
Forum of Mathematics, Sigma (2025), Vol. 13:e156 1–19
doi:10.1017/fms.2025.10112

RESEARCH ARTICLE

Random independent sets in triangle-free graphs
Anders Martinsson1 and Raphael Steiner2

1Department of Computer Science, ETH Zürich, 8050 Zürich, Switzerland; E-mail: anders.martinsson@inf.ethz.ch.
2Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland;
E-mail: raphaelmario.steiner@math.ethz.ch (Corresponding author).

Received: 15 January 2025; Revised: 11 August 2025; Accepted: 11 August 2025

2020 Mathematics Subject Classification: Primary – 05C07, 05C15, 05C69, 05C72

Abstract
We establish several new results on the existence of probability distributions on the independent sets in triangle-
free graphs where each vertex is present with a given probability. This setting was introduced and studied under
the name of “fractional coloring with local demands” by Kelly and Postle and is closely related to the well-studied
fractional chromatic number of graphs.

Our first main result strengthens Shearer’s classic bound on independence number, proving that for every
triangle-free graph G there exists a distribution over independent sets where each vertex v appears with probability
(1 − 𝑜(1)) ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) , resolving a conjecture by Kelly and Postle. This in turn implies new upper bounds on the
fractional chromatic number of triangle-free graphs with a prescribed number of vertices or edges, which resolves
a conjecture by Cames van Batenburg et al. and addresses yet another one by the same authors.

Our second main result resolves Harris’ conjecture on triangle-free d-degenerate graphs, showing that such
graphs have fractional chromatic number at most (4 + 𝑜(1)) 𝑑

ln 𝑑 . As previously observed by various authors, this
in turn has several interesting consequences. A notable example is that every triangle-free graph with minimum
degree d contains a bipartite induced subgraph of minimum degree Ω(log 𝑑). This settles a conjecture by Esperet,
Kang, and Thomassé.

The main technique employed to obtain our results is the analysis of carefully designed random processes on
vertex-weighted triangle-free graphs that preserve weights in expectation. The analysis of these processes yields
weighted generalizations of the aforementioned results that may be of independent interest.
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1. Introduction

One of the most fundamental problems in all of combinatorics concerns bounding the famous Ramsey
number 𝑅(ℓ, 𝑘), which may be defined as the smallest number n such that every graph on n vertices
contains either a clique of size ℓ or an independent set of size k. The first highly challenging instance
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2 A. Martinsson and R. Steiner

of this general problem is the determination of the Ramsey numbers 𝑅(3, 𝑘), posed as a prize-money
question by Erdős already back in 1961 [28] (see also this Erdős problem page entry). Currently, the
best known asymptotic bounds are(

1
4
− 𝑜(1)

)
𝑘2

ln 𝑘
≤ 𝑅(3, 𝑘) ≤ (1 + 𝑜(1)) 𝑘2

ln 𝑘
.

The lower bound was established by an analysis of the famous triangle-free process independently by
Fiz Pontiveros, Griffiths, and Morris [31] and Bohman and Keevash [10] in 2013. Proving an upper
bound on 𝑅(3, 𝑘) is equivalent to establishing a lower bound on the independence number 𝛼(𝐺) (i.e.,
the size of a largest independent set in G) for all triangle-free graphs on n vertices. In 1980, Ajtai,
Komlós, and Szemerédi [2] famously proved that every triangle-free graph G on n vertices with average
degree 𝑑 satisfies 𝛼(𝐺) ≥ 𝑐 ln 𝑑

𝑑
, where 𝑐 > 0 is some small absolute constant, which is easily seen

to imply that 𝑅(3, 𝑘) ≤ 𝑂
(

𝑘2

log 𝑘

)
. The stronger upper bound on 𝑅(3, 𝑘) stated above is due to a

strengthening of the result of Ajtai, Komlós and Szemerédi, established in a landmark result by Shearer
in 1983. Namely, Shearer [51] improved the constant factor c in this bound significantly by showing
that 𝛼(𝐺) ≥ (1−𝑑)+𝑑 ln 𝑑

(𝑑−1)2 𝑛 = (1 − 𝑜(1)) ln 𝑑

𝑑
𝑛. Further refining this result, Shearer [52] proved in 1991

that every triangle-free graph G satisfies 𝛼(𝐺) ≥
∑

𝑣 ∈𝑉 (𝐺) 𝑔(𝑑𝐺 (𝑣)), where 𝑑𝐺 (𝑣) denotes the degree
of v in G and 𝑔(𝑑) = (1 − 𝑜(1)) ln 𝑑

𝑑 is a recursively defined function. This bound is slightly better than
Shearer’s first bound in terms of the average degree for graphs with unbalanced degree sequences.

These two classic bounds on the independence number of triangle-free graphs due to Shearer have
essentially remained the state of the art on the topic for four decades, and due to their ubiquity have
found widespread application as a tool across many areas of extremal and probabilistic combinatorics.
By a result of Bollobás [11], it is known that Shearer’s bounds are tight up to a multiplicative factor
of 2. Because of the relation to the Ramsey numbers 𝑅(3, 𝑘) discussed above, any constant factor
improvement of Shearer’s longstanding bounds would be a major breakthrough in Ramsey theory. Due
to this, a lot of research has been devoted to finding strengthenings and generalizations of Shearer’s
bounds: We refer to [23, 39] for recent surveys covering Shearer’s bound and relations to the hard-core
model in statistical mechanics as well as the theory of graph coloring and to [3, 19, 20, 22, 24, 26, 49]
for some extensions and generalizations of Shearer’s bounds.

The study of lower bounds on the independence number is closely connected to the theory of graph
coloring. Recall that in a proper graph coloring vertices are assigned colors such that neighboring
vertices have distinct colors, and the chromatic number 𝜒(𝐺) of a graph G is the smallest amount of
colors required to properly color G. It is easily seen by the definition (by considering a largest “color
class”) that every graph G on n vertices has an independent set of size at least 𝑛

𝜒 (𝐺) . An even stronger
lower bound on the independence number is provided by the well-known fractional chromatic number
𝜒 𝑓 (𝐺) of the graph. The fractional chromatic number has many different equivalent definitions (see the
standard textbook [50] on fractional coloring as a reference). Here, we shall find the following definition
convenient: 𝜒 𝑓 (𝐺) is the minimum real number 𝑟 ≥ 1 for which there exists a probability distribution on
the independent sets of G such that a random independent set I sampled from this distribution contains
any given vertex 𝑣 ∈ 𝑉 (𝐺) with probability at least 1

𝑟 . By considering the expected size of a random set
drawn from such a distribution, one immediately verifies that 𝛼(𝐺) ≥ 𝑛

𝜒 𝑓 (𝐺) holds for every graph G.
In general, the latter lower bound 𝑛

𝜒 𝑓 (𝐺) on the independence number is stronger than the lower bound
𝑛

𝜒 (𝐺) , as there are graphs (such as the Kneser graphs [7, 44]) for which 𝜒 𝑓 (𝐺) is much smaller than
𝜒(𝐺).

Given these lower bounds of the independence number in terms of the (fractional) chromatic number,
it is natural to ask whether there are analogues or strengthenings of Shearer’s bounds that provide
corresponding upper bounds for the (fractional) chromatic number. A prime example of such a result is a
recent breakthrough of Molloy [46], who proved that 𝜒(𝐺) ≤ (1+𝑜(1)) Δ

lnΔ for every triangle-free graph
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G with maximum degree Δ , where the 𝑜(1)-term vanishes as Δ → ∞. This strengthened a longstanding
previous bound of the form 𝑂

(
Δ

lnΔ

)
due to Johansson [38] and recovers Shearer’s independence number

bound in the case of regular graphs in a stronger form. As with Shearer’s bound, it is known that Molloy’s
bound is optimal up to a factor of 2, and improving the constant 1 to any constant below 1 would be
a major advance in the field. Several interesting strengthenings and generalizations of Johansson’s and
Molloy’s results have been proved in the literature, see, for example, [15, 4, 5, 6, 8, 12, 13, 19, 35, 36,
49] for some selected examples.

Our results.

Our first main result concerns the following conjecture from 2018 posed by Kelly and Postle [40] that
claims a local strengthening of Shearer’s bounds that can also be seen as a degree-sequence generalization
of Molloy’s bound for fractional coloring1.

Conjecture 1.1 (Local fractional Shearer/Molloy, cf. Conjecture 2.2 in [40]). For every triangle-free
graph there exists a probability distribution on its independent sets such that every vertex 𝑣 ∈ 𝑉 (𝐺)
appears with probability at least (1 − 𝑜(1)) ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) in a random independent set sampled from the
distribution. Here, the 𝑜(1) term represents any function that tends to 0 as the degree grows.

To see that this conjecture indeed forms a strengthening of Shearer’s bounds, note that the expected
size of a random independent set drawn from a distribution as given by the conjecture is∑

𝑣 ∈𝑉 (𝐺)
(1 − 𝑜(1)) ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) ,

which recovers Shearer’s second (stronger) lower bound [52] on the independence number up to lower-
order terms. But on top of that, and this explains the word “local” in the name of the conjecture, the
distribution in Conjecture 1.1 guarantees that every vertex can be expected to be contained in the random
independent set a good fraction of the time (and lower degree vertices are contained proportionally
more frequently). This relates back to the previously discussed fractional chromatic number, and, for
instance, directly implies that 𝜒 𝑓 (𝐺) ≤ (1 + 𝑜(1)) Δ (𝐺)

lnΔ (𝐺) for every triangle-free graph, which recovers
the fractional version of Molloy’s bound.

Adding to that, Conjecture 1.1 connects to several other notions of graph coloring discussed in detail
by Kelly and Postle, see in particular [40, Proposition 1.4] which provides many different equivalent
formulations of Conjecture 1.1. One of these involves the notion of fractional coloring with local
demands introduced by Dvořák, Sereni and Volec [27]. Following Kelly and Postle [40], given a graph G
and a so-called demand function ℎ : 𝑉 (𝐺) → [0, 1] that assigns to each vertex its individual “demand,”
an h-coloring of a graph G is a mapping 𝑐 : 𝑉 (𝐺) → 2[0,1] that assigns to every vertex 𝑣 ∈ 𝑉 (𝐺) a
measurable subset 𝑐(𝑣) ⊆ [0, 1] of measure at least ℎ(𝑣), in such a way that adjacent vertices in G are
assigned disjoint subsets. Since the function h does not have to be constant but can depend on local
information concerning the vertex v in G, this setting extends the usual paradigm of graph coloring
in a local manner. Kelly and Postle [40, Proposition 1.4] proved that Conjecture 1.1 is equivalent to
the statement that every triangle-free graph has an h-coloring, where ℎ : 𝑉 (𝐺) → [0, 1] is a function
depending only on the vertex-degrees such that ℎ(𝑣) = (1 − 𝑜(1)) ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) . We refer to the extensive
introduction of [40] for further applications of the conjecture.

In one of their main results, Kelly and Postle [40, Theorem 2.3] proved a relaxation of Conjecture
1.1, replacing the bound (1− 𝑜(1)) ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) with the asymptotically weaker
(

1
2𝑒 − 𝑜(1)

)
ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) ln ln 𝑑𝐺 (𝑣) .
As the first main result of this paper, we fully resolve Conjecture 1.1.

1For presentation purposes, we here chose to present Conjecture 2.2 by Kelly and Postle from [40] in a rephrased version, using
Proposition 1.4 from their paper which yields several equivalent variants of their conjecture.
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Theorem 1.2. For every triangle-free graph G there exists a probability distribution D on the indepen-
dent sets of G such that

P𝐼∼𝐷 [𝑣 ∈ 𝐼] ≥ (1 − 𝑜(1)) ln(𝑑𝐺 (𝑣))
𝑑𝐺 (𝑣)

for every 𝑣 ∈ 𝑉 (𝐺). Here the 𝑜(1) represents a function of 𝑑𝐺 (𝑣) that tends to 0 as the degree grows.

A pleasing consequence of Theorem 1.2 is that it can also be used to fully resolve another conjecture
about fractional coloring raised in 2018 by Cames van Batenburg, de Joannis de Verclos, Kang, and
Pirot [16]: Motivated by the aforementioned problem of estimating the Ramsey number 𝑅(3, 𝑘), in 1967
Erdős asked the fundamental question of determining the maximum chromatic number of triangle-free
graphs on n vertices. An observation of Erdős and Hajnal [29] combined with Shearer’s bound implies
an upper bound (2

√
2+ 𝑜(1)))

√
𝑛

ln 𝑛 for this problem. In recent work of Davies and Illingworth [21], this
upper bound was improved by a

√
2-factor to the current state of the art (2+𝑜(1))

√
𝑛

ln 𝑛 . The current best
lower bound for this quantity is (1/

√
2 − 𝑜(1))

√
𝑛

ln 𝑛 , coming from the aforementioned lower bounds on
𝑅(3, 𝑘) [31, 10].

Cames van Batenburg et al. [16] studied the natural analogue of this question for fractional coloring
and made the following conjecture.

Conjecture 1.3 (cf. Conjecture 4.3 in [16]). As 𝑛 → ∞, every triangle-free graph on n vertices has
fractional chromatic number at most (

√
2 + 𝑜(1))

√
𝑛

ln 𝑛 .

In one of their main results [16, Theorem 1.4], Cames van Batenburg et al. proved the fractional
version of the result of Davies and Illingworth, namely an upper bound (2+ 𝑜(1))

√
𝑛

ln 𝑛 on the fractional
chromatic number. Using a connection between Conjectures 1.1 and 1.3 proved by Kelly and Postle
[40, Proposition 5.2], we are able to confirm Conjecture 1.3 too.

Theorem 1.4. The maximum fractional chromatic number among all n-vertex triangle-free graphs is
at most

(
√

2 + 𝑜(1))
√

𝑛

ln(𝑛) .

We also prove a similar upper bound on the fractional chromatic number of triangle-free graphs in
terms of the number of edges, as follows.

Theorem 1.5. The maximum fractional chromatic number among triangle-free graphs with m edges is
at most

(181/3 + 𝑜(1)) 𝑚1/3

(ln𝑚)2/3 .

Theorem 1.5 comes very close to confirming another conjecture of Cames van Batenburg et al.
[16, Conjecture 4.4], stating that every triangle-free graph with m edges has fractional chromatic number
at most (161/3 + 𝑜(1))𝑚1/3/(ln𝑚)2/3. In fact, after a personal communication with the authors of [16],
it turned out that the constant 161/3 seems to be due to a miscalculation on their end. In particular, it was
claimed in [16] that the conjectured bound on the fractional chromatic number can be verified in the spe-
cial case of d–regular triangle-free graphs using the upper bound 𝜒 𝑓 (𝐺) ≤ min((1 + 𝑜(1))𝑑/ln 𝑑, 𝑛/𝑑).
However, assuming 𝑛 = (1 + 𝑜(1))𝑑2/ln 𝑑 and thus 𝑚 = (1/2 + 𝑜(1))𝑑3/ln 𝑑, this upper bound simpli-
fies to (1 + 𝑜(1))𝑑/ln 𝑑 = (1 + 𝑜(1)) (2𝑚)1/3/(ln𝑚1/3)2/3 = (1 + 𝑜(1)) (18𝑚)1/3/(ln𝑚)2/3, matching
our bound in Theorem 1.5.

Let us now turn to our second main result. A broad generalization of the standard upper bound
𝜒(𝐺) ≤ Δ (𝐺) + 1 on the chromatic number in terms of the maximum degree is the upper bound
𝜒(𝐺) ≤ 𝑑 + 1 which holds for every d-degenerate graph. Given Johansson’s and Molloy’s improved
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upper bounds for the chromatic number of the form 𝑂 (Δ (𝐺)/lnΔ (𝐺)) for triangle-free graphs, it is
tempting to suspect that similarly an upper bound 𝑂 (𝑑/ln 𝑑) holds for the chromatic number of triangle-
free d-degenerate graphs. However, this turns out to be too strong: A number of articles ranging back
to at least the 1940s, see for instance [25, 55, 47], present constructions of d-degenerate triangle-free
graphs with chromatic number 𝑑 + 1. However, all these constructions turn out to have relatively small
fractional chromatic number. And indeed, a well-known conjecture by Harris [33] posits that this is part
of a general phenomenon.

Conjecture 1.6 (cf. Conjecture 6.2 in [33]). Suppose that G is d-degenerate and triangle-free. Then
𝜒 𝑓 (𝐺) = 𝑂 (𝑑/log 𝑑).

This conjecture has gained quite some attention in recent years. It is known to imply various other
conjectures and strengthenings of known results in the literature [30, 33, 37, 41, 43] including another
well-known conjecture by Esperet, Kang and Thomassé [30, Conjecture 1.5] that any triangle-free
graph with minimum degree d contains an induced bipartite subgraph of minimum degree Ω(log 𝑑).
Currently the best known lower bound on the conjecture by Esperet et al. is Ω(log 𝑑/log log 𝑑) due to
Kwan, Letzter, Sudakov and Tran [41], though Girão and Hunter (personal communication) recently
announced upcoming work improving this to average degree (1 − 𝑜(1)) ln 𝑑. See also [24, 40]. Despite
this attention, Harris’ conjecture itself has remained wide open with no significant improvement of the
trivial upper bound 𝑑 + 1 having existed in the literature thus far.

As our second main result, we fully resolve Conjecture 1.6. More precisely, we prove the following.

Theorem 1.7. Suppose G is a triangle-free and d-degenerate graph. Then 𝜒 𝑓 (𝐺) ≤ (4 + 𝑜(1)) 𝑑
ln 𝑑 ,

where the 𝑜(1) term tends to 0 as d increases.

As already mentioned, this result is known to have some nice consequences. For instance, a direct
application of the theorem implies that any triangle-free graph with minimum degree d contains an
induced bipartite subgraph of average degree at least ( 1

4 − 𝑜(1)) ln 𝑑 (and thus one of minimum degree
at least ( 1

8 −𝑜(1)) ln 𝑑). We refer to [30, Theorem 3.1] for further details on the calculations. This proves
[30, Conjecture 1.5], improving on the previously best known bound [41] by a factor Θ(log log 𝑑). We
note that the factor 1

4 can likely be improved by a more careful analysis, but we do not attempt this here.
In addition, Harris [33] observed that Theorem 1.7 can be extended to the setting where the triangle-

free condition is relaxed to G being locally sparse, similar to the extension of the upper bound for the
chromatic number of triangle-free graphs presented in [4]. More precisely, we say that a d-degenerate
graph G has local triangle bound y if each vertex in G is the last vertex of at most y triangles, where
last refers to the degeneracy ordering of the graph. Combining Theorem 1.7 with [33, Lemma 6.3], it
follows that

𝜒 𝑓 (𝐺) = 𝑂

(
𝑑

ln(𝑑2/𝑦)

)
for any d-degenerate graph G with local triangle bound y. This in turn proves various relationships
between the chromatic number and the triangle count of a graph. We refer to [33, Section 6] for
more details. We remark that Harris formally stated his results in a slightly weaker form, namely with
“local triangle bound” referring to the maximum number of triangles containing a vertex in the graph.
However, looking into his arguments [33] it is not hard to check that they work just as well for the
modified definition of local triangle bound given above.

In fact, Theorem 1.7 can be seen as a special case of the following generalization of Harris’ conjecture.

Theorem 1.8. Let G be a triangle-free graph with a vertex ordering 𝑣1, 𝑣2, . . . , 𝑣𝑛. Suppose 𝑝 : 𝑉 (𝐺) →
[0, 1] satisfies

𝑝(𝑣𝑖) ≤
∏

𝑣𝑗 ∈𝑁𝐿 (𝑣𝑖)

(
1 − 𝑝(𝑣 𝑗 )

)
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for all vertices 𝑣𝑖 , where 𝑁𝐿 (𝑣𝑖) denotes the set of neighbors 𝑣 𝑗 of 𝑣𝑖 with 𝑗 < 𝑖. Then there exists a
probability distribution D over the independent sets of G such that

P𝐼∼D [𝑣𝑖 ∈ 𝐼] ≥ 𝑝(𝑣𝑖)
4

,

for all vertices 𝑣𝑖 .

It is not too hard to see that this statement implies Theorem 1.7. In fact, Theorem 1.8 also implies,
up to constant factors, the local fractional Shearer bound as can be seen by ordering the vertices of any
triangle-free graph decreasingly by their degrees and setting 𝑝(𝑣𝑖) = Θ

(
ln 𝑑𝐺 (𝑣𝑖)
𝑑𝐺 (𝑣𝑖)

)
. In particular, this

matches the bound in Theorem 1.2 up to a constant factor. Beyond this, Theorem 1.8 appears to be a
very natural extension of Harris’ conjecture which may be of independent interest.

High-level proof ideas.

The key concept to prove our two main results, Theorem 1.2 and 1.7, is to equip the triangle-free graphs
under consideration with positive vertex-weights, and attempt to prove extensions of our claims in these
generalized setups (see Theorems 2.1 and 4.1, respectively). In both of these settings, we will construct
random independent sets I by iteratively/inductively applying the following type of operation: Pick
some vertex v and include it in I with probability depending on its current weight. If v is added to I,
set the weight of its neighbors to 0 (or, equivalently, remove its neighbors from G). Otherwise, update
the vertex-weights in G such that weights are preserved in expectation. This is particularly useful, as it
limits the influence of the event that 𝑣 ∈ 𝐼 from any update outside the neighborhood of v, which in turn
allows us to derive lower bounds on the probability that 𝑣 ∈ 𝐼 in terms of the initial weights of v and its
neighbors.

Organization.

The rest of the paper is structured as follows: In Section 2 we establish a key technical result, namely
Theorem 2.1, that goes beyond Theorem 1.2 and generalizes it to a vertex-weighted setting. In the
following Section 3 we then derive our first three results (Theorems 1.2, 1.4, and 1.5) from Theorem 2.1.
In Section 4, we then proceed to present a random process on weighted graphs with a fixed linear vertex-
ordering. Analyzing this process then yields our second key technical result, Theorem 4.1. Finally, our
second main result Theorem 1.7 as well as Theorem 1.8 can be quickly deduced as special cases of this
more general statement.

We conclude the paper in Section 5 with some discussion of open problems and future research
directions.

2. Key technical result for Theorem 1.2

In this section, we present the proof of a key technical result, Theorem 2.1 below, which generalizes
Theorem 1.2 to a vertex-weighted setting.

In the following, we denote by2 𝑓 : [0,∞) → R+ the unique continuous extension of 𝑥 → (1−𝑥)+𝑥 ln(𝑥)
(𝑥−1)2

from [0,∞) \ {0, 1} to [0,∞). It is not hard to check that f exists and has the following properties:

◦ 𝑓 (0) = 1, 𝑓 (1) = 1
2 .

◦ f is convex.
◦ f is strictly monotonically decreasing.

2We remark that the function f is the same function that was used by Shearer in his first paper [51].
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◦ f is continuously differentiable on (0,∞) and satisfies the following differential equation:

𝑥(𝑥 − 1) 𝑓 ′(𝑥) + (𝑥 + 1) 𝑓 (𝑥) = 1

for every 𝑥 > 0.
◦ |𝑥 𝑓 ′(𝑥) | < 1 for every 𝑥 > 0.
◦ 𝑓 (𝑥) = (1 − 𝑜(1)) ln(𝑥)

𝑥 as 𝑥 → ∞.
In the following, given a weight function 𝑤 : 𝑉 (𝐺) → R+ on the vertices of a graph G and a subset
𝑋 ⊆ 𝑉 (𝐺), 𝑤(𝑋) :=

∑
𝑣 ∈𝑋 𝑤(𝑣) denotes the total weight of X.

In this section our goal shall be to establish the following statement, which represents a main technical
contribution of the paper at hand and from which Theorems 1.2, 1.4, and 1.5 can be deduced (this will
be done in the following section). We believe that the more general result offered by Theorem 2.1 may
be of independent interest.
Theorem 2.1. For every triangle-free graph G and every strictly positive weight function 𝑤 : 𝑉 (𝐺) →
R+ on the vertices there exists a probability distribution D on the independent sets of G such that

P𝐼∼D [𝑣 ∈ 𝐼] ≥ 𝑓

(
𝑤(𝑁𝐺 (𝑣))

𝑤(𝑣)

)
for every vertex 𝑣 ∈ 𝑉 (𝐺).
Proof. We prove the statement by induction on |𝑉 (𝐺) |. In the base case |𝑉 (𝐺) | = 1, there is a unique
vertex v of G, so 𝑤(𝑁𝐺 (𝑣)) = 𝑤(∅) = 0 and hence our target probability of the appearance of v in a
randomly drawn independent set is 𝑓 (0) = 1. This is easily achieved by letting D be the probability
distribution that always picks {𝑣}, establishing the induction base.

For the induction step, let us assume that G is a triangle-free graph on at least two vertices and that we
have already proven the claim of the theorem for all triangle-free graphs with strictly less vertices than G.

Let 𝐾 ⊆ [0, 1] be the set of all 𝛿 ∈ [0, 1] such that for every strictly positive weight function
𝑤 : 𝑉 (𝐺) → R+ there exists a probability distribution D on the independent sets of G such that
P𝐼∼𝐷 [𝑣 ∈ 𝐼] ≥ 𝑓

(
𝑤 (𝑁𝐺 (𝑣))

𝑤 (𝑣)

)
− 𝛿 for every 𝑣 ∈ 𝑉 (𝐺). Since f takes values in [0, 1], we trivially

have 1 ∈ 𝐾 . Furthermore, we claim that the set K is closed (and thus compact). To see this, note
that 𝐾 =

⋂
𝑤 :𝑉 (𝐺)→R+ 𝐾𝑤 , where 𝐾𝑤 is the set of all 𝛿 ∈ [0, 1] for which there exists a probability

distribution D on the independent sets of G satisfying P𝐼∼D [𝑣 ∈ 𝐼] ≥ 𝑓
(
𝑤 (𝑁𝐺 (𝑣))

𝑤 (𝑣)

)
− 𝛿 for every

𝑣 ∈ 𝑉 (𝐺). Since intersections of closed sets are closed, it suffices to show that 𝐾𝑤 is closed for every
fixed 𝑤 : 𝑉 (𝐺) → R+. Now, consider the following linear program (I (𝐺) denotes the collection of all
independent sets in G):

min 𝑦

s.t. 𝑦 +
∑

𝐼 ∈I (𝐺):𝑣 ∈𝐼
𝑥𝐼 ≥ 𝑓

(
𝑤(𝑁𝐺 (𝑣))

𝑤(𝑣)

)
(∀𝑣 ∈ 𝑉 (𝐺)),∑

𝐼 ∈I (𝐺)
𝑥𝐼 = 1

𝑥𝐼 ≥ 0 (∀𝐼 ∈ I (𝐺)).

It can easily be checked that this linear program is bounded and feasible, and hence has a unique optimum
𝑦∗. Further, since the constraints of the program encode a probability distribution D on independent sets
with P𝐼∼D [𝑣 ∈ 𝐼] ≥ 𝑓

(
𝑤 (𝑁𝐺 (𝑣))

𝑤 (𝑣)

)
− 𝑦, we can see that 𝐾𝑤 = [𝑦∗, 1] is indeed a closed set as desired.

This shows that K is indeed compact and hence has a unique minimum 𝛿0 ∈ 𝐾 . Our goal is to show
that 0 ∈ 𝐾 (equivalently, 𝛿0 = 0), since this clearly establishes the induction hypothesis for G. So,
toward a contradiction, let us assume 𝛿0 > 0 in the following.
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Let us define 𝛿 := 𝛿0 −
𝛿2

0
8 . Then, since 𝛿 ∈ (0, 𝛿0) and hence 𝛿 ∉ 𝐾 , there exists a positive weight

function 𝑤 : 𝑉 (𝐺) → R+ such that there exists no probability distribution on the independent sets of G
for which every vertex v is contained in an independent set drawn from the distribution with probability
at least 𝑓

(
𝑤 (𝑁𝐺 (𝑣))

𝑤 (𝑣)

)
− 𝛿. Since the latter formula is scale-invariant, we may assume without loss of

generality throughout the rest of the proof that 𝑤(𝑉 (𝐺)) = 1.
Let us pick and fix some 𝜀 ∈ (0, 1) (for now arbitrarily, later on we will assign a concrete value). Let

𝑤′ : 𝑉 (𝐺) → R+ be a modified vertex-weighting of G, defined as 𝑤′(𝑣) := 𝑤(𝑣) · exp(𝜀𝑤(𝑁𝐺 (𝑣))) for
every 𝑣 ∈ 𝑉 (𝐺).

Since 𝛿0 ∈ 𝐾 , there must exist a probability distribution D on the independent sets of G such that

P𝐼∼D [𝑣 ∈ 𝐼] ≥ 𝑓

(
𝑤′(𝑁𝐺 (𝑣))

𝑤′(𝑣)

)
− 𝛿0

for every 𝑣 ∈ 𝑉 (𝐺).
For a vertex 𝑢 ∈ 𝑉 (𝐺), let us denote by 𝑁𝐺 (𝑢) := {𝑢} ∪ 𝑁𝐺 (𝑢) the closed neighborhood of u

and by 𝐺𝑢 := 𝐺 − 𝑁𝐺 (𝑢) the graph obtained from G by deleting this closed neighborhood. By the
inductive assumption, for every 𝑢 ∈ 𝑉 (𝐺) there exists a probability distribution D𝑢 on 𝐺𝑢 such that
P𝐼∼D𝑢 [𝑣 ∈ 𝐼] ≥ 𝑓

(
𝑤′ (𝑁𝐺𝑢 (𝑣))

𝑤′ (𝑣)

)
for every 𝑣 ∈ 𝑉 (𝐺𝑢).

Let us now define 𝜀 := 𝛿0
4 ∈ (0, 1), and let us consider the following process to generate a random

independent set I of G:
◦ With probability 1 − 𝜀 (we call this event A), draw I randomly from the distribution D and return I.
◦ With probability 𝜀 (we call this event 𝐵 := 𝐴c), do the following: First, sample randomly a vertex
𝑢 ∈ 𝑉 (𝐺) where u equals any given vertex x with probability exactly 𝑤(𝑥). Then, randomly draw an
independent set 𝐼𝑢 from the distribution D𝑢 and return the independent set 𝐼 := {𝑢} ∪ 𝐼𝑢 .

In the following, let D′ denote the probability distribution on independent sets of G that is induced
by the random independent set I created according to the above process. By our choice of the weight
function w, there must exist some vertex 𝑣 ∈ 𝑉 (𝐺) such that

P𝐼∼D′ [𝑣 ∈ 𝐼] < 𝑓

(
𝑤(𝑁𝐺 (𝑣))

𝑤(𝑣)

)
− 𝛿.

Our intermediate goal is to give a lower bound on P𝐼∼D′ [𝑣 ∈ 𝐼].
To estimate this probability, we stick with the random process described above. We then have

P𝐼∼D′ [𝑣 ∈ 𝐼] = (1 − 𝜀)P𝐼∼D′ [𝑣 ∈ 𝐼 |𝐴] + 𝜀P𝐼∼D′ [𝑣 ∈ 𝐼 |𝐵]

= (1 − 𝜀)P𝐼∼D [𝑣 ∈ 𝐼] + 𝜀
∑

𝑥∈𝑉 (𝐺)
P𝐼∼D′ [𝑣 ∈ 𝐼 |𝐵 ∧ {𝑢 = 𝑥}]𝑤(𝑥)

= (1 − 𝜀)P𝐼∼D [𝑣 ∈ 𝐼] + 𝜀𝑤(𝑣) + 𝜀
∑

𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣)

P𝐼∼D𝑥 [𝑣 ∈ 𝐼]𝑤(𝑥).

By our choice of the distributions D and D𝑥 , 𝑥 ∈ 𝑉 (𝐺), we have

(1 − 𝜀)P𝐼∼D [𝑣 ∈ 𝐼] + 𝜀
∑

𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣)

P𝐼∼D𝑥 [𝑣 ∈ 𝐼]𝑤(𝑥)

≥ (1 − 𝜀)
(
𝑓

(
𝑤′(𝑁𝐺 (𝑣))

𝑤′(𝑣)

)
− 𝛿0

)
+ 𝜀

∑
𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣)

𝑓

(
𝑤′(𝑁𝐺𝑥 (𝑣))

𝑤′(𝑣)

)
𝑤(𝑥)

= −(1 − 𝜀)𝛿0 + (1 − 𝜀) 𝑓
(
𝑤′(𝑁𝐺 (𝑣))

𝑤′(𝑣)

)
+

∑
𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣)

𝜀𝑤(𝑥) 𝑓
(
𝑤′(𝑁𝐺𝑥 (𝑣))

𝑤′(𝑣)

)
.
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Since (1 − 𝜀) +
∑

𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣) 𝜀𝑤(𝑥) = (1 − 𝜀) + 𝜀
(
1 − 𝑤(𝑁𝐺 (𝑣))

)
= 1 − 𝜀𝑤(𝑁𝐺 (𝑣)), the convexity

of f implies that

(1 − 𝜀) 𝑓
(
𝑤′(𝑁𝐺 (𝑣))

𝑤′(𝑣)

)
+

∑
𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣)

𝜀𝑤(𝑥) 𝑓
(
𝑤′(𝑁𝐺𝑥 (𝑣))

𝑤′(𝑣)

)
≥

(
1 − 𝜀𝑤(𝑁𝐺 (𝑣))

)
𝑓
����
(1 − 𝜀)𝑤′(𝑁𝐺 (𝑣)) +

∑
𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣) 𝜀𝑤(𝑥)𝑤′(𝑁𝐺𝑥 (𝑣))

𝑤′(𝑣)
(
1 − 𝜀𝑤(𝑁𝐺 (𝑣))

) ����.
The next claim gives a simple upper bound for the expression in the argument of f above.

Claim 2.2. We have that

(1 − 𝜀)𝑤′(𝑁𝐺 (𝑣)) +
∑

𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣) 𝜀𝑤(𝑥)𝑤′(𝑁𝐺𝑥 (𝑣))

𝑤′(𝑣)
(
1 − 𝜀𝑤(𝑁𝐺 (𝑣))

) ≤ 𝑤(𝑁𝐺 (𝑣))
𝑤(𝑣) · 𝑒𝜀 (𝑤 (𝑣)−𝑤 (𝑁𝐺 (𝑣))) .

Proof. We have

(1 − 𝜀)𝑤′(𝑁𝐺 (𝑣)) +
∑

𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣)

𝜀𝑤(𝑥)𝑤′(𝑁𝐺𝑥 (𝑣))

=
∑

𝑦∈𝑁𝐺 (𝑣)
(1 − 𝜀)𝑤′(𝑦) +

∑
𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣)

𝜀𝑤(𝑥)
∑

𝑦∈𝑁𝐺 (𝑣)\𝑁𝐺 (𝑥)

𝑤′(𝑦)

=
∑

𝑦∈𝑁𝐺 (𝑣)

���(1 − 𝜀) +
∑

𝑥∈𝑉 (𝐺)\(𝑁𝐺 (𝑣)∪𝑁𝐺 (𝑦))

𝜀𝑤(𝑥)���𝑤′(𝑦)

=
∑

𝑦∈𝑁𝐺 (𝑣)

(
1 − 𝜀 + 𝜀(1 − 𝑤(𝑁𝐺 (𝑣) ∪ 𝑁𝐺 (𝑦)))

)
𝑤′(𝑦)

=
∑

𝑦∈𝑁𝐺 (𝑣)

(
1 − 𝜀𝑤(𝑁𝐺 (𝑣) ∪ 𝑁𝐺 (𝑦))

)
𝑤′(𝑦).

Note that for every 𝑦 ∈ 𝑁𝐺 (𝑣), we have 𝑁𝐺 (𝑣) ∪ 𝑁𝐺 (𝑦) = 𝑁𝐺 (𝑣) ∪ 𝑁𝐺 (𝑦). Furthermore, since
G is triangle-free, the sets 𝑁𝐺 (𝑣) and 𝑁𝐺 (𝑦) are disjoint, and thus we have 𝑤(𝑁𝐺 (𝑣) ∪ 𝑁𝐺 (𝑦)) =
𝑤(𝑁𝐺 (𝑣)) + 𝑤(𝑁𝐺 (𝑦)). This implies

(1 − 𝜀)𝑤′(𝑁𝐺 (𝑣)) +
∑

𝑥∈𝑉 (𝐺)\𝑁𝐺 (𝑣) 𝜀𝑤(𝑥)𝑤′(𝑁𝐺𝑥 (𝑣))

𝑤′(𝑣)
(
1 − 𝜀𝑤(𝑁𝐺 (𝑣))

)
=

1
𝑤′(𝑣)

∑
𝑦∈𝑁𝐺 (𝑣)

1 − 𝜀𝑤(𝑁𝐺 (𝑣)) − 𝜀𝑤(𝑁𝐺 (𝑦))
1 − 𝜀𝑤(𝑁𝐺 (𝑣))

𝑤′(𝑦)

=
1

𝑤′(𝑣)
∑

𝑦∈𝑁𝐺 (𝑣)

(
1 − 𝜀

𝑤(𝑁𝐺 (𝑦)) − 𝑤(𝑣)
1 − 𝜀𝑤(𝑁𝐺 (𝑣))

)
𝑤′(𝑦)

≤ 1
𝑤′(𝑣)

∑
𝑦∈𝑁𝐺 (𝑣)

(1 − 𝜀(𝑤(𝑁𝐺 (𝑦)) − 𝑤(𝑣)))𝑤′(𝑦)

≤ 1
𝑤′(𝑣)

∑
𝑦∈𝑁𝐺 (𝑣)

exp(−𝜀(𝑤(𝑁𝐺 (𝑦)) − 𝑤(𝑣))) · 𝑤(𝑦) exp(𝜀𝑤(𝑁𝐺 (𝑦)))
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=
1

𝑤′(𝑣) exp(𝜀𝑤(𝑣))𝑤(𝑁𝐺 (𝑣))

=
𝑤(𝑁𝐺 (𝑣))

𝑤(𝑣) · exp(𝜀(𝑤(𝑣) − 𝑤(𝑁𝐺 (𝑣)))),

where we used the definition of 𝑤′ in the last and third to last line. This concludes the proof of the
claim. �

Using Claim 2.2 and the previously established inequalities (using that f is monotonically decreasing),
it follows that P𝐼∼D′ [𝑣 ∈ 𝐼] is lower-bounded by

𝜀𝑤(𝑣) − (1 − 𝜀)𝛿0 +
(
1 − 𝜀𝑤(𝑁𝐺 (𝑣))

)
𝑓

(
𝑤(𝑁𝐺 (𝑣))

𝑤(𝑣) · exp(𝜀(𝑤(𝑣) − 𝑤(𝑁𝐺 (𝑣))))
)
.

Let us now go about estimating the above expression. By Taylor expansion, it is not hard to verify
that the inequality exp(𝑧) ≤ 1 + 𝑧 + 𝑧2 holds for every 𝑧 ∈ [−1, 1]. Let us set 𝑥 := 𝑤 (𝑁𝐺 (𝑣))

𝑤 (𝑣) ,
𝑧 := 𝜀(𝑤(𝑣) −𝑤(𝑁𝐺 (𝑣))) and 𝑦 := 𝑥 · exp(𝑧). Note that since f is convex and differentiable, we have the
inequality 𝑓 (𝑦) ≥ 𝑓 (𝑥) + 𝑓 ′(𝑥) (𝑦 − 𝑥). Since 𝑤(𝑣), 𝑤(𝑁𝐺 (𝑣)) ≤ 𝑤(𝑉 (𝐺)) = 1, we obtain |𝑧 | ≤ 𝜀 < 1
and thus 𝑦 ≤ 𝑥(1 + 𝑧 + 𝑧2). Since f is monotonically decreasing, we have 𝑓 ′(𝑥) < 0. Putting these facts
together, it follows that

𝑓

(
𝑤(𝑁𝐺 (𝑣))

𝑤(𝑣) · exp(𝜀(𝑤(𝑣) − 𝑤(𝑁𝐺 (𝑣))))
)
= 𝑓 (𝑦)

≥ 𝑓 (𝑥) + 𝑓 ′(𝑥) (𝑦 − 𝑥)
≥ 𝑓 (𝑥) + 𝑓 ′(𝑥) · 𝑥 · (𝑧 + 𝑧2)
≥ 𝑓 (𝑥) + 𝑥𝑧 𝑓 ′(𝑥) − 𝜀2,

where we used that |𝑥 · 𝑓 ′(𝑥) | ≤ 1 for every 𝑥 > 0 and that |𝑧 | ≤ 𝜀 in the last line. Plugging this
estimate into the above lower bound for P𝐼∼D′ [𝑣 ∈ 𝐼] and using that by our choice of v, we have
P𝐼∼D′ [𝑣 ∈ 𝐼] < 𝑓

(
𝑤 (𝑁𝐺 (𝑣))

𝑤 (𝑣)

)
− 𝛿, we find:

𝑓 (𝑥) − 𝛿 > P𝐼∼D′ [𝑣 ∈ 𝐼]
≥ −(1 − 𝜀)𝛿0 + 𝜀𝑤(𝑣) + (1 − 𝜀(𝑤(𝑣) + 𝑤(𝑁𝐺 (𝑣)))︸���������������������︷︷���������������������︸

≤𝜀

) · ( 𝑓 (𝑥) + 𝑥𝑧 𝑓 ′(𝑥) − 𝜀2︸����������︷︷����������︸
≤𝜀

)

> −(1 − 𝜀)𝛿0 + 𝜀𝑤(𝑣) + 𝑓 (𝑥) + 𝑥𝑧 𝑓 ′(𝑥) − 2𝜀2 − 𝜀(𝑤(𝑣) + 𝑤(𝑁𝐺 (𝑣))) 𝑓 (𝑥).

Rearranging yields

𝛿0 − 𝛿 > 𝜀𝛿0 − 2𝜀2 + 𝜀𝑤(𝑣) + 𝑥𝑧 𝑓 ′(𝑥) − 𝜀(𝑤(𝑣) + 𝑤(𝑁𝐺 (𝑣))) 𝑓 (𝑥).

Using that 𝑥 = 𝑤 (𝑁𝐺 (𝑣))
𝑤 (𝑣) and 𝑧 = 𝜀𝑤(𝑣) (1 − 𝑥), we can simplify as follows.

𝜀𝑤(𝑣) + 𝑥𝑧 𝑓 ′(𝑥) − 𝜀(𝑤(𝑣) + 𝑤(𝑁𝐺 (𝑣))) 𝑓 (𝑥)
= 𝜀𝑤(𝑣) (1 + 𝑥(1 − 𝑥) 𝑓 ′(𝑥) − (1 + 𝑥) 𝑓 (𝑥)) = 0,

where we used the differential equation satisfied by f in the last step. Hence, we have proven the
inequality 𝛿0−𝛿 > 𝜀𝛿0−2𝜀2. Recalling our definitions 𝛿 := 𝛿0−

𝛿2
0

8 and 𝜀 := 𝛿0
4 we can now see that the

above inequality implies 𝛿2
0

8 >
𝛿2

0
8 , which is absurd. This is the desired contradiction, which shows that
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our initial assumption, namely that 𝛿0 > 0, was wrong. Hence, we have shown that 𝛿0 = 0, establishing
the inductive claim for G. This concludes the proof of the theorem by induction. �

3. Proofs of Theorems 1.2, 1.4, and 1.5

In this section we use Theorem 2.1 established in the previous section to deduce Theorems 1.2, 1.4, and
1.5. Let us start with Theorem 1.2, which is a simple corollary of Theorem 2.1 by using the all-1 weight
assignment.

Proof of Theorem 1.2. Let G be any given triangle-free graph, and let 𝑤 : 𝑉 (𝐺) → R+ be defined as
𝑤(𝑣) := 1 for every 𝑣 ∈ 𝑉 (𝐺). Then 𝑤 (𝑁𝐺 (𝑣))

𝑤 (𝑣) = 𝑑𝐺 (𝑣) for every vertex 𝑣 ∈ 𝑉 (𝐺), and hence by
Theorem 2.1 there exists a probability distribution D on independent sets of G such that

P𝐼∼D [𝑣 ∈ 𝐼] ≥ 𝑓 (𝑑𝐺 (𝑣))

for every 𝑣 ∈ 𝑉 (𝐺). Since 𝑓 (𝑥) = (1 − 𝑜(1)) ln(𝑥)
𝑥 , this establishes Theorem 1.2. �

Next, let us deduce Theorem 1.4. This, in fact, can be derived from Theorem 1.2 using the following
relationship between Conjectures 1.1 and 1.3 proved by Kelly and Postle [40, Proposition 5.2]:

Proposition 3.1. For every 𝜀, 𝑐 > 0, the following holds for sufficiently large n. Let G be a triangle-free
graph on n vertices with demand function h such that ℎ(𝑣) ≥ 𝑐 ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) for every 𝑣 ∈ 𝑉 (𝐺). If G has an
h-coloring, then

𝜒 𝑓 (𝐺) ≤ (
√

2/𝑐 + 𝜀)
√

𝑛

ln 𝑛
.

With this statement at hand, we can now easily deduce Theorem 1.4.

Proof of Theorem 1.4. The statement of Theorem 1.4 is equivalent to showing that for every fixed
𝛿 > 0 and n sufficiently large in terms of 𝛿, every triangle-free graph G on n vertices satisfies 𝜒 𝑓 (𝐺) ≤
(
√

2+𝛿)
√

𝑛
ln 𝑛 . Let 𝜀 > 0 and 0 < 𝑐 < 1 (only depending on 𝛿) be chosen such that

√
2/𝑐+𝜀 <

√
2+𝛿. By

Proposition 3.1 there exists 𝑛0 = 𝑛0 (𝜀, 𝑐) ∈ N such that every triangle-free graph G with 𝑛 ≥ 𝑛0 vertices
that admits an h-coloring for some demand function h satisfying ℎ(𝑣) ≥ 𝑐 ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) for all 𝑣 ∈ 𝑉 (𝐺) has
fractional chromatic number at most (

√
2/𝑐 + 𝜀)

√
𝑛

ln 𝑛 ≤ (
√

2 + 𝛿)
√

𝑛
ln 𝑛 . By [40, Proposition 1.4 (c)] the

latter statement is equivalent to the following: Every triangle-free graph on 𝑛 ≥ 𝑛0 vertices that admits a
probability distribution on its independent sets such that each vertex v is included with probability at least
𝑐 ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) in a randomly drawn independent set has fractional chromatic number at most (
√

2 + 𝛿)
√

𝑛
ln 𝑛 .

Since 𝑐 < 1, Theorem 1.2 implies that there exists a constant 𝐷 = 𝐷 (𝑐) such that every triangle-free
graph of minimum degree at least D admits a probability distribution on its independent sets where each
vertex v is included in a randomly drawn independent set with probability at least 𝑐 ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) . Putting
this together with the statement above, we immediately obtain that every triangle-free graph on 𝑛 ≥ 𝑛0
vertices with minimum degree at least D has fractional chromatic number at most (

√
2 + 𝛿)

√
𝑛

ln 𝑛 .
Let 𝑛1 be an integer chosen large enough such that (

√
2 + 𝛿)

√
𝑛1

ln 𝑛1
> max{𝐷 + 1, 𝑛0}. We now claim

that every triangle-free graph on 𝑛 ≥ 𝑛1 vertices has fractional chromatic number at most (
√

2+ 𝛿)
√

𝑛
ln 𝑛 ,

which is the statement that we wanted to prove initially. Let G be any given triangle-free graph on 𝑛 ≥ 𝑛1
vertices. Let 𝐺 ′ be the subgraph of G obtained by repeatedly removing vertices of degree less than D
from G, until no such vertices are left (𝐺 ′ is the so-called D-core of G). Then 𝐺 ′ is a triangle-free graph
that is either empty or has minimum degree at least D. Hence, we either have |𝑉 (𝐺 ′) | < 𝑛0 and thus
𝜒 𝑓 (𝐺 ′) < 𝑛0, or |𝑉 (𝐺 ′) | ≥ 𝑛0 and thus 𝜒 𝑓 (𝐺 ′) ≤ (

√
2 + 𝛿)

√
|𝑉 (𝐺′) |

ln |𝑉 (𝐺′) | ≤ (
√

2 + 𝛿)
√

𝑛
ln 𝑛 .
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Pause to verify that 𝜒 𝑓 (𝐺) ≤ max{𝜒 𝑓 (𝐺 − 𝑣), 𝑑𝐺 (𝑣) + 1} holds for every graph G and every vertex
𝑣 ∈ 𝑉 (𝐺). Repeated application of this fact combined with the definition of 𝐺 ′ now implies that

𝜒 𝑓 (𝐺) ≤ max{𝜒 𝑓 (𝐺 ′), 𝐷 + 1} ≤ max
{
𝑛0, (

√
2 + 𝛿)

√
𝑛

ln 𝑛
, 𝐷 + 1

}
= (

√
2 + 𝛿)

√
𝑛

ln 𝑛
,

as desired. Here, we used our choice of 𝑛1 and that 𝑛 ≥ 𝑛1 in the last step. This concludes the proof. �

Finally, let us prove the upper bound on the fractional chromatic number of triangle-free graphs with
a given number of edges stated in Theorem 1.5. Interestingly, it can be deduced by applying Theorem 2.1
with two different vertex-weight functions following a similar proof idea to Proposition 3.1.

Proof of Theorem 1.5. Let G be any given triangle-free graph with m edges. To prove the upper bound
on the fractional chromatic number, without loss of generality it suffices to consider the case when G
has no isolated vertices. By definition of the fractional chromatic number, we have to show that there
exists a probability distribution on the independent sets of G for which a randomly drawn independent
set contains any given vertex of G with probability at least (1 − 𝑜(1)) (ln𝑚)2/3/(18𝑚)1/3. To construct
such a distribution, we consider the following process to generate a random independent set I in G.
With probability 1/3 pick I as in Theorem 2.1 with the weight function defined as 𝑤1 (𝑣) := 1 for every
𝑣 ∈ 𝑉 (𝐺), with probability 1/3 we pick I as in Theorem 2.1 using the weight function 𝑤2 (𝑣) := 𝑑𝐺 (𝑣)
for every 𝑣 ∈ 𝑉 (𝐺), and with probability 1/3 we pick a random vertex u in G with P[𝑢 = 𝑣] = 𝑑𝐺 (𝑣)/2𝑚
for every 𝑣 ∈ 𝑉 (𝐺) and let I be its neighborhood (which is clearly an independent set in G).

It follows that

P[𝑣 ∈ 𝐼] ≥ 1
3
𝑓 (𝑑𝐺 (𝑣)) + 1

3
𝑓 (𝑆𝐺 (𝑣)/𝑑𝐺 (𝑣)) + 1

3
𝑆𝐺 (𝑣)

2𝑚
,

for every 𝑣 ∈ 𝑉 (𝐺), where 𝑆𝐺 (𝑣) denotes the sum of degrees over all neighbors of v in G. It suffices to
show that the right-hand side is at least (1 − 𝑜(1)) (ln𝑚)2/3/(18𝑚)1/3 for all vertices v.

Observe that if either 𝑑𝐺 (𝑣) < 𝑚1/3 or 𝑆𝐺 (𝑣)/𝑑𝐺 (𝑣) < 𝑚1/3, then the desired inequality is already
satisfied with room to spare from the first and second terms, respectively. Otherwise, if 𝑑𝐺 (𝑣) ≥ 𝑚1/3

and 𝑆𝐺 (𝑣)/𝑑 (𝑣) ≥ 𝑚1/3, we have

1
3
𝑓 (𝑑𝐺 (𝑣)) + 1

3
𝑓 (𝑆𝐺 (𝑣)/𝑑𝐺 (𝑣)) + 1

3
𝑆𝐺 (𝑣)

2𝑚

=
1
3
(1 − 𝑜(1)) ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) + 1
3
(1 − 𝑜(1)) ln(𝑆𝐺 (𝑣)/𝑑𝐺 (𝑣))

𝑆𝐺 (𝑣)/𝑑𝐺 (𝑣) + 1
3
𝑆𝐺 (𝑣)

2𝑚

≥ 1
3
(1 − 𝑜(1)) ln(𝑚1/3)

𝑑 (𝑣) + 1
3
(1 − 𝑜(1)) ln(𝑚1/3)

𝑆𝐺 (𝑣)/𝑑𝐺 (𝑣) + 1
3
𝑆𝐺 (𝑣)

2𝑚

≥
(
(1 − 𝑜(1)) ln(𝑚1/3)

𝑑𝐺 (𝑣) · (1 − 𝑜(1)) ln(𝑚1/3)
𝑆𝐺 (𝑣)/𝑑𝐺 (𝑣) · 𝑆𝐺 (𝑣)

2𝑚

)1/3

,

where the last line follows by the AM–GM inequality. Simplifying yields a lower bound of (1 −
𝑜(1))

(
ln(𝑚)2

18𝑚

)1/3
, as desired. �

4. Proofs of Theorems 1.7 and 1.8

In this section, we present a new stochastic process for generating an independent set I in a graph G,
and prove an accompanying key technical result, Theorem 4.1, which lower bounds the probability of
any vertex being contained in I, under the assumption that G is triangle-free. Theorems 1.7 and 1.8 are
both direct consequences of this statement.
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Let us assume that G is a triangle-free graph with vertices 𝑣1, . . . , 𝑣𝑛. We denote by 𝑁𝐿 (𝑣𝑖) the set
of neighbors 𝑣 𝑗 of 𝑣𝑖 where 𝑗 < 𝑖. Similarly, 𝑁𝑅 (𝑣𝑖) denotes the set of neighbors 𝑣 𝑗 of 𝑣𝑖 where 𝑗 > 𝑖.
Let 𝑤0 : 𝑉 (𝐺) → R+ be any assignment of positive weights to the vertices of G.

Consider the following process: Initially assign vertices the weights 𝑤(𝑣𝑖) = 𝑤0 (𝑣𝑖) for all 1 ≤ 𝑖 ≤ 𝑛.
Then for each step i in 1, 2, . . . , 𝑛 do the following:

◦ With probability 1 − 𝑒−𝑤 (𝑣𝑖) , put 𝑤(𝑣 𝑗 ) = 0 for all 𝑣 𝑗 ∈ 𝑁𝑅 (𝑣𝑖).
◦ With probability 𝑒−𝑤 (𝑣𝑖) , multiply the weight of all 𝑣 𝑗 ∈ 𝑁𝑅 (𝑣𝑖) by 𝑒𝑤 (𝑣𝑖) .

Let I be the set of vertices 𝑣𝑖 for which the first option occurred. It is easy to see that I is an
independent set. If 𝑣𝑖 ∈ 𝐼, then at step i all vertices 𝑣 𝑗 ∈ 𝑁𝑅 (𝑣𝑖) get assigned the weight 0 for the rest
of the process, which means they enter the independent set with probability 1 − 𝑒−0 = 0.

As will be proven next, the random independent set I generated in this fashion has the following
property.

Theorem 4.1. Let 𝑤0 : 𝑉 (𝐺) → (0, 1) be any weight function satisfying

1
2

ln(𝑤0 (𝑣𝑘 )) +
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )
𝑤0(𝑣𝑖) ≤ 0

for every 1 ≤ 𝑘 ≤ 𝑛. Then we have

P[𝑣𝑘 ∈ 𝐼] ≥ 𝑤0 (𝑣𝑘 )
2

for every 1 ≤ 𝑘 ≤ 𝑛.

Consider a fixed vertex 𝑣𝑘 . In order to prove Theorem 4.1, we will work toward establishing a
lower bound on the probability that 𝑣𝑘 ∈ 𝐼. We do this by considering a modified process, defined as
follows. Initially assign the vertices weights 𝑤̃(𝑣𝑖) = 𝑤0 (𝑣𝑖) for all 1 ≤ 𝑖 ≤ 𝑛. Then for each step i in
1, 2, . . . , 𝑘 − 1, do the following.

◦ If 𝑣𝑖 ∉ 𝑁𝐿 (𝑣𝑘 ), do the same update rule as for w.
◦ If 𝑣𝑖 ∈ 𝑁𝐿 (𝑣𝑘 ), multiply the weight of all vertices 𝑣 𝑗 ∈ 𝑁𝑅 (𝑣𝑖) by 𝑒𝑤̃ (𝑣𝑖) .

In other words, 𝑤̃ has the same update rule as w for any step i where 𝑣𝑖 ∉ 𝑁𝐿 (𝑣𝑘 ). For any step i where
𝑣𝑖 ∈ 𝑁𝐿 (𝑣𝑘 ), the process follows the update rule of the second bullet point of w with probability 1.

Let us denote by 𝑤𝑖 (𝑣 𝑗 ) and 𝑤̃𝑖 (𝑣 𝑗 ) the weight of 𝑣 𝑗 after step i in the respective processes, let
𝑤̃0 (𝑣 𝑗 ) := 𝑤0(𝑣 𝑗 ), and let

𝑋 :=
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )
𝑤̃𝑘−1(𝑣𝑖).

By construction of 𝑤̃, we have the following relation to w.

Claim 4.2. For any function 𝑓 : R→ R such that 𝑓 (0) = 0 we have

E𝑤 [ 𝑓 (𝑤𝑘−1(𝑣𝑘 ))] = E𝑤̃
[
𝑓 (𝑤̃𝑘−1(𝑣𝑘 ))𝑒−𝑋

]
.

Proof. We can encode each possible sequence of weight functions (𝑤0, 𝑤1, . . . , 𝑤𝑘−1) of the process
w as a sequence 𝑎 ∈ {1, 2}𝑘−1 where 𝑎𝑖 denotes whether, in step i, randomness chooses the first or the
second bullet point. In other words, 𝑎𝑖 = 1 if and only if 𝑣𝑖 ∈ 𝐼.

Note that if 𝑎𝑖 = 1 for any index i where 𝑣𝑖 ∈ 𝑁𝐿 (𝑣𝑘 ) then this sequence will result in 𝑤𝑘−1(𝑣𝑘 ) = 0.
Thus, such a sequence does not contribute to the value of E𝑤 [ 𝑓 (𝑤𝑘−1(𝑣𝑘 ))]. Similarly, if 𝑎𝑖 = 𝑎 𝑗 = 1
for any two neighboring vertices 𝑣𝑖 and 𝑣 𝑗 , then the probability of the corresponding sequence is 0,
which means it also does not contribute to E𝑤 [ 𝑓 (𝑤𝑘−1(𝑣𝑘 ))].
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Let 𝐴 ⊆ {1, 2}𝑘−1 denote the set of sequences that do not match either of the aforementioned
conditions. Then any 𝑎 ∈ 𝐴 can be interpreted as a possible sequence of weight functions (𝑤0, . . . , 𝑤𝑘−1)
and (𝑤̃0, . . . , 𝑤̃𝑘−1) produced by either process w or 𝑤̃. Note that, by definition of w and 𝑤̃, the same
sequence of choices a will produce the same sequence of weight functions in either process. Let us
denote this common sequence by 𝑤𝑎, and let us denote by P𝑤 [𝑎] and P𝑤̃ [𝑎] the probabilities that the
sequence of choices of the respective processes equals a.

By comparing the transition probabilities of w and 𝑤̃, we immediately get

P𝑤 [𝑎]
P𝑤̃ [𝑎] = exp���−

∑
𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )

𝑤𝑎
𝑖−1(𝑣𝑖)

��� = exp���−
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )
𝑤𝑎

𝑘−1 (𝑣𝑖)
���

for all 𝑎 ∈ 𝐴, where the last equality follows by observing that no vertex 𝑣𝑖 has its weight updated after
step 𝑖 − 1. Thus

E𝑤 [ 𝑓 (𝑤𝑘−1(𝑣𝑘 )] =
∑
𝑎∈𝐴

𝑓 (𝑤𝑎
𝑘−1 (𝑣𝑘 ))P𝑤 [𝑎]

=
∑
𝑎∈𝐴

𝑓 (𝑤𝑎
𝑘−1 (𝑣𝑘 )) exp���−

∑
𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )

𝑤𝑎
𝑘−1(𝑣𝑖)

���P𝑤̃ [𝑎]

= E𝑤̃ [ 𝑓 (𝑤̃𝑘−1(𝑣𝑘 ))𝑒−𝑋 ] . �

Claim 4.3. Suppose 𝑣𝑖 ∈ 𝑁𝐿 (𝑣𝑘 ). Then 𝑤̃𝑡 (𝑣𝑖) is a martingale in t for 𝑡 = 0, . . . , 𝑘 − 1.

Proof. By definition of 𝑤̃, the only steps j where the value of 𝑤̃(𝑣𝑖) is updated are those where
𝑣 𝑗 ∈ 𝑁𝐿 (𝑣𝑖). Note that 𝑣 𝑗 ∉ 𝑁𝐿 (𝑣𝑘 ) as otherwise 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 would form a triangle. Thus 𝑤̃(𝑣𝑖) is
updated according to

𝑤̃ 𝑗 (𝑣𝑖) =
{

0 with probability 1 − 𝑒−𝑤̃𝑗−1 (𝑣𝑗 )

𝑤̃ 𝑗−1 (𝑣𝑖)𝑒𝑤̃𝑗−1 (𝑣𝑗 ) with probability 𝑒−𝑤̃𝑗−1 (𝑣𝑗 ) .

It is easy to see that this is preserved in expectation. �

Claim 4.4.

E𝑤̃ [𝑋] =
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )
𝑤0 (𝑣𝑖).

Proof. By Claim 4.3, E𝑤̃ [𝑋] =
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 ) E𝑤̃ [𝑤̃𝑘−1(𝑣𝑖)] =
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 ) E𝑤̃ [𝑤̃0 (𝑣𝑖)] . �

Claim 4.5.

𝑤̃𝑘−1(𝑣𝑘 ) = 𝑤0 (𝑣𝑘 )𝑒𝑋 .

Proof. By definition of 𝑤̃, 𝑤̃(𝑣𝑘 ) increases by a factor 𝑒𝑤̃𝑖−1 (𝑣𝑖) = 𝑒𝑤̃𝑘−1 (𝑣𝑖) for each step i where
𝑣𝑖 ∈ 𝑁𝐿 (𝑣𝑘 ). For any other step, 𝑤̃(𝑣𝑘 ) is unchanged. �

Claim 4.6.

P𝑤 [𝑣𝑘 ∈ 𝐼] = E𝑤̃
[(

1 − 𝑒−𝑤0 (𝑣𝑘 )𝑒𝑋
)
𝑒−𝑋

]
.
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Proof. By the definition of w and I we have P𝑤 [𝑣𝑘 ∈ 𝐼] = E𝑤 [1 − 𝑒−𝑤𝑘−1 (𝑣𝑘 ) ] . Let 𝑓 (𝑥) = 1 − 𝑒−𝑥 . By
Claim 4.2, noting that 𝑓 (0) = 0, we get

E𝑤 [1 − 𝑒−𝑤𝑘−1 (𝑣𝑘 ) ] = E𝑤 [ 𝑓 (𝑤𝑘−1(𝑣𝑘 ))] = E𝑤̃ [ 𝑓 (𝑤̃𝑘−1(𝑣𝑘 ))𝑒−𝑋 ] .

By Claim 4.5, 𝑤̃𝑘−1 (𝑣𝑘 ) = 𝑤0 (𝑣𝑘 )𝑒𝑋 . Combining these gives the desired equality. �

Proof of Theorem 4.1. By Claim 4.4, we know that X is a non-negative random variable satisfying

E𝑤̃ [𝑋] =
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )
𝑤0 (𝑣𝑖) ≤

1
2

ln
(

1
𝑤0 (𝑣𝑘 )

)
.

Moreover, by Claim 4.6, we have that

P𝑤 [𝑣𝑘 ∈ 𝐼] = E𝑤̃
[(

1 − 𝑒−𝑤0 (𝑣𝑘 )𝑒𝑋
)
𝑒−𝑋

]
.

In order to estimate this expectation given the aforementioned conditions on X, we need the following
somewhat technical inequalities.

Claim 4.7. For any 0 < 𝑡 < 1.79328, the following two inequalities hold.

1. 𝑒𝑡 < 1 + 𝑡 + 𝑡2

2. (1 − 𝑒−𝑡 )
(
1 − ln(1/𝑡)

2 ln(1.79328/𝑡)

)
≥ 𝑡

2

Proof. It is not hard to verify both inequalities by computer assistance, or by a direct proof if one
replaces 1.79328 by a less ambitious constant. For the sake of clarity of the presentation, we omit
explicit proofs. �

Claim 4.8. For any real numbers 𝑥 > 0 and 0 < 𝑤 < 1.79328 we have(
1 − 𝑒−𝑤𝑒𝑥

)
𝑒−𝑥 ≥ (1 − 𝑒−𝑤 )

(
1 − 𝑥

ln(1.79328/𝑤)

)
.

Proof. Observe that
(
1 − 𝑒−𝑤𝑒𝑥

)
𝑒−𝑥 is non-negative. Moreover, it is easy to check that its second

derivative in x equals

𝑒−𝑥−𝑤𝑒𝑥
(
𝑒𝑤𝑒𝑥 − 1 − 𝑤𝑒𝑥 − 𝑤2𝑒2𝑥

)
,

which, by Claim 4.7 (1), is negative whenever 𝑤𝑒𝑥 < 1.79328, that is, 𝑥 < ln(1.79328/𝑤). Hence
the inequality in the lemma holds for 0 ≤ 𝑥 ≤ ln(1.79328/𝑤) as the inequality clearly holds at both
endpoints, and the function is concave on the interval between these points. But for larger x, the inequality
also holds as the right-hand side then turns negative. �

Given these inequalities, the theorem follows by straightforward calculations. By Claim 4.8 and since
E𝑤̃ [𝑋] ≤ 1

2 ln
(

1
𝑤0 (𝑣𝑘 )

)
, we have:

P𝑤 [𝑣𝑘 ∈ 𝐼] ≥ E𝑤̃
[(

1 − 𝑒−𝑤0 (𝑣𝑘 )
) (

1 − 𝑋

ln(1.79328/𝑤0 (𝑣𝑘 ))

)]
≥

(
1 − 𝑒−𝑤0 (𝑣𝑘 )

) (
1 − ln(1/𝑤0 (𝑣𝑘 ))

2 ln(1.79328/𝑤0 (𝑣𝑘 ))

)
,

which by Claim 4.7 (2) is at least 𝑤0 (𝑣𝑘 )
2 , as desired. �
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Proof of Theorem 1.7. Let G be a triangle-free d-degenerate graph with degeneracy order 𝑣1, . . . , 𝑣𝑛
such that |𝑁𝐿 (𝑣𝑖) | ≤ 𝑑 for all vertices 𝑣𝑖 . Assume 𝑑 ≥ 2. We apply Theorem 4.1 with 𝑤0 ≡ ln 𝑑−ln ln 𝑑

2𝑑 .
One immediately checks that 0 < 𝑤0(𝑣𝑘 ) < 1 and

1
2

ln𝑤0 (𝑣𝑘 ) +
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )
𝑤0 (𝑣𝑖) ≤

1
2

ln
(

1
2
(ln 𝑑 − ln ln 𝑑)

)
− 1

2
ln ln 𝑑 ≤ 0,

which implies that

P[𝑣𝑘 ∈ 𝐼] ≥ 1
2
𝑤0 (𝑣𝑘 ) =

(
1
4
− 𝑜(1)

)
ln 𝑑

𝑑
.

�

Proof of Theorem 1.8. We apply Theorem 4.1 with 𝑤0 (𝑣𝑖) := 1
2 𝑝(𝑣𝑖). Observe that

𝑝(𝑣𝑘 ) ≤
∏

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )
(1 − 𝑝(𝑣𝑖)) ≤ exp���−

∑
𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 )

𝑝(𝑣𝑖)
���,

which implies that ln 𝑝(𝑣𝑘 ) +
∑

𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 ) 𝑝(𝑣𝑖) ≤ 0 and hence 1
2 ln𝑤0 (𝑣𝑘 ) +

∑
𝑣𝑖 ∈𝑁𝐿 (𝑣𝑘 ) 𝑤(𝑣𝑖) ≤

− 1
2 ln 2 < 0. Moreover, clearly 0 < 𝑤0 (𝑣𝑖) < 1

2 for all 𝑣𝑖 . Hence

P[𝑣𝑘 ∈ 𝐼] ≥ 1
2
𝑤0 (𝑣𝑘 ) =

1
4
𝑝(𝑣𝑘 ),

as desired. �

5. Conclusion

In this final section, we would like to briefly mention some open problems and directions for future
research.

First, it would be interesting to see to what extent our method used in the proof of Theorem 1.2
can be adapted to the more general setting of graphs with small clique number. Ajtai, Erdős, Komlós,
and Szemerédi [1] proved a lower bound of Ω𝑟

(
ln 𝑑

𝑑 ln ln 𝑑
𝑛
)

for the independence number of n-vertex 𝐾𝑟 -

free graphs with average degree 𝑑 (see also the later constant-factor improvement [53] due to Shearer).
Johannson [38] and Molloy [46] established analogous upper bounds for the chromatic number of 𝐾𝑟 -
free graphs with maximum degree Δ of the form 𝑂𝑟

(
Δ ln lnΔ

lnΔ

)
. In both of these results, it remains a

major open problem whether the additional ln ln-factors are necessary or can be omitted. Related to
these questions, Kelly and Postle [40, Conjecture 2.4] posed the following conjecture (rephrased).

Conjecture 5.1. For every 𝑟 ∈ N there exists a constant 𝑐 = 𝑐(𝑟) > 0 such that every 𝐾𝑟 -free graph G
admits a probability distribution on its independent sets such that every vertex 𝑣 ∈ 𝑉 (𝐺) is contained
in a random independent set drawn from the distribution with probability at least 𝑐 ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) .

While this remains wide open, Kelly and Postle [40, Theorem 2.5] proved a weaker version, replacing
𝑐 ln 𝑑𝐺 (𝑣)

𝑑𝐺 (𝑣) with 𝑐 ln 𝑑𝐺 (𝑣)
𝑑𝐺 (𝑣) (ln ln 𝑑𝐺 (𝑣))2 . As a first step, it would be interesting to see whether one could remove

one of the two ln ln-factors in this result of Kelly and Postle, which would yield a fractional/local demand
version of the aforementioned bounds of Ajtai, Erdős, Komlós and Szemerédi as well as of Molloy. It
would also be very interesting to prove generalizations of Theorem 1.7 for 𝐾𝑟 -free graphs for any 𝑟 ≥ 4.

Looking at our proof of Theorem 2.1, it seems likely that by driving the “step size” 𝜀 to zero,
one can arrive at some explicit stochastic differential equation for the obtained distribution on random
independent sets. It may be interesting to write down such an equation explicitly and see whether it has
connections to other known distributions on independent sets.
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Other open problems closely related to our results in this paper can be phrased in the context of
so-called list packings, see in particular the conjectures and open problems in the papers [15, 14]
by Cambie et al. One of the open problems from these works related to Theorem 1.2 is whether for
every triangle-free graph G and every assignment 𝐿(·) of color-lists to the vertices of G such that
|𝐿(𝑣) | ≥ (𝐶 + 𝑜(1)) 𝑑𝐺 (𝑣)

ln 𝑑𝐺 (𝑣) for every 𝑣 ∈ 𝑉 (𝐺), there exists a probability distribution on the proper
L-colorings of G such that every color in 𝐿(𝑣) is chosen with equal probability for every 𝑣 ∈ 𝑉 (𝐺).

Finally, given the resolution of Harris’ conjecture, a natural remaining question is to determine the
optimal leading constant C for the problem. In particular, by combining Theorem 1.7 with [11], we know
that 1

2 ≤ 𝐶 ≤ 4. It would appear that the most reasonable answer is 𝐶 = 1. We state this as a conjecture.

Conjecture 5.2. The following holds for any sufficiently large d.

1. 𝜒 𝑓 (𝐺) ≤ (1 + 𝑜(1)) 𝑑
ln 𝑑 for all d-degenerate triangle-free graphs G.

2. There exists a d-degenerate triangle-free graph G such that 𝜒 𝑓 (𝐺) ≥ (1 − 𝑜(1)) 𝑑
ln 𝑑 .

As some first evidence toward Conjecture 5.2, (1), we observe (as a further consequence of Theo-
rem 2.1) that it holds when the degeneracy of the graph is replaced by the spectral radius 𝜌(𝐺), that is,
the spectral radius of the adjacency matrix.

Theorem 5.3. Every triangle-free graph G satisfies

𝜒 𝑓 (𝐺) ≤ (1 + 𝑜(1)) 𝜌(𝐺)
ln 𝜌(𝐺) .

Proof. Let G be any given triangle-free graph. We will show that 𝜒 𝑓 (𝐺) ≤ 1
𝑓 (𝜌(𝐺))) , where f is the func-

tion defined in Section 2. Since 𝑓 (𝑥) = (1−𝑜(1)) ln(𝑥)
𝑥 , this will verify the claim of Theorem 1.7. Pause to

note that 𝜒 𝑓 (𝐺) = max{𝜒 𝑓 (𝐺1), . . . , 𝜒 𝑓 (𝐺𝑐)} and similarly 𝜌(𝐺) = max{𝜌(𝐺1), . . . , 𝜌(𝐺𝑐)} holds
for every graph G with connected components 𝐺1, . . . , 𝐺𝑐 . Hence, since f is monotonically decreasing,
it suffices to show the inequality 𝜒 𝑓 (𝐺) ≤ 1

𝑓 (𝜌(𝐺)) for all connected triangle-free graphs. So let G be
such a graph, and let 𝐴 ∈ R𝑉 (𝐺)×𝑉 (𝐺) be its adjacency matrix. By definition, A has non-negative en-
tries, and hence we may apply the Perron–Frobenius theorem to find that 𝜌(𝐴) = 𝜌(𝐺) is an eigenvalue
of A and that there exists a corresponding eigenvector u ∈ R𝑉 (𝐺) with non-negative entries. So we have
𝐴u = 𝜌(𝐺)u, which reformulated means that∑

𝑥∈𝑁𝐺 (𝑣)
u𝑥 = 𝜌(𝐺)u𝑣

for every 𝑣 ∈ 𝑉 (𝐺). This equality in particular implies that if at least one neighbor of a vertex v has
a positive entry in u, then so does v. Hence, since G is a connected graph, it follows that u𝑣 > 0 for
every 𝑣 ∈ 𝑉 (𝐺). Now interpret the entries of the vector u as a strictly positive weight assignment to the
vertices of G. Then, by Theorem 2.1, there exists a probability distribution D on the independent sets
of G such that for every 𝑣 ∈ 𝑉 (𝐺), we have

P𝐼∼𝐷 [𝑣 ∈ 𝐼] ≥ 𝑓

(∑
𝑥∈𝑁𝐺 (𝑣) u𝑥

u𝑣

)
= 𝑓 (𝜌(𝐺)).

By definition of the fractional chromatic number, this implies that 𝜒 𝑓 (𝐺) ≤ 1
𝑓 (𝜌(𝐺)) , as desired. This

concludes the proof. �

It is well-known that the spectral radius 𝜌(𝐺) is always sandwiched between the degeneracy of the
graph and the maximum degree, and can be significantly smaller than the latter. Thus, Theorem 5.3
provides a first step toward Conjecture 5.2, (1). Moreover, it lines up nicely with a rich area of research
that is concerned with spectral bounds on the (fractional) chromatic number, see, for example, Chapter 6
of the textbook on spectral graph theory [17] by Chung and [9, 18, 32, 34, 42, 45, 48] for some small
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selection of articles on the topic. For example, Theorem 5.3 relates to Wilf’s classic spectral bound [54]
on the chromatic number, which states that every connected graph G satisfies 𝜒(𝐺) ≤ 𝜌(𝐺) + 1 with
equality if and only if G is an odd cycle or a complete graph. In fact, we conjecture that the restriction to
the fractional chromatic number in Theorem 5.3 is not necessary and that Wilf’s bound can be improved
for all triangle-free graphs as follows.

Conjecture 5.4. Every triangle-free graph satisfies

𝜒(𝐺) ≤ (1 + 𝑜(1)) 𝜌(𝐺)
ln 𝜌(𝐺) .
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