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A low-energy proton accelerator named pulsed synchronous linear accelerator (PSLA) is proposed and developed at the Institute
of Fluid Physics, which is driven by unipolar-pulsed high voltages. Pulsed-accelerating electric felds and low-energy ion beams are
precisely synchronized on temporal and spatial positions for continuous acceleration. Te operating mode and the features of the
PSLA are introduced. At present, the feasibility of a low-energy proton PSLA has been verifed in principle. An average ac-
celerating gradient up to 3MV/m for protons is achieved.

1. Introduction

Low-energy proton and heavy ion with energies ranging
from hundreds of keV/u to MeV/u have a wide range of
applications, such as material analysis [1–3], low-energy
nuclear physics [4, 5], biomedicine [6, 7], ion implanters [8],
and injectors of the high-energy ion accelerator [9]. Since
energy is very low, space charge efects are very strong.
Especially for the acceleration of superheavy ions [10] and
charged cluster particles [11] with a large mass-to-charge
ratio, acceleration efciency is very low.

Te simplest way to accelerate low-energy ions is using
high-voltage gaps such as that in electrostatic accelerators.
However, due to insulation limits, the average acceleration
gradient is about 1∼ 2 MV/m [12], and the fnal achievable
energy is not high. In early days and even today, great eforts
have been made to build such bulky devices, such as
commercially available Singleton and Tandetron produced
by High Voltage Engineering Europa B. V. [13] and elec-
trostatic Pelletron and tandem accelerators produced by
National Electrostatics Corp. [14]. Te radio frequency
quadrupole (RFQ), which provides beam acceleration,
transverse focusing, and longitudinal bunching at the same
time, turns out to be a very efcient solution to boost beam
energy to the MeV level, making it almost the default choice
as an injector for many high-energy ion accelerators [15–17].

However, the average acceleration gradient of the RFQ is
usually less than 1MV/m. For example, the average
acceleration gradient of the RFQ for the European
Spallation Source is about 0.8 MV/m [18], and the whole
RF system coming with the RFQ accelerator still takes a
large space [19]. Moreover, usually RFQs are designed to
accelerate ion beams of the specifc charge-to-mass ratio.
Pulsed high voltage can be used to accelerate low-energy
ions, but few are built. For example, pulsed high voltage
can be produced by using a Marx generator to extract the
heavy ion beam [20] or by integrating the switching
power supply and induction cavity to accelerate heavy
ions with diferent mass-to-charge ratios as that in the
induction synchrotron [21–23]. As far as we know, this
type of accelerator does not exist, for heavy ion accel-
eration is still in operation at the moment. Figure 1 shows
that charged particles are accelerated by three kinds of
electric felds.

Based on growing needs for low-energy protons and ion
accelerators, and the pursuit for compactness and cost-ef-
fectiveness, we proposed a low-energy proton accelerator
driven by pulsed high voltage, namely, the pulsed syn-
chronous linear accelerator (PSLA) [24]. Pulsed-accelerating
electric felds and low-energy ion beams are precisely syn-
chronized on temporal and spatial positions for continuous
acceleration.
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2. Concept of PSLA

Te pulsed ion beam is accelerated in a structure con-
sisting of many small ‘cavities,’ and pulsed high voltage is
generated at the gaps in such a cavity. Synchronization
between the pulsed high voltage and the beam is realized
by controlling trigger delays for each pulse to make sure
that the pulse is ready when the beam passes through the
gap. To the beam itself, the PSLA is similar to a DC high-
voltage accelerator, which could accelerate ions of ar-
bitrary mass-to-charge ratios regardless of the initial
velocity, including high-charge state heavy ions and
cluster ions. For the insulator, the pulsed high-voltage
breakdown strength is signifcantly improved comparing
for the DC high-voltage breakdown strength. Breakdown
studies indicate that insulation material can withstand
feld gradients of a few GV/m if the duration of pulse
duration is kept to a few nanoseconds or sub-nanosec-
onds [25, 26]. Tus, the PSLA is easy to achieve the
average acceleration gradient above 10MV/m.

Te PLSA may sound similar to virtual traveling wave
acceleration in the dielectric wall accelerator [27, 28].
However, there is a signifcant diference: the circuit to-
pology and parasitic parameters of the dielectric wall ac-
celerator will cause so-called circuit coupling efects and
cavity coupling efects in the dielectric wall accelerator [29].
Based on our previous study experience of the dielectric wall
accelerator, we can rearrange the isolated magnetic cores on
the axis and radial directions to decouple the circuit coupling
and optimize the cavity structure and the matching resis-
tance to decouple the cavity coupling. Ten, our original
dielectric wall accelerator [30] developed at the Institute of
Fluid Physics (IFP) has gradually evolved into the present
PSLA.

Figure 2 shows a schematic diagram of a simple PSLA,
consisting of an ion source and ten accelerating cavities. We
suppose that the beam travels through the structure, and its
position is shown in Figures 2(a)–2(c), respectively. At the
same time, we need to trigger accelerating pulses to syn-
chronize with the beam motion as indicated in the same
fgure. Te red area indicates the accelerating pulsed high
voltage, while the blue area indicates the decelerating feld
coupled by the pulsed high voltage. Te length of each area
can be adjusted on demand to accommodate beam pa-
rameters like beam length and energy.

3. Numerical Simulation

3.1. [1] Proton Acceleration by Square-Pulsed High Voltage.
We simulated the acceleration of a proton beam in a PSLA
using the Magic software, assuming the square waveform for
the pulsed high voltage, as shown in Figure 3. Te beam is
extracted at 50 keV and then accelerated in each acceleration
cavity with a pulsed high voltage of 100 kV, and the pulse
width is around 10∼12 ns. Te trajectory and energy dis-
tribution are shown in the same fgure. When the beam is
still in the structure, the head gets more energy as it passes
through more cavities. As the beam leaves the structure, the
main part of the beam gets the same energy. However, the
head and tail have diferent energies due to the longitudinal
space charge. Te longitudinal space charge depends on the
current intensity variation, so the energy modulation will be
observed only in the head and tail regions where the current
intensity profle dramatically changes. In addition, small
transverse size of the beam suggests that transverse focusing
is good enough in this case. In comparison, due to the lack of
longitudinal focusing, the bunch length becomes longer due
to the energy spread and longitudinal space charge.
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Figure 1: Charged particles are accelerated by three kinds of electric felds, their typical representatives and their advantages and
disadvantages.
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Figure 2: Te schematic diagram of the acceleration principle of the PSLA, which includes an ion source and ten-pulsed synchronous
acceleration units. (a), (b), and (c), respectively, show the situation that the position of ion beams synchronized with the pulsed electric feld
at time t1, t2, and t3.Te red area indicates the accelerating feld area, and the blue area indicates the decelerating feld area.Te spatial length
of the ion beam is about length of three acceleration structures in the axial direction. (a) t� t1. (b) t� t2. (c) t� t3.
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Figure 3: Te proton beam trajectory and beam energy distribution under the 9-stage standard square waveform-pulsed high voltage.
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3.2. [2] ProtonAccelerationbytheSinusoidal-PulsedElectricField.
In order to add longitudinal focusing, a pulse shape with the
rise time and fall time is similar to that of the resonant
structure with a radio frequency (RF)-accelerating feld. Te
results in Figure 4 indicate that the beam is well compressed
in the longitudinal direction. In fact, actual pulsed high-
voltage generated by the power source has a narrow pulse
width, making it more close to the RF wave instead of a
square wave.

Compared with Figure 3, the envelope of proton beams
especially in the drifting tube becomes signifcantly bigger than
that, but the total energy of the beam is lower, which is similar to
the of-crest acceleration in a conventional RF structure. In order
to focus the beam in the longitudinal direction, the beam head
should obtain less energy and the bunch tail should gain more
energy. Tus, when the beam leaves the structure, the bunch
head has lower energy than the bunch tail. One can also notice
that sliced energy spread is larger than that in Figure 3 in this
case. In conventional RF acceleration, longitudinal focusing can
be adjusted by changing the so-called synchronous phase and
also the amplitude. In the case of the PSLA, one can change pulse
delays and also the amplitude to formmore fexible longitudinal

tuning. Te beam length is much shorter than that in Figure 3,
which means that longitudinal focusing is working as expected.
Tat is to say that the beam energy distribution, the beam
envelope, and the length of the bunch could be adjusted by
changing the time sequence for establishing the electric feld of
each acceleration cavity. By comparing the max energy of the
bunch head and bunch tail shown in Figures 4(d) and 4(f), the
max energy values of the bunch head and the bunch tail are
reversed, which means that there is a suitable position for in-
stalling the target in the drift tube between z � 180mm and z
� 250mm,where the energy of all pulsed proton beams is nearly
equal. Tis indicates that the energy distribution of the pulsed
proton beam is most optimal.

4. Experimental Verification

A prototype of the PSLA has beenmade, and now, it is under
test. Te PSLA prototype consists of a 40 keV ECR proton
ion source as injector fve-pulsed synchronous acceleration
units and a proton beam measurement system. Each pulsed
synchronous acceleration unit consisting of an acceleration
cavity is driven by a pulsed power generator [31], which is
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Figure 4: Te proton beam trajectory and beam energy distribution under the 9-stage sinusoidal waveform-pulsed high voltages at another
time sequence.
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integrated by solid-state pulse forming lines, photocon-
ductive semiconductor switches, laser diode triggers, and
transmission line transformers composed of ferrite magnetic
rings and transmission lines. Five accelerating cavities are
serially connected. Each accelerating cavity is equivalent to a
planar capacitor. Tus, the equivalent circuit of such a cavity
and its driver is a transmission line transformer in topology.
Each pulsed power generator supplies pulsed high voltage to
the accelerating cavity with a typical amplitude of
50∼ 80 kV, a duration of 10 ns (FWHM), and a rise time and
fall time of 5∼ 8 ns. Te layout of the PSLA prototype is
shown in Figure 5. Te verifcation experiments were
completed by utilizing two types of accelerating structures,
which have been discussed in [24]. A proton beam mea-
surement system consisting of a magnetic analyzer, a

scintillator, and a fast ICCD camera has been built to
measure beam energy.

Te experimental results are shown in Figure 6. Te
pictures from left to right in Figures 6(a) and 6(b) show the
experimental results using 2-stage to 5-stage-pulsed syn-
chronous accelerating cavities, respectively. Here, the stage
means the number of added cavities. We observed that the
beam is accelerated by these synchronous-pulsed high
voltages. It should be emphasized that there are diferences
between the conditions of the verifcation experiments and
the simulation results, such as the operating voltage of the
single acceleration unit and the number of acceleration
stages. Due to the low stability and reliability of the PLSA
prototype caused by the limitation of the PCSS lifetime [32],
pulsed proton acceleration has not been achieved under 9-
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Figure 5: Schematic diagram and layout of the PSLA prototype. Te PSLA prototype consists of a 40 keV ECR proton injector, fve-pulsed
synchronous acceleration units, and a proton beammeasurement system.Te pulsed power generator (PPG) comprises the solid-state pulse
forming line (PFL), photoconductive semiconductor switch (PCSS), laser diode trigger (LDT), and transmission line transformer (TLT)
composed of the ferrite magnetic ring (FMC) and transmission line (TL).
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Figure 6: Experimental results of the proton beam energy of two-type acceleration structures of the PSLA. (a) Drifting tube structure.
(b) Insulation membrane structure.
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stage-pulsed high voltage with 100 kV per stage. We have
only verifed the results of accelerated pulsed protons at an
accelerating voltage of 50 kV per stage. Te experiments of
proton beam acceleration of 1–5 stages have been com-
pleted, and proton beams are accelerated to a maximum
energy of about 300 keV by 5-stage-pulsed synchronous
acceleration units. As a result, obtained energy by adding
each additional cavity is diferent, ranging from 30 keV to
60 keV. We expect to include more cavities in a single
structure and provide 100 kV for each cavity. Figure 6 also
indicates that the insulation membrane structure provides
higher voltage than the drifting tube structure in our test.
Te total structure length is less than 10 cm in both cases,
and the estimated average acceleration gradient is up to
3MV/m.

5. Conclusion

A low-energy proton PSLA driven by pulsed high voltages is
built and tested. Te basic idea is that pulsed accelerating
electric felds and beams can be precisely synchronized on
temporal and spatial positions for continuous acceleration.
In this paper, the operating mode of the PSLA is introduced,
and some features of the PSLA have been discussed. Te
acceleration and transport of the low-energy proton beam in
a PSLA have been verifed in simulation and experimental
verifcation. Our results show that an average accelerating
gradient up to 3MV/m can be obtained in the present
prototype, and furthermore, future improvement can be
made to increase the gradient.
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