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This study compares turbulent channel flows over elastic walls with those over rough
walls, to explore the role of the dynamic change of shape of the wall in turbulence.
The comparison is made meaningful by generating rough walls from instantaneous
configurations of elastic cases. The aim of this comparison is to individually understand
the role of fluid–structure interaction effects and the role of wall shape/undulations
in determining the overall physics of flow near elastic walls. With an increase in the
compliance of the wall, qualitatively similar trends for many of the effects produced
by a rough wall are also seen in the elastic wall. However, specific features can be
observed for the elastic-wall cases only, arising from the mutual interaction between the
solid and fluid, leading to a further increase in drag. To understand them, we look at
the turbulent structures, which exhibit clear differences across the various configurations:
roughness induces only a slight reduction of streamwise coherency, resulting in a situation
qualitatively similar to what is found in classical turbulent channel flows, whereas
elasticity causes the emergence of a novel dominant spanwise coherency. Additionally,
we explored the effect of vertical disturbances on elastic-wall dynamics by comparing
with permeable walls having similar (average) wall-normal velocity fluctuations at the
interface. The permeable walls were found to have minimal similarities to elastic walls.
Overall, we can state that the wall motion caused by the complex fluid–structure interaction
contributes significantly to the flow and must be considered when modelling it. In
particular, we highlight the emergence of strong wall-normal fluctuations near the wall,
which result in strong ejection events, an attribute not observed for rigid walls.
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1. Introduction
Turbulent flows over compliant walls differ greatly from those over rigid walls due to
the mutual interactions between the fluid and the wall. Understanding how elastic surfaces
interact with a turbulent flow has attracted the attention of both fundamental and industrial
problems, e.g. laminar-to-turbulent transition delay (Riley et al 1988; Carpenter 1993;
Nagy, Szabó & Paal 2022), friction drag reduction (Semenov 1991; Carpenter, Davies &
Lucey 2000; Gad-el Hak 2002) and the restraint of flow-involved noise and vibrations
(Nisewanger 1964). The use of compliant surfaces to control the flow is particularly
intriguing, as no additional energy is required.

Inspired by the experimental research by Kramer (1960, 1962) that reported drag
reduction with compliant walls, theoretical studies were carried out to understand the delay
in transition and turbulence attenuation (see e.g. Kumaran (2021) for a recent review).
Classical instability analysis aimed to understand the wall compliance effect on the
laminar-to-turbulent transition. Fluid–compliant wall interactions lead to the generation
of surface waves and the modification of turbulent flows due to the deformation. Benjamin
(1960, 1963) and Landahl (1962) found that wall compliance can lead to both stabilised and
de-stabilised modes. Subsequently, Carpenter & Garrad (1985, 1986) reported that these
instabilities can be categorised into two distinct types: a Tollmien–Schlichting instability,
as observed over a rigid wall, and a flow-induced surface instability, which is suppressed
by material damping (Wang, Yeo & Khoo 2006). A Tollmien–Schlichting instability is
stabilised by wall compliance, resulting in transition delay (see e.g. Rotenberry & Saffman
1990; Rotenberry 1992; Davies & Carpenter, 1997b). Conversely, for a flow-induced
surface instability, wall compliance results in two instabilities (Davies & Carpenter,
1997a): travelling-wave flutter and static divergence. The travelling-wave flutter is an
advected instability generated by the phase difference between pressure fluctuations and
wall-normal fluctuations of the compliant wall (Carpenter et al 2000). The wave advected
at 70 % of the free-stream velocity, and the wave amplitude arose in the streamwise
direction without temporal growth. Conversely, the static divergence wave is a relatively
slow downstream-travelling wave formulated along the spanwise direction with a phase
speed which is 5 % of the free-stream velocity (Gad-El-Hak, Blackwelder & Riley 1984;
Lucey & Carpenter 1992).

Duncan (1986) examined the wall-interface responses by forcing it with interfacial
pressure pulses, and reported relations between the coating response and the fluid
speed. As the flow speed increased, the response to the pressure pulse became unstable,
and at very high speeds, waves with large amplitudes arose on the surface. Luhar,
Sharma & McKeon (2015) expresses the turbulent velocity field as a linear superposition
of propagating modes, extending the resolvent framework by McKeon & Sharma (2010).
These modes were affected by the compliant wall, which the authors modelled as a
complex wall admittance linking pressure and velocity. This framework predicts the
emergence of the quasi-two-dimensional propagating waves observed in direct numerical
simulations (Kim & Choi 2014). Also, Toedtli, Luhar & McKeon (2019) evaluated the
capabilities of a low-order flow model based on resolvent analysis and confirmed that
the attainable drag reduction in wall-bounded turbulent flows strongly depends on the
relative phase between sensor measurement and actuator response. Benschop et al (2019)
investigated the influence of different coating parameters, such as density, stiffness, etc.,
on the deformations of a linear viscoelastic compliant coating in a turbulent flow, using
a one-way coupled model. The model was able to reproduce experiments, predicting the
order of magnitude of the surface displacement and capturing its increase with Reynolds
number and coating softness; also, it was found that the deformation is approximately
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three times larger than the wall thickness under resonant conditions and that the vertical
displacements are mainly driven by the pressure fluctuations and not by the shear
stress.

Experimental approaches have reported the characteristics of the interaction between
surface deformation and turbulent flow, by varying the wall elasticity. When compliant
walls show deformations smaller than one wall unit, Zhang, Miorini & Katz (2015) termed
this regime one-way coupled, and found two types of surface motions, i.e. slow and
fast travelling waves. Also, a strong correlation between turbulent pressure fluctuations
and wall deformations is evident in this regime (Zhang et al 2017). On the other hand,
in the two-way coupled regime, when deformations are larger than several wall units,
Wang, Koley & Katz (2020) reported two modes: spanwise-aligned waves advected in the
streamwise direction at 66 % of the free-stream velocity and streamwise-aligned waves
advected in the spanwise direction at the material shear speed. With an increase in wall
deformation, those authors also observed that the flow momentum decreases in the buffer
and viscous sublayers, an observation also made by Greidanus et al (2022).

Early studies based on numerical simulations modelled the compliant walls as spring–
mass damper systems (Endo & Himeno 2002; Kim & Choi 2014), where the displacement
and velocity of the wall are used as time-evolving boundary conditions on the flow
equations. However, these simple and easy-to-implement models usually included only the
wall-normal effects coming from the pressure fluctuations to drive the motion of the wall,
neglecting instead the tangential stresses. Since the latter can influence the presence of
vorticity at the boundary (Morton 1984) and the wave motion in an elastic layer (Rayleigh
1885), it is essential to capture the effects of viscous stresses when considering highly
elastic substrates.

Rosti & Brandt (2017) accounted for the full wall motion and conducted the first direct
numerical simulations of a turbulent channel flow over an incompressible viscous hyper-
elastic layer, modelled as a neo-Hookean solid. They observed that the drag increases
with the wall elasticity, an effect caused by the intense non-zero wall-normal fluctuations
owing to the elastic wall motion. They extended their discussions in light of turbulent
flow over rough and porous walls by making comparisons with the results of Breugem,
Boersma & Uittenbogaard (2006) and Orlandi & Leonardi (2008). The authors also
reported that the flow structures are significantly disturbed in the streamwise direction
and tend to organise along the spanwise direction, with increasing wall elasticity. Due to
the appearance of spanwise-coherent structures, high-momentum flow is brought towards
the elastic wall, driving its deformation; as a consequence, the interface pushes the flow
back towards the channel centre, overall causing intense vertical velocity fluctuation
events (Ardekani, Rosti & Brandt 2019). The strong ejections with significant wall-normal
velocity, together with the small negative streamwise velocity fluctuations, contribute
to turbulent production, whereas the sweep events become stronger than ejections for
high wall compliancy. Subsequently, Esteghamatian, Katz & Zaki (2022) showed that
the strong ejection events can be explained by the negative vorticity lift-up mechanism,
leading to the transport of low-speed fluid away from the near-wall region. It is activated
when the advection speed of near-wall pressure fluctuations matches the phase speed of
Rayleigh waves, which travel along the surface of an elastic solid with their penetration
depth comparable to the wavelength (Rayleigh 1885), a phenomenon caused by the
inflectional velocity profile near the wave troughs. Additionally, using a dynamic surface-
fitted coordinate system, they showed that compliant walls shift the logarithmic mean
velocity profile downwards, with no alteration of the viscous sublayer. Recently, Lu et al
(2024) highlighted the role of a ‘critical layer’ in the turbulent boundary layer over
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compliant walls; the critical layer was introduced by Miles (1957) to investigate the two-
dimensional surface waves generated by the shear flows. They report that, below the
critical layer, turbulence is phase-locked and travels with the deformation; above the layer,
turbulence travels with the mean local streamwise velocity and is decoupled from the
deformation. The above study is a clear example of deformation-induced modifications on
turbulence.

The above-mentioned literature mainly focused on studying the overall effect of
compliant walls; however, the effect of elastic walls can be decoupled into a series
of different effects, such as surface undulation (due to the wall deformation by the
hydrodynamic force), non-zero wall-normal velocity fluctuations (originated by dynamic
wall movement) and wall acceleration (caused by the propagation of waves on the surface
and inside the materials), as done in several modelling efforts. Since the above effects
appear together, it is complicated to understand which of these contributions is dominant
in modifying the flow. Numerical simulations can be a useful tool to try to decouple these
effects by artificially suppressing some of them, and indeed, some previous studies have
made such attempts. For example, while investigating the effects of wall elasticity on a
particle suspension, Ardekani et al (2019) looked at the role of roughness by performing
a simulation of a turbulent channel flow over an instantaneous surface geometry taken
from the fully coupled simulation, but frozen in time (thus removing the effects caused
by the wall motion). Foggi Rota et al (2024) adopted a similar approach while studying
turbulent flows over dense canopies. The authors compared the turbulent flow over a
flexible canopy with that over a ‘frozen’ one (obtained from an instantaneous configuration
of the deformable canopy), in which the filaments’ motion was suppressed.

In this work, we adopt this approach to investigate the role of the wall motion of
compliant walls, by separately comparing the influence of wall elasticity and other effects.
In particular, we aim to understand the two-way coupled interaction of a compliant elastic
wall in a turbulent channel, by directly comparing turbulent flows over specific rough
walls that share the same statistical properties of the instantaneous configuration of the
elastic wall. The effect of the wall elasticity on the turbulent statistics and flow structures is
investigated by drawing comparisons across the elastic and rigid cases, for different levels
of the wall ‘complexity’, i.e. the elastic shear modulus and the corresponding roughness.
In general, our aim is to determine which factor, among dynamic wall movement due
to the fluid–structure interaction and wall undulations, plays the key role in the flow
modifications seen near the elastic wall, e.g. with respect to turbulent structures; note
that our focus is not to make a one-on-one comparison between elastic and other types
of walls. The paper is organised as follows. Section 2 describes the governing equations
of the problem and the numerical procedure used to discretise them. Next, § 3 reports the
results of the comparison of the turbulent statistics and the flow structures for an elastic
and rough wall with a similar level of surface deformation. Appendix C provides a further
comparison of the elastic wall with a permeable wall model, characterised by the same
average wall-normal velocity fluctuations. The overall conclusions are finally summarised
in § 4. Additionally, Appendix A provides details about the continuum mechanics of
hyperelastic materials, and Appendix B presents a derivation of equivalent sand grain
roughness.

2. Methodology
This section first describes the governing equations and their numerical discretisation in
§§ 2.1 and 2.2, while § 2.3 reports details of the wall configurations studied in this work.
Here, we focus on a fully coupled elastic wall and the corresponding rough surfaces.
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2.1. Governing equations
The momentum conservation equation and the incompressible constraint govern the
dynamics of both the fluid and elastic solid phases:

∂u p
i

∂t
+ ∂u p

i u p
j

∂xj
= 1

ρ

∂σ
p

ij

∂xj
, (2.1a)

∂u p
i

∂xi
= 0. (2.1b)

Here, the subscript i (or j) represents the streamwise (x), wall-normal (y) and spanwise
(z) direction and ui (or u, v and w) are the corresponding velocity components. The suffix
p = f, s represents the fluid and solid phases, respectively, and ρ is the density of both
fluid and solid, which we assume to be the same. The fluid phase is a Newtonian fluid,
while the solid is an incompressible viscous–hyperelastic material; the two have a Cauchy
stress tensor σ

p
ij defined as

σ
f

ij = −pδij + 2μDij, (2.2a)

σ s
ij = −pδij + 2μDij + GBij, (2.2b)

where p is the pressure and μ is the dynamic viscosity of the two phases, assumed to be
the same, Dij is the strain rate tensor defined by Dij = (1/2)((∂ui/∂xj ) + (∂uj/∂xi )) and
δij is the Kronecker delta function. The last term in (2.2b) is the elastic wall contribution
modelled here as a neo-Hookean solid satisfying the incompressible Mooney–Rivlin law
(see e.g. Bonet & Wood 2008), where G is the shear modulus and Bij is the left Cauchy–
Green deformation tensor. For details about the continuum mechanics of hyperelastic
materials, see Appendix A. Tensor Bij can be found by solving the following transport
equation:

∂Bij

∂t
+ ∂us

kBij

∂xk
= Bk j

∂us
i

∂xk
+ Bik

∂us
j

∂xk
. (2.3)

The solid and fluid phases are coupled at the interface by the continuity of the velocity and
of the normal traction force as

u f
i = us

i , σ
f

ij nj = σ s
ij nj , (2.4a,b)

where nj is the normal vector at the interface.
To solve the fluid–structure interaction problem, we apply the one-fluid formulation

(Prosperetti & Tryggvason 2009) (also called the one-continuum formulation) as detailed
by Sugiyama et al (2011); in particular, we solve a single set of equations valid in both
phases by employing a monolithic velocity vector field, obtained by a volume-averaging
procedure:

ui = (1 − φs)u f
i + φsus

i . (2.5)

Here, φs is the solid volume fraction, which can take values in the range 0 � φs � 1, its
value being zero and one in the the fluid and solid phases, and with φs = 0.5 corresponding
to the interface between the two. To close the system of equations in a purely Eulerian
form, the following transport equation for φs is solved:

∂φs

∂t
+ ∂ukφ

s

∂xk
= 0. (2.6)
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2h + he

2h

0z

x

y

Figure 1. Sketch of the computational domain for the present set of simulations.

Solving (2.3) directly can lead to a numerical instability due to the scattered distribution
of Bij in the fluid region; following Sugiyama et al (2011), we solve an equation for the
modified left Cauchy–Green deformation tensor B̃ij = φα

s Bij (with α = 1/2) instead of
(2.3). Tensor B̃ij is governed by

∂B̃ij

∂t
+ ∂us

kB̃ij

∂xk
= B̃k j

∂us
i

∂xk
+ B̃ik

∂us
j

∂xk
. (2.7)

Doing this, we have B̃ij = 0 for φα
s = 0, and that the numerical instability can be avoided

in the fluid region. The initial condition of (2.3) is Bij = I (unstressed material), which
becomes B̃ij = φα

s I for (2.7).

2.2. Numerical procedure
The conservation equations are discretised in an orthogonal staggered grid using a second-
order central finite-difference scheme, except for the advection term in (2.3) and (2.6),
which is discretised using the fifth-order weighted essentially non-oscillatory (WENO)
scheme. The discretised differential equations are advected in time using an explicit
fractional-step method, where all terms are advanced by the third-order Runge–Kutta
scheme, except the solid stress term in (2.1), where we use the Crank–Nicolson scheme.
The numerical method has been extensively described in Sugiyama et al (2011), and the
interested reader is directed to, for example, Ii et al (2012), Rosti & Brandt (2017), Rosti
et al (2018a), Alghalibi, Rosti & Brandt (2019) and Rosti et al (2020) for more details and
validations.

Figure 1 illustrates the computational domain and the chosen Cartesian coordinate
system. The domain is a box bounded at the bottom (y = 0) and at the top (y = 2h + he)
by two solid impermeable walls; the channel is occupied at the top by the elastic wall
of height he, and the other 2h by the fluid. A no-slip and no-penetration boundary is
imposed on the (top and bottom) rigid wall, and periodic boundary conditions are enforced
in the streamwise and spanwise directions. For all simulations, a uniform grid is employed
with 1296 × 540 × 648 grid points in a domain of size 6h × 2.5h × 3h in the streamwise,
wall-normal and spanwise directions, respectively. The spatial resolution is such that
�xw+ = �yw+ = �zw+ < 0.8, the same as used by Rosti & Brandt (2017), Ardekani
et al (2019) and Rosti & Brandt (2020), who also ensured the grid independence of the
results. This very fine and cubic, uniform grid is chosen to properly resolve (2.3) and
(2.4). Equation (2.3) does not have an explicit diffusion term, which may pose numerical
difficulties; to address this issue, a common approach is to introduce artificial dissipation,
or, alternatively, to use specialised numerical schemes, such as a third-order compact
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upwind scheme, often used in the past for polymeric turbulent flows (which shares a
similar equation and problem; see e.g. Dupret & Marchal (1986), Min, Yoo & Choi
(2001) and Dubief et al (2005)), or a fifth-order WENO scheme. For the same accuracy,
the WENO scheme is relatively less expensive computationally; Izbassarov et al (2018)
investigated the performance of the WENO scheme in a polymeric flow, and showed that
any need for local artificial diffusion can be removed using smaller grids, which is why
in the present study we use the WENO scheme with a fine grid. This method was also
used before by Rosti & Brandt (2017) and Ardekani et al (2019) for turbulent flows over
elastic walls. Note that the effect of implicit numerical diffusion is limited by the high
order of the WENO scheme chosen (fifth order), and its effect was tested through a grid
refinement study by Rosti & Brandt (2017). The temporal resolution is chosen such that
the Courant–Friedrichs–Lewy number is equal 0.25.

Note that the values with superscripts ()w+ and ()+ represent values normalised by the
wall units (either the friction velocity or the viscous length scale), corresponding to the
bottom rigid wall and the complex top wall, respectively. In particular, the friction velocity
of the bottom rigid wall uw

τ can be obtained as usual as

uw
τ =

√
μ

dū

dy

∣∣∣∣
y=0

, (2.8)

where ū represents the Reynolds-averaged value of u, accompanied by u′ that represents
the deviation of u from the mean, i.e. u = ū + u′. The friction velocity uτ at the complex
wall is instead defined as

uτ =
√

μ
dū

dy

∣∣∣∣
y=2

− ρu′v′|y=2 + GBxy|y=2. (2.9)

The values of uw
τ and uτ are related to the balance between the driving streamwise pressure

gradient and the total wall shear stress. Indeed, a constant flow rate condition is enforced
to fix the bulk velocity Ub (the average mean fluid velocity across the whole domain) by
adapting the streamwise pressure gradient at every time step.

The above numerical methods and details are kept the same both for the fully coupled
elastic simulation and for the case with the rigid rough wall. However, since we do not need
to solve for the solid velocity and stress in the latter, we thus rely on the simpler immersed
boundary method based on volume penalisation (Kajishima et al 2001; Schneider & Farge
2005; Yuki, Takeuchi & Kajishima 2007; Breugem et al 2014; Ardekani et al 2019; Kumar
et al 2024).

2.3. Details of the wall surface
In this section, we provide more details on how the elastic and rough walls are configured
in this study.

In this study, the viscosity ratio between solid and fluid phases is μs/μ f = 1. The
work of Rosti & Brandt (2017) investigated the effect of the viscosity ratio μs/μ f on the
turbulent dynamics. For a fixed value of G, they saw that statistics are mainly governed
by the flow dynamics when the ratio is smaller than 1. However, when it is larger than 1,
the behaviour, especially at the interface, is determined by the solid properties themselves.
We chose the value of 1 to strike a balance between the fluid and solid contributions.
In this study, the wall elasticity behaviour is described by the hyperelastic material
(large deformations, nonlinear, strain-dependent), which also has a viscous component
attached to it (strain-rate dependence), e.g. gel-like substances (Verma & Kumaran 2013)
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Figure 2. Instantaneous configurations of the wall for the rough cases. The two rows represent the rough 1 (top)
and rough 2 (bottom) cases, and the columns correspond to an increasing level of deformation, from low (left)
to high (right). The colour shows the vertical displacement of the wall δ, ranging from −0.2h (blue) to 0.2h
(red), with negative and positive values corresponding to displacements towards the solid and fluid regions,
respectively.

or biological tissues (Sugiyama et al 2010). For practical applications such as tubes (such
as blood vessels) bounded by solids such as polymeric gels, Kumaran (1995) discusses
solid and fluid viscosities of similar magnitudes, i.e. with viscosity ratios O(1).

The interface between the elastic wall and the fluid is initially flat and parallel to
the rigid walls in unstressed conditions; following previous studies, we fix the elastic-
wall thickness to be equal to he = 0.5h (Rosti & Brandt 2017). The control parameter
used to characterise the elasticity of the wall is the modulus of transverse elasticity,
G, which is varied from G/(ρU 2

b ) = 2.0 (almost rigid wall) to G/(ρU 2
b ) = 0.5 (very

deformable/highly elastic wall). After attaining a fully developed turbulent flow, an
instantaneous surface configuration of the elastic wall is taken and used as a rough surface
in a different simulation. Effectively, the roughness is controlled by the magnitude of the
deformation of the walls (that is, the higher the deformation, the higher the roughness),
which is associated with the shear modulus of the original elastic-wall case. Numerically,
the roughness effect of the wall is maintained by not updating the transport equations for
Bij (2.3) and φs (2.6), thus suppressing the fluid–solid interaction. In the present study, we
generate two different rough-wall configurations from each level of elasticity, denoted as
rough 1 and rough 2, to ensure the generality of our results. This is done by choosing two
different instantaneous interface geometries of the elastic wall at different time instants.

In figure 2, we show the surface visualisations for the two rough cases analysed
in this study. Some characteristic features can be assessed from the figure: the case
with a low level of roughness exhibits a multitude of small-scale features, whereas that
with large roughness shows a characteristic wavelength in the streamwise direction, of
about h, while a high level of coherency is visible in the spanwise direction. To fully
characterise the undulations of the walls, we calculate the spectrum F in the streamwise
and spanwise directions of the surface displacement δ, defined as the roughness height
from the reference flat surface at y = 2h, i.e. δ(x) = y(x) − 2.0h. Figure 3 shows these
one-dimensional premultiplied power spectra, Fki (i representing the x or z direction), for
different degrees of deformation going from low (left) to high (right). The top panels show
the spectrum against the streamwise direction and the bottom panels for the spanwise;
the line colour distinguishes the different cases: elastic (orange), rough 1 (dark blue)
and rough 2 (light blue). The distributions demonstrate the similarity of the different
wall configurations analysed in this work at each level of deformation. Consistent with
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Figure 3. One-dimensional premultiplied power spectrum Fki of the wall deformation as a function of the
wavenumber. Results are shown for the streamwise (top) and spanwise (bottom) directions, and the columns
represent the level of wall elasticity/surface deformation: low (left) to high (right). The line style represents
the directions of the analysis, streamwise (solid line) and spanwise (dashed line), and the line colour shows
the different cases: elastic (orange), rough 1 (dark blue) and rough 2 (light blue). The insets at top-left and
bottom-left show enlarged views.

the previous assessments, figure 3 (top, left to right) shows that a clear dominant peak
emerges in the streamwise wavelength with an increase in the wall elasticity. In the low
and intermediate case, there are structures repeating in both spanwise and streamwise
directions, and a visible peak is observed for both directions in the spectra. Subsequently,
as the degree of deformation increases, the spanwise peak decreases, and the streamwise
peak becomes dominant, see figure 3 (the rightmost column), due to the formation of
rollers aligned along the span, as discussed later. Overall, this analysis demonstrates the
similarities between the rough and instantaneous elastic-wall configurations, such that we
can now compare how the flow reacts to it in the following sections.

3. The effect of the wall roughness
All simulations are performed at a constant flow rate, providing a bulk Reynolds number
Re = ρUbh/μ = 2800. The full set of the simulations is reported in table 1, which also
reports the resulting friction Reynolds number based on the bottom rigid wall Rew

τ =
uw

τ h/ν and on the top complex wall Reτ = uτ h/ν, as well as the maximum δmax/h and
root-mean-square δrms/h displacement of the wall, and the root mean square of the slope
of the surface S , defined as

S =
√

1
A

∫
A

(
∂δ

∂x

)2

+
(

∂δ

∂y

)2

dA, (3.1)

where A is the surface area. Note that, from here onward, we have ensemble-averaged the
results from the two rough cases (rough 1 and 2), and we show them as a single case,
addressed simply as rough. The table shows that the friction Reynolds number of both
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Case Deformation G/(ρU 2
b ) G/(ρu2

τ ) Rew
τ Reτ δmax/h δrms/h S

Smooth — ∞ ∞ 178.5 178.5 0 0 0
Elastic Low 2.0 410.9 183.0 195.4 0.027 0.007 0.286

Medium 1.0 136.7 192.1 239.5 0.079 0.021 0.489
High 0.5 33.7 212.0 341.0 0.180 0.042 0.649

Rough Low ∞ ∞ 178.8 184.7 0.026 0.007 0.267
Medium ∞ ∞ 179.6 212.8 0.079 0.019 0.463

High ∞ ∞ 189.4 314.2 0.154 0.037 0.619

Table 1. Summary of the cases investigated in this work. The table reports the shear modulus normalised
by the bulk quantities G/(ρU 2

b ), the shear modulus normalised by the inner scale G/(ρu2
τ ), the rigid-wall

friction Reynolds number Rew
τ , the complex-wall friction Reynolds number Reτ , the maximum δmax/h and

root-mean-square δrms/h values of the wall deformation and the root mean square of the surface slope S .

D
I (

%
)

300

200

100

0

Elastic

Rough

Low Medium High

Complexity level

Figure 4. Percentage of drag increase DI of the complex wall as a function of the level of deformation. The
grey bars indicate the range of the values obtained independently from the two rough walls.

walls increases with the wall deformation, especially for the elastic walls, with a value
of around 180 at low elasticity and 341 for high elasticity. A similar trend is observed
for the rough wall, although the levels achieved are always smaller than in the elastic case.
Figure 4 shows a visual representation of this trend, expressed in terms of the percentage of
drag increase DI against the level of deformation, where the drag change is computed as

DI (%) = C2
f, Complex − C2

f, Smooth

C2
f, Smooth

× 100. (3.2)

Here, C f is the skin friction coefficient defined as C f = 2τw/ρU 2
b , where τw = ρu2

τ is
the wall shear stress. For low deformations, both elastic and rough walls tend to converge
to the value attained for a rigid flat wall, thus with DI = 0, while the drag increases
monotonically when the deformation grows. This observation indicates that the shape of
the wall, similar in the two configurations, contributes significantly to the increased drag,
with the movement of the elastic wall bringing additional effects that result in a further
enhancement of the drag.
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Figure 5. Streamwise mean velocity profiles of the elastic (orange line) and rough (blue line) walls for (a) low
and (b) high levels of deformation. The + symbols represent the results with smooth and rigid walls, taken
from Kim et al (1987).

3.1. Turbulent statistics
In this section, we draw comparisons between the elastic and rough walls by comparing
their turbulent statistics.

3.1.1. Mean velocity
To investigate the effect of the complex walls on the velocity field, the mean streamwise
velocity profiles of the elastic and rough cases are plotted in figure 5, and compared with
those from a classical planar channel flow with smooth rigid walls (Kim, Moin & Moser
1987), which is thus symmetric by construction. The two panels show the cases with low
(left) and high (right) deformation of the wall, while the symbols and colours correspond
to the type of wall: + is used for the smooth rigid wall, orange line for the elastic wall
and blue for the rough wall. It can be seen that both the elastic- and rough-wall profiles
are skewed towards the left, i.e. the side with the smooth wall, with the effects being
especially prominent for the elastic wall. As a consequence of the skewed velocity profile,
the location of the maximum velocity is not in the centre of the fluid region (y = h), but is
located closer to the bottom rigid wall. Also, the maximum velocity increases, only slightly
for the rough wall, but significantly when the wall is elastic. The increased maximum
velocity is accompanied by a reduction of the gradient of the velocity profile close to
the elastic wall, thus indicating a reduced viscous stress contribution, notwithstanding the
larger value of the friction Reynolds number and drag (see table 1 and figure 4). Finally,
the mean velocity is null inside the solid for all walls, whether rigid or elastic. These
observations taken from the mean velocity profile already show significant differences
between the two configurations, suggesting that the two-way fluid–solid interactions have
a major contribution to the overall flow dynamics, and are able to alter the flow more
significantly and globally than rigid alterations of the wall shape.
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Figure 6. Streamwise mean velocity profiles in wall units from the different walls, for the cases with low
(a) and high (b) deformations. The symbols and line colours are the same as in figure 5.

Figure 6 shows the mean velocity profiles expressed in terms of wall units. In the
logarithmic region, we follow the modified log law

ū+ = 1
k + �k

log(ỹ + d)+ + B − �U+, (3.3)

where the coefficient k is the von Kármán constant, ỹ = 2h − y is the wall-normal distance
from the location of the complex walls, d/h is a displacement of the origin used to take
into account the wall undulation, B is a vertical shift and �U+ is the downward shift of
the velocity from the smooth channel case. While the values k and B for an impermeable
smooth wall at moderate Reynolds number are the classical ones, i.e. k = 0.40 and B =
5.5, the remaining parameters (d/h, �k and �U+) can be found by fitting (3.3) in the
logarithmic region. More details of the procedure can be found in Rosti & Brandt (2017),
and the obtained values are reported in table 2. Note that the type of fitting method could
lead to potentially different values of the von Kármán constant. Chen & García-Mayoral
(2023) reported that the fitting method can be affected by Reynolds number and dense
roughness. However, our interest lies not in the absolute value of the von Kármán constant
but in its relative variation due to the complex walls.

On increasing the level of deformation of the wall in both the elastic and rough cases,
all velocity profiles shift rightwards and downwards, with the former effect being directly
caused by a progressive increase of d/h due to the enhanced wall undulations, and with the
latter providing a positive value of �U+, often associated with drag increase. The peculiar
effect of the wall elasticity compared with the rough case is dual: first, the rightwards
and downward shifts for the elastic cases are larger than those for the corresponding
rough cases, with values of d/h and �U+ more than double; furthermore, when the wall
is elastic, the slope of the inertial range is modified. The rightward shift of the mean
velocity profile is a feature already introduced in the literature when studying turbulent
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Modified von Kármán constant Forcing outer-layer similarity

Wall Deformation yM/h d/h d+ k + �k �U+ k+
s d/yM d+ k + �k �U+ k+

s

Elastic Low 1.09 0.07 13.7 0.29 6.7 6.5 0.0 0.0 0.4 4.0 16.4
Medium 1.23 0.13 31.1 0.22 16.4 42.5 0.05 19.6 0.4 11.3 152.4

High 1.39 0.19 64.8 0.20 24.6 308.3 0.09 54.2 0.4 15.3 755.0

Rough Low 1.05 0.03 5.54 0.37 1.9 2.8 0.0 0.0 0.4 0.3 3.7
Medium 1.11 0.09 19.2 0.36 5.2 8.9 0.04 9.9 0.4 5.7 15.0

High 1.25 0.15 47.1 0.36 11.5 93.8 0.08 26.9 0.4 10.0 90.6

Table 2. Summary of the coefficients of the log law with different fitting methods. In particular, the table
reports the values of the peak position of the mean streamwise velocity yM , the wall-normal shift of the origin
d/h and d+ or d/yM , the modified von Kármán constant k + �k, the logarithmic shift �U+ and the equivalent
sand grain roughness k+

s .

flows over rough walls (see e.g. Jackson 1981), porous media (see e.g. Breugem et al
2006; Kuwata & Suga 2016a; Chu et al 2021), compliant walls (Rosti & Brandt 2017;
Ardekani et al 2019) and canopy flow (see e.g. Poggi et al 2004; Nepf & Ghisalberti 2008;
Monti, Omidyeganeh & Pinelli 2019). Instead, the change in slope of the logarithmic
region, and thus the change of the von Kármán constant, has been less reported, except
for some recent numerical (Rosti & Brandt 2017; Ardekani et al 2019) and experimental
(Wang et al 2020; Greidanus et al 2022) works with elastic walls. For turbulent flows
over permeable and rough walls instead, while some authors reported slight changes of
the slope (Breugem et al 2006; Kuwata & Suga 2017, 2016a), others reported no slope
variation (Perry, Lim & Henbest 1987; Bhaganagar, Kim & Coleman 2004; Jiménez 2004;
Flack, Schultz & Connelly 2007; Hong, Katz & Schultz 2011; Ma et al 2020; Womack
et al 2022), with the discrepancy suggested to be caused by the limited Reynolds number
considered (Chen & García-Mayoral 2023). Our results in the rough case agree with those
that do not show the slope variation, suggesting that the change of slope is a peculiar
feature of the elastic cases only.

We can also obtain the equivalent sand grain roughness k+
s as

ln k+
s = ln ỹ − κ

k + �k
ln(ỹ + d) + κ(8.5 − B + �U+), (3.4)

with the obtained values listed in table 2. See Appendix B for the derivation of (3.4).
Since k+

s is a function of the wall-normal direction, we take the values at ỹ+ = d+ as
representative k+

s . The medium- and high-elastic cases, as well as the high-roughness case,
can be considered to be in a fully rough regime, following Nikuradse’s criteria for the fully
rough regime: k+

s > 70 (Pope 2001). In general, k+
s becomes larger with an increase in the

wall elasticity/deformation, showing a growth comparable to DI (figure 4). The values of
k+

s are quite large for the highly elastic and rough cases; to assess the impact of the fitting
method on our results, we also applied the method introduced by Chen & García-Mayoral
(2023), which enforces the outer-layer similarity. The observed trends are similar to that
reported above, but the numerical values of k+

s are consistently larger, thus hinting towards
the fact that the variation of the von Kármán constant may not be an artefact of the previous
fitting procedure but a necessary feature for these flows. However, in the present study, we
do not focus on the absolute value of the fitting parameters themselves, but rather on their
trends with respect to the variation of the roughness/elasticity, which remain consistent
among the different methods tested; both methods seem to provide values of k+

s very large.
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Figure 7. Reynolds stress components normalised by the friction velocity near the complex wall uτ along the
wall-normal direction for low (light) and high (dark) wall deformations in the elastic (top) and rough (bottom)
cases. The three columns represent the different diagonal components of the Reynolds stress tensor: (left)
streamwise, (middle) wall-normal and (right) spanwise components. The + symbols represent the case of a
rigid, smooth wall from Kim et al (1987).

Thus, further investigations regarding the optimal fitting method and the examination of
the outer-layer similarity in turbulent flows over elastic walls are needed.

3.1.2. Reynolds shear stress
Figure 7 shows the profiles of the diagonal components of the Reynolds stress tensor for
the elastic and rough walls, together with the classical planar channel case as a reference.
The Reynolds stresses are normalised here by the friction velocity near the complex wall,
uτ . In the classical channel flow, the distributions of the Reynolds stresses are symmetric,
with a prevalent streamwise component, and all the components show peaks near the
walls. Similarly to what was observed for the mean velocity profile, all Reynolds stress
components exhibit asymmetric distributions for the complex walls (only the wall-normal
range close to the complex wall is shown here). All the Reynolds stress components are
affected by the non-smooth walls, clearly demonstrating the variation with respect to
wall deformation. Two major differences are evident between the elastic and rigid cases.
Firstly, for the elastic wall, the components of the Reynolds stress tensor most affected
are the wall-normal and spanwise ones, which significantly increase for the case with
high elasticity. The streamwise component decreasing, along with the spanwise and wall-
normal components reinforcing, is often associated with the reduction (or absence) of the
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Case Deformation u′u′/u2
τ v′v′/u2

τ w′w′/u2
τ

Smooth — 0.086 0.29 0.20

Elastic Low 0.086 0.32 0.20
High 0.16 0.076 0.34

Rough Low 0.086 0.32 0.21
High 0.076 0.24 0.15

Table 3. Summary of the location of peak values of the diagonal Reynolds stress components for the low and
high cases in outer scale. The location was measured from the average complex wall interface, ỹ = 0. The data
of the smooth wall are taken from Kim et al (1987).

streamwise streaks, as is discussed later in § 3.2. Also, the strong modifications of the wall-
normal velocity fluctuations in the compliant wall case are due to the weakening of the
wall blocking and wall-induced viscous effects (Perot & Moin 1995a,b), since the elastic
wall can deform and better adapt to the fluid motion (Ardekani et al 2019). Secondly, the
effect of the elastic wall propagates significantly inside the fluid region, with the location
of the peak of the Reynolds stresses shifting away from the average wall interface location
(ỹ = 0) with an increase in the wall elasticity. This is more pronounced for the streamwise
and spanwise components and is confirmed from table 3, which summarises the wall-
normal location (in outer scale) of the peak values of velocity fluctuations. These two
effects are not present for the rough wall, in which all the Reynolds stress components
decrease almost uniformly with the variation of roughness, effectively maintaining the
relative weights among the various components similar to that of the canonical turbulent
channel flows, and thus the streamwise component is still predominant compared with
the others. Also, while the distributions are asymmetric, the effect of the rough wall does
not propagate much into the fluid region, with the location of the maximum fluctuations
always remaining close to the wall, independently of the level of roughness, as shown
in table 3. These roughness effects are consistent with previous experiments (Hong et al
2011; Talapatra & Katz 2012) and simulations (Ikeda & Durbin 2007; Piomelli 2019).

We conclude this section on turbulent statistics by discussing the budget of the
shear momentum, putting together the data of mean velocity, Reynolds stress and solid
contribution. Indeed, the total shear stress in a channel with an elastic wall is the sum of
three contributions: the mean viscous stress μdū/dy, the off-diagonal component of the
Reynolds stress tensor −ρu′v′ and the elastic shear stress G B̄xy (which is null for the rigid-
wall case). Figure 8 shows the wall-normal profiles of all these components: in particular,
the solid, dashed, dashed-dotted and dotted lines represent the total, viscous, Reynolds and
elastic stress, respectively. The figure shows the data for the case with the elastic wall in
the top row and rough wall in the bottom row. As expected from the values of the friction
Reynolds number, when the wall deformation increases, the total stress near the walls
increases for all cases, with the elastic one exhibiting a larger degree of enhancement.
Consistent with the previous observations from the mean velocity profile (figure 5), the
viscous shear stress is reduced in the presence of the elastic wall, a reduction compensated
by an increase in the Reynolds and elastic shear stresses; a similar trend was also observed
by Ardekani et al (2019) and by Rosti & Brandt (2020). Different from the trend of the
diagonal components of the Reynolds stress tensor (figure 7), the peaks of the viscous
and Reynolds shear stress show no clear shift towards the bulk region as the elasticity
increases: the peak of the Reynolds shear stress is located at (2 − y)/h = ỹ/h ≈ 0.2 for
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Figure 8. Profile of the components of the shear momentum budget for the cases with low (left) and high
(right) wall deformation, for the elastic (top, orange) and rough (bottom, blue) walls. The line style represents
the different stress components.

both low- and high-elasticity cases. Those of the viscous stress are located at ỹ/h = 0.07
for the low-elasticity case and ỹ/h ≈ 0.1 for the high-elasticity case. However, we point
out that the peak location could be affected by the scaling of the wall-normal distance
itself. Rosti & Brandt (2020) reported that the peak of the viscous stress shifts towards the
fluid region, and that of the Reynolds shear stress shifts to the wall region; these profiles
were plotted as a function of the wall-normal distance normalised by the wall-normal
location of maximum streamwise velocity. Ardekani et al (2019) show that the peak of the
viscous stress is away from the wall, while those of the Reynolds shear stress are almost
located at the same position; these profiles were illustrated in a symmetric computational
domain. Our domain is asymmetric, and figure 8 shows that the position of zero total
shear stress shifts to the bottom rigid wall side with increasing wall deformation. Similar
to elastic walls, the viscous shear stress is reduced, and the Reynolds shear stress increases
for the rough walls; however, the changes are less than with the elastic wall. Also, the peak
of stress components is not significantly displaced when changing the level of roughness.
The Reynolds shear stress peak is located at ỹ/h = 0.18 among both roughness degrees;
that of the viscous stress appears at ỹ/h = 0.016 for the low case and ỹ/h = 0.058 for the
high case.

In conclusion, the increased drag observed in both the elastic- and rough-wall cases
can be attributed to a significant increase in the Reynolds stresses, although accompanied
by a reduction of the viscous shear stress due to the weakening of the wall blocking
and viscous effects. Notwithstanding these qualitative similarities, the two walls produce
significant differences in the rest of the turbulent statistics. Indeed, the synergistic effect
of wall undulation and elastic wall motion leads to stronger fluctuations, especially in the
wall-normal direction, as well as an increase of the Reynolds and elastic stresses, thus
enhancing the momentum exchange across the whole channel (Pope 2001) and increasing
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Figure 9. Instantaneous contour of the streamwise velocity fluctuations u′ in the x−z plane at (2h − y) =
0.2h in the elastic (top) and rough (bottom) cases with low (left) and high (right) wall deformation. The flow
direction is from left to right.

the drag (Fukagata, Iwamoto & Kasagi 2002). The above results also show that the peak
velocity perturbations move away from the wall towards the centre of the channel, leading
to a wide region of intense turbulent activity throughout the channel (see also Rosti &
Brandt 2017, 2020). These flow modifications cannot be explained uniquely in terms of
wall undulations, as they are not present in the rough-wall case, and suggest profound
modifications of the turbulent structures and of the wall cycle, as discussed in the next
section.

3.2. Turbulent structures

3.2.1. Streamwise structures
In this section, we focus on assessing the effect of the wall motion and undulation on
the coherent turbulent structures, first by means of flow visualisation and next through
quadrant analysis and autocorrelation functions.

Figure 9 shows the streamwise velocity fluctuations in the x−z plane at the wall-normal
location 2h − y = 0.2h. This region is far from the average complex wall interface (y =
2h), and it was chosen to ensure that the solid phase does not reach the plane. Although
the wall shape and the bulk statistics, i.e. the drag increase due to the enhancement of
the Reynolds stresses accompanied by a weakening of the viscous shear stress, between
the elastic and rough cases are qualitatively similar, figure 9 shows striking differences
between the turbulent structures populating the region above the two walls. Indeed, as
the wall elasticity increases in the first row of figure 9, the typical low- and high-speed
structures become more fragmented and shortened, and large-scale spanwise-coherent
structures are formed. This modulation of streamwise structures is consistent with the
previous observation made from figure 7, where a relatively weaker growth rate in the
streamwise direction was seen compared with the other two directions, thus implying
a partial recovery of isotropy of the flow fluctuations. In the rough case, instead, the
spanwise-elongated structures are not formed, and the only qualitative difference between
the case with low and high deformation is the streak partial fragmentation and shortening.
The behaviour over rough walls is consistent with past results from the literature;
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for example, Narayanan et al (2024) reported that turbulence over irregular rough surfaces
exhibits more fragmented streaks compared with smooth surfaces. On the other hand, the
flow structures observed for the elastic case seem to be a prerogative of the fully coupled
case, in which the wall is allowed to move by the fluid–solid interaction. Shorter streaks
and enhanced spanwise coherency of the turbulence structures were found by several
authors when studying permeable walls and canopy flows (see e.g. Raupach, Finnigan
& Brunet 1996; Nepf 2012; Suga et al 2018; Gómez-de Segura & García-Mayoral 2019;
Kuwata & Suga 2019; Sharma & García-Mayoral 2020; Kuwata 2022; Monti et al 2022;
Foggi Rota et al 2024), with a possible explanation coming from the presence of significant
wall-normal fluctuations at the wall/interface.

3.2.2. One-dimensional autocorrelation functions
Next, we quantify these observations by means of the one-dimensional autocorrelation
function of the velocity fluctuations, defined as

Ru′
i u

′
i ,xk

= u′
i (xk)u′

i (xk + �xk)

u′
i (xk)u′

i (xk)
, (3.5)

where the bar represents average and �xk denotes the spatial separation. Figure 10 shows
the one-dimensional streamwise autocorrelation of the streamwise velocity fluctuations u′.
The effect of increasing wall deformation is clearly visible in the figure, as well as
the large differences between the rough and elastic cases. For example, if we focus on
ỹ = 0.2h (the same wall-normal position as figure 9), we can observe that the correlation
is comparable in the two configurations when the deformation is small. However, for larger
wall undulations, it decreases for both cases; this effect is more prominent for the elastic
wall, consistent with figure 9. Additionally, local positive and negative values are observed
along the streamwise direction for both cases, in the region partially occupied by the solid
when the wall undulation is large enough. Such cell-like distinctive patterns were also
observed by Breugem et al (2006) when studying turbulent flows over a porous medium,
and were attributed to large-scale pressure fluctuations. In our case, the characteristic
wavelength of this pattern is approximately h, which corresponds to the wavelength of
wall undulation found in § 2.3. Although the surface undulations are comparable among
the elastic and rough cases, this distinctive pattern is most prominent in the elastic case,
thus being promoted by the wall motion on top of the wall shape effect. To complete
the picture, figure 11 presents the spanwise autocorrelation of the streamwise velocity
fluctuations. Focusing again at ỹ = 0.2h, we can observe that the high-elasticity case
shows a significantly increased spanwise correlation (consistent with figure 9), while the
effect of roughness is minor, although still present. Note that the level of correlations
remains large in the whole region swept by the wall motion (the grey region). On the other
hand, the rough case shows a correlation that rapidly decreases in the same region (when
moving away from the wall), re-emphasising the fact that it is the dynamic wall motion
that enhances the spanwise coherency.

3.2.3. Premultiplied energy spectrum of the velocity fluctuations
To characterise the predominant length scale observed in the coherent structures and the
autocorrelation functions, we look at the premultiplied energy spectrum of the velocity
fluctuations, ki u′2

k /(hu2
τ ), where ki is the wavenumber with i being the x or z direction.

Figures 12 and 13 show the iso-contours of the premultiplied energy spectra as a function
of the wavelength λi/h and wall-normal distance ỹ = 2h − y, with i being in streamwise,
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ỹ/
h

�x/h
0 1 32

�x/h
0 1 32

HighLow

Figure 10. One-dimensional autocorrelation functions of the streamwise velocity fluctuations as a function
of the streamwise separation, stacked for different wall-normal distances from the top wall, i.e. ỹ = 2h − y.
The top and bottom rows show the results for the elastic and rough cases, and the columns represent the
level of surface deformation: low (left) and high (right). The shaded grey area with hatching shows the region
occupied by the solid, while the region without hatching represents the area spanned by the wall fluctuations.
The coloured lines represent the values from −0.1 to 0.9, with 0.2 increments, and the dashed and solid lines
are used to distinguish the negative and positive values.

wall-normal or spanwise directions. The colours of contours refer to the smooth (black),
elastic (orange) and rough (blue) wall channels, respectively.

We start by looking at the streamwise spectra, reported in figure 12. The smooth-wall
case (black-coloured contour) exhibits a clear single peak in the distributions, which is
comparable to what was observed for the high-roughness case, but with reduced intensity.
Figure 12 shows that in the elastic case, the dominant length scale becomes smaller in the
streamwise direction with an increase in the wall elasticity. Indeed, the elastic-wall cases
exhibit a peak closer to the wall and at a smaller length scale, at around λx/h ≈ 1.0 for
all velocity components. This is also the length scale that is observed in the instantaneous
contour plot of the streamwise velocity fluctuation (shown in figure 9) and the wavelength
of the surface undulations (shown in figure 3).

Next, we consider the spanwise premultiplied energy spectra, as shown in figure 13. For
the rigid-wall case, the streamwise fluctuations are dominant compared with other velocity
components, and the peak of the wall-normal components appear slightly farther away
from the wall than the streamwise and spanwise components. With the increase in wall
elasticity, figure 13 shows that the peaks in the streamwise and wall-normal directions are
distributed around larger length scales, typical of large-scale rollers. In both the streamwise
and spanwise directions, the wall-normal component exhibits intense values also within
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ỹ/
h

�z/h
0 0.5 1.51.0

�z/h
0 0.5 1.51.0

HighLow

Figure 11. One-dimensional autocorrelation functions of the streamwise velocity fluctuations in the spanwise
direction. The details of the figure are the same as for figure 10.

the area spanned by the wall fluctuations (grey region in the figure). Similar distribution is
also observed in the low-roughness case, but overall, the spectrum distributions correspond
to those of the smooth-wall case except for the streamwise components. As shown in
figure 13(a), there is an enhanced correlation along the span, which is representative of
the turbulent structures getting slightly larger along that direction.

From the above observations, the motion of the elastic walls is seen to influence the
streamwise length scale by weakening it. Eventually, the spanwise length scale gets larger,
and the velocity fluctuations (especially the wall-normal component) in the range of wall
motion get amplified by the elastic wall. This observation is also reported by Luhar et al
(2015), who found that the large, steady spanwise mode can be strengthened efficiently
over a compliant wall.

3.2.4. Quadrant analysis
As a final step, we use quadrant analysis to identify the impact of the complex walls on
the different events (Wallace, Eckelmann & Brodkey 1972; Wallace 2016). Each quadrant
is defined as

Qm = 1
Nm

∑
(u′ṽ′)m, (3.6)

where Nm is the number of events in each quadrant m = 1, 2, 3, 4. The first Q1 (u′ > 0,
ṽ′ > 0) and the third Q3 (u′ < 0, ṽ′ < 0) quadrants contribute to the positive production of
the shear Reynolds stress, and have a minimum contribution to the Reynolds shear stresses.
The second Q2 (u′ < 0, ṽ′ > 0) and the fourth Q4 (u′ > 0, ṽ′ < 0) quadrants represent
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Figure 12. The premultiplied spectra kx u′2
i /(hu2

τ ) in the streamwise wall-normal plane. The leftmost column
refers to the smooth-channel case, while the orange and blue panels correspond to the elastic- and rough-wall
cases, respectively, shown for both the low (left) and high (right) degrees of deformation. The contour level
range is the same for all cases for each velocity component. The shaded grey region represents the area spanned
by the wall undulations. The spectrum data for the plane channel case are taken from Lee & Moser (2015).
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Figure 13. The premultiplied spectra kzu′2
i /(hu2

τ ) in the spanwise direction. The leftmost column refers to the
smooth-channel case, while the orange and blue panels refer to the elastic- and rough-wall cases, respectively,
shown for both the low (left) and high (right) degrees of deformation. The contour level range is the same for all
cases for each velocity component. The shaded grey region represents the area spanned by the wall undulations.
The spectrum data for the plane channel case are taken from Lee & Moser (2015).
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Figure 14. Frequency of the events of the four quadrants of the Reynolds shear stress as a function of the
wall-normal direction. The top panels correspond to the elastic wall and the bottom to the rough wall, while
the two columns show increasing levels of wall deformation going from left to right. The line styles distinguish
the quadrant: Q1 (solid), Q2 (dashed), Q3 (dash-dotted) and Q4 (dotted). The background grey with hatching
shows the average solid layer, with the minimum and maximum extension of the solid marked in plain grey.

ejection and sweep events, and are significant contributors to the turbulent kinetic energy.
Note that, to compute Qm , we use only the fluid velocity fluctuations, and that we consider
the wall-normal velocity ṽ′, corresponding to the ỹ = 2h − y coordinate system, where a
positive ṽ′ corresponds to a fluctuation directed from the top-complex wall towards the
inner-fluid region.

Generally, planar turbulent channel flows show predominant sweeps close to the
wall, ejection away from the wall and with ejection and sweep contributions being
approximately the same at around 12 wall units (Kim et al 1987). Figure 14 shows the
decomposed quadrant events as a function of the wall-normal direction ỹ, for the low-
and high-complexity cases of the elastic and rough walls. While the low-elasticity case
exhibits a trend similar to the classical turbulent channel flows, the situation changes when
elasticity increases, with all events becoming generally stronger and propagating deeply
inside the solid layer and in the bulk of the channel, consistent with the trend of velocity
fluctuations shown in figure 7. The high-elasticity case shows that Q2 (ejections) events
significantly contribute to turbulent activity within the region of oscillation of the elastic
wall, rather than the usual Q4 (sweeps) events, and we also observe quite strong Q3 events.
Here Q2 is the predominant event not only within the elastic-wall oscillation region, but
also in the bulk, where Q2 events overtake Q4 ones also in classical channel flows.

For rough walls, instead, the trend of the quadrants is similar to that of planar channel
flows, as shown in the bottom row of figure 14. Indeed, Q4 dominates over Q2 near
the wall, with the strength of each event increasing with the amplitude of the roughness.
The wall-normal position where Q2 motions overtake Q4 moves away from the interface
for large roughness, as the wall undulations increase. As expected, inside the completely
rigid layer, both motions vanish entirely. The above trends are also observed in the study
by Coceal et al (2007), where turbulent flows over a three-dimensional array of cubical
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Figure 15. Physical- and Fourier-space time diagrams of the amplitude of the elastic-wall interface, averaged
along the spanwise direction, for the (a,c) low-elasticity and (b,d) high-elasticity cases. (a,b) The physical
space–time diagrams. (c,d) Streamwise wavenumber–frequency spectra. The lines represent different shear
speeds: (solid) calculated from the present data, (dash-dotted) the Rayleigh wave u R = 0.954

√
G/ρs and

(dotted) the analytical shear speed uS = √
G/ρs . The white cross represents the position corresponding to

the peak of the spectrum.

roughness were investigated; those authors found that strong sweeps were predominant
in the rough region, while strong ejections were dominant above the top of the array,
consistent with our results. Also, it was found that two-dimensional roughness leads to
the reduction of ejections (Krogstadt & Antonia 1999), caused by low-momentum fluid
being trapped between the rough elements (Krogstad et al 2005). Similar trends have been
observed also for other complex walls, such as porous media (Suga, Mori & Kaneda 2011;
Kuwata & Suga 2016c; Li et al 2019) and canopy flows (Finnigan 2000; Poggi et al 2004),
where it was reported that the turbulent activity is dominated by strong Q4 sweeps close
to the interface, and dominating Q2 ejections far away from the interface. In addition,
Kuwata & Suga (2016c) compared the turbulent flow over a rough wall with a rough–
permeable wall, with identical interface geometry. Both cases showed more decisive sweep
than ejection events at the interface, especially for the rough–permeable walls, with the
location where the ejection events overtake being roughly the same at around 13 wall
units, as also shown by Finnigan, Shaw & Patton (2009), Suga et al (2011) and Kuwata &
Suga (2017).

Overall, the rough walls show a behaviour that does not significantly change from that
of the classical channel flows, unlike what we observed for the channels with elastic
walls, where the motion of the elastic walls strongly modifies the distributions of the flow
fluctuations close to the wall and throughout the channel.

3.3. Spatio-temporal analysis of the elastic-wall displacements
To understand the links between the motion of the elastic wall on the spatial and temporal
length scales of the flow, we examine the space and time variation of the elastic-wall
displacements for the low- and high-elasticity cases. Figures 15(a) and 15(b) show the
displacement of the elastic wall as a function of space along the streamwise direction
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(averaged over the spanwise direction) and time. The surface displacement propagates
in the streamwise direction with a specific speed u P , marked by the solid line. In the
figure, the dash-dotted line represents the Rayleigh wave speed u R = 0.954

√
G/ρs and the

dotted line represents the speed of the shear waves uS = √
G/ρs . Additionally, we show the

streamwise wavenumber spectra in figures 15(c) and 15(d). These spectra are calculated
by calculating the Fourier transform of the temporal data in the streamwise direction, at
each spanwise location and then subsequently averaging across the spanwise direction.
As elasticity increases, the calculated shear speed u P reduces from 0.71Ub to 0.55Ub.
This trend was reported by Esteghamatian et al (2022) (numerical) and Lu et al (2024)
(experimental), the opposite trend by Greidanus et al (2022). When spanwise structures are
dominant, the propagation speed is 0.53Ub in Lu et al (2024), 0.55Ub in the present study
and 0.65Ub in Esteghamatian et al (2022). The speed of the streamwise-travelling wave u P
becomes closer to the material shear speed uS as the elasticity increases, and thus figure
15(d) shows a better correlation than figure 15(c). This is consistent with the previous
observations that only the case with high elasticity exhibits the strongly spanwise coherent
structures. Consistently with Esteghamatian et al (2022), the observed speed is always
lower than the pure shear speed uS , and more similar to the Rayleigh wave advection speed
u R , even with different elasticity. Also, we computed the same in the spanwise direction,
but no clear propagation mode is evident (not shown). Overall, these observations agree
with the results of Esteghamatian et al (2022).

4. Conclusions
This study aimed to understand the effects of wall undulations, wall-normal velocity
fluctuations and the dynamic wall movement on the flow physics of elastic walls. This
was done by comparing the elastic walls (which is a combined scenario of all the above)
with equivalent rough walls, and thus isolating these effects individually. We performed
direct numerical simulations of turbulent channel flows over different types of complex
walls and compared the results. The results show that the dynamic behaviour due to the
elastic walls contributes the most in determining the near-wall flow behaviour, followed
by wall undulations due to the roughness.

First, we consider elastic and rough walls to understand the effect of the dynamic fluid–
solid interaction on the flow. Thus, we consider elastic walls of different flexibilities
and equivalent rough walls, obtained from an instantaneous surface undulation of the
elastic walls. The bulk turbulent statistics show similar behaviours in a qualitative sense;
both elasticity and roughness intensify turbulent activities. However, there are specific
differences in the way these effects are manifested; the elastic wall changes the slope of
the mean velocity profile considerably, and the Reynolds stresses peak away from the wall
(more towards the bulk) compared with the rough wall. There is a partial recovery of
isotropy of the velocity fluctuations observed for the elastic wall, where the wall-normal
and spanwise components grow stronger than the streamwise one, with the magnitude of
all components becoming almost comparable when the elasticity increases. Differently,
for the rough wall, only the near-wall region is affected, and the observed trends are
more similar to those of the classical channel flows, with the streamwise component still
remaining the largest. The above observations suggest that, while turbulent flows over
relatively rigid elastic walls show similar effects produced by the rough walls, when wall
compliance increases, additional effects arise, which are peculiar to the fluid–structure
interaction. These differences can be explained in terms of turbulent structures, which
exhibit clear differences for the rough and elastic walls. Indeed, as a result of the dynamic
interaction between the fluid and elastic wall, there is an increased vertical momentum
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exchange in the fluid, resulting in the highly elastic walls showing a spanwise organised
behaviour, while the rough walls maintain in relative scales a predominant streamwise
coherency. For rigid and smooth walls, sweeps dominate the near-wall region, with
ejections taking over in the bulk of the channel. With increasing wall deformation, this
remains unchanged for the rough wall, while the elastic near-wall region is dominated
by ejections, an effect induced by the wall motion. The intense wall-normal fluctuations,
characterised by strong ejections, and the cell-like patterns of the autocorrelation function
in the streamwise direction Ru′u′,x observed for the elastic walls are consistent with
previous numerical and experimental results (Rosti & Brandt 2017; Ardekani et al 2019;
Esteghamatian et al 2022). We also examine the speed at which waves propagate on the
surface of the elastic wall. Even for low-elasticity cases, the wave propagates dominantly in
the streamwise direction, with the shear speed decreasing and getting closer to the material
shear speed with an increase in elasticity. These waves, clearly absent in the rough cases,
can be a source of the observed differences among the elastic and rough walls.

In addition to the wall shape (evaluated through rough walls), we also conducted
additional simulations to understand the effect of the strong wall-normal fluctuations at the
interface (reported in Appendix C). For this, we compare turbulent flows over elastic and
porous walls, the latter created with the same average vertical fluctuations at the interface.
Compared with elastic walls, the mean-velocity profile of the porous walls is more similar
to that found for classical channel flows; similarly, a comparable small effect on the drag
is measured for the porous wall. In the latter, we observe that the turbulent structures are
slightly strengthened along the streamwise and spanwise directions, in contrast to elastic
walls producing a strong spanwise coherency. In other words, structural modifications
similar to those obtained in the elastic cases cannot be observed by just introducing mean
wall-normal disturbances at the interface.

In conclusion, roughness accounts for a large part of the flow modifications observed
for the elastic walls, but the coupled wall movement definitely introduces additional
peculiar effects that further significantly alter the resulting flow. Although the wall-normal
fluctuations are also enhanced by increasing the wall elasticity, the effect of the vertical
fluctuation at the interface in itself cannot reproduce the structural changes observed in
the elastic cases, re-emphasising the need to include the full dynamic fluid–structure
interaction effects when modelling the turbulent flow over an elastic wall. While it would
be interesting to investigate even larger Reynolds numbers in the future, the computational
cost can soon become prohibitive. Implementing simple models for the walls, e.g. a
spring–mass-damper model (Kim & Choi 2014), a model formed by a tensioned network
of compressive members interconnected by tensile members (Luo & Bewley 2005) etc.
might help to reduce the computational cost, but would be subject to the limitations of the
chosen model.
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Appendix A. Continuum mechanics for nonlinear hyperelastic material
When continuum structures deform, the body changes in its shape and/or volume from
an initial (undeformed) configuration to a current (deformed) configuration. To associate
between both the coordinates, the deformation gradient tensor F(X, t) (F hereafter) is
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introduced, defined as

F = dx
dX

, (A1)

where X is a position vector in the undeformed configuration and x is a position vector in
the new deformed configuration. As a deformation tensor, the Green strain tensor (or left
Cauchy–Green deformation tensor), B, is introduced as

B = F FT . (A2)

Further, a strain energy density function W is constructed, which is a scalar-valued
function that governs the relationship between stress and strain. Once W is known, we can
obtain the stress under any deformation. Here W is a function of the invariants of B and
thus has the benefit that the obtained values are independent of the coordinate. Using W ,
the elastic part of the Cauchy stress is expressed by

σ = 1
det F

∂W

∂ F
· FT . (A3)

Details about the Green strain tensor can be found in, for example, Bonet & Wood (1997,
chapter 3).

In the current study, we have modelled the solid as a hyperelastic neo-Hookean model.
A hyperelastic material is a class of elastic materials for which the work done by the
stresses is only dependent on the initial and final configurations, and the relation between
stress and strain is described through a strain energy density function, W . A Mooney–
Rivlin material is widely used for modelling rubber-like materials, whose stress–strain
relationship is not linear, while the behaviour is assumed to be completely elastic, isotropic
and incompressible throughout the deformation process. Particularly, a neo-Hookean
model is a particular case of the Mooney–Rivlin material; for the incompressible case,
W is expressed as a function of an invariant of B:

W = G

2
(Ic − 3), (A4)

where Ic = tr(FT F) and G is the transverse elasticity. From the above, the Cauchy stress
tensor of the elastic material becomes as follows:

σ = G B. (A5)

Details about the hyperelastic material can be found in, for example, Bonet & Wood (1997,
chapter 5).

Appendix B. Equivalent sand grain roughness
The procedure for determining the equivalent sand grain roughness ks is as follows. The
semi-logarithmic mean velocity profile varies depending on the equivalent sand grain
roughness ks as (Nikuradse 1933)

ū+ = 1
κ

ln
y

ks
+ 8.5, (B1)

where ū+, κ and y are the streamwise mean velocity normalised by the friction velocity,
the von Kármán constant and the wall-normal distance, respectively. First, we introduce
the wall-normal shift of the origin d as done by Jackson (1981) for rough walls and
Breugem et al (2006) for a porous medium. Next, by replacing y into y + d (Okazaki
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Figure 16. The wall-normal components of the Reynolds stress tensor as a function of the wall-normal
coordinate with the components normalised by (a) U 2

b and (b) u2
τ , for the elastic (orange) and porous (blue)

cases. The colour brightness represents the level of wall-normal fluctuations at the wall, going from low to high
(bright to dark). The grey dash-dotted line shows the position at y/h = 2, i.e. the interface between the fluid
and solid phases.

et al 2020), we compare the previous (B1) with the following:

ū+ = 1
k + �k

log(ỹ + d)+ + B − �U+, (B2)

so that we can obtain the length scale k+
s as

ln k+
s = ln ỹ − κ

k + �k
ln(ỹ + d) + κ(8.5 − B + �U+). (B3)

Length scale k+
s is a function of the wall-normal direction, and we take the values at

ỹ+ = d+ as representative k+
s .

Appendix C. The effect of the wall-normal fluctuations
The dynamic movement of the elastic wall causes strong non-zero velocity fluctuations
in the wall-normal direction, which can be linked to the reduction of coherency of the
streamwise velocity fluctuations (Rosti & Brandt 2017; Ardekani et al 2019). Additionally,
Breugem et al (2006), Jiménez et al (2001), Kuwata & Suga (2016b) and Rosti et al (2018b)
reported a correlation between enhanced wall-normal fluctuations and the spanwise-
coherent structures (rollers). Thus, in this appendix, we compare the results of the cases
with elastic walls with those of model permeable walls (termed as ‘porous’ later), whose
effects are implemented through imposed boundary conditions explained as follows.
Instead of simulating the full porous medium, here we model the permeability effect by
imposing the following boundary conditions at the interface between the fluid and the
porous medium:

u = w = 0, v = −βp′. (C1)

In this effective boundary condition, the wall-normal velocity is assumed to be
proportional to the local pressure fluctuations at the interface, and the amount of
permeability can be controlled by varying the proportionality coefficient β. The classical
impermeability condition, v = 0, is recovered when β = 0, while β → ∞ represents

1021 A4-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
70

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10703


Journal of Fluid Mechanics

Wall Complexity β(ρUb) β(ρuτ ) Rew
τ Reτ d/h d+ k + �k �U+

Porous Low 0.0221 0.0014 179.3 175.9 0.0 0.0 0.38 0.1
Medium 0.0573 0.0036 178.2 178.7 0.0 0.0 0.38 0.35

High 0.107 0.0070 181.1 183.1 0.0 0.0 0.38 0.6

Table 4. Summary of the parameters and flow characteristics in the porous cases. The table reports the
permeability coefficient β(ρUb) and β(ρuτ ), the rigid-wall friction Reynolds number Rew

τ , the porous-wall
friction Reynolds number Reτ , the wall-normal shift d/h for the outer scale and d+ for the inner scale, the
modified von Kármán constant k + �k and the logarithmic shift �U+.

an unrestrained wall-normal velocity and zero pressure fluctuations on the wall.
These boundary conditions have been proposed and used before to study turbulent channel
flows over porous surfaces by Jiménez et al (2001), who also reported spanwise organised
structures. In our study, we consider three cases, summarised in table 4, with increasing
levels of permeability controlled by the parameter β, whose values are chosen such that
the wall-normal fluctuations in bulk units, on average, are similar at the interface of the
porous and the corresponding elastic cases. We confirm this in figure 16, where we show
the profile of the wall-normal components of the Reynolds stress tensor for all elastic
(orange) and porous (blue) cases. In figure 16a, the velocity fluctuations are scaled by U 2

b ,
while in figure 16b, they are scaled by u2

τ . From figure 16a, in the low and medium cases,
the velocity values of elastic and porous walls at the interface are of comparable intensity.
Note that the average fluctuations for porous cases were selected to be the same as those
for elastic cases, while the rest of the profile is not forced and arises naturally from the
evolution of the governing equations. Furthermore, we report in figure 16(b) the same data
in plus units, which shows a quantitative mismatch of the velocity fluctuation at the wall
interface. However, the qualitative trend with the complexity parameter (G and β) remains
similar, i.e. the fluctuations increase in magnitude with increasing degree of complexity
for both the elastic and porous cases.

Table 4 reports the flow characteristics for the porous cases. Clearly, for the present set
of parameters, there is no significant variation in the friction Reynolds number Reτ of
the porous wall, which remains similar to those of the canonical turbulent channel flow,
except for a quite mild increase. Figure 17 exhibits the mean velocity profiles in both outer
and inner scales for the case of high wall elasticity/permeability (note that the results for
the elastic walls are the same as discussed in the previous sections). As expected from
the values of Reτ , the distribution of the mean velocity profile is only slightly affected
by the present permeable walls. Similarly, with increasing wall permeability, the Reynolds
stresses in the streamwise and wall-normal directions are enhanced close to the permeable
wall, while the ones in the spanwise direction remain almost unaltered, as shown in
figure 18.

To investigate the turbulent coherent structures, we look again at the instantaneous
streamwise velocity fluctuations in the wall-parallel plane at 2h − y = 0.2h, shown in
figure 19. We can observe that the low- and high-speed streaks are retained, with only a
minor increase in the spanwise length for the high-wall-permeability case. This tendency
is also observed in the one-dimensional autocorrelation functions of the streamwise
velocity fluctuations, plotted as a function of the streamwise and spanwise spacings in
figure 20; at 2h − y = 0.2h, the correlation length within both directions increases for
increasing permeability. Additionally, for high wall-normal fluctuations, the distinctive
wavy distribution previously observed for the elastic cases in figure 10 is not present for
the porous case.
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Figure 17. The streamwise velocity profile as a function of the wall-normal direction in the (a) outer and (b)
inner scales, for the case with high wall-normal fluctuations at the wall. The line colours represent the wall
types: orange (elastic) and blue (porous). The + symbols correspond to the results of the classical turbulent
channel flow by Kim et al (1987).
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Figure 18. The diagonal terms of the Reynolds stress tensor normalised by uτ for a porous wall as a function
of the wall-normal distance. The colour brightness indicates the level of β, going from low (bright) to high
(dark). The + symbols correspond to the results from Kim et al (1987).

We briefly address here some of the differences and similarities between the current
observations of the porous configurations compared with Jiménez et al (2001), noting
that the permeability of the interface is not the same in the two works. Jiménez et al
(2001) report large spanwise-coherent structures, with a strong spanwise correlation of the
streamwise velocity fluctuations. While our highly porous case shows a stronger increase
in correlation along the streamwise direction compared with the spanwise one, still the
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Figure 19. Contour fields of the streamwise velocity fluctuations u′ (colour map) and wall-normal fluctuations
ṽ′ (isolines) at 2h − y = 0.2h for the porous case. The colour map for u′ ranges from −0.3 (blue) to 0.3 (red),
while the contour of ṽ′ goes from −0.15 to 0.15, with increments of 0.01. Dashed lines are used for negative
contours. The left- and right-hand columns correspond to the low- and high-permeability cases, and the flow
direction is from left to right.
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Figure 20. One-dimensional autocorrelation of the streamwise velocity fluctuations in the (a) streamwise and
(b) spanwise directions. The background colours and line representation are the same as for figure 10.

coherency in the spanwise direction increases as we increase the wall permeability, as
shown in figure 19 and in agreement with their results. Similarly, Jiménez (2004) reports
low-velocity streaks in the regions of blowing and high-velocity streaks in the regions of
suction, an effect of the vertical disturbances of the permeable wall; in figure 19, we have
depicted the wall-normal velocity component superimposed with the streamwise velocity
streaks for our results, and similar conclusions can be drawn.
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Overall, the porous cases show that, in spite of the similar wall-normal velocity
fluctuations at the boundary, the flow behaviour between porous and elastic walls stays
different, suggesting that these do not solely dictate the near-wall (elastic) dynamics. Note,
however, that the porous media have been simulated only with the simplest model available
in the literature, where all the effects are concentrated into a boundary condition depending
on a single parameter.
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