Clays and Clay Minerals, Vol. 67, No. 5:419-426, 2019

®

atom: A MATLAB PACKAGE FOR MANIPULATION OF

MOLECULAR SYSTEMS Check for

updates

MicHAEL HOLMBOE *
!Chemistry Department, Ume# University, SE-901 87 Umes, Sweden

Abstract—This work presents Atomistic Topology Operations in MATLAB (atom), an open source library of modular MATLAB routines which
comprise a general and flexible framework for manipulation of atomistic systems. The purpose of the atom library is simply to facilitate common
operations performed for construction, manipulation, or structural analysis. Due to the data structure used, atoms and molecules can be operated
upon based on different chemical names or attributes, such as atom- or molecule-1D, name, residue name, charge, positions, etc. Furthermore, the
Bond Valence Method and a neighbor-distance analysis can be performed to assign many chemical properties of inorganic molecules. Apart from
reading and writing common coordinate files (.pdb, .xyz, .gro, .cif) and trajectories (.dcd, .trr; .xtc; binary formats are parsed via third-party
packages), the atom library can also be used to generate topology files with bonding and angle information taking the periodic boundary
conditions into account, and supports basic Gromacs, NAMD, LAMMPS, and RASPA2 topology file formats. Focusing on clay-mineral systems,
the library supports CLAYFF (Cygan, 2004) but can also generate topology files for the INTERFACE forcefield (Heinz, 2005, 2013) for Gromacs

and NAMD.

Keywords—CLAYFF - Gromacs - INTERFACE force field - MATLAB - Molecular dynamics simulations - Monte Carlo

INTRODUCTION

Molecular modeling is becoming increasingly important in
many different areas of fundamental and applied research
(Cygan 2001; Lu et al. 2006; Medina, 2009). This is due not
only to the development of high-performance computing in
recent decades but also because of increasingly user-friendly
molecular modeling software, allowing for high-throughput
screening of large classes of molecules. This is especially true
for life-science related research, which traditionally has
spearheaded the development and design of molecular model-
ing software and forcefield tools. However, due to the wide use
of molecular modeling in different scientific disciplines,
custom-made setup or analysis tools specifically tailored to
the user’s system are often required. This is because of the
need to perform specific tasks that topology tools aimed to-
wards modeling of biomolecules normally do not offer. Exam-
ples of this include the ability to perform: (1) automatic
atomtype assignment for less common or system-specific
forcefields; or (2) the ability to find bonds and angles across
the periodic boundary conditions (PBC) for periodic slabs or
layered molecules, such as graphene and graphite oxides,
zeolites, clay minerals, layered double hydroxides, etc.

In this context and especially for scientists lacking
comprehensive programing skills, MATLAB, R, and
similar software packages offer an attractive and versa-
tile environment for scientific computing with simple yet
robust scripting languages, plotting capabilities, and the
possibility to display or copy data variables into spread-
sheets. In fact, a handful of MATLAB and R packages
for trajectory or statistical analysis focusing on biomol-
ecules has been developed (Dien et al. 2014;

* E-mail address of corresponding author: michael.holmboe@umu.se
DOI: 10.1007/s42860-019-00043-y

Dombrowsky et al. 2018; Kapla & Lindén 2018;
Matsunaga & Sugita 2018). This work presents the
Atomistic Topology Operations in MATLAB (atom) li-
brary — a large collection of >100 modular MATLAB
scripts and sub-routines (e.g. functions) under an open
source license (simple BSD) which comprise a general
framework for construction, manipulation, and analysis
of atomistic systems, with the option of incorporating
topological and forcefield information. In contrast to the
above-mentioned MATLAB and R trajectory packages,
the focus here lies not on the modeling of biomolecules
but rather on the investigation of especially periodic
inorganic structures, such as slabs and layers that have
well defined unit cells (UC) stretching over the PBC.

Because the atom function calls can be invoked from
the command line as well as from within custom-made
MATLAB scripts and programs, the atom library is espe-
cially well suited to batch-mode operations. In particular,
the atom library may be useful for scientists with an interest
in modeling inorganic and geochemical systems. This is
because apart from parsing the input or output of basic
coordinate files (.pdb|.xyz|.grol.cif), the atom library can
also be used to output basic molecular topology files
(.Imp|.itp|.psf) for the CLAYFF forcefield (Cygan et al.
2004) and INTERFACE (Heinz et al. 2005, 2013) for
certain geochemical systems/software, which are used in
molecular modeling software such as LAMMPS, Gromacs,
NAMD and RASPA2 (Plimpton 1995; Phillips et al. 2005;
Abraham et al. 2015; Dubbeldam et al. 2016).

METHODS

The unifying theme among the different library functions is
the atom (see Fig. 1), which is the default name of the variable
typically containing the molecular information from a coordi-
nate file such as a .pdb file. In order to call the different library

Downloaded from https://www.cambridge.org/core. 28 Nov 2025 at 13:09:55, subject to the Cambridge Core terms of use.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42860-019-00043-y&domain=pdf
http://orcid.org/0000-0003-3927-6197
https://www.cambridge.org/core

420

Fig. 1 Schematic of the typical workflow using the atom library,
illustrating various operations performed on the atom struct variable

functions, i.e. to perform specific operations on the atom
variable, the following syntax is used:

atom={operation}_atom ({arguments})

where examples of common {operations} are: composi-
tion, clayff, copy, create, dist _matrix, element,
find_bonded, import, insert, interface, ionize, mass, radii,
reorder, rotate, scale, slice, solvate, translate, update,
wrap, write, etc. The {arguments} represent required func-
tion input variables, which depend on the intended specif-
ic {operations} to be made. It is normally a coordinate
filename, or the atom variable itself, followed by the UC
or system size variable Box_dim (if such exists). Functions
requiring additional arguments like /imits (representing a
volumetric region) are described in the documentation for
each function.

The properties of each individual atomistic particle
are accessible by its afom-ID index (ranging from 1 to
the number of atomistic particles), because the atom
variable itself is an indexed data type called structure
array (denoted struct). The struct variable stores the
individual atom and molecule attributes (i.e. chemical
names and properties) in so-called fields, where the
associated syntax is based on the so-called dot-notation
as in [struct.field], or more generically [atom.attribute].
One advantage of the dot-notation is that it enables a
flexible syntax for advanced selections because individ-
ual atoms and molecules can be filtered or selectively
manipulated based on one or more specific attributes.
This is done by using logical indexing (in the case of
fields with numeral data) or string comparison (in case of

Clays and Clay Minerals

fields containing text). A purposeful example is shown below,
demonstrating how to select and delete (1) all atoms
named Si that (2) belong to the molecule/molecule, (3)
have the residue/molecule name MMT, and (4) have z coordi-
nates of <10 A (... only needed in case of line breaks).

atom(strcmp([atom.type],’Si’) &...
strcmp(latom.resname],'MMT') &...
[atommolid]==2¢&..

[atom.z] < 10) = |

Similar combined selections can be made on all the differ-
ent struct attributes. The default attributes include the mole-
cule-1D, atom-ID, atomtype names, residue names, and the
coordinates, and are denoted as molid, index, type, resname,
X, J, z, respectively. If invoking other functions, the atom struct
will expand to incorporate optional attributes, for instance
storing information on velocities, forces, neighbors, bonds,
and angles, or strictly chemical properties like the atomic mass,
partial charges, bond valence values, and so on.

Another benefit of the atom struct variable type is that
several structs can easily be merged:

atomi23 =[atoml atom2 atom3]

Although this notation works well for concatenating (i.c.
stacking) molecules with the same attributes, the
update_atom() function is generally superior as it also updates
the atom- and molecule-1D indexes accordingly:

atoml23 =update_atom({atoml atom2 atom3})

The atom library provides several functions to create, ap-
pend, duplicate, solvate, translate, rotate, and slice parts of or
whole molecules. Hence, in addition to the flexible selection
syntax using the dot-notation described above, this library is
ideal for building or manipulating the structure of multicom-
ponent systems by adding entire crystal slabs, molecules, ions,
and solvent molecules.

HIGHLIGHTS

Construction of Multi-component Systems

Building basic configurations of multicomponent and/or
multilayered systems normally proceed by initially placing
the primary solute molecules, e.g. a protein or a crystallograph-
ic mineral slab, into a pre-defined simulation box using func-
tions such as place atom(), center_atom(), translate_atom(),
wrap_atom(), and so on.

Downloaded from https://www.cambridge.org/core. 28 Nov 2025 at 13:09:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Clays and Clay Minerals

Ions can be added into a simulation box either randomly in
specified regions (but without atomic overlap of existing mol-
ecules), on specified planes (in 3D), or with exponentially
decaying concentrations from a surface with the function
ionize_atom(). Other similar functions to add new or copy
existing solutes also exist.

In terms of solvation, the function solvate_atom() can solvate
an entire simulation box or limited regions with generic three-,
four-, or five-site water models, such as SPC/E or TIP3P/TIP4P/
TIPSP, either as liquid water or hexagonal ice. Solvation with
custom solvents using unwrapped solvent boxes is also support-
ed, as is scaling the solvent density to optimize solvent molecule
packing. Furthermore, one can solvate a solute by a certain
solvation thickness (Ex. around a centered protein).

Visualization

For visualization one can make use of the function vmd|() if
the VMD software is installed separately (Humphrey et al.
1996), and the PATH2VMD() function is properly set. Alterna-
tively, the basic plot_atom() or the plot_density_atom() func-
tions rapidly plot a full simulation box with thousands of atoms
(see Fig. 2), with or without the density profiles along the x,y,z-
dimensions. Analogously, and although it is significantly
slower the show atom() and the show density atom()
functions can be used to render glossy atoms with cylin-
drical bonds or VAW spheres.

Bonding and Structural Analysis

Most functions, such as dist matrix_atom() and
bond_angle _atom(), take PBC into account, which allows for
generation of molecular topologies with bonds, angles and
basic dihedrals across the PBC. Many functions also support

421

triclinic boxes using the ‘tilt vectors’ xy, xz, yz as defined in
Gromacs and LAMMPS. Several of the functions use two
types of neighbor cutoffs to find interacting atoms, one shorter
cutoff for bonded H’s (default 1.25 A) and one larger cutoff for
all other interactions (default 2.25 A). Furthermore, a general
neighbor-distance analysis can be performed: (1) by compari-
son with the Revised Shannon radii (Shannon 1976; van Hormn
2001); (2) by calculating the bond-valence values using the
semi-empirical Bond Valence Method (Brown 2009, 2013,
2016) or; (3) by calculating basic XRD profiles. Here, analysis
2 is performed most easily by calling the analyze atom()
function, which first finds all atom bonds and angles to the
nearest neighbors. Secondly, it makes educated guesses based
on the chemical name and apparent coordination number, the
oxidation state, electron configuration, and the ideal crystal-
line, ionic, and vdW-radii of the atoms. This function is, hence,
useful for sanity-checks of either the initial input structures or
to scrutinize one simulation result. As the Bond Valence Meth-
od also calculates the Global Instability Index (Gyy), it can
further be used in structural data-mining studies to check for
structural stress in molecules. As for analysis 3 and XRD
analysis, a basic XRD function called XRD atom() for
single-crystal UCs is provided, using 11-coefficient atomic
scattering factors (Waasmaier & Kirfel 1995).

Trajectory Analysis

Although not the primary purpose of the atom library,
support for trajectory reading (and writing) of binary trajecto-
ries utilizing the third-party MatDCD or the mxdrfile packages
for the .ded and .xte|.trr trajectory formats, respectively, is
provided (Gullingsrud 2000; Kapla & Lindén 2018). For read-
ing .xtc trajectories, one could also use the Gro2mat package

0 50

XA

oo
508

Fig. 2 Example image of a 136,000 particle system generated with the plot density_atom() function, showing scaled density profiles of a
multilayered montmorillonite particle (black profiles), Na* counter-ions (blue profiles) hydrated by three pseudo-layers of water (Oyqe in Ted,

Hwater in gray proﬁles)

Downloaded from https://www.cambridge.org/core. 28 Nov 2025 at 13:09:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

422

(Dien et al. 2014). In addition to these third-party binary
trajectory packages, text-format trajectories in the
.pdb|.xyz|.gro formats are also natively supported by the arom
library, where one special version written specifically for the
MC code RASPA2 named import_mc_pdb_traj() can handle
trajectories with non-constant numbers of atoms.

In order to import a trajectory into MATLAB as shown
below, both a coordinate file and a trajectory file is needed.

[atom,traj]=import_traj (..

coordfile,trajfile)

Apart from the atom struct taken from the coordinate file,
this command results in a data matrix called #raj, of size
3Nxframes, where N represents the number of atoms in the
trajectory.

Case Study: A Hydrated Na' -montmorillonite Nanopore
System with CLAYFF atomtypes

This example demonstrates the main steps needed to
setup a simulation box for MC or MD simulations of a
system representing the water—mineral interface to a
defect mineral particle called MMT (as in Montmorillon-
ite). MMT will describe a negatively charged smectite
layer, with an approximate thickness of 1 nm and being
infinite in the lateral plane, due to the fact that PBC is
used in MC or MD simulations and because the layer in
this example will have no edges in order to avoid
complexity.

Preparation of the Mineral Lattice

The negative charge of MMT mainly originates from iso-
morphic substitution of octahedrally coordinated Al(IIl) with
Mg(II), which creates a charge defect which is smeared over
the nearest coordinating O(-II) in the lattice. In most cases
when performing molecular modeling of inorganic or mineral
particles, initial UC data are available from either X-ray dif-
fraction data or quantum mechanical calculations. For MMT,
due to the isomorphic substitution, no precise UC data exist.
Instead, one can use isostructural and defect-free UC data from
pyrophyllite (Lee & Guggenheim 1981), and then replicate it
to a mineral layer and subject it to isomorphic substitution.
Hence, initially, a pyrophyllite UC structure must be imported:

Pyroxl =import_atom(Pyrophyllite.pdb’)

In many cases when UC information is taken from XRD
data, the number and positions of H atoms are somewhat
unreliable. Hence, in this example both initial removal and
addition of H atoms to the clay lattice are demonstrated. First,
all atoms with names starting with ‘H’ are removed.

Pyroxl(strncmpi([Pyroxl.typel],’H 1)) =]

Then the remaining mineral lattice is analyzed for the
resulting structure using the function analyze atom().

Clays and Clay Minerals
properties=analyze_atom(Pyroxl,Box_dim)

This function will output a separate properties struct with
bonding information, as well as reveal which atoms need
healing by outputting a heal ind variable. To protonate those
individual atoms, one would issue:

H_atom=protonate_atom(..
Pyroxl,Box_dim,healind)

To simplify this example one could convert the triclinic UC
to an orthogonal UC:

Pyroxl=orto_atom(..
PyroxlH_atom,Box_dim)

Next, the UC must be replicated into a layer, for instance by
6x4 times in the X and Y-directions, respectively:

Pyroxé6xd=replicate_atomy(.
Pyroxl,orto_Box_dim,[641])

From this pyrophyllite layer, a MMT layer can be generated
by performing isomorphic substitution by replacing Al lattice
atoms with Mg in two-thirds of all the UCs (which is typical
for natural MMT clay minerals). The last numerical argument
(in Angstrom units) sets the nearest Mg—Mg neighbor distance,
as charge defects are unlikely to be close to each other.

MMT = substitute_atom (Pyrox6x4,..
Box_dim, 6%4*2/3,'A1','Md’,5.5)

For consistency, one can at this point change the attribute
MMT resname from ‘PYR’ to ‘MMT":

[MMT.resname| = deal({'MMT'})

Here, the deal() is a native MATLAB function. Next, the names
of all atoms (i.e. the atomtypes) in MMT can be set to a specific
forcefield, such as the original CLAYFF (Cygan et al. 2004).

MMT =clayf £ _2004_atom (MMT,Box_dim,’clayf f’)

This function will also output the layer net charge (—16
from the isomorphic substitution), which must be
counterbalanced by counter-cations such as Na*. In order to
accommodate these ions and later water molecules, the dimen-
sions of the definitive simulation box should be defined, from
the lateral dimensions of the MMT layer along X/Y (already set
in the existing Box_dim variable) and an arbitrary height in Z,
here set to 40 A:

Downloaded from https://www.cambridge.org/core. 28 Nov 2025 at 13:09:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Clays and Clay Minerals

Box_dim(3) =40;% in Angstrom

Adding Counterions and Solvating with Water

Ions can be added to an existing simulation box in several
ways using the ionize_atom() function. In this example, an lons
struct is created by adding ions close to the mineral surface (but
>3 A) of the wrapped MMT:

Ions=ionize_atom(..
'Na',’Na’,Box_dim, 16, 3, ...
wrap-atom(MMT,Box_dim),’sur face’)

Note that wrapping the MMT layer into the box before
adding the ions is important in order to avoid atomic overlap.
Next, a Water struct is created in order to solvate the simulation
box. This is accomplished by placing 1000 SPC/E water
molecules with a relative density of 1.05 no nearer than 2 A
to any solute:

Water = solvate_atom(Box_dim,1.05,...
2,1000,update_atom({MMT,Ions}))

Finally, all components are merged together using
update_atom() into single System struct, which updates all
atom- and molecular-1D indexes, and an ouput .pdb file is
written. Note that because the different System struct compo-
nents are stored in separate struct variables, the order of the
components can be changed arbitrarily.

System=update_atom({MMT Water Ions})
write_atom_pdb(System,..
Box_dim, 'System.pdb’)

The following lines show example commands used to plot
the final System struct (see Fig. 3), where, for instance, the
optional last numerical in the plot_atom() function denotes the
VdW radii scaling factor, whereas the 'vdw' in the show_atom()
function sets the display style:

plot_atom(System,Box_dim,0.2)
show_atom(System,Box_dim, vdw’)
vmd(System,Box_dim)
vmd('System.pdb’)

Writing Molecular Topology Files

The atom library contains different flavors of both the
CLAYFF and INTERFACE forcefields. The following exam-
ples show how to write basic .psf, .Imp, and .itp topology files
according to the original CLAYFF to be used in the MD
software like NAMD2, LAMMPS, and Gromacs.

423

write_atom psf(System Box_dim,'System’)
write_atom_lmp (System,Box_dim,’System’)
write_atom_ itp(MMT,Box_dim,’MMT')

Note that when generating molecular topology files, one
must, in general, decide which components to include (i.e. the
MMT, Ions, and Water) in the molecular topology, as different
MD and MC software may use different approaches on how to
include molecular topologies in the total system topology. For
instance, in Gromacs, separate molecular topology files are
used commonly (.ip files) for different components; hence,
the Jons and the Water in the current example would preferably
not be included in the same molecular topology as MMT.

On a separate note, because the original CLAYFF (nor
INTERFACE) does not contain all different oxygen atom types
needed to model all minerals or, for instance, custom clay edge
models, the atom library can also be used to derive partial
charges and molecular topologies for new oxygen atom types
not part of the original CLAYFF forcefield. This is accom-
plished by equation 1, which in fact can be used to calculate the
partial charge of any new or original oxygen atom type in
CLAYFF (Tournassat et al. 2016; Lammers et al. 2017).

zl-zr
o=z (27w,)
In this equation, the partial charge of a CLAYFF oxygen type
(Zo) is obtained from its formal charge (—2) minus the total
charge needed to balance (hence the extra minus sign) the charge
distributed over all the » nearest coordinating cationic centers
(including H). This distributed charge represented by the second
term on the right hand side is, in turn, calculated from the
difference between the formal and partial charge Z,’; and ZP
of each cation (hence the summation), divided by their
respective number of coordinating oxygens, CN,,. For a

more extensive explanation, see Lammers et al. (2017).

(1)

Analyzing the Lattice Structure

In order to study the structural integrity of molecules sub-
jected to molecular simulations, computing the root mean
square deviation of atomic positions (RMSD) from the posi-
tions in the input structure is an often-used method. This
method is frequently used for large biomolecules; however,
for crystalline inorganic lattice structures the semi-empirical
Bond Valence Method can also be used. This method finds
strained atoms in a lattice by relating the so-called bond
valence values to the ideal semi-empirical bond distances
(Brown 2016), as well as by comparing the total bond valence
sum to the ideal atomic valence. In this example, this method
was applied by invoking the analyze atom() function on the
average MMT lattice structure (Fig. 3) obtained from equili-
brated simulations performed in Gromacs in the NVT ensem-
ble over 1 ns. Six different forcefield implementations were
tested in total, namely: (1-2) two implementations of the
INTERFACE forcefield (Heinz et al. 2005, 2013), using the
experimental or pre-defined bond distance (with the 5%

Downloaded from https://www.cambridge.org/core. 28 Nov 2025 at 13:09:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

424

o © © 6 e 0 0 o o
o
o

XA

Fig. 3 The final hydrated and unwrapped Na*-MMT System generated
by the plot atom(). Note the legend which indicates the CLAYFF

scaling factor) and angle values, respectively; (3) the original
unconstrained CLAYFF (Cygan et al. 2004), having no de-
fined metal-oxygen bonds or angles; (4) CLAYFF with no
bonds but all M—O angle terms defined by the experimental
values (as in 1); (5) a modified version of CLAYFF optimized
for 1D-XRD modeling, using a larger basal O radius but
smaller Si radius (Szczerba & Kalinichev 2016); and lastly
(6) the same modified version of CLAYFF, but with all angle
terms defined as in (4).

The resulting average bond distances (Fig. 4A) from the
simulations generally agreed well among the various INTER-
FACE forcefields, apart from the Mg bond distance for
CLAYFF, which was found to relax considerably compared
to Al and the INTERFACE forcefields.

Average bond distances reveal little, however, about the
strain in lattices. The extended Mg—O bond distances found
with the unconstrained CLAYFF but not with the constrained
INTERFACE forcefields is reasonable considering the bond
valence sum values. This is because a relaxed coordinating
octahedron of the neighboring O atoms is needed in order to

a
BINTERFACE, 2005
— ®INTERFACE, 2013
<C 250 mCLAYFF, 2004
BCLAYFF angles
8 225 o CLAYFFmod
S 2.00 @CLAYFFmod angles
L 175
©
g 1.50
_5) 1.25
'g 1.00
o 0.75
3: 0.50
I I e A &
OO 078 (&) o

Clays and Clay Minerals

maintain a physically reasonable atomic valence (+2 for Mg,
see Fig. 4B). Nevertheless, the Global instability index, Gy,
which is a measure of the structural strain for the six different
forcefield implementations (1-6) were 0.257, 0.230, 0.366,
0.233, 0.294, and 0.237, respectively. Overall this indicates
that the implementations of the forcefields used are not perfect,
as Gy values >0.2 from experimentally determined structures
are found rarely (Brown 2009), and hence indicate unstable
lattices. Simulations with pyrophyllite (not shown) resulted in
similar Gy values, which can be compared to the input pyro-
phyllite structure having a Gy value of 0.09. Although the
INTERFACE 2013 implementation resulted in the lowest Gy
value and, hence, the best representation of the internal atomic
UC positions, the CLAYFF implementations with defined
angles perform almost as well, and are better suited for 1D-
XRD modeling due to the larger radius of the basal O atoms
(Ferrage et al. 2011; Szczerba & Kalinichev 2016). Still, the
radii of the atom types in CLAYFF could likely be further
optimized to better represent the bond distances within the
actual UC.

DOCUMENTATION

The entire atom library contains >100 unique functions that
are summarized in a self-contained html-based documentation,
containing explanations for the most common variables and
functions and include multiple examples which can be execut-
ed interactively from within MATLAB, or be viewed in a
browser (also available at moleculargeo.chem.umu.se/codes/
atom-scripts). Furthermore, each function describes examples
demonstrating all available function arguments.

INSTALLATION

The latest version of the atom library can be downloaded
from the MATLAB File Exchange or the GitHub repository
github.com/mholmboe/atom. No installation is needed, the
library files must only be added to the MATLAB path.
Optional use of the visualization program VMD or the MD

b
BINTERFACE, 2005
BINTERFACE, 2013

5.0 mCLAYFF, 2004

£ BCLAYFF angles

2 4.0 BCLAYFFmod

o) BCLAYFFmod angles

[&]

c 3.0

o

®©

> 20

e)

5

Q10

2 PO R f»'@q :o‘\@q
S

Fig. 4 Results from the structural analysis comparing six different implementations of the INTERFACE and CLAYFF forcefields (as explained in
the text). (a) Average bond distances for the generic clay lattice atomtypes. (b) The corresponding bond valence sum, compared to the ideal atomic

valence, shown as gray lines

Downloaded from https://www.cambridge.org/core. 28 Nov 2025 at 13:09:55, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core

Clays and Clay Minerals

package Gromacs (which must be installed separately) from
within the atom library is possible if the environmental
variables in the functions called PATH2VMD() and PATH?2
GMX() are set. Binary trajectories can be imported with the
import_traj function, generating a trajectory matrix and
separate Box_dim variable. Supported formats are the .dcd
format using the MatDCD script, or the Gromacs formats .#7
and .xfc by using mxdrfile (recommended for Gromacs
trajectories) or Gro2mat (Gullingsrud 2000; Dien et al. 2014;
Kapla & Lindén 2018).

CONCLUSIONS

A flexible MATLAB library for construction and manipula-
tion of molecular models and systems is presented. This atom
library contains many useful and time-saving functions that can be
used by most researchers with even modest programming expe-
rience, in order to setup and perform basic analysis of molecular
simulation systems. The main use of the library is to construct
custom-made molecular systems and generate topological bond-
ing and angle information across the PBC from the command line,
for modeling of geochemical systems such as hydrated clay
modeled with the CLAYFF or INTERFACE forcefields in differ-
ent molecular dynamics or Monte-Carlo simulation packages.

ACKNOWLEDGEMENTS

Open access funding provided by Umea University. The author
acknowledges useful comments by A. Ohlin, and funding from the
Faculty of Science and Technology at Umea University and the
Kempe foundation, as well as HPC resources provided by the
Swedish National Infrastructure for Computing (SNIC) at High
Performance Computing Center North (HPC2N), Umea University.

Compliance with Ethical Standards

Conlflict of Interest
The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other
third party material in this article are included in the article's
Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

REFERENCES

Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B.,
& Lindah, E. (2015). Gromacs: High performance molecular

425

simulations through multi-level parallelism from laptops to super-
computers. SoftwareX, -2, 19-25. https://doi.org/10.1016/j.
softx.2015.06.001.

Brown, 1. D. (2009). Recent developments in the methods and appli-
cations of the bond valence model. Chemical Reviews, 109(12),
6858-6919. https://doi.org/10.1021/cr900053k.

Brown, 1.D. (2013). Bond Valences in Education. In D. M. P. Mingos
(Ed.), Structure and Bonding (Vol. 158, pp. 233-250). Springer. doi:
https://doi.org/10.1007/430_2012_83.

Brown, L.D. (2016). Bond valence parameters. Retrieved November 3,
2016, from www.iucr.org/resources/data/datasets/bond-valence-
parameters

Cygan, R. T. (2001). Molecular modeling in mineralogy and geochem-
istry. Reviews in Mineralogy and Geochemistry, 42(1), 1-35.
https://doi.org/10.2138/rmg.2001.42.1.

Cygan, R. T., Liang, J. J., & Kalinichev, A. G. (2004). Molecular
models of hydroxide, oxyhydroxide, and clay phases and the devel-
opment of a general force field. Journal of Physical Chemistry B,
108(4), 1255-1266.

Dien, H., Deane, C. M., & Knapp, B. (2014). Gro2mat: A package to
efficiently read gromacs output in MATLAB. Journal of
Computational Chemistry, 35(20), 1528-1531. https://doi.
org/10.1002/jcc.23650.

Dombrowsky, M., Jager, S., Schiller, B., Mayer, B. E., Stammler, S., &
Hamacher, K. (2018). StreaMD : advanced analysis of molecular
dynamics using R. Journal of Computational Chemistry, 39, 1666—
1674. https://doi.org/10.1002/jcc.25197.

Dubbeldam, D., Calero, S., Ellis, D. E., & Snurr, R. Q. (2016). RASPA:
molecular simulation software for adsorption and diffusion in flex-
ible nanoporous materials. Molecular Simulation, 42(2), 81-101.
https://doi.org/10.1080/08927022.2015.1010082.

Ferrage, E., Sakharov, B. A., Michot, L. J., Delville, A., Bauer, A., &
Lanson, B. (2011). Hydration Properties and Interlayer Organization
of Water and Ions in Synthetic Na-Smectite with Tetrahedral Layer
Charge. Part 2. Toward a Precise Coupling between Molecular
Simulations and Diffraction Data. The Journal of Physical
Chemistry C, 115(5), 1867—-1881. https://doi.org/10.1021
/jp105128r.

Gullingsrud, J. (2000). MatDCD - MATLAB package DCD reading/
writing. Retrieved from www.ks.uiuc.
edu/Development/MDTools/matdcd/.

Heinz, H., Koerner, H., Anderson, K. L., Vaia, R. A., & Farmer, B. L.
(2005). Force field for mica-type silicates and dynamics of
octadecylammonium chains grafted to montmorillonite. Chemistry
of Materials, 5, 5658-5669.

Heinz, H., Lin, T. J., Kishore Mishra, R., & Emami, F. S. (2013).
Thermodynamically consistent force fields for the assembly of
inorganic, organic, and biological nanostructures: The
INTERFACE force field. Langmuir, 29, 1754-1765. https://doi.
org/10.1021/1a3038846.

Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD - Visual
molecular dynamics. Journal of Molecular Graphics, 14, 33-38.
Kapla, J., & Lindén, M. (2018). Mxdrfile: read and write Gromacs
trajectories with MATLAB. ArXiv:1811.03012 [Physics. Comp-Ph],

1-3. Retrieved from http://arxiv.org/abs/1811.03012.

Lammers, L. N., Bourg, I. C., Okumura, M., Kolluri, K., Sposito, G., &
Machida, M. (2017). Molecular dynamics simulations of cesium
adsorption on illite nanoparticles. Journal of Colloid and Interface
Science, 490, 608—620. https://doi.org/10.1016/j.jcis.2016.11.084.

Lee, J. H., & Guggenheim, S. (1981). Single crystal X-ray refinement
of pyrophyllite-1Tc. American Mineralogist, 66, 350-357.

Lu, D., Aksimentiev, A., Shih, A. Y., Cruz-Chu, E., Freddolino, P. L.,
Arkhipov, A., & Schulten, K. (2006). The role of molecular model-
ing in bionanotechnology. Physical Biology, 3, S40-S53. https://doi.
org/10.1088/1478-3975/3/1/S05.

Matsunaga, Y., & Sugita, Y. (2018). Refining Markov state models for
conformational dynamics using ensemble-averaged data and time-
series trajectories. The Journal of Chemical Physics, 148(24),
241731. https://doi.org/10.1063/1.5019750.

Downloaded from https://www.cambridge.org/core. 28 Nov 2025 at 13:09:55, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1021/cr900053k
https://doi.org/10.1007/430_2012_83
http://www.iucr.org/resources/data/datasets/bond-valence-parameters
http://www.iucr.org/resources/data/datasets/bond-valence-parameters
https://doi.org/10.2138/rmg.2001.42.1
https://doi.org/10.1002/jcc.23650
https://doi.org/10.1002/jcc.23650
https://doi.org/10.1002/jcc.25197
https://doi.org/10.1080/08927022.2015.1010082
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ks.uiuc.edu/Development/MDTools/matdcd/
http://www.ks.uiuc.edu/Development/MDTools/matdcd/
https://doi.org/10.1021/la3038846
https://doi.org/10.1021/la3038846
http://arxiv.org/abs/1811.03012
https://doi.org/10.1016/j.jcis.2016.11.084
https://doi.org/10.1088/1478-3975/3/1/S05
https://doi.org/10.1088/1478-3975/3/1/S05
https://doi.org/10.1063/1.5019750
https://www.cambridge.org/core

426

Medina, G. M. (2009). Molecular and multiscale modeling: Review on
the theories and applications in chemical engineering. Ciencia
Tecnologia y Futuro, 3, 205-224.

Phillips, J. C., Braun, R., Wang, W. E. 1., Gumbart, J., Tajkhorshid, E.,
& Villa, E. (2005). Scalable Molecular Dynamics with NAMD.
Journal of Computational Chemistry, 26, 1781-1802. https://doi.
org/10.1002/jcc.20289.

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular
dynamics. Journal of Computational Physics, 117, 1-42.

Shannon, R. D. (1976). Revised effective ionic radii and systematic
studies of interatomic distances in halides and chalcogenides. Acta
Crystallographica Section A Foundations of Crystallography, A32,
751-767.

Clays and Clay Minerals

Szczerba, M., & Kalinichev, A. G. (2016). Intercalation of ethylene
glycol in smectites: Several molecular simulation models verified by
X-ray diffraction data. Clays and Clay Minerals, 64, 488-502.
https://doi.org/10.1346/CCMN.2016.0640411.

Tournassat, C., Bourg, 1., Holmboe, M., Sposito, G., & Steefel, C.
(2016). Molecular dynamics simulations of anion exclusion in clay
interlayer nanopores. Clays and Clay Minerals, 64, 374-388.
https://doi.org/10.1346/CCMN.2016.0640403.

van Horn, D. (2001). Electronic Table of Shannon Ionic Radii.
Retrieved from http://v.web.umkc.edu/vanhornj/shannonradii.htm.

Waasmaier, D., & Kirfel, A. (1995). New analytical scattering-factor
functions for free atoms and ions. Acta Crystallographica Section A
Foundations of Crystallography, 51, 416—431. https://doi.
org/10.1107/S0108767394013292.

Downloaded from https://www.cambridge.org/core. 28 Nov 2025 at 13:09:55, subject to the Cambridge Core terms of use.

https://doi.org/10.1002/jcc.20289
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1346/CCMN.2016.0640411
https://doi.org/10.1346/CCMN.2016.0640403
http://v.web.umkc.edu/vanhornj/shannonradii.htm
https://doi.org/10.1107/S0108767394013292
https://doi.org/10.1107/S0108767394013292
https://www.cambridge.org/core

