TPLP: Page 1-18. (© The Author(s), 2025. Published by Cambridge University Press. This is an 1
Open Access article, distributed under the terms of the Creative Commons Attribution licence
(https://creativecommons.org/licenses /by /4.0/), which permits unrestricted re-use, distribution

and reproduction, provided the original article is properly cited.

do0i:10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and
Data-Driven Heuristics

ALEXANDER BEISER and STEFAN WOLTRAN
TU Wien, Vienna, Austria

(e-mails: alexander.beiser@tuwien.ac.at, woltran@dbai.tuwien.ac.at)

MARKUS HECHER
CNRS, Computer Science Research Center of Lens (CRIL), Univ. Artois, Lens, France

(e-mail: hecher@cril.fr)

submitted 24 July 2025; revised 24 July 2025; accepted 27 July 2025

Abstract

The grounding bottleneck poses one of the key challenges that hinders the widespread adoption
of answer set programming in industry. Hybrid grounding is a step in alleviating the bottleneck
by combining the strength of standard bottom-up grounding with recently proposed techniques
where rule bodies are decoupled during grounding. However, it has remained unclear when hybrid
grounding shall use body-decoupled grounding (BDG) and when to use standard bottom-up
grounding. In this paper, we address this issue by developing automated hybrid grounding: we
introduce a splitting algorithm based on data-structural heuristics that detects when to use BDG
and when standard grounding is beneficial. We base our heuristics on the structure of rules and
an estimation procedure that incorporates the data of the instance. The experiments conducted
on our prototypical implementation demonstrate promising results, which show an improvement
on hard-to-ground scenarios, whereas on hard-to-solve instances, we approach state-of-the-art
performance.

KEYWORDS: logic programming, answer set programming, grounding, grounding bottleneck,
hybrid grounding, body-decoupled grounding

1 Introduction

The so-called grounding bottleneck (Gebser et al. 2018; Tsamoura et al. 2020) in answer
set programming (ASP) is one of the key factors that hinders large-scale adoption of ASP
in the industry (Falkner et al. 2018). It occurs as part of the grounding step (Kaminski
and Schaub 2023), which is an integral part of the state-of-the-art (SOTA) ASP systems,
such as clingo (Gebser et al. 2016) or d1lv (Leone et al. 2006). Grounding replaces the
variables of a non-ground ASP program by their domain values, which inherently results
in an exponentially larger (Dantsin et al. 2001) ground program.

The grounding bottleneck is a long-standing problem, which is the reason why modern
grounders like gringo (Gebser et al. 2015) or idlv (Calimeri et al. 2017), are highly

()]

Check f
https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press Updates.

https://doi.org/10.1017/S1471068425100173
https://orcid.org/0009-0009-4252-1043
https://orcid.org/0000-0003-1594-8972
mailto:alexander.beiser@tuwien.ac.at
mailto:woltran@dbai.tuwien.ac.at
https://orcid.org/0000-0003-0131-6771
mailto:hecher@cril.fr
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068425100173&domain=pdf
https://doi.org/10.1017/S1471068425100173

2 A. Beiser et al.

optimized systems. They work according to a bottom-up and semi-naive approach
(Gebser et al. 2015), which instantiates rules along their occurrence on the topologi-
cal order of the dependency graph of the program. Although these systems are highly
optimized and implement advanced rewriting methods, as they incorporate structural
information on rules (Bichler et al. 2016; Calimeri et al. 2018), they are exponential in
the number of variables in the worst case.

Body-decoupled grounding (BDG) (Besin et al. 2022) is a novel approach that alle-
viates the grounding bottleneck by decomposing rules into literals and grounding the
literals individually. This is achieved by shifting some of the grounding effort from the
grounder to the solver, thereby exploiting the power of modern ASP solving technology.
Practically, BDG’s grounding size is only dependent on the maximum arity a of a pro-
gram. Experiments on grounding-heavy tasks have shown promising results, by solving
previously ungroundable instances. However, BDG on its own is not interoperable with
other SOTA techniques, which prohibits BDG from playing to its strengths in practical
settings. Hybrid grounding (Beiser et al., 2024) partially alleviates the challenge of inter-
operability, by enabling the free (manual) partitioning of a program II into a part Il
grounded by BDG and Ilg grounded by bottom-up grounding.

Still, it remains unclear when the usage of BDG is beneficial. Grounding with BDG
potentially increases the solving time, as BDG pushes effort spent in grounding to solv-
ing. Rewriting techniques, used for example in idlv, complicate this matter further.
Additionally, BDG’s grounding size is solely dependent on the domain, not considering
the peculiarities of the instance. We address this challenge by introducing automated
hybrid grounding, which is an algorithm for detecting those parts of a program that shall
be grounded by BDG. Our contributions are three-fold:

e We present the data-structural splitting heuristics, which decides (based on the
structure of a rule and the instance’s data) whether it is beneficial to ground with
BDG.

e We develop the prototype newground3 that integrates BDG into bottom-up proce-
dures of SOTA grounders and uses BDG according to data-structural heuristics.

e Our experiments show that with newground3 we approach SOTA performance on
solving-heavy scenarios, while beating the SOTA on grounding-heavy scenarios.

The paper is structured as follows. After this introduction (Section 1), we state the
necessary preliminaries of ASP and on grounding techniques (Section 2). We continue by
showing our data-structural heuristics (Section 3). Next is the high-level description of our
prototypical implementation newground3 (Section 4), which is followed by the conducted
experiments (Section 5). The paper ends with a conclusion and discussion (Section 6).

Related work. While SOTA grounders use semi-naive grounding techniques (Gebser
et al. 2016; Calimeri et al. 2017), we focus on the interoperability between SOTA
grounders and alternative grounding procedures. Alternative grounding procedures
include lazy-grounding (Weinzierl 2017; Weinzierl et al. 2020), lazy-grounding with
heuristics (Leutgeb and Weinzierl 2018), compilation-based techniques via lazy rule injec-
tion (Cuteri et al. 2019; Lierler and Robbins 2021), or compilation-based techniques via
extensions of the CDNL procedure (Mazzotta et al. 2022; Dodaro et al. 2023, 2024).
Approaches based on ASP Modulo Theory combine ASP with methods from other fields

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and Data-Driven Heuristics 3

(Liu et al. 2012; Banbara et al. 2017; Balduccini and Lierler 2017). Structure-based tech-
niques also showed promising results (Bichler et al. 2016). We focus on the alternative
grounding procedure of BDG (Besin et al. 2022). In contrast to the other approaches,
BDG is a rewriting approach based on complexity theory. In Beiser et al. (2024) BDG
was extended by hybrid grounding and the handling of aggregates. Hybrid grounding
enables the free partitioning of a program into a part grounded by semi-naive grounding
and a part grounded by BDG. Aggregates are handled by specially crafted rewriting pro-
cedures that decouple aggregates. We extend the previous work on BDG by proposing
a splitting heuristics that decides when the usage of BDG is useful. Further, we pro-
vide an extensive empirical evaluation of the heuristics with our prototype newground3.
Previously proposed splitting heuristics include heuristics on when to use bottom-up
grounding and when to use structural rewritings (Calimeri et al. 2018). Related work
proposes a machine learning-based heuristics (Mastria et al. 2020). In contrast, we focus
on a splitting heuristics, when the usage of BDG is beneficial.

2 Preliminaries

Ground ASP. A ground program P consists of ground rules of the form a; V...V

a4 G141, .-, Qm, "Qmt1,-- -, 0y, Where a; are propositional atoms and I, m,n are
non-negative integers with | <m <n. We let H,:={ay,...,a;}, B :={aj41,...,am},
B, :={am+1,...,an}, and B, := B UB, . r € P is normal iff |H,| <1, a constraint iff

|H,| =0, and disjunctive iff |[H,.| > 1. The dependency graph 2 is the directed graph 2 =
(V,E), where V=J,cp H,UB, and E={(b,h)|re P,be B}f,he H,} U{(b,h)_|r €
P,be B, ,he€ H.}. We refer by (b, h)1 to a positively labeled edge and by (b, h)_ to a
negatively labeled edge. A positive cycle consists solely of positive edges. A program P
is tight iff there is no positive cycle in &, P is not stratified iff there is a cycle in & that
contains at least one negative edge, and P is head-cycle-free (HCF) iff there is no positive
cycle in 2 among any two atoms {a, b} C H,.. IsConstraint(r) is true iff r is a constraint.

We proceed by defining the semantics of ASP. Let HB(P) be the Herbrand Base
(the set of all atoms). For ground programs this is HB(P) ={p|r€ P,p€ H,UB,}. An
interpretation I is a set of atoms I CHB(P). I satisfies a rule r iff (H, UB,;)NI#0
or B \I#0. I is a model of P iff it satisfies all rules of P. A rule r € P is suitable for
Justifying a€ I iff a€ H., Bf CI,and INB, =I1N(H,\ {a})=0. A level mapping 1) :
I—{0,...,|I| — 1} assigns every atom in I a unique value (Lin and Zhao 2003; Janhunen
2006). An atom a € I is founded iff there is a rule r € P s.t. (i) r is suitable for justifying
a and (ii) there are no cyclic-derivations, that is Vb€ B;f :4(b) < (a). I is an answer
set of a normal (HCF) program P iff I is a model (satisfied) of P, and all atoms in I are
founded. The Gelfond-Lifschitz (GL) reduct is the classical way to define semantics. The
GL reduct of P under I is the program P’ obtained from P by first removing all rules r
with B, N1 # () and then removing all p € B from the remaining rules r (Gelfond and
Lifschitz 1991). I is an answer set of a program P if I is a minimal model (w.r.t. C) of PI.

Non-ground ASP. A non-ground program II consists of non-ground rules r of the
form pi(X1) V... Vpe(Xe) = pes1(Xes1), - -, P X))y Pms1(Xing1)s -+ 700 (X)),
where each p;(X;) is a literal and [, m, n are non-negative integers s.t. I <m <n. A literal
pi(X;) consists of a predicate p; and a term vector X; = (z1,...,x.). A term x; € X; is
a constant or a variable. For a predicate p; let |X;| be its arity a(p;) = |p;| = |X;|, and

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

4 A. Beiser et al.

for a rule r €11, let a =max,x)cq,up, |X| be the maximum arity. IsVar(z) evaluates
to true iff the term x is a variable. We furthermore define var(r) :={z |z € X, p(X) €
H, U B,,IsVar(z)}. For non-ground rules we define H.r, Bro+, B_ré-, and B_r as in
the ground case, as we do with the attributes disjunctive, normal, constraint, stratified,
tight, and HCF. The size of a rule is |r| =|H, U B,| and of a program [II|=3" _ |r|.
Grounding is the instantiation of the variables by their domain. Let .% = {p(D) | p(D) €
II,Vd € D : —~IsVar(d)} be the facts and dom(II) = {d | p(D) € .%, d € D} be the domain.
Let = be a variable, then dom(x)=dom(II). Naive grounding %y (II) instantiates for
each rule all variables by all possible domain values, which results in a grounding size in
O (|11 - |[dom (IT)[maxrer var(Ml) | For non-ground programs the herbrand base HB(II) is
defined as HB(II) = {p(D) | r € ¥n (1), p(D) € H, U B, }. The semantics of a non-ground
program IT is defined over its ground version ¥y (II) and carries over from the ground case.

The non-ground dependency graph Zn of the non-ground program II carries over
from the ground case and is defined over the predicates. SCC(II) refers to the set
of strongly-connected components (vertices) of Zr. A reduced graph Zgr(G) of a
graph G=(V, E) is 2r(G) = (V;, E;), where V., = SCC(G) and E, ={(s1,s2) | 1,52 €
SCC(G), $1 # s2, v, € 81302 € 89 (v1,v2) € E}. Any reduced graph is a directed acyclic
graph (DAG). Let p be a predicate and Ly be a topological order of the reduced depen-
dency graph Zg(2) = (V,., E,) and let SCCr(p) be the function SCCr(p): V — V,. that
returns the corresponding SCC of p, that is SCCrn(p) =s s.t. s€ SCC(II) and p€ S.
Let s=SCCh(p) and S<,(0)={s}. We iteratively extend S, to a fixed point by
Sep(t+1)={s|se SCC(II),3s" € S<p(t) : (s,8) € E,} USp(t) for t >0. A fixed point
is reached when S<,(t + 1) = S<,(t), which we denote as S<, = S<,(t). As Zr(G) is a
DAG, such a fixed point always exists (Knaster 1928; Tarski 1955). A predicate p is
stratified iff Vs € S, there is no cycle with at least one negative edge in s. Further,
let IsStratified(r) be true iff r contains (only) stratified body predicates p € B,.. Let
IsTight(r) be true iff Vh € H, :Vp € B;f : SCCri(h) # SCCr(p) - so r occurs in a tight
part. The variable graph 2 (r) = (V, E) for a rule r € I is defined as the undirected graph
where V =var(r) and E = {(z;,z;) | 2;,z; € var(r), Ip(X) € H, U B, : {z;,z;} CX}. A
tree decomposition (TD) 7= (T, x) is defined over an undirected graph G = (V, E) where
T is a tree and x a labeling function x : T'— V. x(t) C V is called a bag. A TD must fulfill:
() YweVIteT :vex(t), (i) Y(u,v) € EFt €T : {u,v} C x(t), and (iii) every occurrence
of v €V must form a connected subtree in T w.r.t. x, so Vi, te,t3 €T, s.t. whenever
to is on the path between ¢; and ¢3, it must hold x(¢1) N x(t3) C x(t2). The width of a
TD is defined as the largest cardinality of a bag minus one, so max;er |x(t)| — 1. The
treewidth (TW) is the minimal width among all TDs. Further, let ¢, denote the bag size
of a minimal TD of the variable graph of .

Bottom-up/Semi-naive grounding. Grounders gringo and idlv use (bottom-up)
semi-naive database instantiation techniques to ground a program II (Gebser et al. 2016;
Calimeri et al. 2017). In the following, we sketch the intuition. Let Ly be a topological
order of Gr(Zn), and let D be the candidate set, where D C HB(II); initially D = .%.
Intuitively, the candidate set D keeps track of all possibly derivable literals and is iter-
atively expanded by moving along the topological order L. For each v € Ly rules are
instantiated according to the candidate set D by a fixed-point algorithm. If a tuple is in
D it is possibly true, conversely, if a tuple is not in D, it is surely false. If an SCC contains

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and Data-Driven Heuristics 5

a cycle, semi-naive techniques are used to prevent unnecessary derivations (Gebser et al.
2016; Calimeri et al. 2017). The grounding size is exponential in the maximum num-
ber of variables & ()", q; [dom(II)|V*"("I) in the worst-case. We use the terms SOTA,
traditional, bottom-up, or semi-naive grounding interchangeably.

Bottom-up grounding solves stratified programs. Bottom-up grounding is typi-
cally implemented in a way that enables full evaluation of stratified programs. Technically,
this is implemented by partitioning the candidate set D into a surely derived set D and
a potentially derived set Dy,. Conversely, for any a € HB(II), but a € Dy U Dy, we
know that we can never derive a. This split leads to a series of improvements related to
instantiating rules, among them is the full evaluation of stratified programs. However,
these improvements have no effect on the grounding size of non-stratified programs in
the worst case, thereby remaining exponential in the variable number.

Structure-aware rewritings. Utilizing the rule structure to rewrite non-ground rules
is performed by Lpopt (Morak and Woltran 2012; Bichler et al. 2016). It computes a
minimum size TD, which is then used to introduce fresh rules with a preferably smaller
grounding size. In more detail, for every rule r € II Lpopt first creates the variable graph
2 (r). After computing a minimum-size TD, it introduces fresh predicates and fresh rules
for every bag of the TD. The arity of the fresh predicates corresponds to the respective
bag size, as does the number of variables per rule. Let TW(Z(r)) be the maximum TW of
all rules r € II, then ¢, = TW(Z(r)) + 1 is its bag size. It was shown that Lpopt produces
a rewriting that is exponential in ¢,, where ¢, <max,cr |var(r)|: (|| - |dom(IL)|#").
Internally, id1lv uses the concepts of Lpopt to reduce the grounding size (Calimeri et al.
2018).

Body-decoupled Grounding. BDG (Besin et al. 2022) produces grounding sizes
that are exponential only in the maximum arity. Conceptually, BDG decouples each
rule into its literals which are subsequently grounded. As each literal has at most arity-
many variables, its grounding size can be at most exponential in its arity. Semantics is
ensured in three ways: (i) For a rule r, all possible values of its head literals are guessed,
and (ii) satisfiability, and (iii) foundedness are ensured by explicitly encoding them.
Interoperability with other techniques is ensured by hybrid grounding (Beiser et al.,
2024).

Let II be an HCF program and Il ,»UIly be a partition thereof. Then, let 7 be
the Hybrid Grounding procedure that is executed on (II,4 Ily), where II ¢ is grounded
by BDG, and Ilg is grounded by bottom-up grounding. Let a be the maximum arity

(a =max,en max,x)em,up, |X|) and let ¢ be a constant defined as: where c=a for r
being a constraint, ¢=2-a for r occurring in a tight HCF program, and ¢=3-a for r
occurring in an HCF program. Then, hybrid grounding for J#(II, #) has a grounding
size! of ~|dom(II)|¢. The coefficients ¢ stem from the nature of the checks we have to
perform. For constraints, it is sufficient to check satisfiability, while for normal programs
we additionally need to check foundedness, which increases the grounding size to
c=2-a. For HCF programs, cyclic derivations must be prevented. This is handled with
level-mappings, where the transitivity check increases the grounding size to c=3 - a.

L For brevity we sometimes shorten & (|II| - |dom(IT)|*) with ~ |dom(IT)|* for an arbitrary x € N.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

6 A. Beiser et al.

Algorithm 1 Heur(r, MARKER) for Computing Data-Structural Heuristics

Data: Rule r, Set MARKER of marked rules
if IsStratified(r) then
| MARKER « MARKERU (r,SOTA) ;
else if ¢, < |var(r)| A T.o(Lpopt(r)) < Tpq(r) then
R; « Lpopt(r) ;
for r; in R; do
| Heurgruei(r1,MARKER) ;
else if a < @, A IsConstraint(r) ATy (r) < Tpo(r) then
| MARKER « MARKERU (r,BDG) ;
else if 2-a < @A IsTight(r) AT (r) < Too(r) then
| MARKER « MARKERU (r,BDG) ;
elseif 3-a < ¢, ATy (r) < T.o(r) then
| MARKER « MARKERU (r,BDG) ;
else
| MARKER « MARKERU (r,SOTA) ;

N e - 7 T N R SR

[<
B W oNo= o

3 Automated splitting heuristics

We designed an automated splitting heuristics that decides when it is beneficial to
use BDG. This approach is given in Algorithm 1. Intuitively, the decision is based on
fixed structural measures, like the number of variables and TW, as well as data-driven
grounding-size estimation. Let II be an HCF program, and r € II, then let ij(?") be the
estimated grounding size of BDG, and let T,x,(r) be the estimated SOTA grounding size.
The algorithm takes as input a rule r and the set MARKER. Set MARKER stores whether a
rule r is grounded by BDG or SOTA if (r, BDG) € MARKER or (1, SOTA) € MARKER respec-
tively. This is then used to pass Iz = {r|r €Il, (r, BDG) € MARKER} and Ily={r|r €
II, (r, SOTA) € MARKER} to &

First, in Lines (1)—(2), the algorithm performs a stratification check, where rules are
SOTA-grounded whenever rules occur in stratified parts. Subsequently, the rule structure
is checked, and a structural rewriting is performed in Lines (3)—(6), if beneficial. Finally,
in Lines (7)—(14). BDG is evaluated and marked whenever it is structurally and data-
estimation-wise beneficial.

Example 1.

We show the details and underlying intuitions of the heuristics along the lines of the
example shown below. A simple instance graph is given by means of atoms over the edge
predicate e/2. We guess subgraphs f/2, g/2, and h/2, where we forbid three or more
connected segments in subgraph f/2, cliques of size >3 in subgraph g/2, and aim at
inferring all vertices of a clique of size >3 in subgraph h/2. Let r1, ro, 73 be the rule in
Line (2), (3), (4), respectively.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and Data-Driven Heuristics 7

I {£(X,Y)} <« e(X,Y). {g(X,Y)} < e(X,Y). {h(X,Y)} < e(X,Y).
2« £(X1,X2), £(X2,X3), f(X3,X4).

3 «— g(X1,X2), g(X1,X3), g(X2,X3).

4 i(xX1) « h(X1,X2), h(Xl,x3), h(x2,x3).

Previous results indicate that BDG should be used for dense rules on dense instances
(Besin et al. 2022; Beiser et al. 2024). However, the terms dense rule and dense instance
were loosely defined and the usage of BDG was guided by intuition. Our algorithm makes
these terms precise and transitions from intuition to computation.

Variable-based Denseness. Next, we motivate how we consider variable-based
denseness.

FEzample 2.

Observe how 11 has four and ro, and r3 have three variables. Standard bottom-up ground-
ing is exponential in these variables in the worst case. Without considering contributions
of data and structural based rewritings for now, bottom-up’s grounding size for rule r1 is
~ |dom(IT)|*, while it is ~|dom(IL)|® for re, and = |dom(I1)|* for r3. In contrast, BDG'’s
grounding size is only dependent on the maximum arity and the type of the rule. The max-
mmum arity of all r1,rs, and r3 is 2. As both r1 and ro are constraints, their grounding
size is in ~ |dom(I1)|?, while as 13 is a tight HCF rule its grounding size is ~ |dom(IT)|3.
The differences between BDG and SOTA are striking: A reduction from =~ |dom(II)*
to ~|dom(I1)|? and from = |dom(II)|® to ~|dom(I1)|?> for ri and ra, respectively (no
difference for rs).

We cover wvariable-based denseness based on the rule type and a comparison between
the number |var(r)| of the variables and the maximum arity a. Henceforth, whenever
the maximum arity adjusted for rule type is strictly smaller than the number of the
variables, BDG is used. Let the maximum head arity be aj, = max,x)esq, |X| and the
maximum body arity be a; = max,x)ep, |X|. For constraints, using BDG is beneficial
whenever a < |var(r)|, for tight HCF rules if ap + ap <2-a < |var(r)|, and for HCF rules
if 3-a < |var(r)|.

When the projected grounding sizes match asymptotically, precedence is given to the
bottom-up procedure: First, due to the effects of data (discussed below) and second, due
to BDG’s nature of pushing effort from grounding to solving. Since bottom-up grounding
solves stratified programs with a grounding size in & |dom(II)|*, grounding stratified parts
with BDG is not beneficial.

Incorporating Rule Structure. To grasp the importance of structure, recall our
running example.

Ezample 3.
We depict the variable graphs of r1, ro, and r3 in Figure 1, which have TWs of 1,2, and
2 respectively. A minimal TD of the variable graph of r1 has a bag size of ¢, =2. Take

X1 X2 X3 X4 X1 X3 X1 X3

o000

Fig 1. Variable graphs of r1 (left), r2 (center), and r3 (right) for Example 1.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

8 A. Beiser et al.

for example T = (T, x), where T = ({t1,t2,t3}, {{t1, t2}, {t2,t3}}) and x(t;) = {X1, X2},
x(t2) ={X2, X3}, and x(t3) ={X3,X4}. Based on I, we depict in the next listing a
possible structural rewriting. Observe the grounding size of ~ |dom(II)|?.

1 tmpl (X3) « £(X3,X4). tmp2(X2) « f(X2,X3), tmpl(X3). « £(X1,X2), tmp2(X2).

In contrast to this, a minimal TD of ro or r3 has a bag size of ¢, =3, such as 7= (T, x),
where T'= ({t1},0) and x(t1) ={X1, X2, X3}. Using structural rewritings for ro or r3
has no effect. Therefore, the grounding sizes of BDG and Lpopt match for r1 (both are
~ |dom(II)|?), while BDG achieves a reduction from ~ |dom(I1)| to ~ |dom(I1)|? for ro.
For r3, both have a grounding size of ~ |dom(II)|>. Whenever grounding sizes of BDG and
Lpopt match, we give preference to Lpopt, as for BDG there are guesses® during solving.

The observations above are incorporated in the heuristics by computing the TW
of its variable graph and using Lpopt whenever the bag size ¢, of a minimal TD is
strictly smaller than the number |var(r)| of variables (¢, < |var(r)|). See Lines (3)—(6).
Subsequently, a decision between BDG and bottom-up grounding is made based on the
bag size of a minimal decomposition compared to the maximum arity of r (a < ¢,.), and
the rule-type (constraint, tight, non-tight). Thereby, we transition from variable-based
denseness to structure-aware denseness, which we incorporate into our algorithm in Lines
(7), (9), and (11).

Incorporating Data- Awareness. The incorporation of data into our heuristics is vital.
In its absence, BDG may be used when it is unwise to use it. Indeed, BDG is a domain-
based grounding procedure, whose grounding size depends entirely on the domain of the
program. On the other hand, bottom-up grounding is partially data-aware, as rule bodies
perform joins between variables.

Ezxample 4.
To visualize this, consider ro and a graph that is a path with 100 vertices. While BDG’s
grounding size of ro is ~|100|2, bottom-up’s grounding size is 0.

To incorporate data into heuristics, observe that rule instantiations are similar to
joins in a database system, where joins are done in the positive body (Leone et al. 2001).
Interestingly, join size estimation procedures are common in the literature (Garcia-Molina
et al. 2008). We estimate the SOTA grounding size according to the join-selectivity
criterion (Leone et al. 2001)3.

Let r € II. We compute the join estimation T sa(7) in an iterative way, by considering
one literal p; € BY at a time. We start with the first positive body literal p;4; and
end with the last positive body literal p,,, as Bf = {p;+1,...,pm}. Further, we denote
the computation of all positive predicates up to and including p; as A;. Let T(pi+]_>
be the estimated number of tuples of p;;1, and T(AZ) be the estimated join size up to
and including predicate p;. Let dom(X,r) be the domain of variable X for the rule r,
dom(X, p;) be the domain of variable X for literal p;, and let px be px = {p(X) | p(X) €
B, X € X}, where X € var(r) is a variable. We compute a variable’s domain size as

2 Guesses are due to Equations (2), (4), and (9) of Figure 1 in hybrid grounding (Beiser et al. 2024).
3 A variant of the join-selectivity criterion is used in idlv (Calimeri et al. 2018).

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and Data-Driven Heuristics 9

dom(X, r) =U,, x)epyx dom(X, p;). Equations (1)-(3) show our join size estimation for
SOTA-grounding for a rule r, where Tio(r) refers to the estimation for a rule r.
T(Arr1) = T(prs+1) (1)

2 7 T(Az) i T(pi-‘rl)
(+1) (P +1) HXEVar(Aj)r‘nvar(p1,+1) |d0m(Xa T)‘

Tia(r) = T(Am) = T(Am-1>pm) (3)

Precise grounding size estimations are possible for hybrid grounding. We show in
Equations (4)—(10) the grounding size estimations for non-ground normal (HCF) pro-
grams. Each equation estimates the size of the respective hybrid grounding rules,* as
introduced in Beiser et al. (2024). Consider for example Equation (7), which estimates
the size of Rules (5)—(7) of the hybrid grounding reduction as introduced in Beiser et al.
(2024). Tt intuitively captures for a rule r € IT whether a literal p(X) € H,. U B, for an
arbitrary instantiation p(D) € HB(II) contributes to r being satisfied. We estimate this
as T53(r) in Equation (7). We continue with a brief description of the other equations
and their corresponding rules in the hybrid grounding reduction. Equation (4) is the
estimation of the head-guess size, for the respective Rule (2). Equations (5)—(7) estimate
the size of the satisfiability encoding, where Equations (5) and (6) estimate the impact of
variable guessing, saturation, and the constant parts, which relate to the Rules (4) and
(8) in hybrid grounding. We already described Equation (7) above. Equations (8)—(10)
estimate the size of the foundedness part. Equation (8) estimates the size of the constraint
that prevents unfounded answersets, which relates to Rule (12). Equation (9) estimates
the size of the variable instantiations, which relates to Rule (9). Finally, Equation (10)
is concerned with the estimation when a rule is suitable for justifying an atom, which
relates to Rules (10)—(11).

T5(r) =2 (Shx)en, Mxex|dom(X))|) (4)
T57(r) =2 Sx evar(ry|dom(X)| (5)
T57(r)=2 (6)
T52(r) = Spx)en, up, Mx ex|dom(X)| (7)
T3 (r) = Shxen, Mxex|dom(X)| (8)
T2 (r) = Shxen, (Byevarenx ([dom(Y)] - Txex|dom(X)])) (9)
T3 (r) = Snxen, (Sprvyen,us () (Myey|dom(Y)| - Mxex|dom(X)])) (10)

We are left with Equation (11), which computes T (r), the hybrid grounding size
estimation for a rule r. Equation (11) sums up Equatlons (4)- (0).

Tow(r) = T5r) + 15 (r) + 152 (r) + T35 (r) + T30 (r) + T3 (r) + T3 (r) (11)

4 To avoid confusion, we distinguish in this paragraph between equation, the grounding size estimation,
and rule, the equation of the hybrid grounding reduction that is being estimated as introduced in
Beiser et al. (2024).

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

10 A. Beiser et al.
»» 400000 400000
c
(=]
£ 350000 , 350000
= c
f=4 o
£ 300000 300000
%) —
s 2
2 250000 £ 250000
=3 n
-4 £
‘5 200000 200000 SOTA (100%)
3
g SOTA (100.0%) € —— SOTA (50%)
£ 1500007 — 507TA (50.0%) G 150000 SOTA (30%)
=4 —_ 9 @ —— o
Z 100000 SOTA (30.0%) £ 100000 BDG (100%)
2 — BDG £ BDG (1%)
£ 50000{ — SOTA (20.0%) Z 50000, — SOTA (20%)
Z —— SOTA(10.0%) ™ | e —— SOTA (10%)
w
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
VI VI

Fig 2. Plot comparing the estimated (left) and actual (right) number of ground rules of 2 of
Example 1. Comparison between SOTA and BDG. x-axis: number of vertices; y-axis: number
of rules. Comparing different graph densities, shown as SOTA(z) and BDG(z) for density x.

Ezample 5.

In Figure 2 we show the estimated and actual number of instantiated rules for bottom-
up grounding and BDG, for ro. The behavior is analyzed on different graph densities
(number of edges divided by edges of complete graph in percent) and graph sizes (1 to
300 vertices). The number of tuples T(p;) can be adequately estimated for our example,
S0 T(p,») ~ T (p;). While for bottom-up grounding the estimated number of ground rules
varies with density, it remains constant for BDG. BDG’s number of instantiated rules
between a complete (100 %) and a sparse (1%) graph remains relatively similar. For
bottom-up grounding, the number of instantiated rules varies.

Overall we obtain the following result on the grounding size by automated hybrid
grounding.

Theorem 1.

Let 11 be a mnon-ground HCF program and k be the mazximum TW of any rule
in II. Then, the grounding size of II, grounded with the markings MARKER, 1l =
{r|r€ll, (r, BDG) € MARKER} and Ilg={r|r €Il (r, SOTA) € MARKER}, produced by
Algorithm 1 and grounded by (I ,z y), is in O ((|I1] - k) - |[dom(IT)[3*).

Proof (idea).

Intuitively, structural parts of the algorithm bound the grounding size to O((|II] - k) -
|dom(IT)|?¢). We are left to prove that this still holds when incorporating data-awareness,
which holds on dense instances. The proof is detailed in the appendix. O

4 Prototype implementation newground3

Our prototype newground3® is a full-fledged grounder that combines bottom-up with
BDG. It incorporates BDG into the bottom-up procedure, where we decide according to
the data-structural heuristics (Algorithm 1) whether to use BDG or not. Furthermore, the
algorithm does not pre-impose on the user which SOTA grounder to use, and therefore,

5 Prototype available under https://github.com /alex]4123/newground.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and Data-Driven Heuristics 11

Structural
DAnalyzerJ—{ Heuristics J

Encoding

Fact
Splitter
Facts

A7

Gringo or
i [e
X

Fig 3. Schematics of the software architecture of the newground3 prototype.

offers integration with gringo and idlv. In this section, we discuss implementation
choices, highlight implementation challenges, and present the structure of the prototype.

We performed a full-scale redevelopment of the earlier versions of newground3
(newground and NaGG), where on a high level, semi-naive grounding is interleaved with
BDG. We further extended its input language to the ASP-Core-2 (Calimeri et al. 2020)
input language standard® and improved the grounding performance of newground. For
the semi-naive grounding parts we use either gringo, or idlv, whereas, for the BDG part
we use a completely redesigned BDG-instantiator. To improve performance even further,
we combine Python with Cython and C code.

Architectural Overview. The general architecture of the prototype consists of 4
parts, where we show a schematics in Figure 3. Given a program II, the fact splitter and
analyzer (Fact Splitter) written in Cython, separates facts from the encoding. It further
computes the number of facts, and fact-domain. This enables an efficient computation of
the positive dependency graph and analysis thereof (2 Analyzer). Based on these results
the structural heuristics decides which rules are eligible for grounding with BDG. If no
rules are structurally eligible for grounding with BDG then the program is grounded by
either gringo or idlv. Otherwise, the bottom-up procedure is emulated and for each
strongly connected component in the positive dependency graph, where at least one rule
is structurally eligible for grounding with BDG, the data heuristics decides whether to
ground the rule with BDG or with a SOTA-approach.

In the development of the prototype we encountered two major challenges: (i) integra-
tion and communication with gringo and idlv, and (ii) suitable domain inference for
grounding size estimations of Algorithm 1. To address these, we split the data-structural
heuristics into two parts in our implementation: first, the structural heuristics decides,
which parts are eligible for grounding with BDG and only then the estimation of the size
of the instantiation of the eligible rules is performed. Further, we minimize the number
of interactions with gringo and idlv, as each call to a SOTA-grounder is expensive
and should better be avoided. Therefore, we do not infer the domain if the result of the
structural heuristics states that BDG should not be used. The emulation is necessary, as
neither gringo nor idlv provides callback functions which let us implement our heuris-
tics directly. In the future a direct implementation of the heuristics in a SOTA grounder
would render these calls unnecessary and would improve performance even further.

6 Currently not all ASP-Core-2 constructs are supported with BDG rewritings. Checks ensure that only
supported constructs are considered to be grounded by BDG, while non-groundable ones are grounded
by SOTA-techniques.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

12 A. Beiser et al.

5 Experiments

In the following, we demonstrate the practical usefulness of our automated hybrid
grounding approach. We benchmark solving-heavy and grounding-heavy instances, aim-
ing at SOTA-like results on solving-heavy benchmarks, and beating SOTA results on
grounding-heavy benchmarks

Benchmark System. We compared gringo (Version 5.7.1), idlv (1.1.6), ProASP
(Git branch master, short commit hash 2b42af8), ALPHA (Version 0.7.0), and our hybrid
grounding system newground3. We benchmarked newground3 with both gringo, and
idlv. Further, we investigated the impact of using our system in combination with Lpopt
(Version 2.2). We chose clingo (Version 5.7.1) with clasp (3.3.10) for solving. However,
in principle, one could also use d1v with wasp, or use heuristics to determine the solver of
choice (Calimeri et al. 2020). For newground3 we use Python version 3.12.1. Our system
has 225 GB of RAM, and an AMD Opteron 6272 CPU, with 16 cores, powered by Debian
10 OS with kernel 4.19.0-16-amd64.

Benchmark Setup. For all experiments and systems, we measure total time, which
includes grounding and solving time for ground-and-solve systems, or execution time for
ALPHA and ProASP. Further, we measure RAM usage for all systems and experiments.
For the ground-and-solve systems we measured grounding performance (grounding time,
grounding size, and RAM usage) in a separate run. Every experiment has a timeout of
1800s and a RAM (and grounding-size) limit of 10 GB. For integrated grounders and
solvers (ALPHA and ProASP) this RAM limit applies to their execution. For ground-and-
solve systems this applies to grounding and solving.

We consider instances as a TIMEOUT whenever they take longer than 1800s, and a
MEMOUT when their RAM usage exceeds 10 GB. We set seeds for clingo (11904657),
and for Lpopt (11904657). Further, for all generated graph instances for the grounding-
heavy experiments we generated random seeds that we saved inside the random instance
as a predicate.

5.1 Experiment scenarios and instances

We distinguish between solving- and grounding-heavy benchmarks. For the solving-heavy
benchmarks we compare idlv, gringo, newground3 with gringo (NG-G), newground3
with id1lv (NG-I), ALPHA, and ProASP (ground-all). For the grounding-heavy benchmarks
we compare grounders idlv, gringo, newground3 with gringo, newground3 with idlv,
ALPHA, ProASP (ground-all), and ProASP with compiling constraints (ProASP-CS).

Solving-Heavy Benchmarks. The solving-heavy benchmarks are taken from the
2014 ASP-Competition (Calimeri et al. 2016), as they provide a large instance set with
readily available efficient encodings. The 2014 ASP-Competition has 25 competition
scenarios, where each (with the exception of Strategic-Companies) has two encodings,
resulting in 49 competition scenarios. Each scenario has a different number of instances.
We benchmarked all instances over all scenarios. Further, we preprocessed the encodings
s.t. no predicates occur, which have the same predicate name, but differing arity.

We show the encoding of problem MazimalCliqgueProblem (2014 encoding)” as an
example:

7 The whole competition suite can be found at: https://www.mat.unical.it/aspcomp2014/FrontPage.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and Data-Driven Heuristics 13

1 clique (X) « node(X), not nonClique (X) .

2 nonClique (X) « node (X), not clique (X).

3 « clique(X), clique(Y), X < Y, not edge(X,Y), not edge(Y,X).
4 :~ nonClique(X). [1,X]

Intuitively the encoding guesses nodes that are part of the maximal clique (Lines 1,2).
If there is a missing edge between a pair of nodes, then it is not a clique (Line 3). We
minimize the number of non-clique nodes (Line 4).

Grounding-Heavy Benchmarks. We take grounding-heavy benchmarks from the
BDG experiments (Besin et al. 2022) and from the hybrid grounding experiments (Beiser
et al. 2024). These scenarios take a graph as an input, where we generate random graphs
ranging from instance size 100 to 2000 with a step-size of 100 for the BDG scenarios
(Besin et al. 2022) and random graphs ranging from instance size 20 to 400 with a step-
size of 20 for the hybrid grounding scenarios (Beiser et al. 2024). For both, we use graph
density levels ranging from 20 % to 100 %.

Further, we adapt the benchmarks from Besin et al. (2022) by adding two variations
of the 3-Clique benchmark. The variations resemble different difficulties for BDG and
SOTA grounders. The first listing (3-Clique-not-equal) shows the original formulation
from Besin et al. (2022), and the second one (3-Clique) depicts the adaptation that
makes it easier for SOTA grounders by changing “#” to “<.”

I {£(X,Y)} <« edge (X,Y).
2 <« f(,B), £(»,C), £(B,C), A #B, B#C, A #C.

1 {£(X,¥Y)} « edge (X,Y).
2 « f(a,B), £(A,C), £(B,C), A <B, B<C, A<C.

The adapted® scenarios from Besin et al. (2022) are called as follows: 3-Clique, 3-
Clique-not-equal, directed-Path, directed-Col, 4-Clique, NPRC. The examples S3T4,
S4T6, NPRC-AGG, and SM-AGG, are from Beiser et al. (2024).

5.2 Experimental hypotheses

H1 The Data-Structural-Heuristics (Algorithm 1) implemented in our prototype
newground3 approaches other SOTA ground-and-solve system’s performance on
solving-heavy benchmarks.

H2 Data-Structural-Heuristics of newground3 yields an improvement in performance
(solved instances) on grounding-heavy benchmarks, in contrast to other SOTA
systems.

5.3 Experimental results and discussion

We show an overview of our results in Table 1 and Figure 4; a detailed solving profile of
the grounding-heavy scenario 4-Clique is given in Figure 5. For details, see supplementary
material.

8 ProASP’s syntax currently does not support choice rules, so we adapted the subgraph encoding for
ProASP with a negative cycle encoding (f(X,Y) :- edge(X,Y), not nf(X,Y). nf(X,Y) :- edge(X,Y), not
f(X,Y).). This is also used for ALPHA.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

14 A. Beiser et al.

1 1800 T
4
1500 1500 f
f
1200 1200 ;'
E 900 E 900 J
=S =S j
600 600 j
— NG-I w NG-l
300 == NG-G 300 i == NG-G
o g w= IDLV
== GRINGO == GRINGO
K 0 2000 4000 6000 8000 95 0 200 400 600 800 1000
Instances Instances
(a) Solving-heavy: Ground & Solve Time [s]. (b) Grounding-heavy: Ground & Solve Time [s].

g g
o o
510 PR
& &
102 o NG-I 102 o NGl
== NG-G e NG-G
IDLV DLV
=== GRINGO == GRINGO
1072 1072
0 2000 4000 6000 8000 0 200 400 600 800 1000
Instances Instances
(c) Solving-heavy: Max RAM Usage [GB]. (d) Grounding-heavy: Max RAM Usage [GB].

Fig 4. Solving-heavy (Figures 4a and 4c) and grounding-heavy (Figures 4b, and 4d)

experiments. x-axis: instances; y-axis: time [s] or size [GB]. Measured idlv, gringo,

newground3 with gringo (NG-G), and newground3 with idlv (NG-I). Timeout: 1800s;
memout: 10 GB.

Discussion of H1. To confirm H1, we focus our attention on the results of the solving-
heavy experiments. These are displayed in Figures 4a and 4c and in the lower half of
the Table 1. The figures show that that newground3’s performance is approximately the
same as the other ground-and-solve approaches. The detailed results of the table show
that the overall number of solved instances for gringo is 5449, for idlv 5469, for NG-G
5418, and for NG-I 5434. The difference between gringo and NG-G are 31 instances,
and for idlv and NG-I are 35 instances. On in total 8509 solving-heavy instances this
resembles an approximate relative difference of 0.36 % for gringo versus NG-G and 0.41 %
for idlv wversus NG-I. The detailed results show that for gringo versus NG-G there are
cases where gringo beats NG-G and cases where NG-G beats gringo. The same holds for
idlv wversus NG-I. As the differences of solved instances between newground3 and the
respective SOTA grounders are minor, we confirm H1.

Discussion of H2. We compare the results for the grounding-heavy scenarios of
Figures 4b and 4d, and the upper half of Table 1. While gringo solves 218, and idlv
281, newground3 solves 566 in the NG-G and 710 in the NG-I configuration, from a total
of 1000 instances. This is a difference of 34.8 % and 42.9 %, respectively. Also observe the
milder increase in RAM usage in Figure 4d and the ability to ground denser instances
(Figure 5). As newground3’s ability to automatically determine when to use BDG leads
to an approximate doubling in the number of solved grounding-heavy instances, we can
confirm H2.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and Data-Driven Heuristics 15

RAM Usage [MB] (top half) RAM Usage [MB] (top half)
1MB 3.3MB 10MB 33MB 100MB 330MB 1GB 3.3GB 10GB 1MB 3.3MB 10MB 33MB 100MB 330MB 1GB 3.3GB 10GB
= o —
> >
@ @
c c
o o
o o
I+ S
c c
@ @
£ £
o Instance Size o Instance Size
0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
0s 200s 400s 600s 800s 1ks 12ks 15ks 1.8ks 0s 200s 400s 600s 800s 1ks 12ks 15ks 18ks
Combined Time [s] (bottom half) Combined Time [s] (bottom half)

Fig 5. Solving profiles for grounding-heavy scenario 4-Clique for gringo (left) and newground3
with gringo (NG-G). One rectangle represents one grounded and solved instance. Timeout:
1800s; memout: 10 GB. Instance size on x-axis, instance density on y-axis.

Table 1. Ezperimental results showing all scenarios, those executable by Alpha, and those
executable by ProASP, with differing number of instances (#1). We depict solved instances
(#8S), memouts (M), and timeouts (T) for gringo, idlv, NG-G, NG-I, ALPHA, and ProASP

Instance Summary | #1 | Total #Solved
| | Grounding-Heavy Scenarios
| | gringo idlv NG-G
| | #5° M T | #5 M T | #s M T
All 1000 | 218 169 613 281 198 521 566 336 98
ProASP 500 149 97 254 158 102 240 280 210 10
| | NG-T ALPHA ProASP-CS
| | #5° M T | #5 M T | #s M T
All 1000 710 247 43 - - - - - -
ProASP 500 288 198 14 147 177 176 | 389 81 30
| | Solving-Heavy Scenarios
| | gringo idlv NG-G
| | #5 M T | #5 M T | #S M T
All 8509 | 5449 650 2410 | 5469 697 2343 | 5418 524 2567
Alpha 1640 | 1255 30 355 1280 0 360 1251 24 365
ProASP 320 308 0 12 308 0 12 307 0 13
| | NG-T ALPHA ProASP
| | #5° M T | #5 M T | #S M T
All 8509 | 5434 599 2476 - - - - - -
Alpha 1640 | 1272 0 368 183 290 1167 - - -
ProASP 320 306 0 14 3 53 264 311 0 9

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

16 A. Beiser et al.

Summary of results

For both solving-heavy and grounding-heavy benchmarks NG-G and NG-I outperformed
ALPHA significantly. ProASP has a comparable performance on solving-heavy benchmarks.
On grounding-heavy benchmarks, ProASP shows promising results, however only when
we use ProASP in the compile constraints mode. In the ground-all mode its behavior
is similar to gringo or idlv. This confirms the results of previous studies about the
performance of ProASP (Dodaro et al. 2024). Although the results of ProASP are very
promising, it is only usable for a small fragment of the scenarios.

6 Conclusion

The advancement of alternative grounding procedures is an important step towards solv-
ing the grounding bottleneck. Previous results for the newly introduced BDG method
(Besin et al. 2022) showed improvements on grounding-heavy tasks. Hybrid grounding
(Beiser et al. 2024) enables manual partitioning of a program into a part grounded by
standard grounders and a part grounded by BDG. However, due to the challenging pre-
dictability of BDG’s solving performance, it remained unclear when the usage of BDG
is useful.

In this paper, we state a data-structural heuristics, which decides when it is beneficial
to use BDG. Our heuristics decision is based on the structure of a rule and the data
of the instance. For each rule a minimum TD of the rule’s variable graph is computed
and compared to the maximum arity of the rule. Whenever the bag size of the minimum
TD is smaller, the rule is grounded with bottom-up grounding. Otherwise the grounding
size of the rule is estimated for bottom-up grounding by methods from databases, which
is compared to an estimate of BDG’s grounding size. Whichever is smaller is chosen
for grounding. Our prototype newground3 implements this heuristics by emulating a
bottom-up procedure. The results of our experiments show that we approach bottom-up
grounders number of solved instances for solving-heavy scenarios, while we approximately
double the number of solved instances for grounding-heavy scenarios. We think that this
is an important step towards integrating BDG into SOTA grounders. However, there
is still future work to be explored for BDG. We argue that near-term research should
include improvements of BDG for high-arity programs, as well as for syntactic extensions,
highly cyclic rules, large HCF rules, and disjunctive programs.

Supplementary material

Supplementary material and prototype available under: https://github.com/alex14123/
newground.

Acknowledgments

This research was funded in part by the Austrian Science Fund (FWF), grants
10.55776/COE12 and J 4656. This research was supported by Frequentis.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://github.com/alexl4123/newground
https://github.com/alexl4123/newground
https://doi.org/10.1017/S1471068425100173

Automated Hybrid Grounding Using Structural and Data-Driven Heuristics 17

References

BALDUCCINI, M. and LIERLER, Y. 2017. Constraint answer set solver EZCSP and why integration
schemas matter. Theory and Practice of Logic Programming 17, 4, 462-515.

BANBARA, M., KAUFMANN, B., OsTROWSKI, M. and ScHAUB, T. 2017. Clingcon: The next
generation. Theory and Practice of Logic Programming 17, 4, 408—461.

BEISER, A. G., HECHER, M., UNALAN, K. and WOLTRAN, S. 2024. Bypassing the ASP bottleneck:
hybrid grounding by splitting and rewriting. In IJCAI24, International Joint Conferences on
Artificial Intelligence Organization, 3250-3258.

BESIN, V., HECHER, M. and WOLTRAN, S. 2022. Body-decoupled grounding via solving: A novel
approach on the ASP bottleneck. In IJCAI22, International Joint Conferences on Artificial
Intelligence Organization, 2546-2552.

BICHLER, M., MORAK, M. and WOLTRAN, S. 2016. popt: A Rule Optimization tool for answer
set programming, LOPSTR16, Vol. 10184, LNCS, Springer, 114-130.

CALIMERI, F., DODARO, C., FUSCA, D., PERRI, S. and ZANGARI, J. 2020. Efficiently coupling the
I-DLV grounder with ASP solvers. Theory and Practice of Logic Programming 20, 2, 205-224.

CALIMERI, F., FABER, W., GEBSER, M., IANNI, G., KAMINSKI, R., KRENNWALLNER, T., LEONE,
N., MARATEA, M., Ricca, F. and ScHAUB, T. 2020. ASP-Core-2 input language format.
Theory and Practice of Logic Programming 20, 2, 294-309.

CALIMERI, F., FuscA, D., PERRI, S. And ZANGARI, J. 2018. Optimizing answer set computation
via heuristic-based decomposition. In PADL18, Vol. 10702, LNCS, IOS Press, 135-151.

CALIMERI, F., FUSCA, D., PERRI, S., ZANGARI, J., MARATEA, M., ADORNI, G., CAGNONI, S.
and GoORI, M. 2017. I-DLV: The new intelligent grounder of DLV. Intelligenza Artificiale 11,
1, 5-20.

CALIMERI, F.; GEBSER, M., MARATEA, M. and Ricca, F. 2016. Design and results of the fifth
answer set programming competition. Artificial Intelligence 231, 151-181.

CuTERl, B., DopARO, C., Ricca, F. and SCHULLER, P. 2019. Partial compilation of ASP
programs. Theory and Practice of Logic Programming 19, 5-6, 857-873.

DANTSIN, E.; EITER, T., GOTTLOB, G. and VORONKOV, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374-425.

DobaAro, C., MAzzoTTA, G. and Ricca, F. 2023. Compilation of tight ASP programs. In
ECAI23, Vol. 372, FATIA, 10S Press, 557-564.

Dobaro, C., MazzorTta, G. and Ricca, F. 2024. Blending grounding and compilation for
efficient ASP solving. In KR24, International Joint Conferences on Artificial Intelligence,
317-328.

FALKNER, A., FRIEDRICH, G., SCHEKOTIHIN, K., TAUPE, R. and TEPPAN, E. C. 2018. Industrial
applications of answer set programming. KI - Kiinstliche Intelligenz 32, 2-3, 165—-176.

GARCIA-MOLINA, H., ULLMAN, J. and WIDOM, J. 2008. Database Systems: The Complete Book,
2nd ed. Pearson/Pearson Prentice Hall, Upper Saddle River, NJ.

GEBSER, M., HARRISON, A., KAMINSKI, R., LIFSCHITZ, V. and SCHAUB, T. 2015. Abstract gringo.
Theory and Practice of Logic Programming 15, 4-5, 449-463.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T. and WANKO, P. 2016.
Theory solving made easy with clingo 5. In ICLP16-TC, Vol. 52, OASIcs, Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik (Dagstuhl Publishing), 1-15.

GEBSER, M., KAMINSKI, R. and SCHAUB, T. 2016. Grounding Recursive Aggregates: Preliminary
Report. CoRR. http://arxiv.org/abs/1603.03884.

GEBSER, M., LEONE, N., MARATEA, M., PERRI, S., RiccA, F. and SCHAUB, T. 2018. Evaluation
techniques and systems for answer set programming: a survey. In IJCAI18, International Joint
Conferences on Artificial Intelligence, 5450-5456.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

18 A. Beiser et al.

GELFOND, M. and LirscHITZ, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3-4, 365-385.

JANHUNEN, T. 2006. Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16, 1-2, 35-86.

KAMINSKI, R. and SCHAUB, T. 2023. On the foundations of grounding in answer set program-
ming. Theory and Practice of Logic Programming 23, 6, 1138-1197.

KNASTER, B. 1928. Un théoréme sur les fonctions d’ensembles. Annales de la Société Polonaise
de Mathématique 6, 133-134.

LeEONE, N., PERRI, S. and SCARCELLO, F. 2001. Improving ASP instantiators by join-ordering
methods. In LPNMRO1, Vol. 2173, LNCS, Cambridge University Press, 280—-294.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S. and SCARCELLO, F.
2006. The DLV system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7, 3, 499-562.

LEUTGEB, L. and WEINZIERL, A. 2018. Techniques for efficient lazy-grounding ASP solving. In
DECLARE18, vol. 10997, LNCS, Springer, 132-148.

LIERLER, Y. and ROBBINS, J. 2021. DualGrounder: Lazy instantiation via clingo multi-shot
framework. In JELIA21, Vol. 12678, LNCS, Société Polonaise de Mathématique, 435—441.
LiN, F. and ZHAO, J. 2003. On tight logic programs and yet another translation from normal

logic programs to propositional logic. In IJCAI03, Springer, 853-858.

Liu, G., JANHUNEN, T. and NIEMELA, I. 2012. Answer set programming via mixed integer
programming. In KR 12, Association for Computing Machinery, 32—42.

MASTRIA, E., ZANGARI, J., PERRI, S. and CALIMERI, F. 2020. A machine learning
guided rewriting approach for ASP logic programs. In ICLP20 - TC. EPTCS, Vol. 325,
Springer, 261-267.

MazzoTTA, G., Ricca, F. and DoDARO, C. 2022. Compilation of aggregates in ASP systems.
In AAAI22, Vol. 36, Springer, 5834-5841. Issue: 5.

Morak, M. and WOLTRAN, S. 2012. Preprocessing of complex non-ground rules in answer set
programming. In ICLP12, Vol. 17, LIPIcs, Morgan Kaufmann Publishers Inc., 247-258.

TARSKI, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics 5, 2, 285-309.

TSAMOURA, E., GUTIERREZ-BASULTO, V. and KiMMIG, A. 2020. Beyond the grounding bottle-
neck: Datalog techniques for inference in probabilistic logic programs. In AAATI20, Vol. 34,
Open Publishing Association (OPA), 10284-10291.

WEINZIERL, A. 2017. Blending lazy-grounding and CDNL search for answer-set solving. In
LPNMR17, Vol. 10377, LNCS, AAAI Press (Association for the Advancement of Artificial
Intelligence), 191-204.

WEINZIERL, A., TAUPE, R. and FRIEDRICH, G. 2020. Advancing lazy-grounding ASP solv-
ing techniques — restarts, phase saving, heuristics, and more. Theory and Practice of Logic
Programming 20, 5, 609-624.

https://doi.org/10.1017/51471068425100173 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068425100173

	Introduction
	Preliminaries
	Automated splitting heuristics
	Prototype implementation newground3
	Experiments
	Experiment scenarios and instances
	Experimental hypotheses
	Experimental results and discussion
	Summary of results

	Conclusion
	References

