https://doi.org/10.1017/jfm.2025.10735 Published online by Cambridge University Press

J. Fluid Mech. (2025), vol. 1021, A7, doi:10.1017/jfm.2025.10735

Bayesian minimisation of energy consumption in
turbulent pipe flow via unsteady driving

2
Felix Kranz , Daniel Morén Montesdeoca @ and Marc Avila”
ICenter of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2,
Bremen 28359, Germany

2MAPEX Center for Materials and Processes, University of Bremen, Am Biologischen Garten 2, Bremen
28359, Germany

Corresponding author: Felix Kranz, felix.kranz@zarm.uni-bremen.de

(Received 16 May 2025; revised 19 August 2025; accepted 18 September 2025)

Turbulence accounts for most of the energy losses associated with the pumping of
fluids in pipes. Pulsatile drivings can reduce the drag and energy consumption required
to supply a desired mass flux, when compared with steady driving. However, not all
pulsation waveforms yield reductions. Here, we compute drag- and energy-optimal driving
waveforms using direct numerical simulations and a gradient-free black-box optimisation
framework. Specifically, we show that Bayesian optimisation is vastly superior to ordinary
gradient-based methods in terms of computational efficiency and robustness, due to its
ability to deal with noisy objective functions, as they naturally arise from the finite-time
averaging of turbulent flows. We identify optimal waveforms for three Reynolds numbers
and two Womersley numbers. At a Reynolds number of 8600 and a Womersley number of
10, optimal waveforms reduce total energy consumption by 22 % and drag by 37 %. These
reductions are rooted in the suppression of turbulence prior to the acceleration phase, the
resulting delay in turbulence onset, and the radial localisation of turbulent kinetic energy
and production towards the pipe centre. Our results pinpoint that the predominant, steady
operation mode of pumping fluids through pipes is far from optimal.

Key words: turbulence control, pipe flow

1. Introduction

Turbulent pipe flows are ubiquitous in engineering, ranging from large-scale oil or gas
pipelines to small-scale applications like heating pipes or fresh water supply. Pumping
systems are recognised as major energy consumers globally, contributing a substantial
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share to the overall electrical energy demand (McKeon 2010). In certain industrial plant
operations, pumping systems even account for up to 50 % of the energy usage (Frenning
2001). Compared with laminar conditions, in turbulent flows, the multi-scale eddying
motion is responsible for a major part of the high friction levels and ultimately the
high pumping costs (Blasius 1913). Hence, many efforts have been devoted to devising
control strategies that can reduce drag or suppress turbulence. Successful examples go
from passive strategies — such as the use of riblets (Garcia-Mayoral & Jiménez 2011) — to
active strategies including the application of body forces to dampen turbulent fluctuations
(Kiihnen et al. 2018; Marensi, Willis & Kerswell 2019), as well as wall-normal blowing
(Mahfoze et al. 2019) and suction (Mallor et al. 2023) in turbulent boundary-layer flows.
A promising active strategy involves the use of oscillatory forces to reduce wall friction,
such as spanwise oscillations close to or at the wall (Quadrio & Ricco 2004; Auteri et al.
2010), or the use of unsteady pressure gradients to drive the flow. Both numerical (e.g.
Iwamoto, Sasou & Kawamura 2007; Foggi et al. 2023a,b; Scarselli et al. 2023) and
experimental (e.g. Souma, Iwamoto & Murata 2009; Kobayashi et al. 2021; Scarselli et al.
2023) studies have shown that certain unsteady (pulsatile) drivings can lead to significant
drag reductions and energy savings. However, the space of possible flow parameters and
pulsation waveforms capable of achieving such improvements is vast and remains only
partially explored.

__Pulsatile flow is governed by three factors. First, the (time-averaged) Reynolds number
Re=UD/v, where U is the time-averaged bulk velocity, D is a characteristic length and
v is the kinematic viscosity. Second, the angular frequency w of the pulsation, defined
using the dimensionless Womersley number Wo = (D /2)+/w/v and third, the driving bulk
velocity waveform (WF) described by the Fourier expansion

[e¢] o0
Ut)=U + Zak cos(wkt) + Zbk sin(wkt), (1.1)
k=1 k=1

where ay, by are the Fourier coefficients of the pulsation.

There are two main ways to impose a pulsatile flow: either by prescribing a time-
dependent streamwise pressure gradient or by imposing the desired bulk velocity. Most
studies adopt the former approach, modulating the streamwise pressure gradient in
time. In channel flow, Iwamoto er al. (2007) numerically investigated periodic square-
wave pressure gradients, cyclically alternating between positive and negative values. By
carefully choosing the pulsation frequency, they found that the cycle-averaged skin friction
can be reduced compared with the corresponding steady flow (the one that produces the
same time-averaged flow rate). Inspired by the latter, Foggi et al. (2023a,b) employed
a simple temporal waveform for the pressure gradient, consisting of a periodic on—off
pumping sequence. Using direct numerical simulation (DNS), at Re ~ 4600, the best-
performing waveform showed energy savings of up to 17 % when accounted for the
achieved flow rate. Savings were obtained when the flow spent a significant fraction of
the period in a transient quasi-laminar state, where there was no axial pressure gradient
and the flow rate slowly decayed.

Souma et al. (2009) substantiated the numerical findings of Iwamoto et al. (2007) by
doing corresponding experiments in pipe flow. More recently, Kobayashi er al. (2021) did
a similar experimental study at low Reynolds numbers (Re =~ 3600). They automatically
generated more than 7000 different driving pressure waveforms, confirming the reduction
of cycle-averaged drag. However, drag reduction is not satisfactory to achieve a reduction
of net energy consumption. For example, at a mean Reynolds number of Re ~ 5900 and
high frequency regimes (Wo € [39, 53]), Manna, Vacca & Verzicco (2015) numerically
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showed that the mean turbulent friction can be reduced by harmonically modulating the
driving pressure in time. However, their method required extra energy when compared
with steady driving and led to a decrease of the pumping efficiency. A more complex
control strategy was investigated by Ding er al. (2024) in pipe flow experiments. They
found that drag can be significantly reduced over a wide range of frequencies, amplitudes
and Reynolds numbers by oscillating the pipe’s surface azimuthally.

Inspired by the pulsatile rhythm of the mammalian heart, Scarselli et al. (2023) proposed
to modulate the bulk velocity — rather than adjusting the pressure gradient — with a
cardiac-inspired (triangular) waveform. They found that this approach could suppress
key turbulent features. For instance, in their best-performing case, at Re = 8600 and
Wo = 14, they achieved drag reductions of up to 27 % and energy savings of up to
9 %. The authors attributed the reductions in drag to turbulence being initially ‘frozen’
during acceleration phases, which minimised the impact of mean flow velocity variations
on turbulent stresses. Furthermore, the reduction of wall shear stress was linked to the
delayed response of turbulence to the varying pressure gradient by Liu et al. (2024).
In this paper, we follow up on the work of Scarselli et al. (2023) and aim to devise
periodic (bulk velocity) waveforms that either minimise drag or energy consumption
for different Reynolds numbers Re € {4300, 5160, 8600} and for Womersley numbers of
Wo € {10, 10«/5}. In contrast to Scarselli et al. (2023) and Foggi et al. (2023a,b), we
use optimisation algorithms to minimise an objective functional 7 (the turbulent drag
or energy consumption) while delivering a desired mean bulk U 4, that is,

rl?(ir)l JW(t)) subjectto U=1Uy. (1.2)
t

Since there is no analytical framework to understand how different waveforms influence
the objective function in (1.2) (i.e. J is a black-box), evaluating J requires DNS.
Tackling the optimisation problem (1.2) by ordinary gradient-based algorithms demands
for accurate computations of 7 (U (¢)), generally leading to long simulations of dozens
of periods. For example, Scarselli et al. (2023) obtained cycle-average values of J by
considering up to 14 periods, while Foggi et al. (2023a,b) averaged over up to 36 periods.
Therefore, to optimise .7, methods are needed that are robust to the statistical error arising
from the averaging of turbulent flows.

The rest of the paper is structured as follows. In § 2, we present the numerical model,
the DNS set-up and three finite-dimensional simplifications of (1.2) that, by design, fulfil
the (U = U y)-constraint from (1.2). In § 3, we describe the Bayesian optimisation method
we use to find optimal waveforms (minimisers of (1.2)) and show it is vastly superior to
gradient-based methods. In § 4, we present and discuss optimal driving waveforms and in
§ 5, we draw some conclusions.

2. Methods
2.1. Governing equations

We considered the flow of a viscous Newtonian fluid with constant properties in a
straight smooth rigid pipe of circular cross-section of diameter D and, if not stated
otherwise, length L =5D. The flow is assumed to be incompressible and governed by
the dimensionless Navier—Stokes equations

ou

1
o7 -I-(u-V)u—I?Au—I—Vp:HU(t)-i-fh, V.-u=0, 2.1)
e
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Figure 1. (a) Schematic description of the considered triangular waveforms in terms of the time variant
Reynolds number Re(?) or bulk velocity U (¢) (right-hand side labels). (») Evolution of the volume-integrated

cross-stream turbulent kinetic energy (in units of U"~) over three periods of a run driven according to panel (a)
where Re = 4300, Re™ = 9400, Re~ = 1600 and T, = 0.345T . (¢) Wall shear stress 7, (f) and power input P (¢)
over the last three periods of a four period run driven in the same manner as in panel (b) where Ay =2.25x 1073,
The wall shear stress is normalised with respect to the steady wall shear stress obtained by the Blasius friction
and the power input accordingly (i.e. units of T, , and Py, respectively).

where u = (u,, ug, u;) denotes the velocity field in a cylindrical coordinate system
(r, 0, z), p is the pressure, IIy () is the time-dependent axial driving force that realises
a given waveform U(¢) and f}, is a volumetric body force (see §2.2). All variables
are rendered dimensionless using D, the time-averaged bulk velocity U and the fluid’s
density pr. The dimensionless period length is given by T = 2w Re/ Wo?. We employ no-
slip boundary conditions at the wall, and periodic boundary conditions in the axial and
azimuthal direction. For the remainder of this paper, (-) indicates temporal averages, while
(+)g denotes spatial averaging with respect to the direction(s) B.

2.2. Body force to trigger turbulence transition

Scarselli et al. (2023) considered waveforms consisting of a constant acceleration,
followed by a constant deceleration and a constant low-velocity phase. Such a waveform,
used as a baseline for our calculations, is shown in figure 1(a), where Re(t) =U(t)D/v,
Ret =max; Re(t) = 9400, Re™ =min,; Re(t) = 1600 and Re =4300. In figure 1(b), the
evolution of the volume-integrated cross-stream turbulent kinetic energy,

4 L p2n pDJ2
<q)r,9,z(z):m/0 /0 /0 (u? +uf)r dr d6 dz, (2.2)

is shown as a blue line for a direct numerical simulation initialised with a turbulent flow
state (for detailed information about the simulation set-up, see §2.3). During the low-
velocity phase, (¢),0.;(¢) decays exponentially and the flow laminarises irreversibly. This
relaminarisation differs from the experimental observations reported by Scarselli et al.
(2023), where the flow cyclically transitioned to turbulence in each period. In numerical
simulations, such a cyclic transition is not observed unless residual turbulence or external
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Re Af Nr Ny N; Rer art At A®eT At N Aty

Optimisation 4300 225x1073 80 192 270 277 0.09 5. 9.1 102 13x1073  1.6x1072
iterations 5160 1151073 96 192 300 258 0.05 4.0 8.5 86 12x1073  1.4x1072

8600  0.5x1073 128 246 420 431 006 5.0 11.0 1.0 07x1073  1.5x1072
WF 1 (coarse) 5160 1.15x1073 96 192 300 215 005 33 70 71 13x1073  13x1072
WF 1 (fine) 5160  1.15x1073 120 436 390 216 0.03 2.6 3.1 55 1.6x1074  1.4x1073
WF 2 (coarse) 5160 1.15x1073 96 192 300 222 005 34 73 74 19x1073  1.2x1072
WF 2 (fine) 5160  1.15x1073 120 436 390 222 003 2.7 32 57 24x107% 1.3x1073
WF 3 (coarse) 5160 1.15x1073 96 192 300 225 005 3.4 7.4 75 13x1073  1.5x1072
WF 3 (fine) 5160 1151073 120 436 390 232 003 2.9 33 59  12x107%  2.8x1073
WEF 4 (coarse) 8600  0.5x1073 128 246 420 375 005 43 9.4 95  73x107*  13x1072
WF 4 (fine) 8660  0.5x1073 120 436 390 366 003 34 3.7 58  29x107%  6.5x1073
WF 5 (coarse) 5160  1.15x1073 96 192 300 247 006 3.7 8.1 82 1.5x1073  0.8x1072
WEF 5 (fine) 5160  1.15x1073 120 436 390 247 0.04 3.0 3.6 63 24x107%  1.0x1073

Table 1. In columns, from left to right: time averaged Reynolds number Re, forcing amplitude Ay, number
of physical grid points in radial, azimuthal and axial direction (N,, Ng, N;), maximum friction Reynolds
number (Re; = max, /7y (t)/pf(D/v)), minimum/maximum radial, azimuthal and axial resolution in inner
units (ArY, Ari, A(RO)T and AzT) and minimum and maximum time step (Azr_, Aty) in units of D/U.
Optimisations are carried out on a coarse mesh with a large time step (s & 10~°) where in row ‘Optimisation
iterations’, we report the averages over all iterations. The following rows display the resolutions in the optimal
waveforms (WF 1-5) as computed in the optimisation loop (coarse) where & & 10~? and verification cases for
the optimal waveforms (fine) on a fine grid with a smaller time step (¢ ~ 10713,

perturbations are present, due to the inherent linear stability of pulsatile pipe flow at these
flow parameters (Thomas et al. 2011). In physical experiments, turbulence is maintained
(or retriggered) by unavoidable imperfections in the set-up — such as inlet disturbances —
that are absent in idealised numerical simulations (Reynolds 1883; Avila, Barkley & Hof
2023). To model these experimental disturbances and enable a more faithful comparison
with experiments, we introduced a small volumetric body force perturbation added to the
right-hand side of the Navier—Stokes equation (2.1),

4r(r* — D? [(? = 1) sin®(@) — (5r* — 1) cos? 0] — (24r% — 16) sin &
fo= 4y [—8r(r2 — 1)%sin6 — 72r2 — 16] cos 6 ,
0

(2.3)
where Ay>0 is the perturbation amplitude. Using an amplitude of Ay= 2.25%x1073,
turbulence is triggered cyclically when the Reynolds number rises. Note that in the first
period, the turbulent kinetic energy coincides with the undisturbed case, indicating that the
perturbation — while ensuring the cyclic transition to turbulence — does not significantly
alter the overall flow dynamics. This claim is later (Appendix C) verified for each of our
optimal waveforms. The specific form and effect of the perturbation have been analysed
in detail by Kranz (2024), where different types of forcings and their amplitudes were
explored. For the remainder of this paper, we always applied the forcing (2.3) and adjusted
Ay based on Re (table 1).

2.3. DNS

Simulations were carried out on an NVIDIA Tesla P100 using the open-source pseudo-
spectral GPU-based research code nsPipe-CUDA (Lépez et al. 2020; Mor6n et al
2024), which uses a Fourier—Galerkin discretisation ansatz for azimuthal (Ny modes)
and axial directions (N, modes) and higher-order finite differences in the radial direction
(N, points). The grid is non-uniform in the radial direction with finest resolution near
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the walls. The value of the driving force ITy (¢) to enforce the bulk velocity waveform
U(¢) is adjusted in each time step. The code integrates the Navier—Stokes equations
using a Crank—Nicolson scheme and iterates on the nonlinear term. The time step is
adjusted dynamically so that the error between iterations on the nonlinear term is always
smaller than a threshold ¢ (see table 1). Mostly, simulations were carried out at Wo = 10;
however, selected cases were conducted at Wo = 10+/2. Unless stated otherwise, all
simulations were initialised with a turbulent initial condition obtained from a steady run.
We investigated three different average Reynolds numbers: Re =4300, Re = 5160 and
Re = 8600. Optimisations were carried out with a relatively coarse spatial and temporal
resolution, a fixed (turbulent) initial condition and a fixed body force (see (2.3)). As
pointed out by Foggi et al. (2023a), small time steps may be needed if abrupt changes
in the pressure gradient are present. In addition, they found that results are sensitive to
the domain size. We verified the robustness of our optimal waveforms in terms of the
spatial and temporal resolution, the initial condition, the pipe length and the forcing
term, and refer to Appendix C. Detailed information about the spatial and temporal
resolution is given in table 1. On our fine grid, we verified a posteriori that the worst
case Courant-Friedrichs—Lewy (CFL) numbers fall below 0.1 for Re = 5160 and below
0.4 for Re = 8600.

We considered two quantities of interest: the n-cycle-averaged wall shear stress T, and
power input by P, defined as

1 n : i 1 i+nT
?w:;Z?g,), ?3):7/T 7, (1) dt,
- i
i=1 , (2.4)
5_1 X”IFO-) 50 _ 1 /<’+1>T 0 Ap(t) dr
- n 1_1 ’ - T iT p ’

where 7, () := u((0u;/0r)|,=ps2)e,;(t) is the axial and azimuthal averaged wall shear
stress, p the dynamic viscosity, Q(f) = (;T /AU (t) the volumetric flow rate and Ap(¢)

the pressure drop. We refer to ?5,5) and 2% as the per-period wall shear stress and power
input of period i, respectively. Note that the zeroth cycle (i =0 in (2.4)) always features
significantly higher turbulence levels due to the initial condition and is always discarded
for the analysis. We remark that minimising the average power input is equivalent to
minimising the total energy consumption n7 - P. Thus, in what follows, power savings can
be interpreted as energy savings and vice versa. The quantities T,, and P were normalised
with respect to the steady-state values (indicated by (+)p), inferred from the Blasius friction

law 2%, » = 0.0791T Re * (Blasius 1913). Following Scarselli ef al. (2023), we defined
the drag reduction D, and power saving Py as

Tup—T P, P

=10t g%, p=Th

Tw,b Py

=1-P, (2.5)

where values larger/smaller than zero indicate reduced/increased drag or power
consumption, when compared with steady driving. Because of the chaotic nature of
turbulence, a single period of a pulsatile run is not representative for the overall behaviour:
figure 1(c) shows the evolution of the wall shear stress and the power input over three
periods for a turbulent flow periodically driven according to the waveform in figure 1(a).

Analysing the per-period wall shear stress for this specific run unveils that ?8) is

approximately 14.7 % larger than ?1(3 ) and 4.4 % larger than 7,,). For the power input,
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Figure 2. (a) Relative standard error of the per-period wall shear stress (£ (T,)) versus the number of averaging
periods n. Red dots mark the number of periods needed to achieve values for ¢* of 2.5 %, 1.25 %, 0.625 %,
0.3125 % and 0.25 %. The dashed line shows a Cj/./n-fit to the data. (b) Computational time (in hours) to
achieve a given ¢(T), where red dots correspond to the same ¢* values as in panel (@) and the dashed line
shows a quadratic fit to the data.

P s approximately 19.5 % larger than P? and 5.8% larger than Y (figure 1d).
This motivates the question of finding the minimum number of averaging periods that
approaches the statistically steady values of T,, and P. To address this question, we
considered the relative standard error of the vector of per-period wall shear stress 7,, =
(?w(")),-zlw,n and power input P= (F(")),-:Lm,n, which are

o (Tw) o (P)
Tu/n’ Pyn’

where o (+) denotes the sample standard deviation and is required to fall under a threshold
¢*. Initially, simulations were conducted and post-processed averaging over three periods,
and were automatically extended by another period until ¢(-) < ¢*. Reducing ¢* comes
with extensive computational efforts, based on the simulation disseminated in figure 1(c).
In figure 2(a), we illustrate the number of averaging periods needed to achieve a given *
(computed on T,,). Realising ¢* = 2.5 % requires three averaging periods, corresponding
to a computational time of approximately 48 min (see figure 2b). Halving ¢ * requires nine
periods (2.5 h of computing time), while reducing it by a factor of ten requires almost 100
periods (27.2 h).

{(Tw) = ((P)= (2.6)

2.4. Finite-dimensional optimisation problem and waveform design

In the optimisation problem, (1.2), we sought bulk velocity waveforms U (¢) that deliver a
desired averaged velocity bulk U4, while minimising either the mean wall shear stress
(J =7y) or the mean power input (J = P) (see (2.4)). Equation (1.2) is a complex
optimisation problem: it is constrained by a partial differential equation (u has to fulfil the
Navier—Stokes equation (2.1)), it features state constraints (the desired flux U = 1 needs
to be satisfied) and it is of infinite dimensions (seeking functions U (¢)). To simplify the
optimisation problem (1.2) and overcome the last two complexity features, we considered
two different waveforms Uy (¢) that can be defined by a finite number of parameters 5 € R4
and (by design) deliver Uy = 1.

First, we considered triangular waveforms as was done by Scarselli ef al. (2023). The
waveforms consist of an acceleration phase of length 7, accelerating the flow from a
minimum Reynolds number (Re™) to a maximum Reynolds number (Re™), a deceleration
phase of length T, slowing it down to Re™ and a rest phase of length 7} of steady driving,
see figure 1(a). We parametrised the waveform by the acceleration time, and maximum
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and minimum Reynolds number (y = (T, Re™, Re™)), obtaining the shape

= Re™ + ReZRe 0<t<T,,
Utpret ke === 1R+ B RO Ty, Ti<i<Tyt+Ta Q)
Re™, T,+T;<t<T.

By restricting the waveform in terms of fixing Re™ and Re™, this triangular waveform can
be simplified into a uni-variant one, only dependent on the acceleration time 5 = T,. Note
that 7 is adjusted based on T, = T,(7y), so that the desired mass flux is satisfied, while
T, is fixed by Re™ and Re ™.

Second, we used a truncated Fourier series to express the waveform, allowing for a
wide range of continuous waveform shapes. We also incorporate the desired bulk velocity
U, =1, where we fix the phase of the first mode (b; =0) to avoid waveforms that are
identical up to a time shift. The waveform is given by

N N
2 2
Up@®) =14 a cos (%m) +3 bysin (%m), 0= (a1, ....ay, by ... by).
k=1 k=2
2.8)

In other words, we aimed to identify the 2N — 1 Fourier coefficients, such that the bulk
velocity waveform minimises the mean wall shear stress or mean power input.

Both waveform designs automatically satisfy the desired flux constraint in (1.2) and the
optimisation problem can be reduced to finite dimensions as

min  J(Uy(1)), 2.9)
neQCR

where Q c R? is the admissible set realising bounds for the parameter vector, specified
later.

3. Optimisation method

A challenge in solving the optimisation problem (2.9) is that the functional 7 is noisy.
The noise amplitude is inversely proportional to the square root of the number of periods
considered in the DNS, see figure 2(a) and (2.6). As shown in Appendix A, gradient-
based methods are not well suited for this optimisation problem owing to the large number
of periods needed to reduce the noise level, so the robust evaluation of gradients of J
is ensured. Bayesian optimisation (BO) naturally embraces the noisy nature of (2.9) and,
as shown later, produces results that are consistent regardless of the number of periods
chosen to evaluate 7.

BO is a global data-driven optimisation technique for black-box functions that feature
stochastic noise, are costly to evaluate, and possibly non-convex and non-differentiable
(Kushner 1964; Mockus 1972). After initialising a dataset by observing the objective
at initial points, DO = Ui{(n(o)i, T @@}, where @i denote the initial points, a

probabilistic surrogate model, jS(O), usually in the form of Gaussian processes (GPs),

is fitted to D@ . An acquisition function () is then used to decide where to evaluate
the function next by balancing the trade-off between exploration (sampling where the
uncertainty of the GP is high) and exploitation (sampling where the surrogate model
predicts low values). A common choice for o (chosen in this study) is the expected
improvement, «(n) =E[max(0, 7* — J(n))], where J* is the current best observed
value. The next point to sample 7 is given by pU+D =arg maxyeco o(n) and we set
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pU+Dh = plU) U(y’(j+1)’ j(ﬂ(f“))), Iteratively, an updated surrogate jS(JH) is fitted to
the updated dataset, a new point maximising « is sampled and the dataset is extended.
Detailed descriptions of BO are given by Mockus (1994) and Jones, Schonlau & Welch
(1998) and references therein.

For the BO algorithm, we constructed the initial dataset D@ by randomly sampling
5d initial data points, in other words, D© =U?il{(ﬂ(o)", T @)}, where n©@i is
drawn from a continuous uniform distribution. Convergence criteria in BO are not
as straightforward as in gradient-based methods, as, due to the exploring—exploiting
approach, the iterative function values are generally not monotonically converging towards
the optimum. As the dataset grows, the surrogate Js is expected to improve continuously
and so the expected minimum (the minimum of Js) is gradually refined. However, if
the acquisition function favours exploring new areas and the observed value falls out
of line with the existing surrogate, the expected minima may change. To capture that
the algorithm converges to an exploration-unbiased minimum, we demanded the relative
difference between expected minima to fall beneath a threshold €,

min, J5* () — ming Js V()| _

- 31
min, Js) (y) N G

for a patience of at least five iterations. Note that this way, an optimisation is at least 5(d +
1) iterations long; however, the risk of aborting prematurely is reduced. Convergence
criteria of this kind have been reported in the literature and have been demonstrated to
yield reasonable timings to stop the BO algorithm (Ishibashi et al. 2023).

We assessed the performance in terms of feasibility, computational effort and robustness
of BO using the restricted (uni-variant) triangular waveform described in §2.4. Here,
choosing Wo = 10, Re = 4300, Re™ = 9400 and Re™ = 1600 (see figure 1a), we aimed
to identify the T, -optimal acceleration time. The acceleration time is bounded by 0.017
and 0.68T (T, € Q@ =1[0.01, 0.68]T) to obtain continuous waveforms and to ensure that Re
is realised.

In figure 3(a—c), we show the best surrogates (surrogates based on the last dataset) for
the wall shear stress (j;’j ¢) for three different values of ¢*. In the Bayesian optimisation,
regardless of the admissible standard error, expected optima (red markers) are obtained at
the lower bound of Q (7, = 0.01T) and surrogate models visually coincide. Using a 95 %
of confidence interval (CI), the differences in the expected function values are statistically
insignificant (0.950 and 0.949 are within the 95 % CI of 0.954 with a standard error of
¢ =0.625 %). We tested the performance of BO by further reducing the number of initial
averaging periods to n =2. We refrained from decreasing it to one period only as the
¢ *-criterion does not apply in that case and, thus, no upper bound for the noise can be
given. As shown in figure 3(d), the surrogate for 7, as well as the expected minimum of
Ty = 0.946 are almost identical to cases with a higher number of averaging periods, see
figure 3(a—c). In summary, unlike gradient-based methods (see Appendix A, figure 10),
BO produces results that are consistent as ¢* is reduced.

In figure 3(d), we also show the best surrogate for the mean power input (J 1’;‘7 $)-

Here, the surrogate close to the expected minimum of P 2 1.3 at T, = 0.16 is flat, which
intensifies the problem of accurately approximating gradients.

To put computational efforts into perspective: the optimisations shown in figure 3(d)
took approximately 9 h, whereas to arrive at a similar minimum with the gradient-based
SLSQP method described in Appendix A took 4.5 days. These results show that BO is
a powerful tool to approach the optimisation problem at hand: (i) it can deal by design
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Figure 3. (a)-(c) Best surrogate for the mean wall shear stress (J7,s™) and expected optima for different
allowable standard errors ¢* € {2.5, 1.25, 0.625} %. (d) Best surrogates for the wall shear stress and power
input, 7 s* and Jp s*, respectively, as well as expected optima, when reducing the number of initial averaging
periods to two. In all cases, the flow was driven according to the waveform from figure 1(a), where Re = 4300,
Re™ = 1600 and Re™ = 9400. Shaded areas indicate the uncertainty of the surrogate model. Wall shear stresses
are given in units of T, , and power inputs in Pp.

with the noisy setting; (ii) it is efficient in terms of the number of function evaluations;
(iii) already made observations are reusable. Hence, for all optimisations in this paper, BO
was the tool of choice. Specifically, we used the implementation of BO available in the
python library scikit-optimize.

4. Results
4.1. Uni-variant approach

At Wo =10, we optimised the uni-variant waveform at Reynolds numbers, Re =
5160, Ret = 11280, Re™ = 1920, averaging initially over two periods and enforcing ¢* =
2.5 %. In figure 4(a), we compare the (best) surrogates for the mean wall shear stress
(J7.s™) and the mean power input (Jp s*) at Re = 4300 and Re = 5160. Again, minima of
Ty are obtained at the smallest admissible acceleration time, 7, = 0.017', whereas the drag
reduction improves from D, =5 % at Re = 4300 to D, = 14 % at Re = 5160. The P-optima
deviate slightly in terms of the acceleration time (7, = 0.16T at Re = 4300 and 7;, = 0.13T
at Re = 5160), whereas the power loss is decreased from Py = —30 % to Py = —14 %. Both
surrogates for Re = 5160 show increased noise levels compared with the lower Re case and
thus the uncertainty of each surrogate (shaded areas) also increases. The average standard
deviation of single observations regarding the surrogate increases from 0.7 % to 1.3 % for
the 7,, surrogate and from 0.8 % to 2.1 % for the P surrogate. Considering the noise, the
difference in expected optimal points for P is insignificant: evaluation of the P-surrogate
for Re = 5160 at T, = 0.16 yields a power loss of 15.0 % (versus 14.4 % at T, = 0.13). The
increased noise levels underscore that gradient-based methods are inappropriate for the
given problem.

In figure 4(b), we show the T,,-optimal driving waveform (7, = 0.01T'), as well as the
evolution of the resulting wall shear stress and power input, averaged over five periods.
At £ =2.1 %, the drag reduction that is actually achieved is insignificantly larger than
that projected by the surrogate (D, =15 % compared with D, =14 %). Due to abrupt
acceleration, peak values for the wall shear stress overshoot steady values by up to
seven times in the beginning of the period. During deceleration, the wall shear stress
quickly declines, eventually rising again until hitting a second peak at approximately
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Figure 4. (a) Best surrogates and expected minima for the mean wall shear stress 77 s* and the mean power
input Jp_s* at Reynolds numbers of Re =4300 and Re = 5160. Shaded areas indicate the uncertainty of the
surrogate model. (b,c) The T,,- and ?—optimal and sub-optimal waveforms (Re = 5160), and the resulting
evolutions of the wall shear stress and power over the time span of two periods (where capital letters are
associated with the lower case letters). The average Reynolds number as well as steady values for the wall shear
stress and power input, obtained by Blasius’ friction law, are indicated by dotted lines. Wall shear stresses are
given in units of T, ;, and power inputs in Pj.

0.5T. This behaviour may be explained as follows. In low velocity phases (Re < 5160),
turbulence levels decay, setting a favourable initial condition for the following acceleration.
Opposed to slow accelerations, where turbulence has sufficient time to rise until being
fully developed at peak velocities and realising accordingly large wall shear stresses, in
fast accelerations, peak turbulence levels are attained during deceleration, where flow
velocities are already comparably small.

A reduction of the mean wall shear stress does not ensure that the mean power input is
lower compared with steady conditions. In fact, the negative power saving of Py = —14 %
achieved by the a posteriori simulation of the P-optimal waveform (7, =0.13T) in
figure 4(b) shows that, at this Reynolds and Womersley number, any pulsatile driving of
this shape results in power losses. The power loss compared with the steady case is caused
by the additional energy input required to accelerate the flow. Accelerating the flow within
short time frames requires a large pressure gradient and hence the required instantaneous
power input increases up to 24 times the steady value.

4.2. Tri-variant approach

We kept (Re, Wo) = (5160, 10) and now allowed maximum and minimum Reynolds num-
bers Re™ €[9400, 11280] and Re™ € [1600, 1920] to change (tri-variant approach) —a
combination of the uni-variant case at Re =4300 and Re =5160. In figure 5, the
optimisation outcome is displayed using partial dependence plots. The partial dependence
is calculated by averaging the objective value for a number of random samples in the
search-space, while keeping the remaining dimensions fixed (Goldstein et al. 2014). This
averages out the effect of varying the other dimensions and shows the influence of one or
two dimensions on the objective function.

Figure 5(a) shows the dependence of the mean wall shear stress on 7, Re™ and Re™.
The function value is mostly ruled by the acceleration time as nearly no dependence on
the maximum and minimum Reynolds number can be observed (equal values up to the
fifth decimal place at lower and upper bounds for Re™ and Re™). Thus, the same drag
reductions of approximately 15 % as in the uni-variant case are obtained at the upper

1021 A7-11


https://doi.org/10.1017/jfm.2025.10735

https://doi.org/10.1017/jfm.2025.10735 Published online by Cambridge University Press

F. Kranz, D. Montesdeoca and M. Avila

(a) (b)
11t—T7T,/T ---Re” @ Expected min. —T,/T ---Re~ @ Expected min. 1.6
— Ret — Re*
1.0 1.4
T, . P
0.9 / ————————————————————————————— 12
08 1 1 1 1 1 1 1 1 ].0
0 0.2 0.4 0.6 T”/T 0 0.2 0.4 0.6
9400 10340 11280 Re* 9400 10340 11280
1600 1760 1920 Re™ 1600 1760 1920

Figure 5. Partial dependence plots for (a) the wall shear stress in units of Ty, and (b) the power input in units
of Py in the tri-variant optimisation. Circles show the expected minimum.

bounds of Re™ and Re™ and the lower bound of T,. As shown in figure 5(b), the mean
power input shows dependencies on the maximum Reynolds number and the acceleration
time. The 7,,-dependence is more substantial, spanning power losses from —8 % to —58 %.
Varying Re™ also has an impact on P. Specifically, _modifying Re™ for a fixed acceleration
time can influence the power saving by up to 16 % (P = 1.14 for Re™ = 9400 and P = 1.30
for Re™ = 11280 (red curve in figure 5b). The largest power saving of (P; = —2 %, power
loss of 2%) is found at an acceleration time of 7, =0.187, and at lower bounds for
maximum and minimum Reynolds numbers (Re™ = 9400, Re™ = 1600), corresponding
to the shortest possible rest phase. As argued before, the slight difference in optimal
acceleration times (7, = 0.16T for the uni-variant and T, = 0.187 for the tri-variant case)
is insignificant considering the flatness of the 7,-dependence around the minimum in
combination with the noisy setting. The expected minimum of P = 1.02 falls in line with
the a posteriori evaluation at the optimal parameters (P = 1.015, not shown here).

4.3. Truncated Fourier series

In the Fourier series expansion of arbitrary waveforms, we only optimised for the power
input (J = P) for computational reasons. However, we note that all found power-reducing
waveforms also reduce the mean wall shear stress substantially. We first considered
Wo = 10 and later extended the analysis to Wo = 10+4/2. At Re = 5160, we considered five
coefficients ay, ap, az and by, b3 in (2.8) and to restrict the maximum Reynolds number,
we limited the magnitude of each by 1/6 (Jax|, |bx| <1/6, k=1, ..., N), because in the
BO toolkit used, it is not trivial to realise non-box constraints (i.e. to restrict Re™ directly).

Figure 6(a) shows one period of the P-optimal waveforms for three independent
optimisation runs (labelled 1-3). On average, four periods were necessary to
achieve ¢*=2.5% and 46 iterations of the BO algorithm are run to satisfy the
convergence criterion (3.1). Therefore, one optimisation at this parameter regime took
approximately 87 h of computing time. All optimisations yield different optima:
WF 1 (g =(-1/6,0.08, 0.08, —1/6, —0.02)) realises the greatest power saving (P =
11.8 %), while WF 2 (»=(0.014, —0.16, —0.14, —1/6, —0.02)) and WF 3 (3=
(1/6, —0.07,0.13, —1/6, 0.06)) yield power savings of P;=10.8% and P;=10.4 %,
respectively. Statistically, using a 95 % CI and ¢* = 2.5 %, the difference in power savings
is insignificant (a CI of approximately 10.8 % is given by [6.4 %, 15.2 %]). All power-
optimal waveforms also reduce drag substantially: WF 1 reduces drag by D, =21.1 %
when compared with steady driving, while WF 2 and 3 realise drag reductions of
D, =20.6 % and D, =21.7 %.
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Figure 6. (a) Power-optimal waveforms obtained from three independent runs of the truncated Fourier
approach at Re = 5160 and Wo = 10, where N =3 (see (2.8)) and |ax|, |bx| < 1/6, k =1, 2, 3 (phase-adjusted
for the minium velocity). (b) Best-performing waveform from panel (a) (WF 1) and two modifications thereof
(1a and 1b). (¢) and (d) Evolution of the cross-sectional kinetic energy (units of U?) and of the power input
(units of Pp; line styles according to panel b).

Foggi et al. (2023a) proposed a different metric than (2.5) to evaluate power savings.
They accounted for the impossibility of reaching below the laminar state, defining the
saving P, = (1 — P)/(1 — Py), where P, is the power input of the laminar flow state.
Using that metric, waveforms 1-3 realise increased savings of P, =17.6 %, P, = 16.1 %
and P, = 15.6 %, respectively.

The finding of multiple minima may have various sources. First, the initial dataset is
randomly sampled across the parameter space, which can initially guide the BO loop
towards different regions of the parameter space. Since the computational resources are
limited, the loop cannot gather sufficiently many data points to ensure that the surrogate
functions are independent of the initialisation. Second, the noisiness can lead to multiple
noise-induced minima, especially in flat 7 (1)-landscapes, where noise may be larger than
actual changes in the functional.

Even if found at different parameters, all waveforms exhibit similar features. After
the minimum flow rate, they follow a steep acceleration phase. As in the power-optimal
triangular waveforms, this fast acceleration delays the onset of turbulence (Scarselli et al.
2023). Indeed, the acceleration length of approximately 0.217 (measured from the global
minimum to the first local maximum in figure 6a) is similar to that found in the tri-variant
approach (7, =0.18T). Also, as in the triangular waveforms, the maximum velocity is
followed by a deceleration phase. Additionally, in contrast to the triangular waveforms, no
distinct rest phase exists, and, instead, a second valley—peak combination occurs.

We analysed the role of the second peak by modifying the best-performing waveform
(WF 1 in figure 6a). Specifically, we replaced the second peak with a rest phase while
keeping Re = 5160 (see WF 1a figure 6b). The power saving for that waveform remains
(statistically) identical (11.2 %). A different modification was applied to WF 1, namely the
minimum Reynolds number was increased from 1500 to 3400 (WF 1b in figure 6b). Note
that WF 1b realised a slightly larger average Reynolds number of Re =5330; however,
we also normalised the power with the steady power input associated with Re = 5330.
This modification of the waveform results in a substantial decrease of power saving from
11.8 % to 1.9 %. The additional power spending in WF 1b is linked to the turbulent kinetic
energy (q)rp.z(t), shown in figure 6(c). As a result of the flatter minimum of WF 1b,
compared with 1 and 1a, turbulence does not sufficiently decay during the pre-peak phase.
Consequently, the onset of turbulence is quicker and peak intensities occur in earlier phases
of the deceleration, where the velocity is comparably large. In other words, compared with
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Figure 7. (a) Power-optimal waveform obtained by the truncated Fourier approach (Re = 8600, Wo = 10) where
N =3 (see (2.8)) and |ax|, |bx| < 1/4, k=1, 2, 3 (phase-adjusted). (b) WF 4 and two modifications thereof
(4a and 4b). (c) and (d) Evolution of the cross-sectional kinetic energy (units of U?) and the power input (units
of Py; line styles according to panel b).

1 and 1a, in 1b, a larger amount of fluid has to be displaced at higher turbulence levels,
resulting in a larger power consumption during that phase. In figure 6(d), we demonstrate
that differences in the evolution of the power input of WF 1 and 1b mainly occur within
the phase of large turbulence intensities.

As all optimal waveforms realise the bounds for at least one coefficient, for WF
1, we allowed for larger magnitudes of 1/4. Using all observations for WF 1, the
optimisation was continued until criterion (3.1) was fulfilled (31 iterations). At n =
(—0.17, 0.06, 0.1, —0.17, —0.09) (found within the interior of the admissible set), the
obtained waveform (not shown here) is nearly identical to WF 1 and realises a similar
power saving (Py =12.3%).

Additionally, we investigated Re = 8600, drastically increasing the computational effort.
Even with our rather coarse computational mesh (see table 1), single periods took
approximately 4 h of computational time, and, additionally, the noise level increases,
requiring up to 52 periods to fulfil £(P) <2.5%. In total, the 63 iterations of the BO
loop needed to satisfy criterion (3.1) approximately took 65 days of computing time.

Figure 7(a) shows the power-optimal WF 4 (y = (0.23, 0.25, —0.16, —0.15, —0.05))
obtained for N =3 and |ay/|, |bx| < 1/4. Compared with the best-performing waveform at
Re = 5160, the power saving doubles (Py = 22.2 %, or, if preferred, P, = 28.7 %), whereas
the drag is reduced by 36.5 %. WF 4 exhibits similar characteristics to waveforms 1-3;
however, the minimum flow rate becomes negative, corresponding to backflow (U < 0).

In figure 7(b), we show two modifications of WF 4, namely 4a and 4b as done earlier
for Re = 5160. The findings are shown in figure 7(c,d) and are analogous: the second peak
does not play an important role and the critical aspect of the profile is the deep minimum
in the bulk velocity that contributes to sinking turbulence intensities drastically before
acceleration. Lastly, the effect of the Womersley number was investigated. At Re = 5160
and Wo = 10+/2, we carried out an additional optimisation, where N =3 and |ag|, |bx| <
1/6, k=1, 2, 3. The optimal WF 5 (n = (1/6, —1/6, 0.03, 0.01, 0.10)) realises a similar
power saving of 10.0% (P, =14.9 %), while reducing drag by approximately 20.6 %
(evaluated on our fine grid, see table 1). The waveform exhibits the same characteristics
as WF 1-4, featuring lowest bulk velocities prior to the main acceleration phase. Again,
the onset of turbulence is delayed into phases of low Reynolds numbers. In Appendix B,
we show the optimal waveform for Wo = 10+/2 as well as the evolution of the power input
and turbulent kinetic energy.

1021 A7-14


https://doi.org/10.1017/jfm.2025.10735

https://doi.org/10.1017/jfm.2025.10735 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) (©) (d)
2
=6 x
S - T
< <1 /
3 )
103>< 1 1 1 1 1 1 1 1 1
®) |—v,0 -7, —seady | @ | —yr=114  y7=155 Steady ()
3 t/T=127 t/T=1.65 12 <
R {T=138 —/T=138 =
: 8 u
g 4 §
1073 x|~ Proc® == @pp; — Steady 1073x e - . - =\ x1073
1.0 1.5 2.0 0.5 04 03 02 0.1 0 01 02 03 04 05
t/T r/D r/D

Figure 8. (a) Optimal WF 1 where colours encode the times in panels (c)—-(f). (b) Time evolution of production
(¥) and dissipation (@) in the optimal waveform and steady pipe flow (Re = 5160) in units of (U3/D). (c-f)
Axial and azimuthal averaged axial velocity (units of U), turbulent kinetic energy (units of U?2), dissipation
and production (units of (U3/D)), averaged over eight periods.

4.4. Spatio-temporal intra-cycle mechanisms

We investigated the physical mechanisms that yield energy/drag reductions by computing
the production (¥) and dissipation (@) of the velocity fluctuations u’ (Feldmann,
Morén & Avila 2020),

3 u, 1 L
Wﬂ(t)=—(<u£u;>,3 %’r)ﬁ)(t), ¢/3(t)=—<R—e(Vu :Vu )ﬁ) (1), 4.1)

as well as (uz)g (v, t) and (gq)g ; (7, t).

In figure 8, we show these quantities for different times within WF 1. Additionally, in
figure 9, we show instantaneous snapshots of the wall shear stress (du,/0r)(D/2, 0, z, t)
in a 6—z-plane for a steady case (left panel) and our optimal WF 1 (other panels).

The minimum of turbulent production occurs right after the minimum bulk velocity
(figure 8b). At this time, turbulent fluctuations are almost completely damped. During
the acceleration phase, turbulent production and dissipation are still low (/T =1.27 in
figures 8b, 8e and 8f). Therefore, although during the last half of the acceleration the
mean profile has a larger gradient at the wall than the mean profile of the steady case
(see figure 8c), the magnitude of the spatially averaged wall shear stresses (see figure 9) is
almost equal between the two. At peak bulk velocity (¢/T = 1.38), the strong acceleration
has elongated all velocity streaks close to the wall, resulting in an homogeneous wall shear
stress distribution (r/ T = 1.38 in figure 9). During deceleration, turbulent production (and
dissipation) increases. Interestingly, first (#/T = 1.55), the peak of turbulent production
is radially localised farther from the wall than the peak production of the steady case
(figure 8f). Thus, turbulent fluctuations are mostly found towards the pipe centre at
later pulsation phases (¢/T =1.65 and t/7 =1.8 in figure 8d). At t/T =1.65, even
though the magnitude of the turbulent fluctuations peaks, the wall shear stress is mostly
unaffected (the spatial average amounts to approximately 0.3T,, ;). Only towards the end
of the deceleration is the wall shear stress distribution visually similar to the steady case
(z/ T = 1.8). At these phases of the period however, production and (therefore) dissipation
decrease, which explains the almost complete dampening of turbulence before the next
acceleration phase.
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Figure 9. Instantaneous snapshots of the wall shear stress in units of Ty, ; in steady pipe flow (Re = 5160,
left panel) and in WF 1 for the same phases in the period as in figure 8(«a). Blue/red titles are associated with
acceleration/deceleration.

To complement our analysis, in Appendix D, we analogously show the quantities as in
figures 8 and 9, but for a single harmonic (sine) waveform, with the same maximum and
mean Reynolds number as WF 1. The waveform results in an extra energy consumption
of approximately 15 % and neither drag reduction nor drag increase (D, = (). Due to
slower acceleration than in WF 1, we observe smaller wall shear stress in this phase of the
period (/T =1.4 and ¢t/ T = 1.65 in figure 14). However, the elongated wall shear stress
distribution remains. During deceleration, both production and dissipation rise faster (and
are substantially larger) than in WF 1 (figure 13b). Further, here, the radial localisation of
the production is similar to the steady case (figure 13f,¢/T = 1.72, 1.82, 1.92). Therefore,
peak turbulent fluctuations appear in earlier phases of deceleration (at larger instantaneous
Reynolds numbers) and radial localisation resembles the steady case. At late phases of the
deceleration (t/ T = 1.92 in figure 14), the wall shear stress distribution is, like in WF 1,
similar to the steady case; however, with a larger magnitude.

5. Conclusions

We show that by modulating the bulk velocity in time, while realising a fixed time-
averaged volume flux, the average wall shear stress and net energy consumption can be
greatly reduced when compared with steady driving. This is possible due to the nonlinear
response of turbulence to unsteady driving: if and to what extent energy is saved or drag is
reduced is highly dependent on the specific driving waveform — motivating optimisation
for the latter.

Solving the optimisation problem using DNS is computationally demanding and results
in a noisy estimation of the power input and drag due to the finite-time sampling of the
turbulent attractor. Uncertainty in 7 can be reduced by running longer simulations (i.e.
averaging over more periods) at the cost of increasing computing times. In gradient-based
methods, including adjoint optimisation, noise must be small in each iteration to enable
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reasonable gradient approximations. BO deals by design with noisy objective functionals
by modelling noise with Gaussian processes. Hence, single functional evaluations can
be noisy and thus cheap. As more observations are added, the surrogate model is
iteratively refined and the uncertainty in the surrogate is much smaller than the noise
in the functional. We note that BO had already been used in fluid problems, e.g. for flow
control by Morita et al. (2022) and Mallor et al. (2023), who showed that a few function
evaluations are needed to converge to global optima. Our work unveils the ability of BO to
deal with (large) noise levels and highlights its prowess to optimise average turbulent flow
quantities. Generally, we expect BO to significantly outperform gradient-based algorithms
in the optimisation of ergodic properties of chaotic systems such as turbulence.

We find that, to save energy, it is mandatory to decrease the turbulence intensity prior
to the acceleration phase, thereby delaying the onset of turbulence, in agreement with
Scarselli et al. (2023). Independently of the parametrisation method considered (uni-/tri-
variant or Fourier series), all found optimal waveforms have a steep acceleration phase in
common. As noted by Morén et al. (2022) in the context of transitional pulsatile pipe flow
and Scarselli et al. (2023) in the case of fully turbulent flow, at these Womersley numbers,
a fast acceleration is related to a rapid turbulence collapse. This is ultimately rooted in
the time delay between the driving pressure gradient and the turbulence response, which
for these flow parameters was shown to be approximately 7 /4 (Morén & Avila 2024).
After modifying our optimal waveforms with different techniques, we show that changing
the acceleration phase slope (and thereby not delaying the onset of turbulence) has the
largest detrimental impact on energy consumptions. Compared with a single harmonic
waveform, the optimal waveform exhibits a substantially larger time shift between the peak
bulk velocity, and the peaks of dissipation and production. Further, in optimal waveforms,
both turbulent kinetic energy and production are more radially localised towards the pipe
centre, resulting in lower spatially and temporally averaged wall shear stresses.

In conclusion, thanks to the use of Bayesian optimisation, coarse meshes and a state-of-
the-art GPU DNS code, we solve the optimisation problem in a broad parametric regime
and computationally efficiently. We consider a large space of continuous waveforms by
optimising a small number of Fourier coefficients of the driving waveform (see (2.8)).
Here, at Re = 8600, the optimal waveform saves up to 23 % of energy and reduces drag by
37 %, clearly outperforming triangular waveforms at the same Reynolds number (Scarselli
et al. 2023 reported a power saving of 9 % and a drag reduction of 27 % at this Re).
We only considered two Womersley numbers (Wo € {10, IOﬁ}) and investigated three
average Reynolds numbers (Re € {4300, 5160, 8600}). Hence, a large parameter space
remains to be explored in the future. In addition, for computational reasons, we restricted
the number of Fourier coefficients and their magnitude, imposing a strong locality to
the optima. However, the presented savings are already higher than many flow control
techniques documented in the literature (e.g. Foggi et al. 2023a,b; Scarselli et al. 2023).
Finally, we note that in practical applications, further steps are needed to realise the power
savings. For example, power gains occur in part of the period where the fluid is decelerated
and storing this energy will unavoidably result in losses.
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Appendix A. Gradient-based optimisation

In this appendix, we describe the results of using a gradient-based optimisation method.
In particular, we consider an ordinary gradient-based sequential least-squares programme
(SLSQP, Schittkowski 1982; Kraft 1988) and study its performance with respect to the
desired level of standard error ¢*. We implement the version from scipy’s optimise
package.

The SLSQP method is a quasi-Newton method, suited for nonlinear constrained
optimisation problems. It follows the basic update strategy /1 = (/) 4 (Vs where
n) and s/) denote the step size and search direction at iterate j. In each iteration, the
search direction is computed by solving the least squares sub-problems (Schittkowski
1982) arising from a factorisation of a Broyden—Fletcher—Goldfarb—Shanno (BFGS)
approximation to the Hessian (Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno
1970).

The Armijio condition (Armijo 1966) is used in the line search to guarantee an
appropriate step size /). A detailed description of the SLSQP method can be found from
Schittkowski (1982), Kraft (1988) or Ma et al. (2024) and the references therein.

We assessed the performance in terms of feasibility, computational effort and robustness
of the SLSQP method using the restricted (uni-variant) triangular waveform described in
§ 2.4. Here, choosing Re = 4300, Re™ =9400 and Re™ = 1600 (see figure 1a), we aim
to identify the 7,,-optimal acceleration time. The acceleration time is bounded by 0.017
and 0.687 (T, € @ =1[0.01, 0.68]T) to obtain continuous waveforms and to ensure that
Re is realised. The gradient 0.7 /97T, (used for the computation of the search direction)
is approximated using first-order finite differences with a step size of 2.5x1072T. The
optimisation is started with 7© = 0.345 and the optimisation loop is terminated if either
|7y — TV =Dy <eor |sW|, < e, where the tolerance is chosen as € = 5x 1073,

For different values of ¢* and initially n =3, the evolution of the function value
Ty (blue lines) and the corresponding acceleration time (grey lines), as the SLSQP-
optimisation loop progresses, are shown in figure 10(a—e). For ¢* =2.5 % (figure 10a),
the gradient at the initial guess points towards larger acceleration times (7} is increased
and T, decreases). In fact, the gradient is so large that the first line search iteration moves
towards the upper bound of Q (T, = 0.68T), increasing the function value to 7, = 1.17.
Subsequent line search iterations find an acceleration time where, compared with the initial
value of T,, = 1.025, the mean wall shear stress is decreased to 7, = 1.004. Even though
being close to the initial guess, at T, = 0.355, the now gradient points towards shorter
accelerations (second V-marker in figure 10a), which would indicate a minimum between
0.345 and 0.355. Subsequently, the line search fails to find a step that decreases the
function value for 11 consecutive function calls and the optimisation loop is terminated.
These line searches unveil that the underlying optimisation problem exhibits features of
ill-posedness: minor changes in the acceleration time yield large changes in the function
value. Thus, gradient approximation and line searches are prone to following those noise-
induced changes rather than capturing the overall trend of the function. This motivates the
question of how many periods to run to capture the underlying function trend.

For {* =1.25 %, the gradient at 7® also points towards larger accelerations (if not
so strongly), and the line search finds such a small step size that 7 (71(0)) and J (n(s))
almost coincide and the loop terminates. Reducing ¢* to 0.625 % in figure 10(c) leads to
an almost zero gradient at the initial guess and the loop is terminated by the s ]2 <€
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Figure 10. Evolution of the optimisation process for different choices of the admissible standard error {* €
{2.5, 1.25, 0.625, 0.3125, 0.25} %. Blue lines indicate the wall shear stress obtained when the acceleration
time is chosen according to the grey lines (uses right-hand side labels), where gradient-approximations are
indicated by downward triangles and line searches are indicated by diamonds.

criterion. For ¢* = 0.3125 % (figure 10d), the gradient points towards shorter acceleration
times and the line search finds a suitable step size after only one iteration, indicating the
gradient is now capturing the trend of the function. Lastly, for ¢* =0.25 %, the slope
towards smaller acceleration times is even larger, so that the first line search iteration
(red marker in figure 10e) finds 7 (Up25(t)) = 0.951. Even at ¢* =0.25 %, which in
our case is equivalent to running up to 98 periods, the SLSQP method evidently fails
to find minima: at 7, = 0.017, using {* = 0.25 %, a mean wall shear stress of 7,, = 0.945
is obtained, which is statistically significantly smaller than the obtained minimum of
Ty =0.951 (the 95 % CI of 0.951 is given as [0.946, 0.956]). Clearly, further reducing
¢* is not a viable strategy to find ‘true’ minima, as it comes with extensive computational
effort. In fact, the four function evaluations from figure 10(e) took 4.5 days. Assuming that
the optimisation would converge for a smaller standard error of, for example, 0.125 %,
according to (2.6), four times as many periods (approximately 400) are necessary, which
would lead to a computational time of 4.5 days per function evaluation. We conclude
that, for the multidimensional optimisation problems proposed here, where the number of
function evaluations in general scales with d?, gradient-based methods like the SLSQP
method are computationally infeasible.

Increasing the step size for the finite difference gradient approximation can be a way to
overcome noise-induced local minima. However, the chosen value of 2.5x 1072 is already
relatively large and increasing it further reduces the accuracy substantially (i.e. we would
be unable to capture short term trends in Js).

Appendix B. Effect of the Womersley number

For Re = 5160 and Wo = 10\/5, we show the optimal waveform in figure 11(a). Here, a
power saving of 10.0 % is realised, while drag is reduced by 20.7 %. The waveform shows
the same characteristics as WF 1-4. The pre-peak velocity is reduced substantially, so that
the onset of turbulence is delayed (see figure 11b). As before, quick acceleration needs
large instantaneous pressure gradients (figure 11¢) and therefore, the instantaneous power
input is up to 14 times larger than in steady conditions (figure 11e).
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Figure 11. (a) Power-optimal waveform obtained by the truncated Fourier approach (Re = 5160, Wo = 10+/2),
where N =3 (see (2.8)) and |ak/, |bx| <1/6, k =1, 2, 3 (phase-adjusted). (b) Evolution of the cross-sectional
kinetic energy (units of U?) and the power input (units of Pp). (c—¢) Evolution of the pressure drop, the wall
shear stress and the power input (in units of the steady state counterparts), respectively.
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Figure 12. (a) Evolution of the turbulent kinetic energy (in units of TU?) for waveforms 1-3 (Re = 5160) without
forcing (Ar=0). (b) Time integrated difference of the power inputs P(t), § P(¢), with (Ay=1.15x 1073) and
without forcing.

Appendix C. Robustness of optimal waveforms

First, we analyse the sensitivity with respect to the spatial and temporal resolution. As
shown in table 1, for waveform 1-3 (Re = 5160), we conducted additional simulations
with significantly finer resolutions while reducing the time step approximately tenfold
(see table 1). We note that our code does not adjust the time step based on the Courant-
Friedrichs—Lewy (CFL) number, but based on an error threshold of the predictor—corrector
loop for the nonlinear term. The observed changes in power savings are insignificant for
any waveform when considering the 95 % CI with the acceptable standard error of 2.5 %.
In WF 1, power saving is increased to 14.5 % (originally 11.8 %), while in WF 2, the power
saving is nearly identical (10.1 % versus 10.8 % originally) and in WF 3, the saving is
slighly reduced to 8.5 % (10.4 % originally). In WF 4, power savings are slightly increased
to 23.4 % (originally 22.2 %). We stress that satisfying such strict spatial and temporal
resolutions during the whole optimisation process is infeasible: for the Re = 5160 case,
the single function evaluations take approximately 2.5 days, while they take 9 days for the
Re = 8600 case.

Second, we examine the effect of the body force (2.3). On our finest grid (see table 1),
we have conducted additional simulations of the optimal waveforms 1-3 without any
forcing term (A= 0). In figure 12(a), we show the evolution of the turbulent Kinetic energy
during the first 3 periods for waveforms 1-3. While in waveforms 1 and 2, turbulence is
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Figure 13. (a) Single harmonic waveform (Re = 5160, Re* = 8550, Re™ = 1779) where colours encode the
times in panels (¢)—(f). (b) Time evolution of production (¥) and dissipation (@) in this waveform and steady
pipe flow (Re = 5160) in units of (U>/D). (c—f) Axial and azimuthal averaged axial velocity (units of U),
turbulent kinetic energy (units of U?), dissipation and production (units of o3 /D)).

sustained, WF 3 shows exponential decay of turbulence. Thus, in WF 3, laminar conditions
are approached, resulting in an unrealistic power saving of approximately 40 %. Drag is
reduced by 44 %. In the optimisation loop, waveforms that relaminarise would always
be preferable over those that do not — even if in reality, they might perform worse.
In waveforms 1 and 2, the forcing has minimal impact on power savings: figure 12(b)
shows the time integrated difference between the power input P(¢) with and without
forcing, § P(¢). In the majority of the period, power inputs with and without forcing are
almost equal (§ P (t) =~ 0). Towards the end of the period, they slightly diverge; however,
3P(T) (which is the difference Py with and w/o forcing) is insignificant (~4 %). In
WF4 (Re = 8600), turbulence is sustained. The change in the power saving is insignificant
(Py =22.1 % versus Py =22.2 % originally).

The optimal waveforms are robust with respect to the pipe length. For waveforms 1-3,
we conducted simulations on a longer pipe (L = 10D). Power savings fall in line with
those obtained in the short pipe (Py = 12.6 % for waveform 1, Py = 10.9 % for WF 2 and
P, =10 % for WF 3).

Lastly, we have also confirmed the robustness with respect to different initial conditions.
For waveforms 1-3, instead of using an already turbulent initial condition, obtained from
a steady run, we initialise the flow laminar (u, =1 — r2) and introduce a (strong) localised
perturbation of the form

u =0.2(1—r2)? exp (— 10sin?(z/L)) sin(0),
g =02((1 —r?)* = 4r2(1 = r?)) exp (= 10sin>(z/L)) cos(6). (C1)

This unveils that the waveforms are memoryless, in the sense that even strong initial
conditions have no influence on the flow behaviour after the first period. Precisely, for
waveforms 1, 2 and 3 (see figure 6), we now obtain power savings of 13 %, 9.6 % and
9.2 %, respectively. These differences are insignificant considering the standard error of
2.5 % that was used during optimisation.
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Figure 14. Instantaneous snapshots of the wall shear stress in units of T,, 5 in steady pipe flow (Re = 5160,
left panel) and in the single harmonic waveform for the same phases in the period as in figure 13(a).

Appendix D. Spatio-temporal intra-cycle mechanics in sub-optimal waveforms

Here, we show the figures for the intra-cycle mechanism of a single harmonic waveform,
namely figures 13 and 14.
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