c- wz + A , cwZ) sin wx - w' A3 (ewz + e- '" Z) cos wX. (4.16) 

These equations hold for all x so the A may be found by equating coefficients of sin x, 
and cos x in Equations (4. 15) and (4.16), 
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XA3S = A, e- wz + A, ewz , 

C = 2 cosh wZ, s = 2 sinh wZ 
pgZ ' 

x = 2."V(WZV 

(4.18) 

(4· 19) 

(4.20 ) 

W e can solve Equa tions (4.17) and (4.18) for A3, A, in terms of A, by adding then sub­
tracting as follows: 

H ence 

and 

A3(X's - C) = 2xA , e'''z, 
- A3(c+ X' s) = - 2xA, e- b'Z. 

2XA, e- o,z 
A - ~---

3 - c+ X's 

A3(X's - c) A , = --"...:..:..:....-.........:... 
2X ewz 

which, from Equation (4.23) 

= A, e- " uz --- . (
X'S - c) 
X' s+ c 

4.2 . Relation between su~race and bedrock 
T he surface slope components 0(" 0( , can now be determined in terms of the basa l slope {31 

since from Equations (4.9) and (4. 12) , 

0(, 

(3, 
A, ewz - AI e- wz 

A, - A, 

Now from Equation (4.25), 

and 

A,ewz - AJ e- wz = - A, e- b)Z(I - ~::~~) 
2A,c e-OIz 

X's + c ' 

A , - A , = _ AI{ I _ e- , wz(X' S- C)' } 
X' s+ c 

_ _ { X' s( 1 _ e- lW Z
) + c( 1 + e-21U Z

)} 
- AI . 

X's + c 

H ence from Equations (4.26), (4.23) and (4.27), 

and from Equations (4.26), (4 .23) and (4.28), 

Similarly 
0(, 

{3, 

0( , A3. s 2XS e- bJZ 
(31 = - A , - A I = X's ( r - e- ""Z)+ c( l + e- ""Z) 

A, ewz - A,e- wz 

A, - A, 

2XS 

2 C 

= X' s' + c" 

2C e- wz 

The amplitude of the surface undulations is given by O(s = ( O(~ O(i) 1/ ' . 
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We define the damping factor if; as the ratio of basal to surface amplitudes. H ence {i'om 
Equations (4.30) , (4.31 ), 

~ ~~+~ , ./, = ~ = ( ) = - k(X'S' + C' )' . (4 .. 32 ) 
't' ets 2 X'S' + C' 1 / 1 -

Since, as will be shown shortly, Xs is generally large, 

which from Equation (4.20), gives 
pgZ' (ewZ _ e- wZ) 

.p = -'-'-4-'-TJ =V (""'W-=Z=)-, ---'-

= pgZV'{~+ w~ + (w~)3 + .. . }. 
2TJ w"'- 3· 5· 

This shows that the earlier damping factor of Budd ( 1969) (Equation ( 1.6)) may be 
regarded as a good first approximation, except that B = 2YJ is the viscosity parameter. The 
factor of 2 difference shows an error in a basic assumption of the earlier theory and the import 
of this will be discussed in detail in a separate paper. Otherwise most of the predictions of 
Budd (1969) carry over. 

In order to gauge the order of magnitudes involved we note tha t for viscous Ho\\" with 
zero sliding the surface ve locity is given by, 

pgiiZ' Vs = --. (4.36) 
4TJ 

H ence if we replace pgZ' / 4TJV by <X, the mean regional surface slope, the damping factor 
becomes 

ii 0/( wZ) 
say. 

For this same reason the average surface slope appears in Yosida's ( 1964) results for a 
viscous medium with no sliding while the individual parameters, TJ , V, H do not. For non­
linear flow it is possible for Vs to be greater than pgZ' &/4TJ and hence .p < 1 1& 0/( wZ). 
However, in practice the damping factor is still generally large, but if necessary the full 
expression in Equation (4.32) may be used . 

The function o/(wZ) = (wZ )2/(ewZ- e- wZ) for the fi-equency dependence of the damp­
ing factor is shown in Figure 3. This function has a maximum of o/m ~ 0,552 for 

wZ = 2 tanh wZ or wZ ~ 1.92 (4.38) 

a nd tends to zero as wZ 0 and as wZ -+ 00. H ence fOl' surface slopes typically found on 
large ice masses (IX ~ 10- 1 to 10- 3) the damping factor is large, i. e . .p ~ I. This justifies the 
approximation of Equation (4. 33) and allows the shape of the surface to be expressed simply. 

et, ~I 
a nd IX, = 2.p ~ 2.pl (4.40) 

where .p is defined by Equation (4. 34). The phase lag between the surface and base is given 
by, 

et, I 
tan 8 = -= = - .-

et, 2 if; 
which shows that the surface is approximately t7r out of phase with the base. The signs in 
Equations (4.29) , (4.30) (4.3 I) indicate that the steepest surface slope occurs over the 
highes t point of the bedrock. 
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From Equation (4.38) it is evident that the wavelength of minimum damping Am is given 
by, 

i. e. Am is about three times the ice thickness. Figure 3 indicates that the maximum is fairl y 
broad so that If'is within 90 % of If'm for AI Z between 2-4 and 4·5· 

For a bedrock profile consisting of a distribution of many harmonics of different wave­
lengths and amplitudes, Equation (4.34) for .p may be regarded as a "transfer function" or 
"filter" by which the surface profile may be calculated. 

Finally to examine the magnitude of the shear stress near the surface compare Equation 
(4.4) with Equation (4.13) to obtain, 

T:d z = 2YJVW2h. (4-43) 
Using Equation (4.36) this may be written, 

Txz)z = tpgiih(wZV (4·44) 
Since for short waves C( and h - )- 0 exponentially as (wZ) -?- 00, this result for the effect 

of the undulations on the surface shear stress is quite compatible with the model. For both 
very long and very short waves T xz) z becomes negligible and for A = 277 Z, 

T XZ)z = tpgiih (4-45) 
as would be expected for the simplest approximation. 

I1 I 

o 
/J 

10 11 12 13 14 lS 16 17 
" 

19 20 

RE LA T I V E WAVELENGTH ).IZ 

Fig. 3(a). The filter fUllctioll '1',for thefrequCIlcy-dependent part of the ratio of the amplitude of the surface alld bedrock waves, 
is shown on linear co-ordinates against the ratio of the wavelength ,\ to ice thickness Z· 

'1'r (wZl = (WZl'/2 sinh wZ isfrom the present theo7)·, 
'1',(wZl = WZ/ 2{I + H wZl ' } is from Blldd ( f969l · 
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Fig.3(b). The Jilter jime/iolls 0/, alld 0/, I'ersus V.(' 01/. a log- log scale. 

5. ApPLICATIONS 

5. I . Wavelength of minimum damping 
The existence of a wavelength of minimum damping m eans that given a uniform distribu­

tion of bedrock variations we may expect the surface variations to have a distribution given 
by the transie r fun ction , 

{3, {314"1V (W..(' )2 
C(s = ~ = pg..('2 2 sinh w..(' (5. I) 

with a predominant wavelength about, 

The occurrence of surface waves of abou t this scale is well known on ice sheets, and this 
provides useful means of determining the flow properties of the ice (er. section 5.2). Brockamp 
and Thyssen ([1968] ) have a lso found them useful in determining the velocity of the ice. 

The wavelength of minimum damping does not depend on the "viscosity" but on ly on 
the ice thickness, varying typically from c. I km or less near the edge to c. 10 km inland on 
the large ice sheets. Beitzel (unpu blished) confirmed the wavelength dependence of the damping 
factor for longer waves (5 to 50 km) by spectral analyses of the surface and bedrock variations 
over a 4 00 km section of the " Queen Maud Land Traverse" in Antarctica (Z :::::: 2.7 km ). 
Carter (in preparation) has confirmed its validity for the Wilkes ice cap (..(' :::::: I km) extending 
the values to the very short waves ( ::::::0.4 km ), which clearly supported the exponential 
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damping of Equation (4.34) rather than the earlier result, Equation ( 1.6). For long waves thc 
two expressions do not differ greatly. 

Similar analyses for the surface slopes of the Wilkes- Vostok (Antarctica) and the E.G.I. G. 
(Greenland) profiles have shown the systematic linear variation of the wavelength of maximum 
surface slope deviation with ice thickness . * 

I t is of in terest whether such features are as prevalent on the surfaces of temperate glaciers. 
The variations in the surface slope measured by Paterson and Savage (1963) along the cen trc 
line of the Athabasca Glacier suggest that this may be so (er. Budd, 1969, fig. 6.1 ). 

5.2. The magnitude of the damping factor 
The variation in the magnitude of the damping factor with ice thickness, velocity and 

viscosity is the same for all relative wavelengths (1./ Z). The magnitude of the damping 
factor for a particular wavelength provides a valuable means of determining the average 
value of the flow parameter through the ice, given the ice thickness and the velocity ; viz . 
from Equation (4.34) . 

cx.spgZ' sinh wZ 
YJ o = 2(3, V(WZ )2 

Values of the flow parameter calculated from this equation for the Wilkes ice cap havc 
been found to agree with the corresponding values calculated in the same area from the 
direct measurements of the variations in surface slope and strain-rate over undulations (Budd, 
1969; L. Pfitznert). 

Carter has also shown that the variations in the damping factor from the summit of the 
Wilkes ice cap to the coast are in accord with the measured ice velocities and the calculated 
temperature- depth profiles. These temperature profiles have been found by Carter to give 
variations in dielectric absorbtion which matched the regional variations in the radar attenua­
tions measured with the ice-thickness sounder. 

5.3. R elation between surface and bedrock topography 
Since the perturbation solutions for different frequencies are superimposable, it is possible 

to analyse the bedrock profile in a series of Fourier harmonics, and to apply Equation (4. 34) 
for the damping factor as a transfer function to obtain the surface profile, provided the flow 
is sufficiently two-dimensional. This has been carried out with success by Cartert for part 
of the Wilkes ice cap. Alternatively if the bedrock is broadly known (e.g. from seismic studies) 
it is possible to infer the short-wave bedrock variations from the surface variations. Obviously 
however, the latter can only be accurate for a limited range of wavelengths around that of 
minimum damping (c. 3Z), say 0.8Z to 30Z, which nevertheless is the most important rangc 
for the ice motion, as is shown in the next section. 

Further general relationships between the bedrock and the surface may be obtained by 
the spectral analyses described previously. The precise phase shift in the undulations for the 
different frequencies can be determined by the relative magnitudes of the co-spectra and 
quad-spectra of the surface and bedrock elevation deviations from a smooth trend. A further 
example of the correspondence between surface and bedrock deviations is given by Hochstein 
([1967] ) for west Antarctica for undulations of wavelength of about 30 km ( ~I5 Z). H ere 
again the phase shift of about ~ 1T is indicated. 

* Budd, W. F., and Carter, D. Analysis of the relation between the surface and bed-rock of ice caps. [In 
prepara tion.] 

t Wilkes ice cap project 1966. [To be published as an ANARE Scientific Report.] 

t Wilkes ice cap project 1967, investigations by radar sounding. [To be published as an ANARE Scientific 
Report.] 
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:).4- Basal stress alld glacier sliding 
It is evident fmm the formula for shear stress (4.4) that a t the base, using Equation (4.9 ), 

Txz) IJ = 2TJVwf3cotwx, (5-4 ) 

i. e. the maximum shear stress occurs a t the tops of the waves and the minimum in the tro ughs. 
Furthermore for waves of the same shape (fJ, constant) the shear stress increases with 

frequency w . H owever, from Equation (4 .4) it is a lso evident that the influence of the waves 
dies out exponentially (as e- wz ) with distance into the ice such tha t one wavelength into the 
ice it has been reduced to e- 21T ~ 1/ 500 of its va lue. This effect is even more enhanced for' a 
high power-law flow or for cold ice caps where the "effective viscosi ty" is greatest near the 
base. H ence the small high-frequency waves have very little direct effect on the motion of the 
ice and only have an indirect effect in so far as the average bedrock stress over long distances 
determines the steady-state ice mass slope a, according to Equation ( I. I). For small high­
frequency variations (A. ~ 3<) the term , 

Z z 

T = II o'"Txz dz dz 
ox' (5·5 ) 

o 0 

is negligible. Thc energy dissipation duc to the irregularities, 

E oc I {TXZ :; +(a x - a z) ~:} dZ (5. 6) 

a lso has a maximum for wavelengths several times the ice thickness. H ence it is bed rock 
irregularities of these magnitudes which are most important in controlling the ice motion. 

In contrast to the short-wave irregularities, which a re less important, the bedrock undula­
tions with wavelength several times the ice thi ckness can be readily determined by radar 
sounding and even gravity techniques. 

The detai led study of these effec ts and theil' relevance to glaciel' sliding will be presented 
by the author in a separate paper. * 

5.5 . How jar can ice travel uphiLL (i.e. with the surface sloping downwards in the opposite direction to 
travel ) 

The ques tion of ice travelling uphill has been raised by Nye ( 1965, 1966) and Shumski y 
( 1965, 1966[a] , [b] ) . 

It appears from the surface profiles in Greenland (MaizeI', 1964 ; Brockamp and Thyssen, 
[1968] ) and Antarctica (Budd, 1966, fig . 0.5; Beitzel, unpublished) that ice can travel uphill 
for several kilometres. 

The preceding analysis a llows an analytical appraisal of the problem . Although a com­
plete discussion will not be attempted here because of the assumption of a given ice thickness 
with small bedrock perturbations (cr. section 6.5 ) a criterion can be es tablished for the 
conditions required for ice to travel uphill and for how far it can travel. 

From Equations (4. 11 ) and (4.39) the surface slope may be written as, 

a = a + ascoswx. 

The condition for the How to be uphill is that a becomes negative, i.e. 

a s cos w X > a. 
From Equation (5. 1) this may be written 

f3 , cos wx/ >/; > a. 

• Sliding and basal stress of ice masses. rPaper in preparation.] 

(5.8) 
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Taking cos wX = 1 for the case in which the slope just becomes negative, 

_ pgZ: a (ewZ_e-wZ) 

(31 > a.jJ = 41)V(wZ): . (5. 10) 

It is apparent that the conditions for uphill flow are most advantageous nea,' the wavelength 
of minimum damping Am for which, from Equation (4. 38), 

pgZ: a 
V'm ~ --v- (5. 11 ) 

41) 

Since (3, = - wb, = - 21Tb, / A 

the crit erion (5.10) may be written, for magnitudes, 

'21Th, /A ~ a.jJm. 
Taking A near Am say, e.g., 

A = 1TZ, 
this becomes, 

For a viscous medium with no slip, 

(5. 13) 

(5. 14) 

(5. 16) 

which implies the bedrock perturbation would have to bc the order of the icc thickness. For 
the model treated here with base sliding or a " non-Newtonian basal boundary layer" the 
condition is equivalent to, 

where 1) 2 and 1)1 are the " average viscosities" of the boundary layer and column respectively 
and ~Z and Z are their corresponding thicknesses. Hence the condition reduces to one in 
which the basal layer has a substantially lower effective viscosity than the upper layers. The 
higher temperatures and stresses near the base of cold ice caps contribute to this condition. 

To consider some numerical values Beitzel (unpublished) gives a minimum damping of 
about 8 for a region where the ice surface has an average slope of about 0.25 X 10- 3. For this 
situation a negative surface slope occurs when, from Equation (5.15), bI!Z > t X 2.5 X 10- 3 x 8, 
i.e. b, > Z/ 100 or for Z = 2.7 km, bI > 27 m. For longer waves say ,.\ ~ 10.( the corres­
ponding values come to b, > Z / 20, i.e. bl > 135 m. Finally the distance over which the ice 
will fl ow uphill is given by Equation (5.9) as, 

A av, 
x = - cos- '-

'21T {3, 

or 
,.\ a 

x = -cos- '-. 
21T (l(s 

Hence for typical values of surface-slope variations, for a given average slope, it is seen that 
ice may travel uphill for several times its own thickness. 

5.6. Transient surface disturbances 
Steady-state surface variations do not exist without corresponding bedrock vanatlOns 

(provided they are not perpetuated by accumulation or ablation variations, cf. Black and 
Budd (1964), Nye (1959[aJ). 

The rate at which such surface disturbances diminish has been given by J aeger (196'2 , 
p. (43) or Lamb ( 193'2, p. 6'24) for a viscous semi-infinite medium as follows. 
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For a ha rmonica lly disturbed surface with eleva tion variations given by, 

h = ho cos wX 

so tha t the verti cal stress vat"iat ions a t depth z may be taken as 

U z = - pgho e- 'uz cos wX 

the \'erti cal velocity follows from the stream fun cti on and may be written 

pgho , 
II = - -- e- wz cos wx . 

'27Jw 

H ence the ra te of lowering of the top of a Cl"est is given by 

or 

dh) 
dt 

X = (), -! = o 

pgh 

'27Jw 

( 
pgt ) (pgAt ) h = ho exp - -- = ho exp - -- . 

'27Jw 47T7J 

45 

In contrast with the perturbations discussed by Nye ( I959[b] ), the pertUl'bations d ealt with 
here di e out more rapidly for larger wavelengths and apply only to perturbations of wave­
lengths small compared with the ice thickness. 

For long waves it is necessary to consider the case of a finit e slab of thi ckness ,( say. The 
corresponding solution may be obtained from the preceding analysis as 

dh pgh 
- = - tanh wZ (5.'25 ) 
dt '27Jw " 

or 

Since 

(
pg,( tanh w,() 

It = Itoexp - '2")w,( t. 

tanh w,( 

w,( 
as w,( 0 , 

the limiting value of the time constant k for the rate of dissipation of long waves becomes 

k = '27J / pg,(. 

This limiting value, however, only applies for zero basal fri ction . 

6. LIMITATIONS AND E XTENSI ONS 

6. I . Constant viscosity or power law or plastic flo w 
The present model which considers a linear relation between longitudinal stress and strain­

rate in the upper layers does not have a serious restriction on its generalization. The condi­
tion of constant viscosity for longitudinal stress and strain-rate was not introduced until 
Equation (4.6) . H ence the form of the solution for stresses is retained whatever the flow law. 
Also since the boundary condition for the surface involves the integral throughout the ice 
thickness of Ex = - Ez = (u x - u z) / 47J, it is the weighted average of the flow parametet· 
through the ice thickness which is relevant. Since the weighting factor is e±wz , only the short 
waves are greatly affected by a non-constant,,) along the vertical. 

To study this effect, a further extension to the present model may be made by considering 
a vertical variation in the flow parameter resulting from a stress- strain relation of the form , 

• 7 11, - 1, 

E x = En a ~. 

where 'T is the octahedral shear stress at d epth z. 

(6. I) 
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For small longitudinal stress deviations (a;) the octahedral value is almost proportional to 
the vertical shear stress ( T xz = pga;:;), which varies linearly with depth ;:;. Hence in the case 
of an isothermal medium the average longitudinal strain-rate throughout the column may be 
calculated from terms of the form , 

(6.2) 

o 

where' = (z - ;:; ). 
This procedure may be useful for temperate glaciers, but for cold ice caps the most 

important variable for the flow law is the temperature. For typical temperature- depth 
profiles the warmest layers are near the base, so that incorporating a temperature effect in 
the flow law enhances the effect of the stress as described above, i. e. the basal layers have the 
lowest effective viscosity. The net result of both these effects is that the small wavelength 
perturbations are damped out even more rapidly than exponentially, whereas the long waves, 
which depend more on the average flow parameters for the column, are not greatly affected. 

This extension to vertical stratification can be most satisfactorily treated in particular cases 
where the temperature and velocity d epth profiles are known. 

6.2. T wo-dimensional flo w (plane strain-rate) 
In the practical investigations of the predictions of this theory the problem arises that 

most of the bedrock variations have an appreciable three-dimensional character . In these 
cases part of the flow goes around the obstacles rather than over them. At right angles to the 
direction of flow we may expect the bedrock and surface elevation variations to be in phase. 
This has been demonstrated for the Wilkes ice cap by M cLaren (1968, fig. 21 ) . H ence for a 
line at an intermediate angle to the flow direction. W e may expect the phase between surface 
and bedrock to be between 0 and ! 7T. 

An ideal situation to test the results of the theory would be a region in which thc ice 
thickness measurements indica te that the flow is largely two-dimensional. The effec t of the 
three-dimensional motion on the longitudinal direction can be taken into account by the 
technique of Budd (1968, section 4) when both transverse and longitudinal strain-rates are 
known. 

6.3. Effect of the sides of the ice mass 
The application of the present two-dimensional analysis to glaciers is complicated by the 

presence of the glacier sides, and the transverse gradients of stress and velocity. However, 
many results carry over to smooth symmetric glaciers of slowly varying cross-sectional shape. 
The generalizations required to apply this analysis to the flow along the centre line of such a 
glacier have been discussed by Budd ( 1969, section 5.2). 

The effects of the irregularities in the sides of glaciers or ice shelves may be treated in a 
similar way to those due to irregulari ties in the bed here. It follows that such per·turbations 
are also damped out exponentially with distance from the edge. 

6+ Small average surface slope 
A more general form of Eq uation (1. 1) for any slope has been derived by Budd (1970) from 

which the approximations for small slope may be seen. Primarily the restrictions are that, 

sin a ~ tan 'X ~ a , cos a ~ 1 and a' ~ a. (6.3 ) 

For surface slopes up to 20° the errors may be small enough to make the present treatment 
useful. 

In order to allow the boundary condition, uz)z = pgh to be used for appreciable slopes, 
a factor cos a must be incorporated . For very steep glaciers a special treatment would be 
required. 
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6.5. Large perturbatiolls 
T he author believes that the restriction to small perturbations is not as serious as the 

restriction to two-dimensions. If the flow over a large obstacle is completely restricted to 

two-dimensions, one may expect the ice mass to increase in thickness sufficiently so as to be 
able to flow over the obstacle and still maintain a state of balance. 

T he present analysis uses a given ice thickness. It may be possible in future to use varia­
tional methods to determine the way in which the ice would flow down the slope over the 
obstacles determining its own thickness for a steady-state with the minimum dissipation of 
potential energy. With these theoretical considerations in mind the author would be glad to 
know if any field situations exist for steady state two-dimensional flow, in which the obstacle 
amplitude is large, say greater than one-third of the ice thickness. Such an example would 
provide a va luable means of studying the ice-flow mechanisms. 
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RESUME. Ecoulement glaciaire sur des perturbations du soele rocheux . L'emploi de solutions periodiques simples 
Cl bien connues de I'equa tion de contra inte biha rmonique it deux dimensions pour I'et ude de I'ecoulemenl 
sur des ondula tions d 'une masse de glace de faible pente de surface est examinee. Le modcle considere es t 
celui dans lequella plus grande panie de l'effort de cisa illement (deforma tion ouglissement ) prend place prcs 
de la base, la panie superieure bougeant largement comme un bloc avec des vitesses de deformation longitu­
dinales varian t lineairement avec les deviations de la contrainte longitudinale. Pour les perturbations du 
socle rocheux d'une longueur d'onde donnee, la forme superficielle permanente consistc en vagues simila ires 
mais hors de phase de { 7r , de sorte que la pente la p lus forte arrive sur le plus haut sommet du soele rocheux ; 
et I'amplitude est reduite par un facteur d'amortissement dependa nt de la vitesse, viscosite, epaisseur de 
glace et longueu r d 'onde. 

L 'amortissement minimum a lieu pour I- m = 3,3 fois I'epaisseur de glace, tandis que des ondes plus longues 
ou plus courtes sont presque compJetement amorties. La dissipation d 'energie et la resista nce it I'ecoulement 
glaciaire est a ussi maximum pour une echelle d 'ondula tion de plusieurs fois l'epaisseur de glace, tandis que 
les effets d es petites irregularities basales meuren t exponentiellement avec la distance dans la glace et ont 
seulement un effet aussi loin que la contrainte basale moyenne est liee a la pente moyenne de surface. En 
consequence, une revision des theories de glissement actuel de glacier d evient possible. 

Des predictions variees de la theorie ont ete confirmees par I'a nalyse spectrale des profi ls de la surface et 
du socle rocheux des ca lottes glac i~ires. 
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