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Abstract

Mathematical billiards is much like the real game: a point mass, representing the ball,
rolls in a straight line on a (perfectly friction-less) table, striking the sides according
to the law of reflection. A billiard trajectory is then completely characterized by the
number of elastic collisions. The rules of mathematical billiards may be simple, but
the possible behaviours of billiard trajectories are endless. In fact, several fundamental
theory questions in mathematics can be recast as billiards problems. A billiard trajectory
is called a periodic orbit if the number of distinct collisions in the trajectory is finite. We
show that periodic orbits on such billiard tables cannot have an odd number of distinct
collisions. We classify all possible equivalence classes of periodic orbits on square
and rectangular tables. We also present a connection between the number of different
equivalence classes and Euler’s totient function, which for any positive integer N, counts
how many positive integers smaller than N share no common divisor with N other
than 1. We explore how to construct periodic orbits with a prescribed (even) number
of distinct collisions and investigate properties of inadmissible (singular) trajectories,
which are trajectories that eventually terminate at a vertex (a table corner).

2020 Mathematics subject classification: primary 37C83; secondary 37E15, 37C55.

Keywords and phrases: periodic orbit, mathematical billiard, Euler’s totient function.

1. Introduction

Mathematical billiards shares many similarities to the game of billiards in reality.
Fundamentally, both comprise a billiard ball moving in a straight line until it strikes
a side of the table. Mathematical billiards ignores friction, takes the billiard ball as
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a point mass and assumes purely elastic collisions. As a consequence, the billiard
trajectory will satisfy the law of reflection (the angle of incidence equals the angle
of reflection) when it collides with a boundary. Therefore, any billiard trajectory is
uniquely determined by its initial position and direction of motion. A real billiard
table is almost always rectangular, but mathematical billiard tables can have arbitrary
shapes and dimensions. First posed as Alhazen’s problem in optics by Ptolemy in 150
AD [4], mathematical billiards is much more than a fun and interesting game; it turns
out that the mere shape of the table distinguishes mathematical billiards into three
different classes—elliptic, hyperbolic and parabolic—which are well known as classes
in different fields of mathematics, not the least in dynamical systems theory [35, 49].
Mathematical billiards has extensively been studied from the perspective of ergodic
theory in dynamical systems, as well as algebraic geometry (moduli spaces) and
Teichmiiller theory; for example, see the textbooks by Tabachnikov [52], Chernov and
Markarian [15] or Rozikov [45]. Nevertheless, a myriad of unsolved open problems
in mathematical billiards remain [8, 19, 27, 32]. Indeed, there are many fundamental
theory questions in mathematics that can be recast as a billiard problem [12, 50], as
well as a plethora of applications, including but not limited to the computation of &
[25], mechanics [1], quantum computing [24], pouring problems [43], Benford’s law
[52], diffusion in the Lorentz gas [20] and the Riemann hypothesis [11].

For the class of planar, polygonal tables, that is, a flat shape bounded by a
piecewise-linear closed curve, any billiard trajectory exhibits one of only three possible
behaviours:

(1) it is a singular orbit—after a finite number of collisions, the billiard trajectory
terminates at one of the vertices of the table;

(2) it is a periodic orbit—after a finite number of collisions, the billiard trajectory
retraces itself;

(3) it is a nonperiodic orbit—the billiard trajectory continues indefinitely, without
ever retracing itself.

Obviously, singular orbits only exist on tables with vertices and they are often ignored
or classified as nonperiodic [10]. If a billiard trajectory is periodic, its period is
given by the total number of unique collisions. A natural question to ask is whether
periodic orbits always exist or whether this depends on the shape of the billiard table.
Furthermore, what periods are possible? In fact, the very question whether periodic
orbits exist on any polygon is still an open problem! It is listed as Problem 3 in Katok’s
five most resistant problems in dynamics [34]. Even the case of a triangular billiard
table is considered impenetrable, although the triangular billiards conjecture, which
states that every triangular table has a periodic billiard path, is widely believed to be
true [48]. In particular, a so-called Fagnano orbit can readily be constructed in any
acute triangle as the period-three orbit formed by the inscribed triangle of minimal
perimeter (the orthic triangle); the collision points of such a Fagnano orbit are given
by the points at which the altitudes of the triangular billiard intersect the opposite sides
[16, 51, 54].
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FIGURE 1. Examples of periodic orbits on the square billiard table; the orbits in panels (a), (b) and (c)
have periods two, four and six, respectively.

The question about which periods are possible has been treated for specific polygo-
nal billiard tables. In particular, Baxter and Umble [5] classified all possible periodic
orbits for an equilateral triangle. In this paper, we consider square or rectangular
billiard tables and we similarly give a complete classification of which periods and
types of periodic orbits are possible for a square or rectangle. The square is perhaps
the simplest piecewise-smooth billiard table, which means that it is introduced early on
in billiard textbooks, typically alongside the smooth, circular billiard; for example, see
[15, 45, 52]. As a consequence, results for the square billiard tend to be skimmed over,
despite its behaviour being distinctly different from circular and other smooth, convex
tables. Existence of periodic orbits on the square and rectangular billiard is easily
verified by explicit examples. Figure 1 shows three examples of periodic orbits on the
square. Here, the square table is represented by the (blue) boundary with vertices A, B,
C and D, the periodic orbits are indicated as directed (black) lines that collide with the
boundary at points identified by thick (red) dots. By counting these points of collision,
we see that the periods are two, four and six in the respective panels (a), (b) and (c).
Note that the period-two orbit in panel (a) is readily produced on a rectangle as well;
for the period-four and -six orbits, this is less obvious.

Interestingly, none of the textbooks show that the square and rectangular billiard
tables do not admit periodic orbits with odd periods. This can be proven using cutting
sequences, as done by Davis [17], but we provide a different proof that harmonizes
well with the periodicity classification presented in this paper. Furthermore, we also
discuss how to construct periodic orbits with prespecified periods and connect our
classification of periodic orbits with Euler’s totient function from number theory [38].

From a practical point of view, our findings may be of interest for the study of
so-called integer periodic billiard orbits for a special class of rectangular billiards,
such that all collisions occur at integer lattice points [22]; rectangular lattice billiards
are particularly relevant for discrete tomography [28]. Furthermore, there is a renewed
interest in the phenomenon known as quantum scars, when a classical periodic billiard
trajectory appears as the approximation of a quantum mechanical wave function for
an otherwise classically chaotic quantum system [6]. The techniques of selecting a
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specific wave function to observe a particular quantum scar is an ongoing experimental
challenge, even already for the classical Bunimovich stadium [26]. The direct relation
to quantum mechanical wave functions has fuelled interest in a diverse range of particle
transport problems related to square or polygonal billiards [31]; specific examples
are particle transport in infinitely long channels with a right-angled corner [41] and
experimental patterns generated in a square-shaped microcavity laser [14].

This paper is organized as follows. In the next section, we define the different
classes of periodic orbits and clarify what we mean when two periodic orbits with the
same period are different. Here, we also explain the powerful technique of unfolding
[23, 56] that is used in the classical proof of existence of periodic orbits on the square
or rectangular billiard table. We present alternative and intuitive proofs for periodicity
and nonexistence of odd periodic orbits in Section 3. In Section 3.2, we count and fully
classify all possible periodic orbits. We treat singular orbits in Section 3.3, where we
show how different types of singular orbits form boundaries between different families
of periodic orbits. In Section 4, we extend the results for the square to the rectangular
billiard table. We conclude in Section 5 with a discussion of future work.

2. Setting and definitions

The three periodic orbits shown in Figure 1 for the square billiard table are all
different, because their periods are not the same. However, the period-two orbit in
Figure 1(a), for example, can be shifted to the right or left without changing its period;
similarly, the period-six orbit in Figure 1(c) can be flipped upside down without
changing the period. In this section, we define the family or class of periodic orbits
that we consider to be equivalent, and we will then proceed to count the number of
different classes of periodic orbits.

We begin by defining a coordinate system that identifies a quadrilateral billiard
table, denoted [ABCD|, with four (ordered) vertices A, B, C and D. Note that the billiard
table can (uniformly) be scaled without affecting the number of distinct collisions for a
periodic orbit; this means that we may assume that side AB has unit length. Moreover,
we consider this side as the base and position the table such that AB is equal to the
unit interval AB := {(x,0) € R? | 0 < x < 1} on the x-axis, and the vertex A lies at the
origin. Recall that any billiard trajectory is uniquely determined by an initial position
and associated direction of motion. We assume that the initial position is a point of
collision with the side AB; if necessary, we rotate the table and relabel the vertices
so that such a point exists. Then, we can identify any billiard trajectory by the initial
point of collision on the side AB at distance Py € [0, 1) from A, and an initial angle
ap € (0, /2] between the corresponding outgoing (or equivalently incoming) line and
the side AB; we will say that the pair (Py, @) generates the billiard trajectory. Note that
we restrict the angle @ to be at most /2 radians, which means that we do not specify
the direction of motion. Since we are primarily interested in periodic orbits, and how
many different ones there are, we do not care whether the sequence of collision points
is given in reversed order. We will slightly abuse notation and refer to Py as both the
initial point on AB and its coordinate on the x-axis.
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We only consider square or rectangular billiard tables; hence, the adjacent sides are
perpendicular, which has an important consequence.

PROPOSITION 2.1. Consider a billiard trajectory on the square or rectangular billiard
generated by the pair (Py, ag) with Py € [0,1) and ay € (0,7/2]. Then, any
collisions with sides AB and CD will be at angle ay and any collisions with sides BC
and DA will be at angle /2 — «.

PROOF. Since g € (0, 7/2], the outgoing line from Py on the side AB will either end
on the adjacent side BC or on the opposite side CD. The sides AB and CD are parallel,
because is either a square or a rectangle. Hence, if the outgoing line from Py
ends on CD, it does so at the same angle «g; see Figures 1(a) and 1(c) for examples.
If the outgoing line from Py ends on the adjacent side BC, then it does so at an angle
a; such that @g + /2 + a; = &, because the outgoing line forms a right triangle with
the sides AB and BC; see Figures 1(b) and 1(c) for examples. Therefore, we have
a; =m/2 —ap as claimed. The end point of the outgoing line from P is another
collision point Py, unless it is a vertex, in which case, the billiard trajectory terminates
and the result holds. By rotating the table and relabelling the vertices, we can consider
the billiard trajectory as being generated by the pair (P, a;), with @] = @ or a; =
/2 — ap. Using the same arguments, we find that a collision with the (original) side
DA also occurs at angle 71/2 — ay. It follows that all collisions with sides AB and CD
occur at angle ap, and all collisions with sides BC and DA occur at angle 7/2 — a.
Note the special case when @y = 7/2, which leads to a collision with the opposite side
CD at a point P; that lies directly above Py. Hence, the next collision will again be
with side AB, at the same point Py, and the billiard trajectory is a period-two orbit that
never collides with the sides BC and DA; see the example in Figure 1(a). ]

We use Proposition 2.1 to classify different billiard trajectories with the same
period: we distinguish them by the numbers of different collision points in the cycle
that correspond to the two different angles at which these collisions occur. More
precisely, we have the following definition of equivalence.

DEFINITION 2.2 (Equivalence class Ck(p) of period-K orbits). A period-K orbit for
the square (or rectangular) billiard belongs to the equivalence class Ck(p), for
some 0 < p < K, if a total of p of its K different collision points lie on the (parallel)
sides AB or CD. In the special case K = 2, we define the equivalence classes C»(2) and
C»(0) of period-two orbits that exclusively collide with the pair of parallel sides AB
and CD or BC and DA, respectively.

REMARK 2.3. The class of period-two orbits is special. There are no other periodic
orbits that only collide with one pair of parallel sides. Recall that the initial position
of any billiard trajectory is assumed to be a point of collision with the side AB. Hence,
technically, the class C,(0) is not even included in our setting; in what follows, we will
treat the period-two orbits separately. For all other periodic orbits, the total number p
of collisions with the sides AB and CD and the total number ¢ of collisions with the

https://doi.org/10.1017/51446181125100163 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181125100163

6 H. H. Chen and H. M. Osinga [6]

D Py P (a) cC D (b) cC D (c) C
P Py
o) a0 [&N]
A Py Py B A Py B A o) B

FIGURE 2. Examples of period-six orbits on the square billiard, generated by (a) the initial pair (P, @p) =
(0.2, tan~'(2)), (b) the shifted initial pair (P, ) = (0.25, tan~!(2)) that is from the same equivalence
class, and (c) the pair (Py, a) = (0.6, /2 — tan~!(2)) obtained by rotation, which we consider part of a
different family of period-six orbits.

sides BC and DA satisfy p > 1 and ¢ > 1; we write p,q € N with the understanding
that NN represents the set of positive natural numbers.

The three different periodic orbits shown in Figure 1 with periods two, four and
six can be distinguished more precisely as periodic orbits from the three different
equivalence classes C»(2), C4(2) and Cg(4), respectively.

Note that any period-K orbit from the class Cg(p) has ¢ = K — p different collision
points on the (parallel) sides BC or DA, which we may emphasize by saying the
period-K orbit is of type (p, q). We illustrate this by comparing the period-six orbits
in Figure 2 with the possibly equivalent period-six orbit from Figure 1(c). We identify
collision points by their coordinates on the boundary of the unit square, that is, we
assume vertices A and B have coordinates (0, 0) and (1, 0), and by definition, vertices
C and D then have coordinates (1, 1) and (0, 1), respectively.

EXAMPLE 2.4. Figure 2(a) shows the period-six orbit of Figure 1(c), but reflected
about the line {y = 0.5}. More precisely, this period-six orbit is generated by the
pair (P, ap) = (0.2, tan~!(2)), which means that it starts at the point Py = (0.2,0)
on the side AB along the outgoing line with slope 2. The sequence of successive
collision points is then given by the points P, = (0.7,1), P, = (1,0.4), P3 = (0.8,0),
Py =(0.3,1), Ps = (0,0.4), after which the cycle repeats with P,. Note that all lines
are parallel to either the outgoing line at Py, with slope 2, or the incoming line at Py,
with slope —2. Hence, the angles at Py and P3 on the horizontal side AB are both «a,
as are the angles at P, and P4 on the other horizontal side CD; however, with respect
to the vertical sides BC and DA, these lines only have slopes +1/2 so that the angles at
P, and Ps are tan~'(1/2) = m/2 — . Therefore, this period-six orbit is of type (4,2)
and it is equivalent to the period-six orbit from Figure 1(c). If we choose the reversed
direction of motion, starting along the line with slope —2, we encounter the reversed
sequence of collisions Ps, P4, P3, P>, P; and Py, leading again to an equivalent periodic
orbit of type (4, 2).
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EXAMPLE 2.5. Figure 2(b) shows another period-six orbit of type (4,2). It is similar
to the one shown in panel (a), but the point Py is shifted further along the side AB,
to the point (0.25,0), while maintaining the same angle a. A further shift of Py to
(0.3,0) leads to the period-six orbit from Figure 1(c). Indeed, these shifted periodic
orbits are all part of a family of period-six orbits in C¢(4) that is generated by a pair
(Py, ap), with Py varying over one or more sub-intervals in [0, 1].

EXAMPLE 2.6. Figure 2(c) shows the same period-six orbit from panel (a), but rotated
anti-clockwise by a quarter turn; a mere relabelling of the vertices leads to a periodic
orbit generated by the pair (Ps, tan"!(1/2)) = (0.6, tan~'(1/2)), which is an example
from a different equivalence class, namely, from Cg(2).

In the setting for this paper, the periodic orbit of type (2,4) shown in Figure 2(c)
is not from the same equivalence class as the periodic orbits of type (4,2) shown
in panels (a) and (b). We make a distinction between these two equivalence classes,
because it would be natural to do so for rectangular billiard tables.

2.1. Unfolding of billiard trajectories Following a billiard trajectory on a table
can be difficult if there are many collisions, because of a myriad of intersecting
lines. The technique of unfolding transforms the billiard trajectory: rather than
reflecting collisions with the sides, the entire table reflects, so that the billiard
trajectory remains a straight line. For so-called rational, planar, polygonal billiard
tables, which have polygonal angles that are rational multiples of =, this approach
relates mathematical billiards to the theory of geodesic flow on Riemann surfaces
[9, 23, 56]; in special cases of rational billiard tables, including the square and
rectangle, this unfolding leads to a tiling of the plane and is amenable to illustration.

EXAMPLE 2.7. We show an example in Figure 3 with an unfolding of the period-six
orbit from Figure 2(c). Recall that this periodic orbit is generated by the pair (P, ap) =
(0.6, tan~!(1/2)) on the square and there are six different collisions, which
are the points Py = (0.6,0) on the side AB, followed by P, = (1,0.2), P, = (0,0.7),
P; =(0.6,1), P, =(1,0.8) and P5 = (0,0.3). Here, P; and P4 lie on the side BC, and
P, and Ps lie on the side DA, while P; lies on CD. In the unfolding, the trajectory
from Py to P, continues in a straight line with slope 1/2 beyond the side BC, on
the (horizontally) reflected table [BADC]; the next collision occurs on the opposite
side, which is AD as required, at the same location P, as would have been reached by
following the outgoing line with slope —1/2 from P; in the original table . At
P, the table is again reflected horizontally and the trajectory continues in the original
orientation until the collision at P3 on the side CD. Next, the trajectory continues with
the same slope beyond CD, on the vertically reflected table ; the subsequent
collision points P4 and Ps, together with two associated vertical reflections, are
oriented up-side-down with respect to the original table . Indeed, the trajectory
from P4 to Ps continues at the same angle tan~!(1/2) with the horizontal, because in
the unfolding, it lies on the table |CDABJ. The horizontal reflection used to continue
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FIGURE 3. The unfolded period-six orbit from Figure 2(c) on the square . The periodic orbit
has type (2,4), which means that the unfolding requires two reflections about a horizontal side and four
reflections about a vertical side before the trajectory repeats on a translated copy of tables with the same
orientations.

past Ps flips the table back to the orientation that was used to pass from Ps to
P,4. The next collision with the side AB at the top right in Figure 3 corresponds to the
point Py on AB; the table obtained after a sixth reflection about the side AB will be a
translated copy of the original table on the bottom left, and the trajectory will
repeat. Hence, the line segment in Figure 3 can be continued past Py in both directions
to give a straight line in R? that has slope 1/2 and passes through the point Py on the
x-axis; the entire line is the unfolded trajectory in the plane, which in this example
represents a period-six orbit of type (2, 4).

REMARK 2.8. The technique of unfolding for the rectangular billiard is done in the
exact same way with horizontal and vertical reflections. Since the direction of motion
at a point of collision only depends on the angle it makes with that side of the table,
trajectories on a rectangular billiard also correspond to straight lines in R? determined
by the corresponding generator (P, ).

3. Properties of the square billiard

Notice in Figure 3 that the orientation of the table changes each time a collision
occurs. More precisely, there are four unique orientations, namely, the original table
|ABCD], the horizontally reflected version , the vertically reflected version
[DCBA], and the table that is both horizontally and vertically reflected with
respect to the original table. We can identify these four orientations in terms of the
integer coordinates of their vertices in R.

DEFINITION 3.1. Consider a square tile in R? with bottom-left vertex (i,j) € Z X Z.
Then this tile corresponds to only one of the following four orientations:
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« if both i and j are even, then the tile corresponds to , which has positive
horizontal and positive vertical orientation;

« if i is odd and j is even, then the tile corresponds to , which has negative
horizontal and positive vertical orientation;

» if both i and j are odd, then the tile corresponds to , which has negative
horizontal and negative vertical orientation;

« if i is even and j is odd, then the tile corresponds to , which has positive
horizontal and negative vertical orientation.

By combining all four orientations together, we can also view R? as being tiled with
squares that have sides ADA and ABA, twice the length of those for the original table
. The tiling with such larger squares is done by mere translations, rather than
reflections. Consequently, this larger square is a representation of the (flat) torus T2, as
illustrated in Figure 4.

EXAMPLE 3.2. Figure 4(a) shows again the unfolding of the period-six orbit from
Figure 2(c), but as this billiard trajectory disappears off the edge of the square on the
right-hand side ADA, it reappears on the left-hand side ADA and continues with the
same slope; similarly, when the top side ABA is reached, the trajectory reappears on
the bottom side ABA. Hence, the period-six orbit is now represented by a set of three
parallel straight-line segments, rather than a single straight line. These line segments
form a single curve if we identify the left- and right-hand sides ADA by folding the
square into a cylinder; see Figure 4(b). If we now also identify the top and bottom
sides ABA, as done in Figure 4(c), then the period-six orbit is, in fact, given by a
closed curve on T?.

The alternative representation in Figure 4 is the basis for the classical proof of
existence and classification of periodic orbits on the square billiard, which uses the
notion of geodesic on T2, that is, a length-minimizing curve. In the usual Euclidean
geometry, geodesics are straight lines, and T? inherits this geometry by way of the
construction illustrated in Figure 4. The theory of geodesics tell us that all straight
lines with rational slopes correspond to closed geodesics on T?; for example, see [42].
Therefore, if a trajectory on the square billiard is periodic, then the slope must be
rational.

REMARK 3.3. The theory of geodesics also states that all straight lines with irrational
slopes correspond to geodesics that densely fill the torus. This dichotomy is known
as Veech dichotomy in the literature; it implies that the square billiard is ergodically
optimal [55]. We refer again to [42] for details.

The classical proof has the advantage that it extends readily to higher dimensions by
using analogous arguments [52]. However, this approach ignores the possibility that
a billiard trajectory with rational slope terminates at one of the four vertices; indeed,
the four corners of the billiard table have no special role on T? and any geodesic can
(uniquely) pass through such points. Hence, one could opt to ignore the possibility of
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FIGURE 4. Equivalent representation of the period-six orbit from Figure 2(c) on the torus. Panel (a)
illustrates the trajectory on the large square table comprising all four orientations of the square .
The left and right sides ADA are identified to form a cylinder in panel (b), and the top and bottom sides
ABA are subsequently identified to form the torus in panel (c), on which the period-six orbit forms a
closed curve.

a singular orbit, because it is possible to extend this billiard trajectory after hitting the
corner in a well-defined manner that is continuous with respect to initial conditions. In
this paper, however, we analyse the trichotomy that includes the possibility of singular
orbits for a square billiard. In this setting, the condition that the slope be rational is
not sufficient to guarantee periodicity. We use the technique of unfolding in R? as an
alternative and more intuitive way to prove important properties of the square billiard,
such as the nonexistence of periodic orbits with odd periods [17] and what the period of
a billiard trajectory will be for a given rational slope. We will also count and classify all
different equivalence classes of periodic orbits that have a given period associated with
a particular rational slope. We find that precisely the singular orbits act as separatrices
of these different equivalence classes.
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FIGURE 5. Hypothetical period-three orbit on the square shown as a triangle composed of the
three points of collision Py, P; and P, at which the billiard trajectory makes angles @y, @ and @, with
the table, respectively. The incoming and outgoing angles at these points are intended to be equal, and
labelled so accordingly.

3.1. Periods of periodic orbits for the square billiard are even All the examples
of periodic orbits for the square billiard given so far have even periods. This is not a
coincidence. In particular, is it not possible to have a periodic orbit with period three.

PROPOSITION 3.4. The square billiard does not admit a period-three orbit.

PROOF. Suppose for the sake of contradiction that a period-three orbit exists. To focus
the mind, Figure 5 illustrates this hypothetical billiard trajectory on the square .
The three different points of collision are denoted Py, P; and P,, and their associated
angles are «, @ and a», respectively; here, angles with the same label are supposed
to be equal, even though the image may suggest otherwise. Note that any period-three
orbit must collide with three different sides of the square, because it is impossible
for a billiard trajectory to incur two consecutive collisions on the same side. Since
we can always rotate the table and relabel the vertices, the illustration in Figure 5 is
representative for any period-three orbit. In other words, without loss of generality,
we may assume that Py lies on the side AB, and the other two successive points of
collision P; and P, lie on the sides BC and CD, respectively. Recall from Section 2
that the billiard trajectory is uniquely generated by the pair (Py, @), and Proposition
2.1 implies that we must have a| = 7/2 — @y and @, = @y. Furthermore, the sum of
the angles in the quadrilateral formed by Py, P», and the two vertices D and A of the
square table must be 2z, which implies that ay + a; = n. Therefore, if a period-three
orbit exists, then

Qotay =1

T
= 20)=n&= ay = —.
r = @ 2

However, the pair (P, 1/2) generates a period-two orbit for all Py € (0, 1), because the
billiard trajectory will bounce back and forth between the two points Py and P,; which
is a contradiction. ]
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p

I N R I

A P B A B

FIGURE 6. Unfolding on R? of a periodic orbit for the square [ABCD| with period p + ¢ composed of p
vertical and ¢ horizontal reflections before returning to the initial position Py.

We cannot easily extend this geometric proof to other odd periods as the number
of different cases grows very quickly and self-intersections cause difficulty to make
the same arguments. Therefore, we use the technique of unfolding, explained in
Section 2.1, to prove the following general result.

THEOREM 3.5. Any periodic orbit for the square billiard has even period and is
generated by a pair (P, ay), with Py € [0, 1), and either ay = /2 or ay € (0,7/2)
such that tan (ag) is rational.

PROOF. As was already mentioned in the proof of Proposition 2.1, the case oy = 7/2
generates a period-two orbit; hence, the period for this special case is even. This case is
special, because the slope tan (@) of the outgoing line is not defined for ay = /2. We
now consider a periodic orbit for the square generated by a pair (Py, ap) with
Py e[0,1) and a € (0,7/2). Note that Py # 0, because a periodic billiard trajectory
that starts at a vertex must also return to this vertex, which would make it a singular
orbit. The unfolding on R? of such a periodic orbit is a straight line with slope tan (aq)
that passes through the point at distance Py from the vertex A at the origin, and such
that it intersects the tiling of R? along other (although not necessarily all) sides AB at
distances Py from the shifted vertex A in translated copies of the original table .

An example is shown in Figure 6, where again the period-six orbit from Figure 2(c)
was used. The slope tan (@) of the unfolded trajectory is determined by the difference
between the x- and y-coordinates of the initial point Py and its translated copy; this
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is suggestively indicated by the dashed triangle in Figure 6. Suppose that the periodic
orbit is of type (p, g) for some p, g € N, which means that the unfolded trajectory passes
through a translated copy of Py (with the correct orientation) for the first time after p
vertical and ¢ horizontal reflections. Since the distance between P, and the vertex A
is preserved in the translated copy, the line through (0, 0) and (g, p) in R? is parallel to
the unfolded trajectory. Hence, the slope of the unfolded trajectory is tan (@) = p/q,
which is rational, as claimed.

Furthermore, Definition 3.1 states that a translated copy of the billiard table with
orientation is only obtained when the (integer) coordinates of the shifted vertex
A are both even, that is, p and ¢ must both be even. The period of the periodic orbit
is given by the total number of distinct collisions; we claim that this number is p + ¢,
and since p and ¢ are even, the period of the periodic orbit is even. It remains to prove
that the total number, say K, of distinct collisions is p + ¢. Recall that the technique of
unfolding transforms the billiard trajectory into a straight line by reflecting the table
at points of collision instead of changing the direction of motion. Hence, K is at most
equal to the number of reflections, that is, K < p + g. Now, suppose K < p + ¢, which
means that the billiard trajectory is repeated after K collisions. However, p and ¢ are,
by definition, the number of horizontal and vertical reflections needed to pass through
a translated copy of Py with the correct orientation for the first time. Hence, P, # Py
for all 0 < € < p + g; therefore, K = p + g and the period is even. ]

In what follows, we characterize all periodic orbits of period K, for any positive
integer K € 2N, in terms of the conditions we must impose on Py € [0,1) and
a € (0,7/2] such that the pair (P, @) gives rise to such a period-K orbit for the square
billiard . In particular, we confirm that periodic orbits exist for all even periods,
and explain how many different equivalence classes there are.

3.2. Construction of periodic orbits for the square billiard If the trajectory
generated by a pair (Py, ap) is periodic, then the unfolded trajectory will intersect
shifted copies of the side AB infinitely many times at distances Py. The (rational) slope
tan (ap) of this trajectory can be determined using any such shifted copy: if a periodic
orbit is obtained after p horizontal and ¢ vertical reflections, then the same periodic
orbit is obtained after dp horizontal and dg vertical reflections, for any d € N, because
tan (o) = p/q = dp/dq. For the same reason, if d € {3, ..., min (p, g)} divides both p
and g, then there exists an intersection at distance Py on a shifted copy of the side AB
that lies closer to the original AB. Of course, d = 2 divides p and ¢, because they are
both even, but the corresponding point (Py + p/2, g/2) does not necessarily lie on the
side AB, or if it does, this side may have the reflected orientation BA instead. Inspired
by Baxter and Umble [5] who give a similar definition for the equilateral triangle, we
formalize the notion of least period of a periodic unfolded trajectory.

DEFINITION 3.6. Given an unfolded trajectory on R? that is periodic after p horizontal
and ¢ vertical reflections with p, ¢ € N and gcd (p, ¢) = 2, then its least period is p + g.
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To generate a periodic orbit with least period K € 2N, we first construct the
corresponding unfolded trajectory in R?. This unfolded trajectory is given by a
line with slope p/q, where p e N and g € N are chosen such that gcd (p,q) =2
and p + g = K. In fact, since both p and g are even, we can look for m = p/2 and
n = ¢q/2 such that n and m are co-prime and m + n = K/2; indeed, p/q = m/n and
gcd (p,q) =2 ged (m,n) = 2.

EXAMPLE 3.7. To generate a periodic orbit with least period K = 4, for example,
as shown in Figure 1(b), we must find m,n € N with gcd(n,m) =1 such that
m+n = K/2 =2. The only such candidate is n = m = 1. Therefore, any period-four
orbit is generated by a pair (P, ag) with a = tan~'(1) = n/4. Here, the choice for
Py € [0, 1) is arbitrary, except that we must avoid generating a singular orbit; for the
period-four orbit, it is perhaps not hard to see that the only restriction is Py # 0, but
see Section 3.3 for details.

Note that for any other even period K, two easy choices are m = 1 andn = K/2 — 1,
or vice versa, which both satisfy Definition 3.6. Hence, as long as m # n, this trivial
decomposition already generates two different periodic orbits with the same period:
one periodic orbit is of type (2, 2n) and the other of type (2m, 2), which means,
according to Definition 2.2, that these periodic orbits are from the two different
equivalence classes Cx(2) and Cx(2m) = Cg(K — 2), respectively.

For sufficiently large K, we expect there to be other pairs of co-prime numbers that
sum to K /2, that is, we expect there to be more equivalence classes and different types
of periodic orbits with the same period K € 2N. To determine how many possible
decompositions there are, we use Euler’s totient function from number theory [38].
For any N € N, Euler’s totient function ¢(N) counts the number of natural numbers
m e {l,...,N} such that gcd(m,N) = 1. The positive integers m that satisfy this
property are referred to as fotatives of N.

PROPOSITION 3.8. The total number of ordered pairs (m,n) with m,n € N and
m+n = N, such that gcd (m,n) = 1 is equal to Euler’s totient function ¢(N).

PROOF. Consider m,n € N with gcd (m,n) = 1 and define N = m + n. By definition,
gcd (m, n) = ged (m, m + n) = ged (m, N). However, gcd (m,n) = 1, so ged (m,N) = 1,
which means that m is a totative of N. Therefore, each ordered pair (m, n) is determined
by whether m is a totative of N, and the total number of possibilities is ¢(N). ]

The total of ¢(N) different pairs (m, n) lead to ¢(N) different ratios m/n, so that we
may conclude the following.

COROLLARY 3.9. For K = 2N, with N € N, there are ¢(N) different types of period-K
orbits for the square billiard, generated by ¢(N) different angles in the interval (0, /2],
which represent a total of ¢(N) different equivalence classes.

REMARK 3.10. Note that Corollary 3.9 includes the special case of a period-two orbit:
for K = 2, we have N = 1 and ¢(N) = 1. Indeed, there is only one type of period-two
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D @) - p (b) ¢
Qg Qo
A P, B A Py B
D ©c p (d) ¢
0 i
A P, B A Py B

FIGURE 7. Period-ten orbits generated from Py = 0.15 for the square JABCD] from each of the four
equivalence classes. The periodic orbits in panels (a)—(d) are of type (2,8), (4,6), (6,4) and (8,?2),
respectively.

orbit for the square billiard, namely, the one generated by the angle @y = n/2. If we
also were to consider the family of period-two orbits with O collision points on the
parallel sides AB and CD, then there would actually be two types of period-two orbits,
leading to the two different equivalence classes C;(2) and C;(0).

EXAMPLE 3.11. There exist ¢(5) = 4 different types of period-ten orbits. Note that 5
is prime, so the totatives of 5 are all positive integers 1, 2, 3, 4 less than 5. Therefore,
there are four possible ordered pairs, namely, (1, 4), (2,3), (3,2) and (4, 1), leading to
four different families of period-ten orbits from the corresponding equivalence classes
C10(2), C10(4), C10(6) and C1o(8), respectively. Figure 7 illustrates these four different
types of period-ten orbits generated by the pairs (Py, @p) with Py = 0.15 fixed and
tan (ao) = 1/4,2/3,3/2 and 4/1, in panels (a)—(d), respectively.

EXAMPLE 3.12. Corollary 3.9 implies that there cannot exist a period-eight orbit of
type (4, 4), that is, a periodic orbit that unfolds into a trajectory which repeats after four
vertical and four horizontal reflections. Indeed, the corresponding slope would have to
be 1 and, thus, a;p = tan~'(1) = 7r/4, which generates a period-four orbit. Hence, such a
period-eight orbit would just be a double copy of the period-four orbit; while its period
may be eight, the least period of this periodic orbit is four.
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REMARK 3.13. There is no efficient algorithm to find the totatives of a given integer
N € N, because it is equivalent to prime factorization. Indeed, Euler’s totient function
is explicitly given by the classical Euler’s product formula,

o) =N [](1-7)

pIN

which computes a product over all distinct prime factors of N. An alternative formula,

o(N) = i gcd (k, N) cos (271'1%),
k=1

can be derived using the discrete Fourier transform [46]; unfortunately, finding the
greatest common divisors ged (k, N) for all k € {1,..., N} is also computationally as
complex as finding prime factors.

3.3. Singular orbits for the square billiard So far, we have not imposed any
conditions on the choice for Py € [0, 1). Indeed, with our definition of equivalence
class, a periodic orbit generated by (Py, @) is equivalent to other periodic orbits
generated by the same initial angle «, but starting from a different initial point P.
However, we cannot choose just any value for Py. For example, we have already
seen that Py = 0 leads to a singular rather than a periodic orbit. Perhaps there are
other values Py € [0,1) for which the pair (Py, @g) generates a billiard trajectory
that terminates at one of the vertices? This question was addressed in the very first
published article on rectangular (and, thus, also square) billiards by Lennes [37],
who treated singular orbits as periodic orbits by defining collisions with a vertex
as reflections back along the line of approach. The discussion in [37] centres on
billiard trajectories that start at a vertex and whether, for given angle ay, such a
billiard trajectory may eventually return to this vertex. Lennes also derived the required
number of collisions in dependence on . As the treatise in [37] is short and lacks
complete proofs, we repeat some of the results here.

PROPOSITION 3.14. If a billiard trajectory starts at a vertex with an irrational slope,
then it never terminates at a vertex on the square billiard.

PROOF. Suppose for the sake of contradiction that there exists a singular orbit that
starts from a vertex with irrational slope. Without loss of generality, we may assume
that this billiard trajectory starts at vertex A of the square ; if not, we rotate the
table and relabel the vertices. We now consider the corresponding unfolded trajectory
in the plane R”. Since we assumed that the billiard trajectory is singular, the unfolded
trajectory must pass through a shifted copy of one of the vertices; by Definition 3.1,
these shifted copies lie in Z X Z. Therefore, the unfolded trajectory contains a line
segment from the original vertex A at (0, 0) to a shifted copy of this same or another
vertex at the point, say, (m,n) € Z X Z; here, both n # 0 and m # 0, because the slope is
neither 0 nor co. This means that the unfolded trajectory is the straight line with slope
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m/n € Q. Any possible rotation back to the original billiard table either preserves this
slope (rotation by 0 or ), or changes it to n/m € Q (rotation by +m/2), both of which
are rational; which is a contradiction. O

COROLLARY 3.15. If a billiard trajectory for the square billiard |ABCD| that starts at
a point Py # A with a rational slope is a singular orbit, then the trajectory generated
from Py in the opposite direction, using the reflected (negative) slope, will also be
singular.

Indeed, both billiard trajectories unfold to the same line with rational slope in
the plane R?. Hence, every singular orbit is contained in a billiard trajectory that
both starts and terminates at a vertex. Such billiard trajectories are called generalized
diagonals [33].

DEFINITION 3.16. A generalized diagonal is a singular orbit that starts at a vertex. The
length of a generalized diagonal is given by the total number of (nonvertex) collision
points.

We now return to the question whether values Py € [0, 1) for the pair (P, @) with
tan (@) rational, generate periodic rather than singular orbits. As an example, consider
the four different period-ten orbits shown in Figure 7.

EXAMPLE 3.17. Notice that the periodic orbit in Figure 7(a), which starts at Py = 0.15
with slope 1/4, has five pairs of collision points that are located close together: two
pairs on the side BC, one pair on DA, one pair near vertex A on sides AB and DA,
and a fifth pair near vertex D on sides DA and CD. If we shift Py towards vertex A,
these pairs of collision points will move even closer together, until each pair merges
as Py reaches A. The resulting billiard trajectory, which is shown in Figure 8(a), is
a generalized diagonal that starts at vertex A and terminates at vertex D after three
collisions; hence, it has length three. A similar shift of P to vertex A for the other three
types of period-ten orbits, shown in Figure 7(b)-7(d), leads to different generalized
diagonals that start at A with slopes 2/3, 3/2 and 4, respectively; these are shown
in Figure 8(b)-8(d), respectively. (We chose a somewhat peculiar labelling of the
panels in Figure 8 such that the labels of the first two columns match the labels of
the panels in Figure 7.) Note that each of these generalized diagonals also has length
three. Analogous to Definition 2.2 of equivalent periodic orbits, the four generalized
diagonals in Figure 8(a)—8(d) are from different equivalence classes, because they have
respectively 0, 1, 2 and 3 of their three collision points on the horizontal sides of the
square billiard.

EXAMPLE 3.18. Figures 8(e) and 8(f) show the generalized diagonals obtained when
we use the approach from Example 3.17 for the period-six orbits of types (2,4) and
(4,2) in Figures 2(c) and 2(a), respectively. These generalized diagonals each have
length one and have zero or one collision point on the horizontal sides of the square
billiard.
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FIGURE 8. Examples of generalized diagonals. The panels in the first two columns, labelled (a)—(d), show
the four different types of generalized diagonals of length three, and the right-most two panels labelled
(e) and (f) show the two types of length two; compare also with Figure 7.

PROPOSITION 3.19. Consider a generalized diagonal for the square billiard
that starts at vertex A with rational slope m/n, where m,n € N such that gcd (m,n) = 1.
Then, this generalized diagonal has length m +n — 2 given by m — 1 collision points
on the horizontal sides AB or CD and n — 1 collision points on the vertical sides BC
or DA.

PROOF. The unfolded trajectory of such a generalized diagonal is the line through
the origin with slope m/n that passes through all vertex points (i,/) € Z X Z that are
integer multiples of (n, m). There are no other points (,j) € Z X Z on this line, because
gcd (m,n) = 1. From (0, 0) to (n,m), we encounter exactly m — 1 vertical reflections
and exactly n — 1 horizontal reflections, which means that there are m — 1 collision
points on the horizontal sides AB or CD and n — 1 collision points on the vertical sides
BC or DA. The length of this singular trajectory is, thus,m — 1 +n—1=m+n—2, as
required. ]

Observe that a generalized diagonal can never start and terminate at the same vertex.
Indeed, if a generalized diagonal for the square starts, for example, at vertex A,
then it can only terminate at A if the unfolded trajectory is a line that passes through one
of the points (i, ) € Z x Z with both i and j even; we may assume gcd (i, j) = 2, because
otherwise, (i,j) is not the first vertex at which the generalized diagonal terminates.
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The unfolded trajectory is then a line with slope j/i = (j/2)/(i/2), which passes through
the vertex point (i/2,j/2) before reaching A. Since gcd (i, /) = 2, either i/2 or j/2 or
both will be odd, which means that the generalized diagonal already terminated in the
vertex B, D or C, respectively.

REMARK 3.20. Proposition 3.19, combined with Proposition 3.8, enables us to list all
generalized diagonals of a given length that start at vertex A. In total, there are twice
the number of different generalized diagonals, because we consider a billiard trajectory
equal to its reversed-direction copy. More precisely, there are exactly two generalized
diagonals in each equivalence class, namely, a generalized diagonal that starts at vertex
A and terminates at one of the other vertices, and a reflected copy of this generalized
diagonal that starts and terminates at the other (remaining) two vertices.

Figures 2, 7 and 8 suggest a relation between the equivalence class of a periodic
orbit in the square billiard of a particular period, and the types and lengths of the
generalized diagonals that bound the families in this class. Indeed, we find that all
families of periodic orbits of a given type are related to the same generalized diagonal.
More precisely, we have the following result.

THEOREM 3.21. Given p,q € N such that gcd (p, q) = 2, consider the billiard trajec-
tory for the square billiard generated by a pair {Py, agy) with tan (ag) = p/q fixed and
Py € [0, 1) varying. Then, the billiard trajectory is one of the following:
2¢
a singular orbit, ifPg=— fort=0,1,... ,g -1,
p

a periodic orbit in Cy.y(p), otherwise,

and the singular orbit lies on a generalized diagonal of length (p + q)/2 — 2 with
precisely p/2 — 1 collision points on the horizontal sides AB or CD and /2 -1
collision points on the vertical sides BC or DA.

PROOF. Since tan (ag) = p/q is rational, this billiard trajectory cannot be a nonpe-
riodic orbit, because nonperiodic orbits unfold to lines with irrational slopes; see
Remark 3.3. If it is periodic, then it is of type (p,q) and Definitions 2.2 and 3.6
imply that such a periodic orbit will be a member of the class Cx(p), with K = p + q.
Furthermore, the billiard trajectory unfolds to a line (or line segment) with fixed
slope p/q, so if it is singular, it must lie on a generalized diagonal with this slope.
Since ged (p, g) = 2, Proposition 3.19 implies that the generalized diagonal will have
length p/2 + gq/2 — 2 as required, and it will, indeed, have p/2 — 1 collision points
on the horizontal sides AB or CD and the remaining ¢/2 — 1 collision points on the
vertical sides BC or DA. Hence, the proof is complete as soon as we show that a
billiard trajectory generated by the pair (P, a) is singular if and only if Py = 2¢/p for
t=0,1,...,p/2-1.

Consider the unfolding of a generalized diagonal that starts at vertex A with slope
m/n = p/q. This generalized diagonal terminates at the point (n,m) = (q/2,p/2) €
Z %X Z, because gcd (p, q) = 2, som/n = p/q and ged (m,n) = 1. The p/2 — 1 collision
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points on the horizontal sides AB or CD are given by the m — 1 intersection points
with the horizontal lines {y = j} forj = 1,...,m — 1. If we translate this line down over
J integer units, and left over another, say, i integer units for some 0 <i < n, we can
move any one of these intersection points to the segment [0, 1] on the x-axis, which
corresponds to the original side AB of the square billiard. The translated points still lie
on a generalized diagonal, because both the start and terminal vertex points at (0, 0)
and (n, m) map to (=i, —j) and (n — i, m — j), respectively, which are also vertex points.
The corresponding values for P, are then given by the distances to the origin of the
translated intersection points, or equivalently, the distances to the vertices (i,j) for
the intersection points on the lines {y = j}, with j = 1,...,m — 1. Note that there can
be no other values for Py € [0, 1) that lead to singular orbits, because their unfolded
trajectories must lie on generalized diagonals with slope m/n = p/q that have at most
m — 1 collision points on the side AB. Hence, if we include Py = 0, there are only m
candidates. The intersection points with integer y-coordinates y = j have x-coordinates
x = jn/m, so the values for Py that lead to singular orbits are

Py=(n/m)(mod1)€[0,1) forj=0,...,m-1

We claim that this set of points is the same as the set of points Py = 2{/p for
=0,1,...,p/2—1=m— 1. To see this, first note that the points (j — 1)n/m and
jn/m differ by n/m for all j = 1,...,m — 1; we say that they are uniformly distributed
on the interval [0, n]. It is important to realize that the first point is located at 0. Imagine
wrapping this interval n times around a circle with circumference 1. Then, each point
jn/m will map to a point on this circle at an arclength from 0 that cannot exceed 1;
each point j n/m maps to a different point on the circle, because ged (m, n) = 1. We can
view such points as angles 276;, measured in radians, with 6; € [0, 1). The difference
n/m between two neighbouring points (j — 1) n/m and jn/m translates on the circle
to the arclength distance (n/m)(mod 1), or a rotation by angle (27 n/m)(mod 27x),
but the points may not be direct neighbours any longer; in other words, the
sequence of values 6; for j=0,...,m—1 is not necessarily in increasing order.
Next, observe that (mjn/m) € Z, so (mjn/m) (mod 1) =0 for all j=0,...,m— 1.
In the complex plane, this means that each point (jn/m) (mod 1) is a solution to the
equation

(e27ri9)m — 1’

which are determined by the m roots of unity in the complex plane, and these are
uniformly distributed on the unit circle. Since ¢® = 1, the roots are given by the angles
276, with 6y = €/m = €(1/m) € [0,1) for £ =0,...,m — 1 also uniformly distributed
on the unit interval [0, 1). Therefore, the (unordered) set {6; = (jn/m) (mod 1) | j =

0,...,m— 1} is the same as the (ordered) set {6, = ¢/m | € =0,...,m— 1}, because
both sets contain exactly m uniformly distributed points in [0, 1), starting from
6 = 0.
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For each j=1,...,m—1, we obtain 6, = (jn/m) (mod 1) from the ordered set
{6, =C/m|€=0,...,m— 1} by taking the nth neighbour after the point 6, that
corresponds to ;_1; here, we treat ) = 0 as a neighbour of §,,_; = (m — 1)/m. O

REMARK 3.22. The expert reader will recognize the sequence 6; as a trajectory of the
circle map on the unit interval defined by the rigid rotation x — x + w with winding
number w = n/m.

We illustrate Theorem 3.21 with the following example.

EXAMPLE 3.23. Consider the period-ten orbit from Figure 7(c), which is a member
of the class Cjo(6) and generated by the pair (0.15, tan~!(3/2)). Its corresponding
generalized diagonal of length three is shown in Figure 8(c). Figure 9 shows the
unfoldings of these two billiard trajectories as two lines with slope 3/2: the generalized
diagonal is the (red) line starting at vertex A at the origin (red point), and the
periodic orbit is the (black) line starting at the point (0.15,0) (black). Here, we used
a (light-blue) shading for the tiles in R? with orientation , instead of labelling
each reflected vertex. The generalized diagonal has three collision points, which are
consecutively located at the points (2/3, 1) (green), (1,3/2) (light-blue) and (4/3,2)
(green) in the plane. The first and last (green) points are collisions with the sides AB
or CD and they determine the possible initial points Py on AB that lead to a period-ten
orbit when the initial slope of the billiard trajectory is 3/2. The initial points that are
excluded lie on the singular orbits (red lines) obtained by translation of the generalized
diagonal through A such that each of the two collision points (2/3, 1), (4/3,2) are
mapped to the interval [0, 1) on the x-axis. For (2/3, 1), this is achieved by starting
the generalized diagonal from the vertex (0, —1), which crosses the x-axis at (2/3,0),
and for (4/3,2), the generalized diagonal should start from vertex point (-1, -2) so
that it crosses the x-axis at the point (1/3,0). Hence, all period-ten orbits in the class
C10(6) are generated by pairs (P, tan"'(3/2)) with Py € (0,1/3), Py € (1/3,2/3) or
Py € (2/3,1), while starting points Py = 1/3 and Py = 2/3 generate singular orbits
with that angle. There are no other period-ten orbits that collide six times with the
horizontal and four times with the vertical sides of the square .

REMARK 3.24. Note that each period-ten orbit in the class Cjo(6) has three collision
points on the side AB. Each such period-ten orbit is uniquely identified by the generator
pair (P, tan~'(3/2)) with Py € (0, 1/3). Indeed, any period-ten orbit generated by
the pair (P, tan™'(3/2)) with P € (2/3,1) is exactly the same period-ten orbit as
the one starting from Py =P —2/3 € (0,1/3), which encounters P € (2/3,1) as its
sixth collision point; see Figure 9. Similarly, any period-ten orbit that starts from
P € (1/3,2/3) is the same as the one starting from Py = 2/3 — P, which encounters
the point P € (1/3,2/3) on AB after three collisions; this is shown in Figure 9 on an
(unshaded) tile with the vertically reflected orientation . Hence, the family of
period-ten orbits in the class Cjo(6) is completely represented by an initial point Py up
to distance 1/3 from A along the side AB and the outgoing line with slope 3/2.
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A Py % % B

FIGURE 9. Unfolding of all possible period-ten orbits of type (6,4), and associated bounding singular
orbits that start on the side AB of the square . Shown are the period-ten orbit (black) from Figure
7(c) that starts at Py = 0.15 and the generalized diagonal (red) from Figure 8(c) starting at vertex A,
together with three translated versions that give the two singular orbits starting at 1/3, 2/3 and the
generalized diagonal starting at vertex B. The dark (green) shaded strip represents the entire family in
Cio(6), while the light (green) shaded strip indicates the regime of existence starting from any point on
the side AB; the (light-blue) shaded tiles correspond to tables with the orientation A
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4. Rectangular billiards

So far, we restricted attention to the square billiard, that is, a rectangular table with
aspect ratio 1 : 1. In this section, we extend our results to rectangular tables with
arbitrary aspect ratios. More precisely, we consider a rectangular table represented
by the scaled table with sides AB and CD of length 1 and sides BC and DA
of length o, where 0 < o < co. Recall that, just as for the square billiard, a constant
scaling of all sides of the table does not change the number or types of periodic orbits.
The question addressed in this section is whether a scaling of just the sides BC and DA
changes the number or types of periodic orbits.

REMARK 4.1. For the square table, it is straightforward to rotate the table and place
any of the four vertices at the origin. For the rectangular table with aspect ratio
1 : o, this holds for vertices A and C only; the quarter rotations that place either
vertex B or vertex D at the origin result in a scaled table with aspect ratio 1 : (1/p).
This is the reason why we made a distinction between periodic orbits of type (p, q)
and those of type (¢, p), or equivalently, between the equivalence classes Cg(p) and
Ck(q) = Cx(K —p).

The rectangular table is a natural and perhaps most straightforward extension from
the square table, because it is the generic linear transformation of the square table that
preserves the angles between all four sides. Consequently, the technique of unfolding
a billiard trajectory to a straight line in the plane R” can be applied in the same
way as for the square billiard; essentially, the unfolding takes place relative to the
vertices that now lie on the transformed mesh Z X o Z, rather than the original square
mesh Z x Z. This also means that there exists a one-to-one correspondence between
billiard trajectories on the square billiard and those on the rectangular billiard. More
precisely, any billiard trajectory on the square, be it singular, periodic or nonperiodic,
can be unfolded and then mapped via the appropriate linear transformation to a straight
line on the transformed mesh Z X o Z that again corresponds to a singular, periodic
or nonperiodic orbit on the rectangular billiard, respectively. Here, the slope of the
unfolded trajectory will change (by a factor o), but the line is positioned the same way
relative to the vertices.

EXAMPLE 4.2. Compare the period-six orbit from Figures 2(c) and 3 with the
period-six orbit shown in Figure 10 that lies in the rectangle with aspect ratio
1 : o, where o = 3/2. As in Figure 3, the trajectory has been unfolded on the plane as
well. Observe that the sides BC and DA of the rectangular billiard are 1.5 times longer
than its sides AB and CD. Hence, the line that connects the point Py = (0.7,0) with
its translated copy after a total of two vertical and four horizontal reflections has slope
3/4 = 20/4 = 0/2; hence, the slope of the unfolded trajectory on the rectangular table
changes by a factor o compared with the slope 1/2 for the line in Figure 3 associated
with the square table.

Other than the adjustment by this factor o, the results for the square billiard
presented in the previous section naturally extend to the rectangular billiard with
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A B A P B

D P C D 123/
C D C
P
P >
Py

A

A B A B

FIGURE 10. Unfolding of a period-six orbit of type (2,4) in the rectangular billiard JABCD| with aspect
ratio 1 : (3/2); compare with Figures 2(c) and 3.

aspect ratio 1 : 0. We briefly summarize these extended results here; note that the
characterization includes the square billiard as the case o = 1.

4.1. Classification of periodic orbits for the rectangular billiard The rectangular
billiard has the same equivalence classes of periodic orbits, which can be constructed
in the same way after adjusting the slope as required for the given aspect ratio. In
particular, all periodic orbits for the rectangular billiard have even period, and the
product of the slope of the trajectory and aspect ratio of the rectangle is rational;
see also Theorem 3.5. More precisely, we have the following extended version of
Theorem 3.21.

PROPOSITION 4.3. For the rectangular billiard with aspect ratio 1 : o, there
exists a periodic orbit that has p distinct collision points on the sides AB or CD and g
distinct collision points on the sides BC or DA for any p, q € N with gcd (p, q) = 2. This
periodic orbit is from the equivalence class Ck(p) with K = p + g, and it is generated
by a pair {Py, ay), with ay € (0, /2] such that tan () = op/q. The point Py can take
almost any value in the interval [0, 1), the exceptions given by
Po=2 fore=o1... 21,
p 2

lead to a singular orbit, which lies on a generalized diagonal of length (p + q)/2 — 2
with precisely p/2 — 1 collision points on the horizontal sides AB or CD and g/2 — 1
collision points on the vertical sides BC or DA.
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Given K = 2N for some N € N, we can construct period-K orbits of type (p, q)
for any p, g € N such that K = p + ¢ and gcd (p, g) = 2. Hence, just as for the square
billiard, we can apply Proposition 3.8 which means that Corollary 3.9 also holds for the
rectangular billiard: there are ¢(N) unique combinations for p and ¢, leading to ¢(N)
different types of period-K orbits, generated by ¢(N) different angles in the interval
(0, /2], which represent a total of ¢(N) different equivalence classes.

REMARK 4.4. As for the square billiard, any rectangle will have periodic orbits of
all (even) periods, including the periodic orbits with period K = 2. Note that the
period-two orbits are not covered in Proposition 4.3, because either p =0 or ¢ =0
when K = 2. As can be inferred from Definition 2.2, there are again two different
equivalence classes, namely, C»(2) and C,(0).

The initial angle « is only unique for period-two orbits; its value will vary for other
equivalence classes, because of the dependence on the aspect ratio of the billiard table.
The converse is also true.

EXAMPLE 4.5. The angle a with tan (ap) = 1/2 generates a period-six orbit for the
square billiard table, but this will be a period-ten orbit on the rectangle with aspect
ratio 1 : 2, while it is a period-four orbit on the rectangle with aspect ratio 1 : (1/2),
or equivalently, by starting a billiard trajectory with this slope on a vertical side of
length 2.

EXAMPLE 4.6. Similarly, the angle @y with tan (a¢) = 1/2 generates a period-six orbit
for the square billiard table, but this same angle produces periodic orbits of periods
ten or 22 on a rectangle with aspect ratio 1 : (3/4) when starting from a horizontal
or a vertical side, respectively; the period-ten orbit is of type (4, 6), in contrast to the
period-ten orbit produced for this angle on a table with aspect ratio 1 : 2, which will
be of type (2, 8).

Proposition 3.14 and Corollary 3.15 hold for rectangular billiards as well. More
precisely, we have the following properties.

PROPOSITION 4.7. For the rectangular billiard |ABCD| with aspect ratio 1 : o,
consider a billiard trajectory that starts at vertex A, B, C or D. Define o € R as the
slope of the billiard trajectory measured relative to the side AB.

» Ifo/oisirrational, then this billiard trajectory never collides with another vertex.

» If o /o is rational, then this billiard trajectory will always end up in a vertex, that
is, it is a singular orbit. Furthermore, the trajectory generated in the opposite
direction, using the reflected (negative) slope, will also be singular.

Note that it is necessary to specify the side with respect to which the slope is
measured; if the slope is o when measured with respect to the side AB, then it is also
o when measured with respect to the side CD, but it will be 1/0- when measured with
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respect to the sides BC or DA. For the square table, this difference does not matter,
because 1/o is (ir)rational if and only if o is (ir)rational. However, for the rectangular
billiard, the adjustment by the factor o does not necessarily preserve this equivalence
if o is itself irrational. More precisely, if the slope is oo when measured with respect
to, say, the side BC, then we effectively consider the rotated table with aspect ratio
1:(1/0), and the behaviour of the billiard trajectory starting at vertex B will be
determined by whether (1/0)/0 = 1/p0 is irrational or not; this is not equivalent to
asking whether o/ is irrational or not.

5. Discussion

We completely classified the existence and nature of all periodic orbits for a
rectangular billiard table with aspect ratio 1 : o, where 0 < o < oo; we discussed the
square billiard table in full detail, which is included in this setting as the case with
o = 1. The class of rectangular billiards is special, because it is the only class of
polygonal billiards for which the classification of all periodic orbits is preserved under
a nonuniform scaling [13, 21]. The special property that the sides of a rectangular
table are perpendicular to each other enables us to characterize the periodic orbits
for this class of billiard tables in unprecedented detail. In particular, we show that
rectangular billiards admit period-K orbits for any even period, but not for any
odd period K € N. As soon as K > 6, there are different types of period-K orbits,
determined by the difference between the numbers of collisions with the two pairs
of parallel sides. Each type is completely determined by the slope that the periodic
orbit should have with respect to one of the sides of the rectangle. Furthermore, the
periodic orbit can be realized with any initial point on this side, except for a finite
set of exactly K/2 — 1 points, other than the table corners, that give rise to singular
orbits; the unfolding of such singular orbits leads to generalized diagonals in the
plane. We defined equivalence classes for each type and proved that the total number
of equivalence classes for period-K orbits, with K € 2N, is given by Euler’s totient
function ¢(N) evaluated at N = K/2; the totients n € {1, ..., N} such that gcd (n,N) = 1
define pairs (m,n) with m = N — n that uniquely define the slopes needed to generate
a periodic orbit of a specific type.

Interestingly, Euler’s totient function also appears in the theory of so-called
Sturmian sequences [2]. A Sturmian sequence is formed by an infinitely long series
of Os and 1s that never repeats. The definition involves particular restrictions that
we will not explain here, but it suffices to say that any Sturmian sequence can be
viewed as a nonperiodic orbit in the square billiard by recording its collisions with the
vertical and horizontal sides of the billiard, labelling them O and 1, respectively, or
vice versa. Mignosi [40] found an explicit formula for the number of factors (different
subsequences) of a particular length m in any Sturmian sequence; this formula includes
a (weighted) summation of Euler’s totient function evaluated over all integers from 1
to m. Our result suggests a relation between the different types of periodic orbits with
period K = 2m and the specific Sturmian sequence or sequences that correspond to
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nonperiodic orbits lying, in some sense, near a period-K orbit. Indeed, Mignosi’s result
was proven again in [7] using geometric arguments reminiscent of our Figure 9. The
investigation of this relation is left for further work.

As mentioned, the difference between the square and rectangular billiard is a
stretching of one pair of parallel sides, which leads to an adjustment by the aspect-ratio
parameter o of the slopes required to generate particular periodic orbits. It is tempting
to apply a more general transformation, for example, one that scales and shears
the sides, such that the billiard table becomes a parallelogram. Unfortunately, the
unfolding technique generally fails to tile the plane for parallelogram billiards [23,
52, 56]. We find that there is very little known regarding parallelogram billiards. Do
parallelograms also only admit periodic orbits with even periods? What are necessary
and sufficient conditions for the existence of a period-K orbit and how do we construct
such a periodic orbit for the parallelogram?

The nonexistence of periodic orbits with odd periods has been proven for paral-
lelograms consisting of two equilateral triangles glued together, that is, one angle is
n/3 radians [3]. Furthermore, it is known that periodic orbits for the parallelogram
with angles /4 and 37/4 do not persist under perturbations, that is, so-called stable
periodic orbits do not exist for this parallelogram table [45]. More generally, it is
known that polygonal billiard tables with angles equal to rational multiples of 7 have
many periodic trajectories [10, 18, 39, 52]. However, almost nothing is known for
billiard tables with irrational angles. For example, as we already alluded to in the
introduction, it is an open question whether periodic orbits exist for triangular billiard
tables with arbitrary (irrational) angles. The (rational) angles for acute triangles that
lead to a lattice polygon, that is, triangles that unfold to a planar tiling, have all
been listed [36, 44]. Hooper [29] has shown that periodic orbits for right-triangle
billiards are never stable. In contrast, if one perturbs the right triangle such that
it has an obtuse angle, then it will always have a stable periodic orbit [47, 48];
the proof is restricted to obtuse angles that do not exceed 57/8, which is 112.5
degrees, but their computer-assisted approach stops at an angle of 100 degrees.
The current world record is a different computer-assisted proof that every obtuse
triangle with obtuse angle at most 112.3 degrees has a periodic orbit [53]. For
larger angles, we are only aware of results of periodic orbits for isosceles triangles
[30]. We believe that progress can be made from the study of periodic orbits in a
parallelogram table, which we view as continuous deformations from corresponding
periodic orbits in the rectangular table. Results in this direction are left for future
work.
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