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ABSTRACT: Today, Manufacturing companies are adopting a servitization strategy and Product-Service System
model to enhance value and remain competitive. Often, this transition also means to embrace a System-of-Systems
(SoS) perspective. Concurrently, companies face challenges with volatile, uncertain, complex, and ambiguous
(VUCA) environments. One way to tackle VUCA is to utilize simulation modeling. However, developing SoS
simulations can be complex and cumbersome. This paper extracts lessons learned from six case studies to identify
effective and ineffective practices in developing simulation models. The analysis has led to nine design principles
for more effective simulation modeling. Furthermore, the paper explores simulation techniques for modeling SoS
and discusses effective VUCA management. Finally, the paper proposes four future research directions to advance
SoS simulation research.
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1. Introduction
In volatile, uncertain, complex, and ambiguous (VUCA) environments, organizations face
unprecedented challenges that demand adaptive and robust decision-making frameworks to
maintain competitiveness (Taskan et al., 2022). The rise of servitization, transforming traditional
product-based models into integrated service-oriented systems, means that the value creation also
shifts and becomes more dominant during the operational phase and in the interaction between
provider, customer, and environment. This leaves the value creation more sensitive to operational
changes and stresses the need to work with the four dimensions of VUCA (Araújo et al., 2021). The
transition to subscription-based solutions is not only something we experience in the consumer
market (e.g., Spotify and Netflix) but also a transition taking place in the Business-to-Business
sector. This trend is often referred to as servitization or the shift from products to Product-Service
Systems (Baines et al., 2007). However, this shift demands that the provider not only deliver a
product according to specifications but also ensure its value creation through its operational life.
Hence, the provider must clearly understand what and how the PSS creates value for the customer
(Kuijken et al., 2017). Moreover, PSS solutions seldom operate in isolation but are a part of an
ecosystem. A clear example is the Transport-as-a-Service model, which has emerged as a business
model in quarry/mining equipment manufacturers, e.g. (Caterpillar, 2021; Komatsu, 2023; Volvo
Autonomous Solutions, 2023). The servitization transition means that the design focus shifts from
isolated systems to a System-of-Systems (SoS) view. An SoS is a system built from loosely coupled,
managerially and operationally independent systems collaborating for a common goal (Kopetz,
2013; Maier, 1998). In SoS, companies need to understand how the combinatory effect of system
configuration, environmental constraints, and operational management influence one another. This
means that an SoS is evolutionary, with its structures, functions, and purposes being added,
removed, or modified as the operations grow and evolve (Jamshidi, 2008). In other words, the
complexity and VUCA at large grow exponentially and thus demands on the design team. VUCA is
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especially relevant for SoS, which is characterized by multiple stakeholders and temporal changes
and has more open boundaries, i.e., functions in a complex ecosystem and has extrinsic
dependencies.
The interplay between VUCA dynamics and servitization necessitates advanced modeling approaches
that can anticipate and adapt to shifting conditions. Simulation models tailored for SoS in early design
phases hold significant promise, offering a means to explore potential scenarios, test assumptions, and
evaluate trade-offs systematically over entire operational lifecycles. The main purpose of simulation
models is to enhance knowledge about the studied context. In a design process, it is essential to
frontload the knowledge creation as early as possible (Johansson, 2019). This allows a design team to
build knowledge when the design freedom is high and committed cost is low. Knowledge about
operational behavior, which can be explicit and tacit, is a cornerstone for the success of an
organization working with SoS. The issue of tacit knowledge is that it becomes highly dependent on
the people and is difficult to retain within the organization (Wong and Radcliffe, 2000). A
countermeasure is then to increase the reliance on explicit knowledge from operational data.
Machchhar et al. (2022) performed a literature review that showed that operational data can serve a
vital role in understanding the value and knowledge creation in PSS. However, relevant operational
data might not be available in breakthrough or disruptive innovation, a pillar for ensuring
competitiveness.
Today, simulation and modeling (S&M) is a well-established approach for virtually testing and
evaluating design concepts. Simulations are one of the most common techniques for operational
study and building knowledge about a system or when real-world testing is impossible or too
expensive (Maria, 1997). Simulations are thus a suitable approach for exploring operational and
emergent behaviors. Especially for SoS, where the operational phase is VUCA and multifaceted,
simulation is a good method for enhancing understanding (Baldwin et al., 2015). However,
developing a simulation model can be a cumbersome task that requires successful integration
between multiple stakeholders and disciplines (Lowe and Chen, 2008). The unique characteristics of
a SoS, the multi-layer organization, the number of individual systems, and emergent behaviors puts
additional stress and complexity on the simulation model (Lowe and Chen, 2008). This means that
even though S&M is a good approach for frontloading knowledge in SoS design, it is not an
easy task.
This paper takes its stance on the potential of using simulations to manage SoS VUCA and frontload
knowledge creation in SoS design. However, the design challenge is to balance all the complexities while
being able to develop a simulation model in a reasonable time. This paper draws from multiple case
studies to examine the design process for SoS simulation models and how these can be developed
effectively while managing the existing complexities. The guiding research question can thus be stated as
follows.

How should a simulation model for System-of-Systems design be developed effectively?
The remainder of this paper is structured in the following sections. Section 2 goes through the theoretical
framework required for the research topic. Section 3 presents the methodology used for the multiple case
study research and illustrates the cases included. Section 4 presents the learnings and derived design
principles for effective SoS simulation modeling. Section 5 concludes by setting a future research agenda
and reflecting on the study’s limitations.

2. Theoretical framework
Systems Engineering has, in recent decades, expanded from looking at a single isolated system to a
System-of-Systems (SoS) viewpoint. This can be described as a reaction to the challenging nature of
contemporary environments marked by rapid change and interconnectedness, reflecting the need for
adaptive, scalable, and resilient solutions (Lechner et al., 2024). A SoS captures multiple independent
and dispersed systems that work together to achieve a common goal that cannot be solved by a single
system (Walden et al., 2015). A clear example is quarries and mines, which depend on the successful
interaction between loading and excavating equipment, load carriers (haulers, bed trucks), crushers,
screeners, etc. when performing. Maier (1998) emphasize that five characteristics set SoS apart from the
traditional system view: (1) Operational and (2) managerial independence, (3) geographic distribution,
(4) emergent behavior, and (5) evolutionary development of the system or components. All these aspects
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must thus be considered in the design process of a SoS, something which makes its design a
complex task.
Gaspar et al. (2012, p. 146) define complexity as “the amount of relevant information necessary to define
a system, including components, interconnections, performance, and scenarios among other perspectives
that may be required.” However, in SoS, complexity is added as it encapsulates multiple unique systems
that are loosely coupled, exhibit adaptive behaviors, an ecosystem view, and multi-layer dependencies
(DeLaurentis, 2007; Lowe and Chen, 2008). A SoS relies heavily on self-organization and emphasizes
operational behavior to achieve value creation, which further increases complexity (DeLaurentis, 2007;
Keating et al., 2003). Moreover, a single system can internally be structured as a hierarchy, while an SoS
is often more organized as a mesh, hindering hierarchal decomposition as a measure to lower complexity
(Kopetz, 2013). This means that complexity in SoS cannot be as easily simplified by decomposing and
isolating its parts, nor can it be tackled one system at a time. Within SoS simulation and modeling, Kinder
et al. (2014, p. 151) state that “the failure of many SoS endeavors can be attributed to the inappropriate
application of systems engineering processes, including modelling approaches, within the SoS domain
because of the mistaken belief that an SoS can always be regarded as a single large, or complex, system.”
This emphasizes that the accuracy of SoS simulations in mimicking real-world behavior is essential to
ensure reliability, including all domains in VUCA, all of which are amplified in the system-SoS
transition.
Today, simulation and modeling (S&M) are a core part of the design process, regardless of whether it
is a single component or a full SoS. Noteworthy, S&M in SoS mainly addresses lowering complexity
through a simplified, modeled SoS representation (Lowe and Chen, 2008). For SoS, simulations are
also beneficial when emergent behavior and temporal complexities are sought (Fang, 2022). The two
main simulation techniques used for SoS are Discrete-Event Simulation (DES) and Agent-Based
Simulation (ABS). DES is a top-down approach that focuses on modeling the process, while ABS is
bottom-up and tries to replicate the behavior of each system and have them interact with each other
(Baldwin et al., 2015). DES and ABS are favorable as they can capture operational and managerial
independence of systems and can include VUCA characteristics. Generally, DES emphasizes the
events, while ABS addresses the behavioristic characteristics in the studied SoS (Baldwin et al., 2015;
Kinder et al., 2014).

3. Method
This paper is based on collective learning from multiple case studies, based on Yin (2014), that were
analyzed in a universalizing comparative study, i.e., aiming to show that different cases follow the
same rules (Tilly, 1984). A universalizing comparative analysis is favorable when similarities have
been observed between cases, and the aim of explaining these using universal principles is sought
(Pickvance, 2001). The case studies stem from different research projects conducted between 2021-
2024, some still ongoing. The case studies were selected based on their similarity: all addressing SoS
and simulation as an approach to enhance knowledge creation in the design process. Figure 1 presents
the design challenge, SoS context, and data collection methods used in each case study. The main
difference between them was the design target, where case studies A and B focused on SoS
optimization, case studies C and D targeted system design deployed in an SoS, and case studies E and
F focused on SoS resilience design. All case studies have been conducted using the Action Research
methodology (Avison et al., 1999).
Data collection that was used as input for the comparative analysis came from interviews (I),
observations (O), documentation (D), workshops (W), meeting debriefs (M), and demonstrations,
both with internal stakeholders (S) and in a public setting (P), e.g., civil servants and citizens. The
sampling preceding the data collection was mainly done through an opportunistic sampling
approach. Examples of collected data are information about the progress of each simulation model,
good and bad learnings of the development, and the participants’ (sometimes also external
stakeholders) perceived quality and useability of the presented models. The collected data was
synthesized using inductive reasoning among research participants to identify common themes
concerning simulation model development based on the viewpoint of good and bad experiences.
These themes formed the basis for the design principles. Following is each case study summarized.
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Case study A: This study looked at the transition to an electric and autonomous hauling process in an
open-pit quarry. The project focused on creating simulation support to assess how this transition could
occur and how the value creation shifts from a holistic viewpoint. The simulation model developed in this
case study utilized ABS combined with vehicle dynamics models to capture how design choices at
subsystem, system, and SoS levels impact the value creation. The simulation tool models the quarry
operations from blasted rock to stockpiling. Noteworthy, prior to the final simulation model, a DES
model was developed as a design sprint and early demonstrator, but it was later scrapped as the
operational complexity grew too big to capture efficiently. More details on the ABS simulation
development can be found in (Toller Melén et al., 2024).
Case study B: Similar to the former case study, this one addressed optimizing quarry operations,
including all layers, from subsystem to operation management. The optimization utilized value as a
guiding principle to identify the optimal solution. This study used the same simulation model as in case
study A.
Case study C: The final case within quarries and work machinery looked more at individual systems and
how to effectively evaluate different design concepts in an SoS setting. The emphasis was also on the
Human-in-the-loop perspective to evaluate how virtual prototypes can shorten design cycles. For this
reason, game engines were explored, which theoretically can be seen as a variant of ABS, to gain more
realistic simulation environments. The purpose of the simulation was to evaluate a design concept
virtually with operator-in-the-loop to capture human-oriented needs without a physical prototype.
Case study D: The case focuses on sizing and optimizing a fleet of passenger ferries in urban public
transport through various routing strategies. It explores integrating marine transport with energy storage
and power grids, emphasizing energy efficiency, resilience, charging, and land infrastructure. The
simulation is constructed in commercial discrete-event simulation software to assess the performance and
resilience of the transportation system when facing different types of disturbances. The simulation
features two main sections, each corresponding to the (separate) transportation networks on the eastern
and western sides of the inner archipelago in Karlskrona, Sweden. The simulation rendered travel times
between different destinations and passenger waiting times at the docks - considering an on-demand vs.
schedule-based logic - for a service supported by a fleet of vehicles in different scenarios.
Case study E: The case study captured water scarcity and sensitivity in water distribution systems. The
project investigated how a water distribution system is affected and can cope with water scarcity because
of droughts and the system’s resilience from a civil defense perspective. A GIS-based (Geographic
Information System) ABS was used to represent households and water plants. The households had
probabilistic consumption behavior assigned to mimic the real world better. Additionally, the water
replenishment was based on historical meteorological data. The simulation model allowed future “what-
if” scenarios to be modeled and used to assess climate resilience based on potential infrastructure
investments and behavioral changes due to citizen awareness.
Case study F: This study looked at evacuation planning of neighborhoods and cities in case of climate
disasters or civil defense. The case study examined how different evacuation plans and road conditions/
constraints impact the evacuation process. Linked to this, the value drivers for a “good” evacuation were
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Figure 1. Description of the case studies

1438 ICED25



also included. This study used an agent-based traffic simulation tool that can model citizen behavior and
transportation. The simulation model aimed to test and evaluate different strategies for evacuation more
rapidly than conventional methods, which are often pen- and paper-based.

4. Design principles for effective System-of-Systems simulation
modeling

The six case studies resulted in five simulation models; case studies A and B were tackled using the same
model. A set of design principles has emerged based on the collected data and analysis thereof. Design
principles, in this case, refer to units of learning that support effective simulation development for
supporting SoS design. Figure 2 illustrates the links between the case studies, simulation models, and
design principles and how they address VUCA. The arrows between the simulation models and design
principles indicate which development project was the basis for that principle. The multiple case studies
and comparative analysis collectively led to nine design principles.

Examination of Figure 2 shows that the case studies and simulation models contribute to multiple design
principles with significant overlaps indicating generalizability. The design principles “Knowing the
simulation purpose,” “Building trust in the model,” and “Stakeholder buy-in” were recognized from all
case studies, indicating their criticality for successful SoS modeling. Moreover, at least three simulation
model developments could reference each design principle. For the remainder of this section, each design
principle is described in more detail, including their capability to assist with the VUCA challenges.
Knowing the simulation purpose: The saying “garbage in, garbage out” is just as true for simulation
models. If the purpose is unclear or ambiguous, it is easy to develop a sub-optimized simulation model or
incapable of providing relevant information, especially in a multi-stakeholder context. Focusing
discussions on value earlier led to better stakeholder alignment regarding the knowledge gaps to be filled
by the simulation. Additionally, simulation models developed from a needfinding exercise performed
better and achieved higher maturity. For instance, case studies A and B required five iterations of
simulation models before one was developed that tackled what the stakeholders “actually” wanted to see,
not what they initially said they wanted. SoS are complex and, therefore, resource-intensive to model.
Having a clear understanding of the simulation model’s purpose helps steer the resources to where they
provide the highest value. Hence, this design principle can support the management of volatility,
uncertainty, and complexity by properly disseminating the operational scenario, contributing to
stakeholder alignment, and identifying potential constraints. The more effort you have spent on problem
space dissemination, the better the simulation model can capture it. However, it is not possible to tackle
ambiguity as these are unknown unknowns.
A proactive data collection strategy: A simulation model can generate vast amounts of synthetic
operational data, slowing simulations down, taking unnecessary memory space, and causing information
overload. For instance, the evacuation simulation required ca 175 MB per scenario, while it was found in
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Figure 2. Proposal of design principles for effective System-of-Systems simulations
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the quarry simulation model that six data points were required to describe one scenario (excluding
visualization data). In general, cases where the required data collection was discussed and identified early
in the development process simplified the post-processing and were often better at supporting decision-
making. It was also found that keeping the collected data “raw”was better as the refinement process often
changed in later stages, e.g., stakeholders asked: “What if we calculate using this approach?” or “Can we
get the specific queue times per station?”. Using raw data allowed these requests to be addressed
immediately without remodeling the simulation. Ultimately, knowing how data links to the value
creation is essential for setting up a data collection strategy, much in line with data-value research
(Machchhar et al., 2022). Case studies where the value creation was explored also led to more precise
data collection strategies. Knowing which data to collect supports volatility, uncertainty, and complexity
management as you ensure that the necessary data for their dissemination is present.
Managing the growing complexity: An SoS adds an additional layer to the simulation model, which
renders complexity due to increased variety and intra- and inter-layer dependencies (Haberfellner et al.,
2019). Hence, it is essential that the simulation model deal with this growing complexity. Figure 3 maps
the simulation models based on addressed SoS size and complexity. For case studies A and B, the initial
DES simulation model had to be abandoned (marked with an asterisk), and a new ABS model was
created as the complexity became too great. DES is generally considered a simple modeling approach as
it can model state changes as “black boxes,” hence disregarding the internal system states (Baldwin et al.,
2015). Controversially, this means a loss of information that might be required to properly capture certain
complexity.

Generally, it was found that DES was well suited for SoS with low complexity, as in the water
transportation case. Creating a simple SoS was tedious for ABS, but it managed the growing complexity
much better. It was not found that opting for an ABS model straight off was the better choice as the early
development stages were also about building knowledge about the simulation model and DES models
can be developed more rapidly than ABS. The simulation technique was also based on tool availability,
such as the evacuation simulation that fitted well with an existing, niched simulation tool. Generally, it
was found that proactively working with complexity and multidisciplinary settings is a key to success.
Multi-fidelity approach: A strategy that proved useful early on was adopting a flexible system fidelity
approach, a system referring to constituent systems of the SoS. Fidelity refers to the level of detail in the
system representation, spanning from basic lookup tables to advanced dynamics models. This means that
each constituent system can have different fidelity levels depending on the required granularity. In the
quarry example, the wheel loaders and haulers were of significant interest (high fidelity) to the
stakeholders, while the crusher was not (low fidelity). A similar case was seen in the water transportation
study, where it was discovered that increasing fidelity did not impact the results, as both significantly
increased computational demands, pointing toward a too-high fidelity. A good approach was to identify
the significance of a system on the value creation and match the fidelity to that. It was also useful to start
with low fidelities for all system models, progressively increase when needed, and investigate its
potential impact. This managed the simulation model to better balance the trade-off between accuracy
and model efficiency. This approach restrained the simulation models from growing too complex and
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resource-consuming, which meant they could be more easily deployed in uncertain and ambiguous
environments. By minimizing the computational demands with a given complexity, it is easier to allow
the exploration of the unknowns.
Visualization at the right level: Visualization of the simulation result is an important communication
tool. However, the requirements for detail and realism varied depending on the user. The preference often
depended on the specific stakeholder’s purpose of the simulation, e.g., a 2D animation was enough for
quarry site managers, while vehicle specialists wished for realistic 3D visualizations. In the water
distribution case, an interactive VR headset was used to visualize the results, which was a good approach
for achieving citizen/stakeholder engagement, while a 2D map was enough for decision-makers. Case
study C with Human-in-the-loop had the highest demands, where tactile feedback was even wished.
Based on this, the selection of visualization techniques varied between the contexts and even between the
stakeholders. It is, therefore, beneficial to assess the potential of using multiple visualization techniques
to cater to more needs. By having dedicated visualization for each stakeholder, the efforts could be spent
on understanding how they interpreted the data and, through that, potentially spot uncertainties and
ambiguity aspects. Moreover, good visualization made it easier to see unexpected behavior and events
from a stakeholder perspective, further strengthening the ambiguity efforts.
Quick and dirty prototyping: The early design phase is often characterized by ambiguities and
uncertainties, including the design of a simulation model. Stepping away from a rigorous design process
and opting for quick and dirty prototyping can be a good avenue to promote the thinking process,
stimulate creativity, and encourage dialogue (Gómez and Lopez-Leon, 2019). Quickly generating simple
simulation models allowed stakeholders to rally around something, accelerating stakeholder alignment
and the needfinding process. Case studies E and F (among the later research projects) adopted this to test
whether the conceptualized simulation models tackled the design challenge correctly or not. The first
prototypes did not completely fulfill their purpose. Still, they only took approximately one working week
each to develop, which is quick for a SoS simulation model compared to the other more mature models.
Moreover, the SoS was often difficult to grasp theoretically, and the initial prototypes assisted in
uncovering the uncertainties and unknown unknowns (ambiguity) more easily.
Building trust in the model: One of the most important questions asked by participants in the case
studies was, “Can we trust the data?” Simulation models that had not been verified were often seen as far
less trustworthy. However, there is not necessarily a direct correlation between accuracy and
trustworthiness as long as the model’s purpose is explicit (Johansson et al., 2017). It was deemed fine to
have simulation models that were crude and holistic as long as they aligned with the aim and were
communicated. This change of perception was observed in case study B when the accuracy was
announced before a demonstration. When the participants expected rough estimates, they tended to trust
the results better. Being able to show at a general level how the simulation model was developed, i.e.,
increasing transparency, was another key factor in creating trust for the results. Trust is especially an
issue in uncertainty and complexity as it might be hard to validate the models with experts, and the
simulation becomes more of a black box. By dividing the SoS model and building trust in each part, the
trustworthiness could increase despite the presence of uncertainty and complexity.
When is good enough: Linking to the previous design principle, the balance between capability and
development efforts in a simulation model is important to consider. One participant in case studies A and
B often rhetorically stated, “Is 10% accuracy okay, or is a fifth decimal required?” A good measure for
enough detail was when the different scenarios started to deviate in value creation. The main goal of a
simulation model in all case studies was to compare different scenarios, not to get exact values for each
specific scenario. The simulation model should, hence, be good enough to allow this comparison to be
done. From a capability perspective, an iterative approach was found most useful. This means that the
first iteration only addressed the core functionality and more capabilities were added progressively for
each iteration. Trying to add too many features directly often led to time overruns and larger rework
demands later, mainly due to more complex models that were harder to remodel. The quarry simulation
model experienced this issue, eventually leading to a complete remodel. Finding a good enough level lets
you capture and predict futures within a reasonable timeframe. It was determined that is was a trade-off
between modeled complexity and efforts to understand what is unknown, both uncertainty and
ambiguity.
Stakeholders buy-in: A critical factor for guaranteeing a simulation model’s success was stakeholders’
commitment and buy-in. Simulation models with a clear commitment could also more easily be
co-created with stakeholders, which led to higher maturity in the end, case studies A, B, C, and D. Those
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that failed to get buy-in early on often froze and eventually halted in maturation, case studies E and F. At
the same time, having a successful model can be a way to get stakeholder buy-in (Johansson et al., 2017).
This highlights that it can be a good strategy to narrow the scope in the first iteration of the simulation
model to quickly get success and hence increase the likelihood of stakeholder buy-in. The main benefit
from stakeholder buy-in was the willingness to co-create and support the development process. This
connects well with the view of value co-creation and value co-production as drivers for success (West
et al., 2018). Moreover, an active stakeholder commitment made exploring the simulation results easier
and exploiting the cause-and-effect of emergent behaviors, making it a good principle for dealing with
uncertainty and ambiguity.

5. Discussion and conclusions
Capacity around methods and tools for future scenario planning, simulation, and visualization to
effectively address SoS environments. At the same time, there is a crucial need to foster a culture of
learning and experimentation, supporting organizations in exploiting modeling and simulation
capabilities to promote systems thinking and innovation. The lessons learned described in this paper
provide a baseline for conducting SoS simulation modeling. As the design shifts from a single system to
SoS, the consequences of VUCA and, thus, the requirements for proper simulation and modeling
increase. Forecasting demand fluctuations, responding to disruptions, and utilizing simulation support to
foster knowledge sharing across multiple stakeholders to proactively address ongoing and evolving
VUCA effects are essential for companies to stay competitive. Based on this, a broader set of research
questions or ‘tracks’ to be followed by companies to improve their ability to use simulations in the
context of VUCA environments is proposed.
The first track emphasizes the need to strengthen ‘modeling’ as a discipline, identifying methods, tools,
and practices needed to develop and expand simulation models capable of supporting critical decisions in
dynamically shifting environments to support directly in the operational phase. An SoS simulation model
can serve well in the design process, but as an SoS is not static and evolves over time, the ability to
support the design process beyond the initial deployment is paramount. However, this requires the
simulation model to be developed to seamlessly extract operational data and assess potential futures,
effectively moving towards what is known as a Digital Twin. In VUCA environments, utilizing
simulation models throughout operational life can drastically adapt and enhance the value creation. More
knowledge of this transition is needed.
The second track focuses on how to develop, set up, use, and validate SoS simulations aimed at exploring
vast design spaces and testing innovative strategies for complex, adaptive systems in uncertain
environments. The aim should address existing gaps in multi-level hardware simulations for detailed
system representation, hybrid methods for modeling system-environment interactions, and techniques for
managing high-dimensional data to ensure transparent predictive analysis. Additionally, going beyond
simulation models as SoS representations for operational assessments to operational synthetic training
environments can be a promising path for expanding the useability of SoS simulations. This should also
include investigating the possibility of quantifying VUCA aspects to understand better how to combat
them in early SoS design stages.
The final track aims to wrap up the discussion concerning collaborative and distributed decision-making
to co-create value. Innovation engineering faces challenges today in balancing exploration and
exploitation due to the absence of standardized approaches for integrating multidimensional value factors
from desirability to sustainability and more in rapidly changing contexts. Simulations can support these
decisions, but further studies on how to design them for this purpose are needed. VUCA adds complexity
to the simulation modeling, and the multi-stakeholder environment stresses this further. There is a need to
understand how to effectively design simulation models for VUCA environments and collaborative
decision-making beyond what this paper has found.
The final track addresses how the simulation models can be leveraged using emerging technologies. Two
of the case studies looked at using more immersive visualization approaches by deploying Extended
Reality. The introduction of Extended Reality has transformed how users can experience information and
virtual environments. It is believed that decision-making can be enhanced further by more effectively
visualizing the different operational scenarios. Another rapidly emerging technology is AI. SoS are
complex to describe and evaluate. Being able to lower complexity by utilizing Generative AI is
interesting to investigate.

1442 ICED25



Finally, some limitations in the study exist. Even though this is a multiple case study, the application
domain is limited and thus impacts the generalizability. Further, the studies have focused on early design
stages, and the design projects linked to the case studies have yet to be completed and introduced to
operations. Once this is done, the effectiveness and success of simulation models can first be properly
evaluated. Finally, the results are based on qualitative data, which includes risks of biases and
misinterpretations. Including six case studies and their cross-examination adds some rigor to the results
but does not mitigate them completely. There is also the risk of bias in the analysis and data collection for
the comparative study.
In conclusion, transitioning from a product-centric to a PSS perspective and rising demands on civil
defense push organizations to shift their design view from system to SoS. However, this shift also means
challenges of volatility, uncertainty, complexity, and ambiguity. This paper draws on learnings from
multiple fields to determine how simulation models for SoS can be designed more effectively. The hope
is that the nine design principles can help simulation teams develop quicker and more accurate models
that can support the SoS design process.
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