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Abstract
A reduced dispersion relation for multibeam laser–plasma instability is derived. The dispersion relation includes the
combined effects of self-coupling and interaction with other beams by sharing a common scattered light (SL modes)
and by sharing a common plasma wave (SP modes). The latter two have the most prominent collective effects of all. We
have solved the dispersion relation numerically for stimulated Raman scattering, and set different beam configurations
and polarizations to discuss the spatial distributions of the temporal growth rate. The instability in the beam overlapping
region is complicated, but there are still a few simple rules that govern the system, such as the dominancy of SL modes
and subdominancy of backscattering and SP modes. The maximum growth rate always occurs at these special modes,
or a new mode formed by combining two or three of the special modes. The reduced model provides us with the ability
to understand the underlying physics of multibeam instabilities under general laser and plasma conditions.
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1. Introduction

Laser propagating in under-dense plasma may trigger
instabilities such as stimulated Raman scattering (SRS) and
stimulated Brillouin scattering (SBS) where the laser decays
into a scattered light and a plasma wave[1]. The laser–plasma
instability (LPI) is one of the most troublesome obstacles
to inertial confinement fusion (ICF). To achieve fusion,
hundreds of laser beams are required to symmetrically
irradiate the target, and these beams would inevitably
overlap in plasma, forming a unique beam overlapping
region different from the single-beam propagating region.
The instability there is what we called the multibeam LPI[2].

Multibeam LPIs include many existing instabilities,
such as cross-beam energy transfer (CBET)[3–5], which
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is two-beam SBS, and multibeam two-plasmon decay
(TPD)[6–10], which is also based on two-beam interaction.
More beams may introduce brand new features, such as
unexpected scattering geometries[11–13], strengthened and
collimating electron plasma waves[14–16]. There are two
special modes associated with multibeam effects, one with
a shared scattered light, which is called the SL mode,
and the other with a shared plasma wave, which is called
the SP mode[17]. The two modes constitute most of the
dominant modes in the beam overlapping region. The
multibeam instability strongly relies on the beam number,
configurations and polarizations, so understanding the
instability growth in the beam overlapping region with a
general condition is of great importance, but it is still an
open question. The dominant mode could be the SL mode,
SP mode, backscattering, or another multibeam mode. A
general method to determine the growth rates of all these
modes is the key point to solve the problem.

Recently, we derived a general dispersion relation for
multibeam SRS and SBS with an arbitrary beam number,
configurations and polarizations, and obtained analytic
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growth rates for some special cases[18]. Although the
general dispersion relation in the form of a determinant
is largely simplified from the full dispersion relation of
the (N2 − N + 1)th-order matrix to the Nth-order matrix,
numerical calculation is still unrealistic for large beam
numbers N > 2. In this paper, the determinant of the Nth-
order matrix is further simplified to the summation over all
beams, reducing the basic calculations from (N2 −N +1)! to
N! and finally to a maximum of N(2N − 1), which is easier
for numerical calculations. The dispersion relation includes
three main interactions, the self-coupling term, SL mode
terms and SP mode terms, so we use it to study the spatial
distributions of the SRS growth rate under various beam
configurations and polarizations.

The 100 kJ laser facility in China[19] is used here, where
four cones of 28.5◦, 35◦, 49.5◦ and 55◦ of a total of
48 beams are arbitrarily chosen either with s-polarization
or p-polarization. A study with two-, four- and eight-beam
interactions shows the complexity of multibeam instability
growth. We have also discussed a backward seed with
the same polarization with its incident beam propagating
through the beam overlapping region. The backward scatter-
ing is compared with the multibeam modes. From the results,
we can deduce some simple features for multibeam instabil-
ity. Firstly, backward scattering is usually not the dominant
mode in the beam overlapping region, especially when the
number of beams is larger than two. Secondly, in most cases
SL modes dominate the beam overlapping region. Particu-
larly for the symmetric case, the shared scattered light com-
ing from the polar axis (symmetric axis) has the maximum
growth rate. Thirdly, SP modes could dominate the system
when the coupling is less efficient and the incidence angle
is small. Last but not least, there are some other collective
modes resulting from the combination of two or three special
modes that would scatter from other directions. These modes
exist when the coupling is not very efficient. The rules
provide us with a simple method to estimate the instability
growth in the beam overlapping region. Particle-in-cell
(PIC) simulations are also performed to verify the spatial
distribution obtained by the reduced model. It shows that our
reduced model is in good agreement with two-dimensional
(2D) PIC simulations, and has the advantage of simulating
more beams in three dimensions with less simulation time.

The paper is organized as follows. In Section 2, a reduced
dispersion relation is derived. The key point of the polar-
ization factor in the dispersion relation is established before
we numerically solve the dispersion relation. In Section 3
we discuss the distribution of the SRS growth rate under
various conditions, in order to understand the physics of
multibeam instability step-by-step. Then we summarize and
induce some simple rules valid for most common multibeam
situations in Section 4. To verify the reduced model, 2D
PIC simulations are also performed in Section 5. Finally,
conclusions are given in Section 6.

2. Reduced dispersion relation for multibeam laser–
plasma instability

The dispersion relation for SRS or SBS in multiple laser
beams with arbitrary beam numbers, polarizations and con-
figurations has been derived recently, in the form of a
determinant[18], as follows:
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where the diagonal elements of the coefficient matrix are
given by the following:
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It is reduced from the full dispersion relation in a form
of a determinant of the (N2 − N + 1)th-order matrix, but
still intractable when the beam number N is large. It
describes the interactions of a particular beam i0 with
all N beams, including the coupling with itself. The
incident laser beams have the same frequency ω0 but
different wave vectors

−→
K 0i, and the vector difference is

�
−→
K i0j0 = −→

K 0i0 −−→
K 0j0 . The coupling coefficients �0 could

represent either SRS, �2
0 = v2

0ω
2
pe/4, or SBS, �2

0 = v2
0ω

2
pi/4,

respectively, where v0 is the quiver velocity of the
electron in a laser and ωpe, ωpi are the electron and ion
plasma frequency, respectively. The kernels are dispersion
functions representing the properties of decay waves.
Here, Dl represents the light wave dispersion function,
Dl(

−→
k ,ω) = −ω2 − 2iνsω + c2k2 + ω2

pe, Dp represents

the plasma wave, either a Langmuir wave, Dp(
−→
k ,ω) =

−ω2 − 2iνeω + 3v2
ek2 + ω2

pe, or an ion acoustic wave,

Dp(
−→
k ,ω) = −ω2 −2iνiω+c2

s k2, ν is the phenomenological
damping rate and c,ve,cs are light speed, electron thermal
velocity and ion sound velocity, respectively. The trickiest
term discussed in this paper is cosφ0i, the polarization factor,
which will be defined and explained later.

In Ref. [18] we derived analytic results of the dispersion
relation for two special cases, one with a shared scattered
light, also called the SL mode, and the other with a shared
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plasma wave, called the SP mode. Other than these two
special modes, the analytic growth rate of any scattering
geometry is unavailable. Therefore, numerical calculations
of Equation (1) are desperately needed to obtain the whole
distribution of the growth rate in three dimensions. To
make it feasible for numerical calculation, we further reduce
the dispersion relation to a simpler form. Equation (1) can be
transformed into the following:

1 =
N∑

j0=1

1
εj0

, (3)

after some algebra, where εj0 = 1+1/μ
j0j0
k−�Ki0 j0

. Equation (3)
is equivalent to Equation (1) but in a more simplified form;
however, we note that there is a double summation on the
denominator, which is difficult for calculation. Therefore,
we should further reduce the dispersion relation using its
resonant properties. The inner summation is over the variable
i in the formula of 1/μ

j0j0
k−�Ki0 j0

, while the outer summation
is over j0. When j0 �= i0, we only consider the term i = j0
in the inner summation, since it is non-resonant for i �= j0
and j0 �= i0. When j0 = i0, the inner summation should be
fully considered. After the approximation, Equation (3) is
rewritten as follows:
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The double summation is now reduced to the single
summation; however, one of the summations is still on the
denominator. We could further turn this term into numerator
by multiplying it on each side and noting that the terms in∑×∑

are negligible compared with other terms, which are
all zero or first order. Finally, we get to a simpler and more
physical dispersion relation for multibeam LPI:
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The physics of the dispersion relation is clearly
demonstrated: the first term on the right-hand side (RHS)
is the self-matching or single-beam term of beam i0; the
second term on the RHS represents the interaction of other
beams with beam i0 while sharing a common scattered light,
Dl(

−→
k − −→

K 0i0,ω − ω0); the third term is the counterpart
of the second term but sharing a common plasma wave,
Dp(

−→
k ,ω). Therefore, the reduced dispersion relation consid-

ers the leading parts of the beam interactions, which includes
contributions of the single-beam and shared decay waves,
and only has a calculation of 2N − 1, which is much easier
for numerical calculation. The dispersion relation could also
be transformed to a reference frame of scattered light, where−→
k and ω are solved for the scattered light. The detailed

derivation of such dispersion relation is presented in the
Appendix.

One should also note that the reduced dispersion relation
is for a particular beam i0 due to the simplification of the
full (N2 − N + 1)th-order matrix to an Nth-order matrix[18].
Solving the reduced dispersion relation for beam i0, we
can obtain the growth rates describing properties of the
multibeam system; however, it will lose some special modes
excited by other beams. Therefore, to get a complete picture
of the multibeam system, the calculation over all beams (i.e.,
a loop from i0 = 1 to N) is needed, especially when beams
are different.

2.1. Some special solutions

The dispersion relation is analytic solvable under the fol-
lowing cases. Firstly, for single-beam interaction, N = 1, the
dispersion relation is given by the following:

1 = k2�2
0
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k −−→

K 0i0,ω−ω0

) . (6)

Let us assume ω = ωk + iγ , where ωk is the frequency of
the plasma wave with wave number k and γ is the growth
rate. For weak coupling γ � ωk and neglecting damping, the
dispersion functions are approximated by Dp ≈ −2iγωk and
Dl ≈ 2iγ (ω0 −ωk). It is now possible to get the single-beam

growth rate, γ0 = kv0
4

√
ω2

pe,i
ωk(ω0−ωk)

, where the polarization
factor could be unity.

For N > 1, there are two special cases with analytic
results. If the first and second terms of Equation (5) could
be resonant, while the third term is non-resonant, we neglect
the non-resonant term and obtain the following:
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(7)
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An analytic result emerges when |−→k −�
−→
K i0j0 | = |k| for

j0 = 1, . . . ,N, so both Dl and Dp could be resonant at the
same time. We have Dl(

−→
k − −→

K 0i0,ω − ω0) ≈ 2iγ (ω0 −
ωk) and Dp(

−→
k − �

−→
K i0j0,ω) = Dp(k,ω) ≈ −2iγωk. The

multibeam growth rate is then given by the following:

γ 2
SL = k2

SL�2
0

4ωk (ω0 −ωk)

N∑
j0=1

cos2φ0j0 . (8)

The wave number kSL satisfies the condition |−→k −
�

−→
K i0j0 | = |k| for j0 = 1, . . . ,N, which indicates that all

beams share a common scattered light[18]. This is the so-
called SL mode.

On the other hand, when resonance occurs in the first
and the third terms of Equation (5), the dispersion relation
becomes the following:
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)
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Similarly, if |−→k −−→
K 0i| = |−→k −−→

K 0j| for any two beams,
Dl and Dp could also be resonant with Dl ≈ 2iγ (ω0 −ωk) and
Dp ≈ −2iγωk, and the growth rate is given by the following:

γ 2
SP = k2

SP�
2
0

4ωk (ω0 −ωk)

N∑
i=1

cos2φ0i, (10)

where kSP satisfies the condition |−→k − −→
K 0i| = |−→k − −→

K 0j|
for any i and j, which implies all beams can share a common
plasma wave[18], or the so-called SP mode. The growth rates
of the SL mode in Equation (8) and SP mode in Equation (10)
have the same form, but are different in terms of the wave
number of the plasma wave and the polarization factor.

2.2. Roles of polarization

The multibeam dispersion relation relies heavily on the
polarizations of incident beams, and the polarization of the
scattered light is a degree of freedom, so we should deal
with the polarization carefully. In the reduced dispersion
relation, the polarization effect is imbedded in the factor
cosφ0i = ê0i · ês, where ê0i denotes the unit vector of the
polarization direction of beam i and ês is the unit vector
of the polarization direction of the corresponding scattered
light. Here the scattered light should be coincident with
its light wave dispersion function, that is, the one on its
denominator.

Here, ês is an undetermined variable for each scattered
light, which needs to be determined first before calculating
the growth rate. There are two possible ways to do that.

(1) Assuming the seed scattered light has all kinds of
polarization directions perpendicular to its propagation
direction, the one that brings the highest growth rate wins
the game. We call it the maximum-growth-rate principle
(MGRP). (2) The seed with a specific polarization direction
passes through the overlapping region, growing with a
growth rate determined by the multibeam dispersion relation.
This special seed could be backscattered light growing from
the single-beam region, the seed electromagnetic waves from
Thomson scattering[20], etc.

We consider both cases in our calculations. For the single-
beam LPI, N = 1, the MGRP immediately shows that
cos2φ0i0 = 1 in Equation (6). Therefore, the scattered light
(mostly backscatter) has the same polarization direction as
the incident light. The backscattering of beam i0 propagates
in the beam overlapping region, and we compare its growth
rate with the multibeam modes later. For multibeam LPI, the
reduced dispersion relation, Equation (5), becomes much
more complicated. We should determine the polarization
directions of N scattered lights by using the MGRP, and
note that the polarization direction of each scattered light
becomes a degree of freedom. It is difficult to do this
numerically, so instead we use reasonable approximations
to obtain the polarization directions of N scattered lights.
For the common scattered light Dl(

−→
k − −→

K 0i0,ω − ω0), we
search for its polarization direction by finding the maximum
of

∑N
j0=1cos2φ0j0 according to Equation (8). Meanwhile,

for the other N − 1 scattered lights, each scattered light
could search for its maximum coupling with its own incident
beam, individually, that is, finding the maximum of cos2φ0i

to determine the polarization direction of each scattered
light, Dl(

−→
k −−→

K 0i,ω−ω0), i = 1,2, . . . ,N, i �= i0.
Discussing how polarizations of multiple beams affect the

distribution of temporal growth rate in three dimensions is
one of our main goals of this paper. By numerically solving
the reduced model with the above polarization determining
schemes, we will see that in the next section.

3. Numerical results for multibeam growth rates

3.1. Numerical settings and benchmark via single-beam
instability

In this section, distributions of the SRS temporal growth
rates for one, two, four and eight beams under a variety
of polarization combinations are numerically calculated and
discussed. Our intention is to understand the underlying
physics of the instability growth in the ambience of multiple
overlapping laser beams, and obtain general laws charac-
terizing the distributions and maximums of the growth rate
under different polarizations.

Equation (5) is numerically solved for SRS in homoge-
neous plasmas. The spatial distribution is not sensitive to
the plasma conditions and laser intensity, so we choose
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Figure 1. Spatial distributions of the single-beam SRS growth rate: (a) s-polarized beam denoted by the green rectangle and (b) p-polarized beam denoted
by the blue rectangle. The unit of the growth rate is ω−1

0 .

typical parameters in ICF, ne = 0.1nc, Te = 2keV and
I0 = 1 × 1014 W/cm2, where nc is the critical density of
the 3ω laser. The physics behind the distributions are very
similar for SBS, so we take cases of SRS as examples and
leave discussions on SBS until later.

The 100 kJ laser facility[19] is used here for discussion. The
laser configuration is shown in Figure 1. There are 48 beams
in total delivering a maximum 180 kJ energy. The beams
are incident on four cones of different angles relative to
the hohlraum axis: 28.5◦ (8 beams), 35◦ (8 beams), 49.5◦
(16 beams) and 55◦ (16 beams). In Figure 1, we project
the beam ports on the whole spherical surface onto a polar
coordinates in two dimensions using the Lambert azimuthal
equal-area projection. These beam ports are shown in black
rectangles with an equal area, and stretch to a narrow region
as we plot the beam ports on the other hemisphere. The
original polarization configuration of the 100 kJ laser facility
is that half beams are s-polarized and the other half are
p-polarized. The polarization direction of these beams can
turn 90◦ using an optical rotation crystal if needed; therefore,
in this theoretical paper we arbitrarily changed the polar-
ization of the beam and chose any beam from the facility.
Here the used beam would be colored in green or blue,
representing an s-polarized laser and a p-polarized laser,
respectively. The definition of the s-polarization direction
is perpendicular to the plane of incidence, containing the
incident direction and the pole axis of the sphere, and the
p-polarization direction is in that plane.

The growth rate of multibeam instability is the imaginary
part of the solution (frequency) of Equation (5) as a function
of the wave vector, γ = γ (

−→
k ) = Im(ω). What we care about

is the three-dimensional distribution of the growth rate with
respect to the scattered light wave vector, that is, γ = γ (

−→
k s),

where
−→
k s = −→

K 0i0 − −→
k . Since the wave number of the

scattered wave is defined by the condition of the maximum
growth rate, we rewrite the growth rate as a function of the

polar angle θ0 and azimuthal angle φ0, γ = γ (θ0,φ0), where
θ0 and φ0 are quantities in vacuum. The three-dimensional
sphere is projected to a 2D circle via the Lambert
azimuthal equal-area projection, as shown in the following
Figures 1–6, where the spokes show the azimuthal angle and
the rings show the polar angle.

Figure 1 shows the distribution of the single-beam growth
rate. The green rectangle denotes the s-polarized incident
beam and the blue rectangle denotes the p-polarized incident
beam. The theoretical single-beam growth rate predicts that
the maximum growth mode is backscattering with γ0 =
7.478 × 10−4ω−1

0 under the given parameters. Both Figures
1(a) and 1(b) show that the most unstable growing direction
is backward (right at the incident beam), and the growth rate
γbs = 7.474 × 10−4ω−1

0 agrees with the theoretical result. In
addition, we find that the distribution prefers to occur out of
the plane of polarization due to polarization coupling. This
could be a basic criterion to understand more complicated
distributions due to multiple beam polarization coupling, as
will be shown below.

3.2. Two-beam interactions

In a single-beam instability, backscattering is always the
most unstable mode in homogeneous plasmas due to its
largest wave number being that of the plasma wave; however,
it is not always true for multibeam instabilities. Here we will
show several distributions of growth rates under two, four
and eight beams, and try to find the rules that govern the
multibeam physics. Most of the time the maximum growth
rate is that of some special modes, such as the SL mode, SP
mode or (near) backward mode; these modes have received
the most attention in our discussions.

Firstly, let us focus on the two-beam instability in this sec-
tion. Each beam could either be s-polarized or p-polarized;
therefore, there are four possibilities in total. Theoretically,
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Table 1. Average polarization factor 〈cos2φ〉 (〈cos2φ〉 =
1
N

∑N
j=1cos2φ0j) of the SL mode and SP mode under different

polarization configurations. The black, red and green arrows in the
insets represent the wave vectors of incident lights, scattered lights
and plasma waves, respectively.

SL mode SP mode

Configuration

S 1 1
P cos2θ cos2α

S-P 1/2 (1+ cos2α)/2
S/8S 1/2 1
P/8P cos2θ/2 cos2α

S-P-S-P (1+ cos2θ)/2 (1+ cos2α)/2
S–2P/4S–4P (1+ cos2θ)/4 (1+ cos2α)/2

we could obtain the growth rates of the SL mode and SP
mode via Equations (8) and (10). The critical point is the
polarization factor. Table 1 summarizes the average polariza-
tion factor, 〈cos2φ〉 = 1

N

∑N
j=1cos2φ0j, under different condi-

tions. For two s-polarized beams, both the SL mode and SP
mode have 〈cos2φ〉 = 1; therefore, we have the following:

γ 2
SL,2S = k2

SLv2
0

8
ωpe

ω0 −ωpe
,

γ 2
SP,2S = k2

SPv2
0

8
ωpe

ω0 −ωpe
. (11)

Since the plasma wave number of the SL mode is larger
than that of the SP mode (shown in green arrows in the insets
of Table 1), we have γSL > γSP, so the SP mode will not
dominate here. For the backward SRS, we already have γ 2

0 =
k2

bsv2
0

16
ωpe

ω0−ωpe
in the single-beam situation. Although it has the

largest wave number kbs, it still needs to compensate a factor
of

√
2 to overtake the SL mode, so γSL will usually be larger

than γbs unless the incidence angle is very small.
Figure 2 shows growth rate distributions of two s-polarized

beams for four different incidence angles. The green rectan-
gles denote the s-polarized beams, while the bold one is the
specific i0 beam. The asymmetric nature of the distribution
is due to the use of a specific beam; if the other beam is
simulated, the whole picture would be obtained. However,
the beams are symmetrical in this case, so we will not
plot such distributions. As we can see from the figures, the

Figure 2. Distributions of growth rates of two s-polarized beams (green rectangles) under four incidence angles: (a) 28.5◦, (b) 35◦, (c) 49.5◦ and (d) 55◦.
The resonant beam is shown with a bold rectangle. The modes with the maximum growth rate are marked by a white ‘X’.
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Table 2. A summary of the maximum growth rates under different polarization configurations when θ0 = 49.5◦ (denoted by ‘Maximum’).
The growth rate of a backward scattered seed whose polarization is aligned with the resonant beam is also evaluated under the same
conditions (denoted by ‘Backward’).

Configuration 2S 2P S-P P-S 4S 4P S-P-S-P S-S-P-P 8S 8P 4S-4P

Maximum (×10−4ω−1
0 ) 11.0 8.3 8.4 9.6 11.0 10.4 12.4 10.3 14.7 11.8 12.4

Backward (×10−4ω−1
0 ) 9.7 8.3 8.3 9.6 9.2 9.3 9.8 8.9 9.4 9.9 9.4

Figure 3. Distributions of growth rates of two p-polarized beams (blue rectangles) under four incidence angles: (a) 28.5◦, (b) 35◦, (c) 49.5◦ and (d) 55◦.

brightest lines in red in the center of two beams are the SL
modes, which are the bisector of two beams[18]. The most
unstable mode denoted by a white X is the exact backward
SL mode, and its growth rate satisfies the theoretical result,
γmax = 1.1 × 10−3ω−1

0 ≈ γSL. The SP mode depicted by thin
curves, as shown in Figure 2(a), however, is rather weak.
As the incidence angle increases, the SP mode becomes
weaker and weaker, and it will disappear when half of the
intersection angle, which is also the incidence angle θ0 here,
is higher than 37.4◦[14], as shown in Figures 2(c) and 2(d).

We also note that the growth rate of backward scattering
is enhanced by multibeam interactions, from γ0 = 7.478 ×
10−4ω−1

0 to γbs ≈ 9.7 × 10−4ω−1
0 . This leads to another

question regarding the multibeam system: what is the growth

rate of a backward seed in the multibeam region and would
it be comparable to the maximum growth rate of a noise
seed? We evaluate such circumstances in Table 2 for different
cases. In very few cases, the growth rate of a backward
seed is dominant in the multibeam regions, which will be
discussed soon. Most of the time the multibeam modes
overtake the backward scattering. One more thing we find
in Figure 2 is that as the incidence angle increases the
maximum growth rate decreases (as the SL mode decreases);
however, backward or near backward modes do not. This may
lead to the transition of dominant modes as the incidence
angle changes.

Figure 3 shows the growth rates under two p-polarized
beams (blue rectangles). The average polarization factor is
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Figure 4. Distributions of growth rates of an s-polarized beam (green rectangle) and a p-polarized beam (blue rectangle): (a) the resonant beam is s-polarized
(S-P interactions), while (b) the resonant beam is p-polarized (P-S interactions).

〈cos2φ〉 = cos2θ for the SL mode and 〈cos2φ〉 = cos2α for
the SP mode, so we have the following:

γ 2
SL,2P = k2

SLv2
0

8
ωpe

ω0 −ωpe
cos2θ,

γ 2
SP,2P = k2

SPv2
0

8
ωpe

ω0 −ωpe
cos2α, (12)

where α is the angle between the incident and scattered
wave vectors, as shown in the insets of Table 1. This angle
is close to 90◦ (α = 94.4◦ for θ0 = 28.5◦), so γSP,2P is
pretty small. The relationship between the SL mode and
(near) backward scattering depends on the incidence angle.
Backward scattering will dominate in the 2P system when
the incident angle is large.

Figure 3 represents such interactions. When θ0 = 29.5◦ and
35◦ (shown in Figures 3(a) and 3(b)), the backward SL mode
is the most unstable mode. The growth rate of the SL mode
decreases with the angle drastically, while the growth rate
of backward scattering is slightly increased, so the dominant
mode changes to (near) backward scattering as θ0 ≥ 49.5◦.
The maximum growth rate of the 2P system is also not very
large, γmax ≈ (8−9) × 10−4ω−1

0 , implying the inefficiency
of the p-polarized beam in constructing multibeam modes.
Since cos2α < cos2θ for incidence angles that are not too
small, the SP mode will not dominate in this case, either.

The last two cases are the combination of an s-polarized
beam and a p-polarized beam. The polarization directions
of these two beams are perpendicular to each other, so one
would expect an inefficient coupling of two beams. The
average polarization factors are 〈cos2φ〉 = 1/2 for the SL
mode and 〈cos2φ〉 = (1 + cos2α)/2 for the SP mode, which
makes their growth rate as follows:

γ 2
SL,S−P = k2

SLv2
0

16
ωpe

ω0 −ωpe
,

γ 2
SP,S−P = k2

SPv2
0

16
ωpe

ω0 −ωpe

(
1+ cos2α

)
, (13)

with the same factor 1/16 with backscattering. Compared
with backward scattering, it is easy to find that γbs > γSL

and γbs will always be larger than γSP.
Figure 4 shows typical cases of 49.5◦ of (Figure 4(a))

S-P and (Figure 4(b)) P-S interactions, where the first letter
denotes the resonant beam. As shown, (near) backward
scattering dominates the S-P or P-S system as we expect from
theoretical analysis. However, the distributions on the s-side
are a little different from those on the p-side. The mode with
the maximum growth rate on the s-side slightly drifts away
from the exact backward direction as the incidence angle
increases, and its growth rate also increases. A probable
explanation for the phenomenon is that a new mode emerges
from the combination effect of the single-beam and SL mode
on the s-side. Meanwhile, on the p-side, the maximum is
exactly the backward scattering no matter what the incidence
angle is. Its growth rate reaches as high as 9.6 × 10−4ω−1

0 ,
which is higher than that of the s-side. This implies a
different growth triggered by differently polarized beams in
the multibeam system.

3.3. Four-beam interactions

Complexity grows exponentially as the number of incident
beams increases. The results obtained from few beams are
usually not appropriate for situations with more beams; how-
ever, we could still look for some general rules for multibeam
interactions. For the four-beam interactions discussed in this
section, we concentrate on four polarization combinations:
four s-polarized beams (4S), four p-polarized beams (4P),
the maximum coupling case (S-P-S-P) and half-s-half-p
(S-S-P-P or 2S-2P). The four beams are symmetrically
distributed.
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Four s-polarized beams are perhaps the simplest case of
all. We still first discuss the theoretical growth rates of some
special modes to estimate a general view of this multibeam
system. The average polarization factors for the SL mode and
SP mode are 1/2 and 1, respectively. These give the formulas
for four s-polarized beams:

γ 2
SL,4S = k2

SLv2
0

8
ωpe

ω0 −ωpe
,

γ 2
SP,4S = k2

SPv2
0

4
ωpe

ω0 −ωpe
. (14)

Since the SP mode shares a common plasma wave, each
scattered light could couple with its incident light individu-
ally, and the coupling factor is always maximized. From then
on the SP mode could become enhanced, or even dominant
under specific conditions. Owing to the increasing beam
number, the multiplier increases as γ ∝ √

N, so backward
scattering is less likely to be observed as the dominant mode.
This has been verified in Table 2. The order of γSL and γSP

depends on the laser–plasma conditions, but both of them
are always larger than γbs. Interestingly, the growth rate of
the SL mode in the 4S system is the same as that in the 2S
system, γSL,2S = γSL,4S.

Distributions of four s-polarized beams are shown in
Figures 5(a) and 5(c). For θ0 = 28.5◦ in Figure 5(a), both
the SL mode and SP mode are observed. The SL modes
are shown to occur at the bisector of four incident waves
(denoted by the large cross), where the four incident waves
can share a common scattered light, and the maximum
growth rate is located at the center, which is the exact
backward SL mode. We also find the maximum growth rate
is coincident with that in the 2S system. The SP modes
shown by thin curves are, however, not the dominant mode.
This is because the joint effect of the single-beam interaction
and SL mode is much more efficient than that of the SP
mode. As θ0 increases to 49.5◦, as shown in Figure 5(c), the
SP mode becomes weaker. The SP mode will dominate at
smaller incidence angles, such as for beams in quads of the
National Ignition Facility (NIF)[21] or Shenguang Octopus
facility[16].

Four p-polarized beams are the least coupling combination
of all. The average polarization factors are cos2θ/2 for the SL
mode and cos2α for the SP mode. Then the growth rates are
given by the following:

γ 2
SL,4P = k2

SLv2
0

8
ωpe

ω0 −ωpe
cos2θ,

γ 2
SP,4P = k2

SPv2
0

4
ωpe

ω0 −ωpe
cos2α. (15)

Obviously γSL,4P < γSL,4S and γSP,4P < γSP,4S. However, it
is difficult to tell which mode will dominate until we have

evaluated them, so the order of γSL, γSP and γbs depends on
particular conditions.

Figures 5(b) and 5(d) show the distribution of 4P cases
when θ0 = 28.5◦ and 49.5◦, respectively. In Figure 5(b), apart
from the cross-shaped bisector of the SL mode, the most
prominent SL mode is the line in the center, which perpen-
dicularly bisects the resonant beam and its opposite beam. It
is this new mode that gives a chance that the SP mode can
be resonant with the SL mode, and the intersection point of
the two special modes dominates in this case, as shown by
white ‘X’ in Figure 5(b). As the incidence angle increases to
49.5◦, both SP modes and center SL modes weaken. The SL
modes bisected by the resonant beam and its nearby beam
become stronger, and their combination with the single-
beam interaction contributes to the maximum growth rates,
as denoted by white ‘X’ in Figure 5(d). One could find that
for a multibeam system the maximum growth rate could not
only be an SL mode, (near) backward scattering, but be other
directions as well.

For a more complex polarization configuration, the dis-
tribution of the growth rate could be intricate. Here we
discuss the cases of S-P-S-P and S-S-P-P and plot their
distributions when θ0 = 49.5◦ in Figures 5(e) and 5(f),
respectively. In Figure 5(e), since the incident beams are
symmetric to the resonant beam, the distribution is also
symmetric with that beam. The SL mode in the center
dominates the case. The S-P-S-P case is also the strongest
coupling case, as all beams have the maximum components
in one direction, say the direction of the s-polarized beam.
The growth rate is also the highest of all. For the S-S-P-P
case, which is also the real polarization configuration in the
100 kJ laser facility, the distribution in Figure 5(f) shows that
the growth rate is asymmetric due to asymmetric incident
beams. The maximum growth rate is also non-axial and non-
backward; it is along the bisector of the s-polarized beam and
p-polarized beam and results from both SL mode and single-
beam interaction.

3.4. Eight-beam interactions

Finally, let us take a look at the eight-beam interaction,
which is usually the maximum beam/quad number of a cone
in many laser facilities, such as the NIF and the 100 kJ
laser facility discussed here. We choose three polarization
combinations: all s-polarized beams, all p-polarized beams
and half-s-half-p beams. As shown in Table 1, the average
polarization factors are the same as the corresponding four
beam cases; therefore, we expect that the physics will remain
the same.

Figure 6 shows the distributions of eight-beam interactions
under various conditions. First of all, the backward scattering
is further out of dominance. The discrepancy between the
backward scattering and the true multibeam mode with
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Figure 5. Distributions of growth rates of four incident beams: (a)–(f) are varied in polarization configurations and incident angles as depicted in each plot.

the maximum growth rate is becoming larger, as shown in
Table 2.

Specifically, let us discuss the case of 8S first. Figure 6(a)
uses two inner cones as incident beams. The SL mode
in the center is the dominant mode. We find that the
distributions are more localized, especially along the two
bisectors between the resonant beam and its nearest beams.

The SP mode is weak here, owing to fewer interactions with
other special modes. We find that when the incidence angle
is very small, such as a few degrees, the SP mode would
be dominant in the multibeam system. As for the 8P cases
shown in the second row, the physics is very similar to that
in the 4P cases. The two symmetric growth rates along the
nearest bisectors dominate those cases. Many spoke-shape
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Figure 6. Distributions of growth rates of eight incident beams: (a)–(i) are varied in polarization configurations and incidence angles as described in the
top and left.

distributions along the bisectors and incident beams are
a characteristic of p-polarized beams. In the case of
half-s-half-p, the asymmetric mode dominates the distribu-
tion; however, since it includes a large number of s-polarized
beams, the exact backward SL mode dominates the system.

4. An inference of general rules that govern the growth
of multibeam systems

SRS and SBS are similar LPIs in that an incident elec-
tromagnetic wave decays into a scattered electromagnetic
wave and an electrostatic plasma wave. The physics of
instability growth in the multiple beam overlapping region
shares similar features. We have also calculated distributions
of SBS growth rates under various conditions and found that

the behaviors of the maximum growth rate, SL mode, SP
mode and backward scattering look the same with SRS. The
differences are only in the magnitude of the growth rate and
the spread width of those modes. However, if the frequencies
of incident beams change a little, the multibeam mode of
SBS changes dramatically due to the tinny frequency of the
ion acoustic wave. This could give rise to CBET. For SRS,
a slight frequency change will barely affect the distribution.
This effect is not the purpose of this paper.

From the above analyses of the effect of a few beam and
polarization configurations on the growth rate distribution,
we can infer some general rules that govern the growth of
multibeam systems.

(1) Backward scattering: when the beam number is
larger than four, backward scattering will not be the
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dominant mode anymore. If the beam number is
large enough and the beams are distributed equally
or randomly in a closed curve, an expectation of
the average polarization factor is supposed to be
1/2. Therefore, the multibeam mode, such as the SL
mode or SP mode, readily exceeds the growth rate of
backscattering when N ≥ 4. Although we find that the
growth rate of the backscattering seed in multibeam
region would be enhanced relative to a single beam,
the enhancement is negligible compared with other
multibeam modes. For N = 2 or 3, the dominant mode
should be carefully analyzed according to specific
laser–plasma conditions.

(2) SL mode: the structure of the SL mode is the most
common feature in the distribution of growth rates as
seen from the scattered light perspective. It occurs at
the bisector of any two beams, but prefers those near
the resonant beam. The most important SL mode is
the one along the symmetric axis, that is, at the center
of our plot. We infer that when s-polarized beams are
dominant, this SL mode is always the most unstable
mode, since its average polarization factor is always
higher than 1/2 and the plasma wave number is domi-
nant over the SP mode, kSL > kSP. The SL-dominant
case would be the most common case observed in
the multibeam overlapping region, except for some
extreme cases, such as when the incident angle is too
small or too large.

(3) SP mode: the subdominancy of the SP mode is due
to its small plasma wave number; however, this sub-
dominancy could also convert to dominancy under
particular conditions. The advantage of the SP mode is
its high coupling efficiency, since each scattered light
could couple with its corresponding incident light.
The polarization factor is 1 for an s-polarized beam
and cos2α for a p-polarized beam; therefore, the SP
mode prefers a small incidence angle (large cos2α)
and an environment with more p-polarized beams (less
efficient for the SL mode). The direction of scattered
light from the pure SP mode is opposed to the incident
beam.

(4) Other multibeam modes: these modes occur neither
along the polar axis nor the backward or opposed
direction to the incident beam. They are often a combi-
nation of two or three special modes discussed above.
These modes are often seen in the less-efficient cou-
pling case (such as all p-polarized beams) and asym-
metrically distributed case (perhaps with an equal
number of s-polarized and p-polarized beams). The
SL mode is a core to connect the backscattering and
SP mode, so we can always observe such modes along
the bisector of certain cases of two beams.

5. Spatial distributions obtained from particle-in-cell
simulations

To verify the reduced model, we have performed 2D PIC
simulations of SRS with two crossing laser beams using
EPOCH code. A three-dimensional PIC simulation of more
beams is time-consuming, so it is not presented in this paper.
The spatial distributions of scattered light characterized by
angular distribution in the plane of incidence are plotted in
Figure 7.

The simulation setup is similar to our previous paper[12].
Two laser beams with the same intensity I = 1×1015 W/cm2

are incident into a uniform plasma ne = 0.14nc. The inci-
dence angle is varied from 49◦ to 58◦ in vacuum, corre-
spondingly 45◦ to 55◦ in plasma. Two beams are either two
s-polarized (polarized along the z-axis) or one s-polarized
and the other p-polarized (polarized in the x−y plane). Other
parameters include electron temperature Te = 2 keV, ions are
fixed to form a neutral background and the total simulation
time is 1.5 ps. The simulation box is 40 μ m(x)×10 μm (y)
with 6000 and 1500 grids on each side, and 30 particles
in each cell. Four boundaries are all set to be open in
order to exclude unphysical transverse amplification, and
thermal particle boundaries are used. The two beams overlap
in the center of the simulation box and excite multibeam
instabilities.

The time-averaged field spectra in the overlapping region
are shown in Figure 7. The left-hand column shows the longi-
tudinal field spectra, the middle column shows the transverse
field spectra and the right-hand column shows the corre-
sponding spatial distributions of scattered light. Two types
of spatial distributions are shown here: the red and green
curves are interpolated from the dispersion relation on the
longitudinal field spectra (left), and blue or magenta dotted
curves are interpolated from the dispersion relation on the
transverse field spectra (middle or left). As we can see, the
two metrics of scattered light spectra seem to have little
difference in shape. For the metric of longitudinal spectra
(solid curves), the two spatial distributions are nearly the
same for the two s-polarized beams in the first two rows.
For the s-p combination shown in the third row where the
upper beam is p-polarized and lower beam is s-polarized,
the spectra differ both in shape and amplitude. The scattered
amplitude of the p-polarized beam (polarized in the x − y
plane) is stronger and its spectral width is narrower than that
of the s-polarized beam (polarized along the z-axis), which
is consistent with Figure 4 from the reduced model.

The collective mode excited by the two overlapping beams
is also apparent. For two s-polarized beams, the dominant
mode is the SL mode propagating along the symmetry
axis where the polar angle is 0. This mode is away from
the backscattering indicated by black-dashed lines in Fig-
ures 7(c) and 7(f). As we change the upper beam from s-
polarization to p-polarization, the dominant mode changes
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Figure 7. Particle-in-cell simulations of two-beam SRS in two-dimensions. The left-hand and middle columns show the time-averaged longitudinal and
transverse field spectra, respectively: two s-polarized beams incident with (a) θ = 45◦, (d) θ = 55◦, and a p-polarized beam (upper) and an s-polarized beam
(lower) incident with (g) θ = 45◦. The figures in the right-hand column are the corresponding spatial distributions of scattered light, which are interpolated
along circles in the left-hand figures. The center (θ = 0◦) indicates scattered light along the −x direction.
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to near backscattering, as shown in Figure 7(i). These results
are qualitatively consistent with Figures 2 and 4, showing
good agreement between the reduced model and PIC simu-
lations.

The reduced model is based on the assumption that the
laser beam is monochromatic and the plane wave and plasma
are homogeneous. It is also a linear analysis of the wave
coupling equations. In the PIC simulations, we find that
although nonlinear phenomenon (here the nonlinear fre-
quency shift[12]) occurs, the main physics that the SL mode
is dominant still remains. For more realistic conditions, new
modes such as side scatterings in inhomogeneous plasma
would compete with the multibeam modes, and laser speck-
les, which introduce a spread on the incidence angles, also
affect the spectrum of the multibeam mode. The reduced
model could be easily extended to include multicolor inci-
dent beams, allowing the description of the effect of CBET,
but the broadband laser is beyond this simple model. Non-
linear phenomena, such as laser filamentation and the kinetic
effect, are not included here, and need more detailed kinetic
simulations. Therefore, the reduced model could be a quick
approach to obtain the linear physics of multibeam instabil-
ities; however, it is also limited in more complex situations.
The model verified by PIC simulations could be added into
more sophisticated models, such as the ray-tracing model, to
extend its application.

6. Conclusions

In this paper, we have obtained a reduced dispersion relation
for multibeam LPIs, which is easily turned into numeri-
cal calculations. The dispersion relation consists of three
main effects: self-coupling, SL modes and SP modes. Then
we solve the dispersion relation numerically under various
beam numbers, configurations and polarizations in order to
understand the physics of multibeam instability with general
conditions. The growth of instability in the beam overlapping
region is complicated; however, a few general results could
be deduced, such as the dominancy of the SL mode and
the subdominancy of backscattering and the SP mode. The
2D PIC simulation results also show good agreement with
the reduced model. The dispersion relation provides us
with a strong tool to deeply excavate the instability in the
overlapping region, which has not been done before.

Appendix. Dispersion relation with respect to scattered
light
All the dispersion relations discussed above, from
Equations (1)–(5), are derived in the reference frame of a
plasma wave, and then we change the frame to scattered
light near the specific beam i0 to get the spatial distribution
of scattered light. Alternatively, we can derive the dispersion
relations for scattered light directly. It will be shown that
all we need to do is to change the coefficient μ

ij
k . By

repeating the first steps of our previous theoretical paper[18],
the coupling equation for complex scattered light amplitude
âs is given by the following:

Dl

(−→
k ,ω

)
âs

(−→
k ,ω

)
= �2

0

N∑
i=1

∣∣∣−→k −−→
K 0i

∣∣∣2
cosφ0i

Dp

(−→
k −−→

K 0i,ω−ω0

)

×
N∑

j=1

âs

(−→
k −�

−→
K ij,ω

)
cosφ0j,

(16)

where Dl and Dp are the light wave and plasma wave
dispersion functions, respectively,

−→
K 0i is the wave vector of

the pump laser, �
−→
K ij = −→

K 0i −−→
K 0j,

−→
k and ω are the wave

vector and frequency of scattered light, respectively, and �0

and cosφ are as defined previously. Equation (16) could be
transformed into another form:

ε0

(−→
k ,ω

)
âs

(−→
k ,ω

)

=
N∑

i=1

⎡
⎣ N∑

j=1,j�=i

εij

(−→
k ,ω

)
âs

(−→
k −�

−→
K ij,ω

)⎤
⎦, (17)

where

ε0

(−→
k ,ω

)
=Dl

(−→
k ,ω

)
−�2

0

N∑
i=1

⎡
⎢⎣

∣∣∣−→k −−→
K 0i

∣∣∣2
cos2φ0i

Dp

(−→
k −−→

K 0i,ω−ω0

)
⎤
⎥⎦,

(18)

εij

(−→
k ,ω

)
=

∣∣∣−→k −−→
K 0i

∣∣∣2
�2

0 cosφ0i cosφ0j

Dp

(−→
k −−→

K 0i,ω−ω0

) . (19)

Therefore, the coupling equation can be rewritten to a
simplified form:

ak =
N∑

i=1

⎛
⎝ N∑

j=1,j�=i

μ
ij
k ak−�Kij

⎞
⎠, (20)

which is just Equation (8) in Ref. [18], the starting equation
for deriving the dispersion relation. The coefficient μ

ij
k =

εij(
−→
k ,ω)/ε0(

−→
k ,ω) is a little different from Equation (2)

with replacing Equations (18) and (19) in the formula. The
reduced dispersion relation for scattered light can be derived
accordingly:

1 =
∣∣∣−→k −−→

K 0i0

∣∣∣2
�2

0cos2φ0i0

Dl

(−→
k ,ω

)
Dp

(−→
k −−→

K 0i0,ω−ω0

)
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+
N∑

j0=1,j0 �=i0

∣∣∣−→k −−→
K 0i0
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�2

0cos2φ0j0

Dl

(−→
k −�

−→
K i0j0,ω

)
Dp

(−→
k −−→

K 0i0,ω−ω0

)

+
N∑
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∣∣∣−→k −−→
K 0i
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�2

0cos2φ0i

Dl

(−→
k ,ω

)
Dp

(−→
k −−→

K 0i,ω−ω0

) . (21)
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