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Abstract
In Global Navigation Satellite Systems (GNSS)-denied environments, aiding a vehicle’s inertial navigation system
(INS) is crucial to reducing the accumulated navigation drift caused by sensor errors (e.g. bias and noise). One
potential solution is to use measurements of gravity as an aiding source. The measurements are matched to a geo-
referenced map of Earth’s gravity to estimate the vehicle’s position. In this paper, we propose a novel formulation
of the map matching problem using a hidden Markov model (HMM). Specifically, we treat the spatial cells of the
map as the hidden states of the HMM and present a Viterbi style algorithm to estimate the most likely sequence of
states, i.e. most likely sequence of vehicle positions, that results in the sequence of observed gravity measurements.
Using a realistic gravity map, we demonstrate the accuracy of our Viterbi map matching algorithm in a navigation
scenario and illustrate its robustness compared with existing methods.

1. Introduction

Since the advent of Global Navigation Satellite Systems (GNSS) in the 1960s, GNSS-based positioning
has become ubiquitous in the areas of navigation, guidance and control. However, in a growing number
of situations, GNSS is either unavailable, e.g. in underwater environments (Wang et al., 2017), or
deliberately jammed or spoofed (Hemann et al., 2016). In such GNSS-denied (or contested) situations, a
platform’s navigation performance is governed by on-board sensors – chief among them being the inertial
navigation system (INS), which integrates inertial measurements from accelerometers and gyroscopes
to obtain position. Unfortunately, even with high precision INSs, very small errors in the inertial sensors
result in the build up of large navigation errors over time (Titterton and Weston, 2004; Groves, 2013).
Thus, an on-board aiding source that provides a position fix is crucial to removing these accumulated
navigation errors and retaining confidence in the navigation accuracy. A promising candidate, and the
focus of this paper, is the use of gravitational information to obtain a position fix (Han et al., 2016; Liu
et al., 2019a; Wang et al., 2022).

Gravity-aided navigation originates from the early 1990s (Affleck and Jircitano, 1990; Jircitano and
Dosch, 1991). The central concept is that an on-board sensor measures elements of the gravitational
vector (or gravity gradient tensor) whilst the platform is in motion and these measurements are then
matched to a geo-referenced map of the Earth’s gravitational field to determine a position. The advantage
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of such an approach is twofold. First, gravity is an inherent physical property of the Earth, and thus it
is immune to environmental interference, jamming and spoofing. Second, the measurement of gravity
is a passive operation that does not require external information, which is advantageous in sensitive
situations (Muniraj and Farhood, 2017). The challenge in this approach however is how to match the
measurements to a position in the map. The design of this matching procedure, known as the map
matching algorithm, is key to the success of gravity-aided navigation.

The map matching algorithm needs to take into account: (1) the sensor noise when measuring
gravity; (2) the uncertainty on the spatial location when a measurement is obtained; (3) possible
ambiguity in the map resulting in a measurement being matched to multiple locations. In the literature,
map matching algorithms tackle these problems in one of two ways. The first category of algorithms
consider the problem as a single-point matching operation. Building on the framework introduced in
the Sandia terrain-aided navigation system (SITAN) (Hostetler and Andreas, 1983; Bergman, 1997),
these techniques use the geo-referenced map as a look-up function and compute a predicted gravitational
measurement using the INS estimated position. The predicted measurement is then used in the prediction
step of a statistical filter. Due to the nonlinear relationship between the estimation states and gravitational
measurements, the extended Kalman filter (EKF) is often used to perform the estimation (Lee et al., 2015;
Wei et al., 2017). This category of algorithms take into account the sensor noise and spatial uncertainty
but do not consider the map ambiguity directly. The second category of map matching algorithms directly
considers the structure of the map. They approach the problem as a sequential matching operation. The
classical example is the iterative closest contour point (ICCP) algorithm proposed by Kamgar-Parsi and
Kamgar-Parsi (1999) and used by Wang et al. (2016), Han et al. (2017) and Liu et al. (2019b). The ICCP
is based on the observation that a single, scalar, gravity measurement creates an iso-contour of similar
values in the gravity map space. Thus, given a sequence of gravity measurements, the matching problem
is posed in terms of fitting a trajectory to a set of iso-contours based on initial position estimates and
sensor measurements. To make the problem well posed, a regularisation term is introduced to control
the shape of the trajectory. However, linking the kinematic constraints of the platform’s motion to the
regularisation term is not straightforward.

In this paper, we propose a novel sequential map matching algorithm based on formulating the
matching operation as a hidden Markov model (HMM). Specifically, we consider the spatial cells of the
map to be the set of all possible hidden states in the model and the platform’s trajectory to be a particular
sequence of these states. The observations from each state are the gravitational measurements, and the
output and state transition probabilities relate to the sensor noise and platform movement models,
respectively. Thus, the map matching problem is equivalent to determining this sequence of states
given a sequence of gravitational measurements. The advantage to this formulation is twofold. First,
our proposed approach works directly in the map space and incorporates the modelling of the sensor
noise and platform motion with the underlying structure of the gravity map. Second, this type of HMM
problem can be solved efficiently using a dynamic programming method known as the Viterbi algorithm
(Viterbi, 1967; Rabiner, 1989; Ren and Karimi, 2009). Given the HMM formulation, the Viterbi
algorithm estimates the most likely sequence of states that results in the sequence of observations and
this sequence of states is optimal in the maximum a posteriori (MAP) sense. Accordingly, we present a
Viterbi map matching algorithm that outputs the most likely trajectory of the platform given a sequence
of gravitational measurements. Furthermore, to tackle limited map resolution, we implement a two-
layer, coarse-to-fine, estimation scheme to achieve sub-cell accuracy. We validate our algorithm using
the ultra-high resolution, non-parametric, gravity maps presented by Hirt et al. (2013) and demonstrate
that it outperforms existing algorithms in terms of robustness and navigational accuracy. In particular,
we demonstrate that our algorithm is able to tackle varying map spatial resolution as well as varying
sensor noise levels.
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2. Problem formulation

Suppose that the actual position of a vehicle at time 𝑘 is s𝑘 = [𝑥𝑘 , 𝑦𝑘 ]T, the INS position estimate is
sINS
𝑘 = [𝑥INS

𝑘 , 𝑦INS
𝑘 ]

T and the position corrected via map matching algorithm is sC-INS
𝑘 = [𝑥C-INS

𝑘 , 𝑦C-INS
𝑘 ]T.

The gravity measurement at time 𝑘 and position s𝑘 is modelled as

𝑧𝑘 = 𝑔(s𝑘 ) + 𝜀𝑘 (1)

where 𝑔(s𝑘 ) describes the true Earth’s gravity at position s𝑘 , and 𝜀𝑘 ∼ N(0, 𝜎2
𝑧 ) is noise with 0 mean

and standard deviation 𝜎𝑧 . Without loss of generality, in the simulation, the true Earth gravity is obtained
from the gravity map without noise for the purpose of demonstrating the algorithm. Additionally, we
assume that the INS provides velocity measurements v𝑘 in the navigation frame and it is modelled as

v𝑘 = v0
𝑘 + 𝝓𝑘 (2)

where v0
𝑘 is the ground truth, 𝝓𝑘 is the noise term comprising a bias b𝑘 and an independent zero mean

Gaussian noise with co-variance 𝜎2
𝑣I2, and I2 is the 2 × 2 identity matrix.

We assume that the INS position estimates are corrected after every segment of 𝑇 gravity measure-
ments. Without loss of generality, we assume that the INS position estimates and measurements are
recorded from 𝑘 + 1. Then, after 𝑇 sampling times, i.e. at time 𝑘 + 𝑇 , we have the following available
segments of measurements and INS position estimates:

Z𝑘 = {𝑧𝑘+1, . . . , 𝑧𝑘+𝑇 }, V𝑘 = {v𝑘+1, . . . , v𝑘+𝑇 }, SINS
𝑘 = {sINS

𝑘+1, . . . , s
INS
𝑘+𝑇 }

The corrected position sequence is (Z𝑘 , SINS
𝑘 ,V𝑘 ) and the proposed map matching algorithm is denoted

by SC-INS
𝑘 = {sC-INS

𝑘+1 , . . . , sC-INS
𝑘+𝑇 }.

In this work, since the map matching algorithm is implemented every 𝑇 time steps, we actually are
interested in how the algorithm works within time slot {𝑘 + 1, 𝑘 + 2, . . . , 𝑘 + 𝑇}. For simplicity, where
there is no confusion, time stamp 𝑘 in this time slot is dropped from now on and we write 𝑡 = 1, . . . , 𝑇 .

3. Viterbi map matching algorithm

3.1. Constructing a grid on the gravity map

The gravity map can be viewed as a grid of pixels with each pixel representing an area equivalent to the
resolution of the map. These pixels will henceforth be referred to as cells. The resolution of the gravity
map, i.e. the dimensions of the cell, is 𝑅𝑥 × 𝑅𝑦 . Since each cell on the gravity map can be associated
with a location, we simply let the central position of each cell be its location. Denote the collection of
all cells’ locations on the interested area of the map by C. We define 𝑔𝑚 (·) as the ‘look-up function’
for finding the value from the gravity map using the given location, e.g. 𝑔𝑚 (sINS

𝑡 ) is the gravity value
associated to the cell that sINS

𝑡 lies in.
In fact, at a specific sampling time 𝑡, we are only interested in a limited area around the INS position

estimate sINS
𝑡 since the true position should be within that region. Therefore, given an estimate sINS

𝑡 , we
can find a cell, or equivalently a pixel, on the geo-referenced map of gravity that sINS

𝑡 lies in. It should
be noted that, since the cell is predefined and constructed according to the pixel of the map and the
estimate sINS

𝑡 is arbitrary, sINS
𝑡 can be any point within the underlying cell and is unnecessary to be the

centre position of this cell. Then, a grid of cells around the cell containing sINS
𝑡 can be constructed and

denoted by B𝑡 . Let the size of the grid be 𝑛𝑅𝑥 × 𝑛𝑅𝑦 , where 𝑛 is a relatively small odd integer, and the
positions of the cells within this grid be denoted by c 𝑗

𝑡 for 𝑗 = 1, . . . , 𝑛2. We also use c 𝑗
𝑡 as the labels of

the cells. The cells within the grid are arranged as shown in Figure 1, where the central cell of the grid,
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Figure 1. Illustrative example of a 3 × 3 grid of cells, at arbitrary time 𝑡, from a gravity map 𝑔𝑚. Each
cell has a spatial location c 𝑗

𝑡 = [𝑥 𝑗
𝑡 , 𝑥

𝑗
𝑡 ]

T and an associated gravity value 𝑔𝑚 (c 𝑗
𝑡 ) at this location. The

central cell of the grid, c5
𝑡 , is the one that the INS position estimate sINS

𝑡 lies in and can be determined
by Equation (3), and the positions of other cells can then be calculated by Equation (4).

labelled as c𝑛̄𝑡 with 𝑛̄ = (𝑛2 + 1)/2, is the one that sINS
𝑡 lies in. Its position is

c𝑛̄𝑡 � [𝑥 𝑛̄𝑡 , 𝑦𝑛̄𝑡 ]T = arg min
[𝑥,𝑦 ]T∈C

‖[𝑥, 𝑦]T − sINS
𝑡 ‖2 (3)

Essentially, Equation (3) means that c𝑛̄𝑡 is the cell that the INS position estimate sINS
𝑡 lies in at time 𝑡. As

a result, each cell is associated to a gravity value according to the gravity map. Based on c𝑛̄𝑡 and 𝑛, the
positions of other cells in the grid B𝑘 are

c 𝑗
𝑡 = c𝑛̄𝑡 − [𝑚1𝑅𝑥 , 𝑚2𝑅𝑦]

T, where 𝑚1, 𝑚2 = −𝑛, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛2 (4)

3.2. Viterbi-based map matching algorithm

At each time 𝑡 = 1, 2, . . . , 𝑇 , we construct the grid B𝑡 and its associated cells c 𝑗𝑡
𝑡 , where the subscript

𝑡 is again the time index and superscript 𝑗𝑡 is the cell label 𝑗𝑡 = 1, . . . , 𝑛2. In this paper, for the sake
of simplification, the size of grid B𝑡 , i.e. 𝑛 × 𝑛 or equivalently 𝑛, is fixed for all 𝑡. However, it is worth
noting that the value of 𝑛 may be calculated from the uncertainty area of the predicted measurement
and the resolution of the map and, therefore, the value of 𝑛 can be different from scan to scan. Then,
the problem becomes how to select a cell in each B𝑡 such that this segment of cells is the optimal
estimate of the actual trajectory. For a segment of cells, {c 𝑗1

1 , . . . , c
𝑗𝑇
𝑇 }, with corresponding referenced

gravity values, {𝑔𝑚 (c 𝑗1
1 ), . . . , 𝑔𝑚 (c

𝑗𝑇
𝑇 )}, gravity measurements, Z𝑘 , INS information, V𝑘 and SINS

𝑘 , the
joint posterior probability is

𝑝({c 𝑗1
1 , . . . , c

𝑗𝑇
𝑇 } | Z𝑘 , SINS

𝑘 ,V𝑘 ) = 𝑝({𝑔𝑚 (c 𝑗1
1 ), . . . , 𝑔𝑚 (c

𝑗𝑇
𝑇 )} | Z𝑘 , SINS

𝑘 ,V𝑘 ) (5)

The most probable trajectory from 𝑡 = 1 to 𝑡 = 𝑇 is given by the MAP estimator

{ 𝑗∗1 , . . . , 𝑗
∗
𝑇 } = arg max

I
� 𝑝({c 𝑗1

1 , . . . , c
𝑗𝑇
𝑇 } | Z𝑘 , SINS

𝑘 ,V𝑘 ) (6)

where I = {1, . . . , 𝑛2}, I
�

=
�𝑇

𝑖=1 I, notation
�

is the Cartesian product and {c 𝑗∗1
1 , . . . , c 𝑗∗𝑇

𝑇 } is the
optimal path (locations) of the vehicle estimated from the given measurements. It should be noted that
c 𝑗𝑡
𝑡 is actually the central position of each cell of the map; that is, the estimated path for time interval
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1, . . . , 𝑇 passes the centre of each cell. Finally, the estimated position sequence is then used to reset the
corresponding segment of this period estimated from INS.

An exhaustive searching process is required to find an optimal solution to Equation (6), where the
computation load of the order of 𝑛𝑇 can explode quickly if 𝑛 and/or 𝑇 become large. In this work, we
intend to find an efficient algorithm to solve this problem.

Note that for an arbitrary sequence, { 𝑗1, . . . , 𝑗𝑇 },

𝑝(c 𝑗𝑡
𝑡 | c

𝑗𝑡−1
𝑡−1 , . . . , c

𝑗1
1 ) = 𝑝(c 𝑗𝑡

𝑡 | c
𝑗𝑡−1
𝑡−1 ) ∀𝑡 ∈ {2, . . . , 𝑇} and 𝑗𝑡 ∈ I (7)

which implies that the selection of c 𝑗𝑡
𝑡 is only dependent on that of c 𝑗𝑡−1

𝑡−1 . This is a typical Markov process
(Stroock, 2013). The sequence {c 𝑗1

1 , . . . , c
𝑗𝑇
𝑇 } with the measurements can be modelled by an HMM.

The Viterbi algorithm (Viterbi, 1967) is available to compute Equation (6) and provides a most likely
sequence of positions.

At each time 𝑡, the likelihood function of 𝑧𝑡 given c 𝑗𝑡
𝑡 and 𝑔𝑚 (c 𝑗𝑡

𝑡 ) is denoted by

𝑝𝑧 (𝑧𝑡 | c 𝑗𝑡
𝑡 ) = 𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡

𝑡 )) (8)

where 𝑝𝑧 (·) is the probability density function of the gravity measurement. For each successive pair
{𝑡 − 1, 𝑡} with 𝑡 = 2, . . . , 𝑇 , the measurement likelihood function of c 𝑗𝑡

𝑡 , given v𝑡−1, the velocity
measurement at time 𝑡 − 1 and c 𝑗𝑡

𝑡 , is

𝑝𝑣 (c 𝑗𝑡
𝑡 | v𝑡−1, c 𝑗𝑡−1

𝑡−1 ) (9)

where 𝑝𝑣 (·) is the probability density function of the velocity measurement. It should be noted that the
transition model from c 𝑗𝑡−1

𝑡−1 to c 𝑗𝑡
𝑡 is assumed to be a constant velocity model.

Then, given c 𝑗𝑡−1
𝑡−1 and measurement 𝑧𝑡 , the posterior density of c 𝑗𝑡

𝑡 is

𝑝(c 𝑗𝑡
𝑡 | 𝑧𝑡 , v𝑡−1, c 𝑗𝑡−1

𝑡−1 ) ∝ 𝑝(𝑧𝑡 | c 𝑗𝑡
𝑡 , v𝑡−1, c 𝑗𝑡−1

𝑡−1 )𝑝(c
𝑗𝑡
𝑡 | v𝑡−1, c 𝑗𝑡−1

𝑡−1 )

= 𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡
𝑡 ))𝑝𝑣 (c 𝑗𝑡

𝑡 | v𝑡−1, c 𝑗𝑡−1
𝑡−1 ) (10)

We shall be considering this, in particular, in the case when the transition is a single time step, and
𝑗1 = 𝑗𝑡−1 and 𝑗2 = 𝑗𝑡 , for a pair { 𝑗1, 𝑗2} ∈ I × I, we use the notation

{ 𝑗1 → 𝑗2, 𝑝(c 𝑗2
2 | 𝑧2, v1, c 𝑗1

1 )} (11)

for the potential path from c 𝑗1
1 to c 𝑗2

2 and its associated conditional probability.
Similarly, for any pair { 𝑗𝑡−1, 𝑗𝑡 } ∈ I × I, we can have such a path with its posterior probability as

{ 𝑗𝑡−1 → 𝑗𝑡 , 𝑝(c 𝑗𝑡
𝑡 | 𝑧𝑡 , v𝑡−1, c 𝑗𝑡−1

𝑡−1 )} (12)

Then, starting from 𝑡 = 2, for a fixed 𝑗1, a local optimal path with greatest posterior probability is
given by {

𝑗1 → 𝑗∗2 | 𝑗
∗
2 = arg max

𝑗2∈I
𝑝(c 𝑗2

2 | 𝑧2, v1, c 𝑗1
1 )

}
(13)

Similarly, at 𝑡 = 3, for pair { 𝑗∗2 , 𝑗3}, where 𝑗∗2 is obtained from Equation (13) and therefore fixed and
𝑗3 ∈ I, the following local optimal path is{

𝑗∗2 → 𝑗∗3 | 𝑗
∗
3 = arg max

𝑗3∈I
𝑝(c 𝑗3

3 | 𝑧3, v2, c
𝑗∗2
2 )

}
(14)
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Figure 2. An example of the Viterbi map matching algorithm. The time sequence is 𝑡 = 1, 2, 3, 4 and
the dimension of each grid is 5 × 5. The blue lines are the INS estimated positions while the red ones
are the actual positions. The black dashed lines indicate two candidate trajectories satisfying Equation
(16), i.e. J∗1 = {1 → 1 → 1 → 1} and J∗25 = {25 → 25 → 25 → 25}. All trajectories shown in this
figure are for demonstration only.

Iteratively, for any pair { 𝑗∗𝑡−1, 𝑗𝑡 }, 𝑗𝑡 ∈ I, the following optimisation is done:{
𝑗∗𝑡−1 → 𝑗∗𝑡 | 𝑗

∗
𝑡 = arg max

𝑗𝑡 ∈I
𝑝(c 𝑗𝑡

𝑡 | 𝑧𝑡 , v𝑡−1, c
𝑗∗𝑡−1
𝑡−1 )

}
(15)

As a result, for any fixed 𝑗1 ∈ I, there is a candidate path that the vehicle potentially travels:

{ 𝑗1 → 𝑗∗2 → · · · → 𝑗∗𝑡 → · · · → 𝑗∗𝑇 −1 → 𝑗∗𝑇 } � J∗𝑗1 (16)

where

𝑗∗𝑡 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arg max

𝑗𝑡 ∈I
𝑝(c 𝑗𝑡

𝑡 | 𝑧𝑡 , v1, c 𝑗1
1 ) 𝑡 = 2

arg max
𝑗𝑡 ∈I

𝑝(c 𝑗𝑡
𝑡 | 𝑧𝑡 , v𝑡−1, c

𝑗∗𝑡−1
𝑡−1 ) 𝑡 = 3, . . . , 𝑇

(17)

Since J∗𝑗1 depends on the selection of 𝑗1, we are able to collect the potential paths corresponding to
all possible values of 𝑗1, i.e. J∗− = {J∗1, . . . ,J∗𝑛2 }. Then, a back tracing step is performed as follows:

𝑗∗1 = arg max
J∗−

𝑝𝑧 (𝑧1 | 𝑔𝑚 (c 𝑗1
1 ))𝑝(c

𝑗∗2
2 | 𝑧2, v1, c 𝑗1

1 )

𝑇∏
𝑡=3

𝑝(c 𝑗∗𝑡
𝑡 | 𝑧𝑡 , v𝑡−1, c

𝑗∗𝑡−1
𝑡−1 ) (18)

This step can reveal the initial state so that the sequence of hidden states corresponding to the highest
probability can be found. Additionally, the complete estimated path is

{ 𝑗∗1 → 𝑗∗2 → · · · → 𝑗∗𝑡 → · · · → 𝑗∗𝑇 −1 → 𝑗∗𝑇 } � J∗ (19)

Eventually, the estimated path J∗ is used to reset the INS estimated position directly. An example of
how the algorithm works is shown in Figure 2.

In practice, given a measurement 𝑧𝑡 at a specific time 𝑡, we may find more than one cell within a
grid B𝑡 that has the same likelihood value using Equation (8). Therefore, multiple optimal trajectories
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Figure 3. Illustration of the refined grid. The cell c5
𝑡 is an example to show how the refined sub-cells

are constructed, where 𝑛 = 3 and 𝑜 = 3.

may be identified because of that they can have the same maximum posterior value. If this happens, we
choose the trajectory that is closest to the INS estimated position for simplicity.

3.3. An enhanced two-layer algorithm

In Section 3.2, a grid-based Viterbi algorithm is proposed to find a path used to correct SINS
𝑘 . However,

it should be noted that the proposed algorithm only returns a path that passes through the centre of each
cell. As a result, the deviation between this path and the actual trajectory is highly dependent on the
resolution of the gravity map since the actual trajectory can be any point of each cell. In this section, an
enhanced method is presented to improve the accuracy of the estimated path.

The key idea of this enhanced algorithm is to generate refined sub-cells for each cell and use these
refined sub-cells to match the actual trajectory. This strategy takes effect when constructing the grid B𝑡 .
An example of a refined cell is given in Figure 3.

Suppose that each cell is divided into 𝑜 × 𝑜 sub-cells, the centres of which, for c 𝑗𝑡
𝑡 , are denoted by

c 𝑗𝑡 ,𝑙𝑡
𝑡 , where 𝑙𝑡 ∈ O and O = {1, 2, . . . , 𝑜2}. We also use c 𝑗𝑡 ,𝑙𝑡

𝑡 as label of 𝑙𝑡 th sub-cell of 𝑗𝑡 th cell at time
𝑡. Since the resolution of gravity map is fixed, therefore, the sub-cells c 𝑗𝑡 ,𝑙𝑡

𝑡 refine cells c 𝑗𝑡
𝑡 to provide

better resolution on positions and do not improve the actual resolution of the gravity map. In the other
word, the cell c 𝑗𝑡

𝑡 within B𝑡 is divided into multiple sub-cells c 𝑗𝑡 ,𝑙𝑡
𝑡 . Then we have the following relation,

for any given 𝑗𝑡 :

𝑔𝑚 (c 𝑗𝑡
𝑡 ) = 𝑔𝑚 (c 𝑗𝑡 ,𝑙𝑡

𝑡 ), ∀𝑙𝑡 ∈ O (20)

and

𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡 ,𝑙𝑡
𝑡 )) = 𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡

𝑡 )) ∀𝑙𝑡 ∈ O (21)

In similar vein to Equations (15), (16) and (17), the potential path for a given { 𝑗1, 𝑙1} is

{{ 𝑗1, 𝑙1} → { 𝑗
∗
2 , 𝑙
∗
2} → · · · → { 𝑗

∗
𝑇−1, 𝑙

∗
𝑇 −1} → { 𝑗

∗
𝑇 , 𝑙
∗
𝑇 }} � L∗𝑗1 ,𝑙1 (22)

where 𝑙∗𝑡 in { 𝑗∗𝑡 , 𝑙∗𝑡 } is the optimal sub-cell and 𝑗∗𝑡 is the associated cell. Here, { 𝑗∗𝑡 , 𝑙∗𝑡 } is obtained using
{ 𝑗∗𝑡−1, 𝑙

∗
𝑡−1} and it can be calculated from Equation (17) through replacing 𝑗𝑡 by { 𝑗𝑡 , 𝑙𝑡 }.

Let L∗− = {L∗1,1,L∗1,2 . . . ,L∗𝑛2 ,𝑜2 }. Then, { 𝑗∗1 , 𝑙
∗
1} in the estimated path

L∗ = {{ 𝑗∗1 , 𝑙∗1} → { 𝑗∗2 , 𝑙∗2} → · · · → { 𝑗∗𝑇 −1, 𝑙
∗
𝑇 −1} → { 𝑗

∗
𝑇 , 𝑙
∗
𝑇 }} (23)
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Figure 4. Illustration of likelihood values of cells within the grids at successive time stamps 𝑡 = 1, 2, 3.
The windows size is 𝑛 = 11×11. For arbitrary cell 𝑗𝑡 at time 𝑡, the likelihood values are calculated from
𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡

𝑡 )) and normalised by 𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡
𝑡 ))/max 𝑗′𝑡 ∈I{𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗′𝑡

𝑡 ))}. There is no sub-cell for
each cell to simplify the illustration. In each grid, there are only up to seven cells having relative high
likelihood values while other cells’ values are close to 0. If Equation (25) is applied and let 𝛼 = 0 ·1, the
maximum number of possible trajectories is 73; otherwise, in the algorithm without applying Equation
(25), the maximum number of possible trajectories is 1213.

is obtained by the back tracing step

{ 𝑗∗1 , 𝑙
∗
1} = arg max

L∗−
𝑝𝑧 (𝑧1 | 𝑔𝑚 (c 𝑗1 ,𝑙1)

1 )𝑝(c 𝑗∗2 ,𝑙
∗
2

2 | 𝑧2, v1, c 𝑗1 ,𝑙1
1 )

𝑇∏
𝑡=3

𝑝(c 𝑗∗𝑡 ,𝑙
∗
𝑡

𝑡 | 𝑧𝑡 , v𝑡−1, c
𝑗∗𝑡−1 ,𝑙

∗
𝑡−1

𝑡−1 ) (24)

3.4. Reducing the computation

In the algorithms presented above, the computational overhead increases dramatically as more cells are
considered in the algorithm. To mitigate this issue, we constrain the number of 𝑗𝑡 in each time 𝑡 via a
threshold. Relative likelihood values to select the available 𝑗𝑡 are calculated as follows:

A𝑡 =

{
𝑗𝑡






 𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡
𝑡 ))

max 𝑗𝑡 ∈I 𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡
𝑡 ))
≥ 𝛼, ∀ 𝑗𝑡 ∈ I

}
(25)

where 𝛼 ∈ [0, 1]. Equation (25) implies that only those cells with relatively high likelihood values are
chosen. In other words, cells that are very unlikely to form part of the path are discarded.

An example of higher likelihood cells from c 𝑗𝑡
𝑡 , 𝑗𝑡 ∈ I, is given in Figure 4, where we assume that

𝑇 = 3 and the size of the grid at each time stamp is 𝑛 = 11. The values of 𝑝𝑧 (𝑧𝑡 | 𝑔𝑚 (c 𝑗𝑡
1 )), 𝑡 = 1, 2, 3, are

represented in different colours. At time 1, there are three higher likelihood cells. Similarly, at times 2
and 3, there are 3 and 2 grids available, respectively. As a result, A𝑡 , 𝑡 = 1, 2, 3, is obtained accordingly,
e.g. A1 = {8, 18, 29, 40, 61, 83, 94}. The computational complexity is reduced from 𝑂 ((𝑇 − 1)𝑛2)

to 𝑂 (
∑𝑇 −1

𝑡=1 #A𝑡 × #A𝑡+1), where #A𝑡 is the number of elements in A𝑡 . In practice, to simplify the
problem, 𝛼 can be set to be a fixed value, such as 0 · 1 or 0 · 2.

Similarly, we use indexes in A1, . . . ,A𝑇 to find multiple candidate paths using the same method as
Equation (22) by replacing the associated indexes sequence, i.e.

{{ 𝑗1, 𝑙1} → { 𝑗
∗
2 , 𝑙
∗
2} → · · · → { 𝑗

∗
𝑇 −1, 𝑙

∗
𝑇 −1} → { 𝑗

∗
𝑇 , 𝑙
∗
𝑇 }} � R∗𝑗1 ,𝑙1 (26)

where 𝑗1 ∈ A1 and 𝑗∗𝑡 ∈ A𝑡 for 𝑡 = 2, . . . , 𝑇 .
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Let R∗− = {R∗𝑗1 ,𝑙1 | ∀ 𝑗1 ∈ A1} contain these candidate paths. Then the back tracing step in Equation
(24) can be rewritten as, where 𝑗1 ∈ A1,

{ 𝑗∗1 , 𝑙
∗
1} = arg max

R∗−
𝑝𝑧 (𝑧1 | 𝑔𝑚 (c 𝑗1 ,𝑙1

1 ))𝑝(c 𝑗∗2 ,𝑙
∗
2

2 | 𝑧2, v1, c 𝑗1 ,𝑙1
1 )

𝑇∏
𝑡=3

𝑝(c 𝑗∗𝑡 ,𝑙
∗
𝑡

𝑡 | 𝑧𝑡 , v𝑡−1, c
𝑗∗𝑡−1 ,𝑙

∗
𝑡−1

𝑡−1 ) (27)

The estimated path is, then, as follows:

R∗ = {{ 𝑗∗1 , 𝑙∗1} → { 𝑗∗2 , 𝑙∗2} → · · · → { 𝑗∗𝑇 −1, 𝑙
∗
𝑇 −1} → { 𝑗

∗
𝑇 , 𝑙
∗
𝑇 }}, where 𝑗𝑡 ∈ A𝑡 (28)

In summary, the algorithm proposed in Section 3.2 with enhanced strategies presented in Sections
3.3 and 3.4 is given in Algorithm 1.

Algorithm 1: The Viterbi-based map matching algorithm
Result: The estimated trajectory

1 Initialisation 𝑘 ← 1
2 while 𝑘 < Running time do
3 Obtain position via INS
4 Push measurements and INS estimated position into vector Z𝑘 , SINS

𝑘 and V𝑘 , respectively.
5 if 𝑘 mod 𝑇 == 0 then
6 Construct grids B𝑡 using 𝑛, 𝑜, Equation (3) and sub-cell method proposed in Section 3.3

for each 𝑡 = 1, . . . , 𝑇
7 Find all cells A𝑡 satisfying Equation (25) for each 𝑡 = 1, . . . , 𝑇
8 for 𝑗1 ∈ A1 do
9 for 𝑙1 ← 1 to 𝑜 do

10 for 𝑡 ← 1 to 𝑇 do
11 Find ordered sequence R∗𝑗1 according to Equation (26)
12 end
13 Push R∗𝑗1 into R∗−
14 end
15 end
16 Find the estimated path R∗ in Equation (28) via back tracing step in Equation (27)

using R∗−
17 Replace the INS estimated trajectory using R∗
18 Clear Z𝑘 , SINS

𝑘 and V𝑘

19 end
20 𝑘 ← 𝑘 + 1
21 end

4. Simulation

In the first part of the simulation, we assume that a vehicle (aircraft) travels across Australia, approx-
imately from Melbourne to Sydney, at a constant velocity 7 · 54◦/h, roughly 837 Km/h [1◦ ≈ 111 Km
(Scales et al., 2017)]. The total flight distance is approximately 814 Km. The gravity map of the region
of interest has been obtained from the GGMplus software (Hirt et al., 2013) with a variety of resolutions,
where the component taken from the map is gravitational acceleration. The map is represented in grids
that have specified resolutions with the grid equally spaced in terms of geodetic (GRS80) latitude and
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(a) (b)

Figure 5. Illustration of the scenarios used in the simulation. The coloured map is the reference
gravitational acceleration map of (a) Victoria and New South Wales and (b) Western Australia. The INS
estimated trajectory without aiding deviates gradually from the true trajectory and its resolution is 1

200
◦.

longitude. The map with lower resolution is created by down-sampling the higher one. An illustrative
example is shown in Figure 5a.

To simplify the simulation, the noise in the velocity measurement, i.e. Equation (2), from the IMU is
modelled as 𝝓𝑘 = b𝑘 +N(0, 𝜎2

𝑣I2), where b𝑘 is the bias vector. The measured gravitational acceleration
is assumed to be corrupted by additive Gaussian noiseN(0, 𝜎2

𝑧 ), where 𝜎𝑧 is the standard deviation. As
mentioned earlier, the true Earth gravity is obtained from a gravity map without noise for the purpose
of demonstrating the algorithm.

A Monte Carlo (MC) simulation of 500 runs is carried out for each scenario and simulation
performance at time 𝑘 is measured by the root-mean-square error, defined as

Error𝑘 =
1

𝑛𝑀𝐶

𝑛𝑀𝑇∑
𝑚=1

Dist(s𝑘,𝑚, sC-INS
𝑘,𝑚 ) (29)

where 𝑛𝑀𝐶 is the number of MC, s𝑘,𝑚 and sC-INS
𝑘,𝑚 are the position and updated position, respectively,

of the target at time 𝑘 and 𝑚th simulation, and Dist(·, ·) is the Haversine distance (Km) between two
points given their longitude and latitude (Gade, 2010).

The algorithms are evaluated by different parameters. In the simulation, the bias of the velocity is set
to be 1◦/hr and 𝜎𝑣 = 9 × 10−6◦/s, roughly 1 m/s. In the simulation, we assume that the inertial sensors
used in the vehicle INS exhibit white noise and bias, such that the INS computed position deviates from
ground truth at the end of journey, as shown in Figure 5. The standard deviation of the gravitational
acceleration measurement is 𝜎𝑧 = 1, 2 mGal. The INS reports positions and velocities every 12 s.

First, the performances of the Viterbi-based map matching algorithm (VBMP) proposed in Section 3.2
and the computation reduced algorithm (RVBMP) proposed in Section 3.4 are compared in terms of the
time efficiency. In the simulation, standard deviation is 𝜎𝑧 = 1 mGal, the map resolution is 1/100◦, the
correction rate, i.e. 𝑇 , is set to be 6, window size is 𝑛 = 13, correspondingly the size of B𝑡 is 13 × 13,
and the sub-cell algorithm proposed in Section 3.3 is not applied. It also can be noticed that the value
of 𝛼 can potentially have an impact on the performance of RVBMP; that is, a larger 𝛼 means the more
cells will be included in A𝑡 and the more time will be required to find a solution. In considering this,
the performance of RVBMP using different values of 𝛼 are compared with VBMP. When 𝛼 = 0, set A𝑡

will contain all cells and the algorithm becomes VBMP. The simulation results are given in Table 1,
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Table 1. Performance comparison between RVBMP and RVBMP using different values of 𝛼.

VBMP and RVBMP

𝛼 Mean (Km) Std. dev. (Km) TCR

0 (VBMP) 1 · 2802 0 · 5011 35 · 3817
0 · 05 1 · 2890 0 · 5101 2 · 6162
0 · 1 1 · 2786 0 · 5219 2 · 0119
0 · 2 1 · 5114 0 · 5470 1 · 5049
0 · 3 1 · 7097 0 · 5655 1 · 1986
0 · 4 2 · 3764 0 · 8590 1

Note: the scenario is shown in Figure 5(a).

(a) (b)

Figure 6. Simulation results. The scenario is shown in Figure 5(a). (a) The map resolution is 1/100◦;
(b) the map resolution is 1/200◦.

where TCR stands for time consumption ratio between the time consumption using a specific 𝛼 and a
referenced time, i.e. Time𝛼/Timeref, and Time𝛼=0·4 is chosen as the reference in Table 1, Mean and Std.
dev. are sample mean and sample standard deviation of Error𝑘 , i.e.

Mean =
1
𝐿

𝐿∑
𝑘=1

Error𝑘 , Std. dev. =

√√√
1

𝐿 − 1

𝐿∑
𝑘=1
(Error𝑘 −Mean)

where 𝐿 is the total number of sampling points over the trajectory.
It can be seen that the RVBMP performs better than VBMP in terms of time efficiency and they have

a similar tracking performance when 𝛼 is less than 0 · 1.
Second, the performance of RVBMP and the enhanced two-layer algorithm (RVBMP-2) in Section 3.3

are compared via standard deviation 𝜎𝑧 = 1 mGal and two map resolutions. The correction rate, i.e. 𝑇 ,
is set to be 6, window size is 𝑛 = 13 and the size of a sub-cell is 𝑜 = 7 for RVBMP-2, correspondingly,
the size of B𝑡 is 13 × 13 and that of sub-cell is 7 × 7. The results are given in Figure 6 and Table 2. The
definitions of Mean and Std. dev are the same as those in Table 1 and they are calculated over those
estimated results that are not divergent. The time consumption ratio (TCR) is given to compare the time
efficiency of these two algorithms. The TCR in this table is defined as TimeRVBMP-2/TimeRVBMP.

From Figure 6 and Table 2, we can see that the RVBMP-2 outperforms RVBMP in both resolutions,
which indicates that the sub-cell can improve the RVBMP. It should be noticed that the sub-cell strategy
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Table 2. Performance comparison between RVBMP and RVBMP-2 using two different map resolutions.

Algorithm Mean (Km) Std. dev. (Km) TCR

Map resolution = 1/100◦
RVBMP 1 · 4358 0 · 5715 1
RVBMP-2 0 · 9190 0 · 4004 24 · 9

Map resolution = 1/200◦
RVBMP 0 · 5846 0 · 2639 1
RVBMP-2 0 · 5266 0 · 2538 28 · 5

Note: the scenario is shown in Figure 5(a).

(a) (b)

Figure 7. Simulation results of ICCP and proposed algorithm when the correction rate is 4. The
scenario is shown in Figure 5(a). (a) 𝜎𝑧 = 1 mGal; (b) 𝜎𝑧 = 2 mGal.

works better when the map resolution is relative low. This is because a high map resolution implies a
high position resolution as well, so that the sub-cell strategy has less influence on the performance.

Finally, to further demonstrate the efficiency of RVBMP-2, the performance of RVBMP-2 and ICCP
(Kamgar-Parsi and Kamgar-Parsi, 1999; Han et al., 2017) are compared using two different noise levels,
i.e. 𝜎𝑧 . The map resolution is 1/200◦, window size is 𝑛 = 13 and the size of a sub-cell is 𝑜 = 5,
correspondingly the size of B𝑡 is 13×13 and that of a sub-cell is 5×5. The simulation results are shown
in Figures 7 and 8, and summarised in Table 3, where the success rate represents the percentage of times
the algorithm followed the true trajectory without divergence, and the definitions of Mean and Std. dev.
are as in Table 2.

From Table 3 and Figures 7 and 8, we see that the RVBMP-2 algorithm outperforms ICCP both in
success rate and tracking performance.

In the second part of the simulation, a reference gravity map that covers a major area of Western
Australia (WA), Australia, see Figure 5(b), is used to further demonstrate the performance of the proposed
algorithm. The major challenge of this scenario is that the gravitational acceleration is relatively flat; that
is, the variation in gravity across distinct pixels/cells is, on the whole, smaller than that in the regions
in the earlier simulations. This flatness of the gravity map suggests that aiding with it will perform less
well than in the previous results.

In the simulation, the start point of the vehicle is near Perth, and the end point is located at ([−24 ·
427111, 124 · 978610]). The distance is approximately 1206 Km. The remaining parameters are similar
to those in Table 3.
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(a) (b)

Figure 8. Simulation results of ICCP and proposed algorithm when the correction rate is 6. The
scenario is shown in Figure 5(a). (a) 𝜎𝑧 = 1 mGal; (b) 𝜎𝑧 = 2 mGal.

Table 3. Performance comparison between RVBMP-2 and ICCP using two different standard deviations
of the noise, 𝜎𝑧 and correction rate.

𝜎𝑧 (mGal) Algorithm Success rate Mean (Km) Std. dev. (Km)

Correction rate = 4
1 ICCP 92% 1 · 3424 0 · 6642

RVBMP-2 100% 0 · 8300 0 · 3557
2 ICCP 54% 2 · 0253 1 · 1920

RVBMP-2 100% 1 · 4238 0 · 4146

Correction rate = 6
1 ICCP 75% 0 · 8675 0 · 4297

RVBMP-2 100% 0 · 5765 0 · 2722
2 ICCP 46% 1 · 1533 0 · 5148

RVBMP-2 100% 0 · 8478 0 · 3466

Note: the scenario is shown in Figure 5(a).

In Table 4, we can see that, in terms of accuracy, the performances of RVBMP-2 and ICCP are similar
because the map is relatively flat and provides less information to the algorithm. However, the former
has a better success rate than the latter.

5. Summary

In this paper, we have presented a Viterbi-inspired map matching algorithm based on a hidden Markov
model (HMM) formalisation of the map matching problem. Our algorithm determines the optimal
trajectory of a platform given a sequence of gravitational measurements, a geo-reference gravity map
and INS velocity information. This trajectory is optimal in the maximum a posteriori sense and is
used to correct the platform’s INS. The simulation results demonstrate that the algorithm is efficient
in correcting the INS estimated trajectory. In addition, we proposed an enhanced 2-layer addition to
the algorithm to improve the performance when the map resolution is low. We showed by simulations
that our proposed algorithm outperforms existing map matching algorithms in terms of navigational
accuracy and is also robust to varying levels of sensor noise. In terms of future work, we have validated
our algorithm using gravitational measurements; however, it can be potentially generalised to other
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Table 4. Performance comparison between RVBMP-2 and ICCP using two different standard deviations
of the noise, 𝜎𝑧 and the correction rate.

𝜎𝑧 (mGal) Algorithm Success rate Mean (Km) Std. dev. (Km)

Correction rate = 4
1 ICCP 23% 1 · 5880 0 · 8657

RVBMP-2 100% 1 · 4861 0 · 6183
2 ICCP 2% 2 · 4581 1 · 0113

RVBMP-2 100% 2 · 3573 0 · 8325

Correction rate = 6
1 ICCP 22% 1 · 0967 0 · 4457

RVBMP-2 100% 1 · 0679 0 · 4336
2 ICCP 2% 1 · 6697 0 · 7551

RVBMP-2 99% 1 · 6003 0 · 5975

Note: the scenario is shown in Figure 5(b).

aiding resources, such as terrain elevation and magnetic field, that have similar maps. Additionally,
we currently use a straightforward method when combining the output of the algorithm with the INS
position – the INS position is simply reset with the corrected position. Accordingly, another area of
future work is to develop a more sophisticated fusion process.
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