
27

Logical gates with the surface code

The authors are grateful to Earl Campbell, Andrew Cross, and John Preskill

for reviewing this chapter.

Rough overview (in words)

The ability to implement an arbitrary unitary operation, either exactly or ap-

proximately, is a prerequisite for performing quantum computation. It can be

achieved with unitary gates that form a universal gate set [625, 801]. A com-

monly considered gate set contains two Clifford gates, the Hadamard gate H

and the controlled X gate CX (also known as the controlled NOT gate), and

one non-Clifford gate, the T = Z1/4 gate. One can consider other non-Clifford

gates, such as the Toffoli gate CCX. Note that non-Clifford gates are essen-

tial for quantum computation, as any quantum circuit comprising only Clifford

gates, state preparation, and measurement in the computational basis can be

simulated in polynomial time on a probabilistic classical computer [445, 4].

Since we are interested in fault-tolerant quantum computation, we would

like to implement a universal set of logical gates H, CX, and T on informa-

tion encoded in some quantum error correcting (QEC) code, such as the sur-

face code. We can implement these gates with a planar layout of qubits and

nearest-neighbor entangling gates. To be more precise, we consider a simple

architecture [535] that comprises N surface code patches, each encoding a log-

ical qubit into the surface code with code distance d, and the routing space in

between; see Fig. 27.1(a). In such an architecture, the total number of data and

ancilla qubits is O(Nd2).

325

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.031
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 04:37:06, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.031
https://www.cambridge.org/core

326 27. Logical gates with the surface code

(a) (b)

Figure 27.1 (a) A planar layout of qubits comprises surface code patches

(shaded), each using the layout depicted in Fig. 26.1(a) and encoding a logical

qubit, with routing space in between the patches. (b) The logical Pauli measure-

ment MXX is implemented by preparing the routing space qubits (filled dots) in

the state |0⟩ and repeatedly measuring parity checks (lightly shaded) in the rout-

ing space spanning between the two surface code patches. Other logical Pauli

measurements, for example, MZZ and MYZ , require connecting different bound-

aries of the two patches.

Rough overview (in math)

The logical H does not pose any challenges. From a practical standpoint, it is

transversal, since it can be realized by applying the Hadamard gate H to every

data qubit in the surface code patch, followed by swapping of the roles of

Pauli Z- and X-type parity checks in the subsequent QEC rounds. As such, the

logical H takes constant time and the surface code patch is effectively rotated

(which may alter how subsequent operations are implemented).

The logical CX is more challenging than the logical H, since it is impossi-

ble to implement it transversally with the planar layout of qubits and nearest-

neighbor entangling gates shown in Fig. 27.1(a). Instead, one can use the fol-

lowing quantum circuit, where the first qubit (top wire) is the control and the

third qubit (bottom wire) is the target of the logical CX gate:
a

MZZ

Z
b

|+⟩
MXX

MZ
c

X
a+c

b

(27.1)

It is straightforward to fault-tolerantly realize preparation of the logical state

|+⟩, logical Pauli measurement MZ , and logical Pauli operators Z and X. In

addition, the required logical Pauli measurements MZZ and MXX can be im-

plemented fault-tolerantly via “lattice surgery” techniques [535, 397, 693];

see Fig. 27.1(b) for an illustration of how to realize MXX . Unlike the logical

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.031
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 04:37:06, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.031
https://www.cambridge.org/core

27. Logical gates with the surface code 327

H, logical Pauli measurements MZZ and MXX and, subsequently, the logical

CX cannot be realized in constant time; rather, due to the need to account for

measurement errors, they typically incur time overhead of O(d).

The logical T can be implemented using gate teleportation [448] via the

following quantum circuit:

CX
S

a

|T ⟩ MZ
a

(27.2)

Here, the logical resource state |T ⟩ is defined as
(
|0⟩ + eiπ/4|1⟩

)
/
√

2, the logical

gate S is defined as Z
1/2

, and the first qubit (top wire) is the control and the

second qubit (bottom wire) is the target of the logical CX gate. One can fault-

tolerantly implement the logical S with a planar layout of qubits [206, 423] (or

even in a transversal way given access to nonlocal entangling gates [653, 788]).

However, the need to apply the logical S conditioned on the measurement

outcome of MZ may slow down quantum computation, and, for this reason, it

may be beneficial to use the following quantum circuit from [693, Fig. 17(b)],

which is an alternative to the one in Eq. (27.2) that uses one additional logical

qubit but requires only logical Pauli corrections, rather than logical Clifford

corrections.
a

|0⟩
MYZ

H
b

MZ
c

|T ⟩
MZZ

MX d

Z
ab+c+d

b

(27.3)

In either case, given the logical resource state |T ⟩, the logical T typically incurs

time overhead ofO(d). We conclude that implementing the logical T reduces to

the problem of preparing the logical state |T ⟩, which, in turn, can be realized via

state distillation [633, 190]; see [146] for a brief overview of state distillation.

Dominant resource cost (gates/qubits)

State distillation provides a fault-tolerant method to prepare high-fidelity log-

ical resource states, such as the logical state |T ⟩. The basic idea is to convert

some number of noisy resource states into fewer but, crucially, less noisy re-

source states. Importantly, this task can be accomplished with quantum circuits

comprising only Clifford gates (together with state preparation and measure-

ment in the computational basis) and postselection. Typically, state distillation

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.031
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 04:37:06, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.031
https://www.cambridge.org/core

328 27. Logical gates with the surface code

circuits are based on some QEC code, for example, the 15-qubit Reed–Muller

code.

State distillation is often described as a resource-intensive method that con-

tributes the most to the resource overhead of fault-tolerant quantum compu-

tation with the surface code [398] (assuming many state distillation circuits

working in parallel). For that reason, numerous efforts have been devoted to

finding possible alternatives [189, 582, 167, 249, 146]. However, recent results

indicate that state distillation may not be as costly as one may think [693, 694],

especially when one allows only a few state distillation circuits to run in paral-

lel and optimizes them for specific quantum hardware and noise that exhibits

some bias [696]. In the task of estimating the ground state energy density of

the Fermi–Hubbard model, state distillation of logical Toffoli resource states

injected one at a time uses less than 10% of the total resources and is never a

bottleneck on runtime of the quantum algorithm [250].

Often, a quantum algorithm is expressed as a quantum circuit C comprising

Clifford and T gates. Thus, by using the aforementioned logical gates H, CX,

and T , we can fault-tolerantly implement the logical quantum circuit Cwith the

surface code of code distance d and a planar layout of qubits in Fig. 27.1(a).

However, from the perspective of reducing the resource overheads, it may be

beneficial to consider a quantum circuit C′ equivalent to the circuit C, which is

obtained from C by commuting all Clifford gates to the end of C [693]. As a

result, the circuit C′ only comprises multiqubit Pauli π/8 rotations (which are

a generalization of the T gate and can be realized via, e.g., quantum circuits

analogous to the one in Eq. (27.3)). Consequently, fault-tolerant implementa-

tion of the logical circuit C′ incurs qubit overhead of O(Nd2) and time over-

head of O(Md), where N and M are the number of qubits and T gates in C,

respectively. We remark that the time overhead can be reduced at the expense

of increased qubit overhead—first, by distilling more resource states and being

able to use them faster, then, by implementing them in parallel [693].

Caveats

Lattice surgery is not necessary to realize fault-tolerant quantum computation

with a planar layout of qubits and nearest-neighbor gates. An alternative ap-

proach (which actually preceded the development of lattice surgery) relies on

the surface code with defects and braiding [862, 863, 398, 206]. However,

resource overhead estimates strongly suggest that this approach is not compet-

itive with lattice surgery [397].

The simple architecture depicted in Fig. 27.1(a) can be improved in a cou-

ple of ways to reduce the qubit overhead. First, it is possible to pack surface

code patches more densely, resulting in more logical qubits for the given total

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.031
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 04:37:06, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.031
https://www.cambridge.org/core

27. Logical gates with the surface code 329

number of qubits and target code distance [660, 693]. Second, one can desig-

nate certain regions, commonly referred to as magic state factories, to solely

produce resource states, such as the logical state |T ⟩, and optimize their de-

sign [809, 693, 694].

To simplify implementation of logical gates, one can consider other QEC

codes, for example, the 3D color code [165, 648]. The gauge color code has

redundant degrees of freedom, commonly referred to as gauge qubits. For dif-

ferent states of its gauge qubits, the gauge color code admits transversal im-

plementation of different logical gates, which, combined, form a universal gate

set (thus circumventing the Eastin–Knill theorem [370, 1078]). Importantly,

changing the state of gauge qubits can be done fault tolerantly in constant time.

However, to realize this construction one needs, for instance, a 3D layout of

qubits with nearest-neighbor gates or a planar layout of qubits with a limited

number of nonlocal gates, which are more challenging to engineer compared

to the simple architecture in Fig. 27.1(a). To achieve code distance d with the

gauge color code, one incurs qubit overhead of O(d3) (compared to qubit over-

head of O(d2) for the surface code), so, similarly to single-shot QEC described

in Chapter 26 on QEC with the surface code, this approach trades time over-

head for qubit overhead.

Example use cases

• Lattice surgery techniques developed for the surface code can be straight-

forwardly adapted to, for example, the color code [659] or the surface code

with a twist [1066], leading to fault-tolerant quantum computation with po-

tentially reduced qubit overhead. Recent work [303] proposed a generaliza-

tion to the setting of quantum low-density parity check codes. In addition,

lattice surgery techniques can also be used for the fault-tolerant transfer of

encoded information between arbitrary topological quantum codes [842].

• Now, we are ready to present a rough, order-of-magnitude estimate of the

resource overheads needed to realize fault-tolerant quantum computation in

the architecture based on the surface code and lattice surgery. For concrete-

ness, we consider the circuit noise of strength p = 0.001, where each basic

operation, including state preparation, CNOT gate, and measurement, can

fail with probability p. Assume that we want to implement a quantum cir-

cuit C comprising N = 103 qubits and a certain number M = 1010 of T gates.

These resource counts are in the ballpark of estimates for various quantum

algorithms in the application areas of quantum chemistry, condensed matter

physics, and cryptanalysis. First, following the procedure from [693], we

compile C into a new circuit C′ of depth M that comprises N qubits and M

multiqubit Pauli π/8-rotations implemented one at a time. Since there are

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.031
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 04:37:06, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.031
https://www.cambridge.org/core

330 27. Logical gates with the surface code

NM possible fault locations in the circuit C′, the error rate for each qubit of

C′ should not exceed

ϵ ≈ 1/(NM).

Since each qubit of C′ is realized as a logical qubit of the surface code with

distance d, then its logical error rate pfail can be approximated by

pfail ≈ α(p/pth)d/2,

where we can crudely set α = 0.05 and pth = 0.01; see Chapter 26 on QEC

with the surface code for more details. Note that these values are empirical

and depend heavily on the choice of the decoder, in our case, the belief-

matching algorithm [530]. Thus, in order for the logical error rate pfail to

reach the target error rate ϵ we need the surface code distance at least

d ≈ ⌈
2 log(αNM)/ log(pth/p)

⌉
.

Assuming that half of all required qubits are devoted to realizing N surface

code patches (each comprising 2d2 − 1 data and ancilla qubits), with the

other half used for resource state distillation and routing [693], we obtain

that the fault-tolerant implementation of C′ incurs qubit overhead of

nC′ ≈ 4Nd2

and time overhead of

tC′ ≈ Mdτ,

where we crudely set τ = 1µs to be the time needed to implement one syn-

drome measurement round with the superconducting circuits architecture.

Finally, our order-of-magnitude resource estimate gives 2.3 × 106 physical

qubits and 67 hours of runtime. This general approach to resource estima-

tion has been applied to a number of specific quantum algorithms in a vari-

ety of application areas; see, for example, [669, 424, 630, 147, 895]. These

references often go beyond a back-of-the-envelope calculation and provide

a more meticulous analysis that accounts for exact qubit layouts and the

physical footprint of resource state distillation factories. They also pursue

optimizations to how the circuit is implemented (e.g., exploiting space-time

tradeoffs) in light of these considerations.

Further reading

• An accessible overview of fault-tolerant quantum computation based on the

surface code and lattice surgery can be found in [693].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.031
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 04:37:06, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.031
https://www.cambridge.org/core

27. Logical gates with the surface code 331

• A convenient way to describe and optimize lattice surgery operations is via

the ZX calculus, which is a diagrammatic language for quantum comput-

ing [302, 335].

• A direct comparison of the resource overhead associated with preparation

of the logical resource state |T ⟩ using either state distillation or transversal

gates (with the 3D color code) can be found in [146].

• To read about a framework for estimating resources required to realize large-

scale fault-tolerant quantum computation, see [147].

• The recently introduced paradigm of algorithmic fault tolerance [1090] may

significantly reduce the space-time overhead of FT quantum computation

with the surface code.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.031
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 12 Nov 2025 at 04:37:06, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.031
https://www.cambridge.org/core

