
JFP 35, e19, 65 pages, 2025. c© The Author(s), 2025. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796825100099

Checking equivalence in a non-strict language

J O H N C H A R L E S K O L E S A R
Yale University, New Haven, CT 06520, USA

(e-mail: john.kolesar@yale.edu)

R U Z I C A P I S K A C
Yale University, New Haven, CT 06520, USA

(e-mail: ruzica.piskac@yale.edu)

W I L L I A M T R I E S T H A L L A H A N
Binghamton University, Binghamton, NY 13902, USA

(e-mail: whallahan@binghamton.edu)

Abstract

Program equivalence checking is the task of confirming that two programs have the same behav-
ior on corresponding inputs. We develop a calculus based on symbolic execution and coinduction
to check the equivalence of programs in a non-strict functional language. Additionally, we show
that our calculus can be used to derive counterexamples for pairs of inequivalent programs, includ-
ing counterexamples that arise from non-termination. We describe a fully automated approach for
finding both equivalence proofs and counterexamples. Our implementation, NEBULA, proves equiv-
alences of programs written in Haskell. We demonstrate NEBULA’s practical effectiveness at both
proving equivalence and producing counterexamples automatically by applying NEBULA to existing
benchmark properties.

1 Introduction

Equivalence checking is the task of verifying that two programs behave identically
when given identical inputs. Equivalence checking is useful for a number of tasks,
such as ensuring compiler optimizations’ correctness (Peyton Jones, 1996; Peyton Jones
et al., 2001; Benton, 2004). Optimizing compilers aim to improve the performance of
code with simplifying transformations. Critically, these transformations must preserve
the meaning of the code, or they could lead to incorrect behavior that violates the
language specification. Equivalence checking has other uses as well, such as ensuring the
correctness of refactored code (Schuts et al., 2016), program synthesis (Schkufza et al.,
2013; Smith & Albarghouthi, 2019; Campbell et al., 2021), and automatic evaluation of
students’ submissions for programming assignments (Milovancevic et al., 2021).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796825100099
https://orcid.org/0000-0002-6084-2387
mailto:john.kolesar@yale.edu
mailto:ruzica.piskac@yale.edu
mailto:whallahan@binghamton.edu
https://crossmark.crossref.org/dialog?doi=10.1017/S0956796825100099&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

2 J. C. Kolesar et al.

data Nat = S Nat | Z

Z - _ = Z
x - Z = x
(S x) - (S y) = x - y

Fig. 1: Subtraction for natural numbers.

Non-strict languages allow for the use of conceptually infinite data structures. Infinite
data structures have a number of uses, from memoization (Elliott, 2010) to trees represent-
ing all moves in an infinite game. Many seemingly obvious equivalences do not hold when
we allow infinite data structures. Consider, for instance, subtraction for natural numbers,
shown in Figure 1. One might expect m - m to reduce to Z for any natural number m, but
this equivalence does not always hold. With non-strictness, one can define a conceptually
infinite Nat as inf = S inf, and the evaluation of inf - inf does not terminate.

We describe the first automated equivalence checker for programs in a non-strict func-
tional language. Existing approaches for fully automated equivalence checking (Dixon &
Fleuriot, 2003; Claessen et al., 2012; Sonnex et al., 2012; Farina et al., 2019) assume that
all input values are finite, produce no errors, and always terminate when evaluated. In con-
trast, our approach checks that two programs display the same behavior even when applied
to inputs that include infinite or diverging sub-expressions.

Our equivalence checking approach is based on symbolic execution and the principle of
coinduction. Symbolic execution is a method for exploring the execution paths of a pro-
gram exhaustively. Coinduction is a proof technique for deriving conclusions about infinite
data structures from cyclic patterns in their behavior. We define a notion of equivalence
for a non-strict functional language that incorporates incompletely-defined expressions and
the possibility of expressions being equivalent by both failing to terminate. We develop a
calculus for coinduction and symbolic execution capable of proving equivalences between
programs in the non-strict functional language. This calculus also incorporates a sound
approach for using auxiliary equivalence lemmas that allow a sub-expression to be rewrit-
ten as a different equivalent sub-expression. We show that, while lemma applications are
actually unsound in general, we can use them soundly if we enforce certain restrictions.

In addition to proving equivalence, our approach finds counterexamples that demon-
strate the inequivalence of two programs. Our approach can detect not only inequivalences
that arise from two programs terminating with different values, but also inequivalences
that arise from one program terminating and the other failing to terminate on the same
inputs.

We show that the combination of symbolic execution and coinduction-based tactics
allows for automated equivalence checking and inequivalence detection. Our algorithm
switches between symbolic execution and coinduction automatically to find proofs.
Further, we describe an extension of this algorithm that generates and proves helper
lemmas automatically.

We implement our approach in NEBULA (Non-strict Equivalence By Using Lemmas
and Approximation), a practical tool targeting Haskell code. NEBULA builds on the
Haskell symbolic execution engine G2 (Hallahan et al., 2019), and it uses coinduction

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 3

for automated equivalence checking of higher-order functional programs. Our evalua-
tion demonstrates that NEBULA is capable of both verifying true properties and finding
counterexamples for false properties. In particular, we run NEBULA on the Zeno test
suite (Sonnex et al., 2012). As this test suite was developed assuming strict semantics, most
of the properties do not hold with non-strict semantics. We verify all of the properties that
are still true in a non-strict context (i.e. 28% of the entire suite), and we find counterex-
amples for every property that no longer holds (72% of the suite) as well. Furthermore,
we evaluate NEBULA’s ability to identify counterexamples involving non-termination and
find that our tool can generate non-terminating counterexamples for 98% of the applica-
ble benchmarks. Additionally, we describe an approach for accommodating error-free and
finite inputs in NEBULA and evaluate NEBULA on altered versions of the Zeno properties
that hold even under non-strictness.

In summary, our contributions are the following:

1. Equivalence Checking Calculus Section 3 provides an overview of our formalization of
symbolic execution. In Section 4, we develop a calculus combining symbolic execution
and coinduction to prove equivalence of non-strict functional programs, and we prove the
soundness of the calculus.

2. Producing Counterexamples In Section 5, we extend the calculus to produce counterex-
amples, including counterexamples that demonstrate inequivalence due to differences in
termination.

3. Automation Techniques Section 6 introduces an algorithm that searches for both equiv-
alence proofs and counterexamples automatically, guided by symbolic execution and
coinduction. Our algorithm also discovers and proves helper lemmas automatically to aid
in the verification process.

4. Implementation and Evaluation Finally, in Section 7, we discuss our implementation,
NEBULA, that checks equivalence of Haskell expressions. We demonstrate our technique’s
effectiveness at both proving equivalences and producing counterexamples on benchmarks
adapted from existing sources.

We include the proofs of important theorems for our formalism, but, for the sake of
readability, we defer some of the less significant proofs to the Appendix.

2 Motivating examples

We present three examples to show how NEBULA proves properties and finds counterex-
amples.

Example 2.1. Our first example is the property prop33 taken from the Zeno evaluation
suite (Sonnex et al., 2012), which is a Haskell translation of the IsaPlanner evaluation
suite (Johansson et al., 2010). The example is given in Figure 2. Consider the func-
tions prop33_lhs and prop33_rhs: prop33_lhs finds the minimum of two numbers a and
b, and returns whether that minimum value is equal to a, while prop33_rhs uses <= to
check directly whether a is less than or equal to b. NEBULA can prove the equivalence
of prop33_lhs and prop33_rhs automatically. The equivalence means that evaluating

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

4 J. C. Kolesar et al.

prop33_lhs a b = min a b === a
prop33_rhs a b = a <= b

Z === Z = True
Z === _ = False
(S _) === Z = False
(S x) === (S y) = x === y

min Z y = Z
min (S x) Z = Z
min (S x) (S y) = S (min x y)

Z <= _ = True
_ <= Z = False
(S x) <= (S y) = x <= y

Fig. 2: Zeno Theorem 33.

min a b === a a <= bP1

⊥ ⊥P2

Z === Z Z <= bP3

True TrueP4

a = ⊥
a = Z

min (S a’) b === S a’ S a’ <= bP5

a = S a’

⊥ ⊥P6

Z === S a’ S a’ <= ZP7

False FalseP8

b = ⊥

b = Z

min (S a’) (S b’) === S a’ S a’ <= (S b’)P9

S (min a’ b’) === S a’ a’ <= b’P10

min a’ b’ === a’S11

b = S b’

Fig. 3: Overview of how NEBULA proves prop33. Gray arrows denote symbolic execution,
and blue arrows denote coinduction.

prop33_lhs and prop33_rhs on any inputs a and b, including inputs that are infinite or
incompletely defined, will produce the same output.

Figure 3 depicts the proof structure that NEBULA uses to prove the equivalence of
prop33_lhs and prop33_rhs. To simplify the presentation, we first explain how the proof
obligations are discharged, and then we discuss how the proof is actually derived. In the
proof tree, each step Pi consists of two expressions that need to be proven equivalent.

We start with P1, representing the two initial expressions, min a b === a and a <= b.
Note that a and b are symbolic variables: it is known that they are of type Nat, but their
exact values are unknown. We use symbolic execution to evaluate these expressions. To
evaluate ===, we must evaluate min a b first, which we cannot do unless we know the
value of a. To address these requirements, we need to consider all the values that a can
take, so we split into multiple branches. On each branch, we assign a different value to a.
In P3 we concretize a as Z, in P5 we concretize a as S a’, where a’ is a fresh symbolic
variable, and in P2, we concretize a as⊥, a special value representing the possibility that a

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 5

either produces an error or does not terminate when evaluated. Each branch symbolically
executes a <= b with its concretization of a. Step P2 leads to the expression ⊥ <= b

evaluating to ⊥. We conclude trivially that the expressions in P2 are equivalent, due to
their syntactic equality. In the case of P3, we have the states Z === Z and Z <= b. Symbolic
execution will reduce both states to True, as shown in P4, allowing us again to conclude
that the expressions are equivalent.

Step P5 is a more interesting case: we must show that min (S a’) b === S a’ is
equivalent to S a’ <= b. We need to consider all the values that b can take, and so b
is concretized as ⊥ in P6, as Z in P7, and as S b’ in P9. We focus on P9, as P6 and
P7 proceed similarly to P2 and P3. Running further evaluations on both expressions in
P9 results in step P10. One final symbolic execution step on the left-hand side reduces
S (min a’ b’) === S a’ to the expression in S11, min a’ b’ === a’.

Notice that the states we have derived (min a’ b’ === a’ and a’ <= b’) and the states
from the start (min a b === a and a <= b) have a similar structure. Apart from the names
of the symbolic variables, the states are identical. This correspondence allows us to apply
coinduction to discharge the states. The original left-hand state aligns with the current left-
hand state, and the original right-hand state aligns with the current right-hand state. The
variables a and b take the places of a’ and b’, respectively. We have reached a cycle,
and that cycle is evidence of the two sides’ equivalence in the situation where a and b
are both successors of other natural numbers. This concludes the proof, since all the proof
obligations have been discharged.

Our application of coinduction here may look similar to induction, but the two proof
techniques are distinct. Informally, what distinguishes our proof from an inductive proof
is the fact that it does not rely on the assumption that evaluation will reach a terminal base
case eventually. Our conclusion that min a b === a and a <= b will behave equivalently
on the path with the cycle holds even if the recursion loops forever. An inductive proof
about recursive programs would not take the possibility of non-termination into account.
We describe our use of coinduction in more detail in Section 4.2.

Proof Derivation To find this proof automatically, NEBULA switches between applying
symbolic execution to reduce expressions and looking for opportunities to apply coin-
duction. Symbolic execution stops at termination points. In particular, every function
application is a termination point. We attempt to apply coinduction whenever symbolic
execution reaches a termination point.

Of course, states need to be in a suitable form for coinduction to apply. In the proof
above, the right-hand side of P10, a’ <= b’, is in the correct form for coinduction with the
initial state pair. However, the left-hand side of P10 needs an additional reduction step for
coinduction to apply.

Naturally, there is a question: how did NEBULA know to reduce the left side, but not
the right side? The answer is that NEBULA, in fact, continues to apply further symbolic
execution to both sides. In Figure 3, we presented only relevant steps in the proof, and we
omitted the further reductions of the right-hand side for simplicity. NEBULA maintains a
history of all states on both sides. When trying to apply coinduction, it holds the current
left state steady and searches through all corresponding right states (and vice versa) in an
effort to form a pair that will allow coinduction to succeed.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

6 J. C. Kolesar et al.

prop01_lhs n xs = take n xs ++ drop n xs
prop01_rhs n xs = xs

data [a] = [] | a : [a]

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

take Z _ = []
take _ [] = []
take (S x) (y:ys) = y : (take x ys)

drop Z xs = xs
drop _ [] = []
drop (S x) (_:xs) = drop x xs

Fig. 4: Zeno Theorem 1.

Example 2.2. Next, we consider the formula prop01 from the Zeno evaluation
suite (Sonnex et al., 2012). In Figure 4, we define prop01_lhs and prop01_rhs whose
equivalence we want to check. The take function takes a natural number n and a list as
input and returns the first n elements of the list. The drop function also takes a natural
number n and a list as input, but it returns all of the elements of the list except the first n.
The ++ operator represents list concatenation.

For prop01 to be valid, the natural number n needs to be total. We say that a data struc-
ture is total if it is not ⊥ and contains no occurrences of ⊥ as sub-expressions. If n is
allowed to be non-total, NEBULA finds a counterexample, with n as ⊥ and xs as Z:[]. The
expression take ⊥ (Z:[]) simplifies to ⊥, and the expression ⊥ ++ drop ⊥ (Z:[]) also
simplifies to ⊥ because of its first argument. At the same time, the right-hand side is Z:[],
which is a total expression.

If the user already knows that certain inputs must be total, then our tool allows the user
to mark them as total. NEBULA takes these total inputs’ names as command line arguments.
A more detailed explanation of the concept of totality appears in Section 6.6.

We now discuss the proof steps that NEBULA uses to prove the validity of prop01 under
the assumption that n is total. The proof structure is given in Figure 5.

Steps P1–P9 are similar to those taken in the previous example, so we focus on P10.
Both sides of P10 are applications of the list constructor :, so they cannot undergo any
more non-strict evaluation. We check equivalence of the expressions in P10 by check-
ing equivalence of both the head and the tail. This results in two new steps: P11 checks
that the list heads are equivalent (and can be discharged trivially by syntactic equality),
while P12 checks that the tails are equivalent. To discharge P12, we must prove that
take n’ xs’ ++ drop (S n’) (x:xs’) is equivalent to xs’.

It might look tempting to apply coinduction between P12 and P1, but this does not work.
In the call to take, n’ and xs’ in P12 take the place of n and xs from P1, but in the call to
drop, we have S n’ and x:xs’ in P12 in place of n and xs in P1. No consistent mapping
can be formed between the two state pairs, so we cannot apply coinduction to P12 and P1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 7

take n xs ++ drop n xs xsP1

take Z xs ++ drop Z xs xsP2

xs xsP3

n = Z

take (S n’) xs

++ drop (S n’) xs
xsP4

⊥ ⊥P5

take (S n’) []

++ drop (S n’) []
[]P6

[] []P7

n = S n’

xs = ⊥

xs = []

take (S n’) (x:xs’) ++ drop (S n’) (x:xs’) x:xs’P8

(x:take n’ xs’) ++ drop (S n’) (x:xs’) x:xs’P9

x:(take n’ xs’ ++ drop (S n’) (x:xs’)) x:xs’P10

xs = x:xs’

x xP11take n’ xs’ ++ drop (S n’) (x:xs’) xs’P12
drop (S n’) (x:xs’) drop n’ xs’P13

drop n’ xs’ drop n’ xs’P14
take n’ xs’ ++ drop n’ xs’ xs’P15

Fig. 5: Overview of how NEBULA proves prop01. Gray arrows denote symbolic execution,
blue arrows denote coinduction, and orange dashed arrows denote lemma generation or
usage.

To circumvent the problem, we attempt to prove a lemma based on sub-expressions
of P12 and P1. Specifically, we automatically derive a potential lemma stating that
drop (S n’) (x:xs’) is equivalent to drop n’ xs’. We form the expression drop n’ xs’
by taking the sub-expression in P1 that should align with drop (S n’) (x:xs’) in P12 and
then applying variable substitutions based on the correspondence that holds for the rest of
the expression (i.e. for the applications of take). This potential lemma appears as P13 in
the diagram.

Proving the lemma in P13 is straightforward. Using the lemma, NEBULA now rewrites
take n’ xs’ ++ drop (S n’) (x:xs’) as take n’ xs’ ++ drop n’ xs’, as shown in
P15. Finally, this proof obligation can be discharged by applying coinduction with P1.

Example 2.3. Our final example, also from the Zeno suite (Sonnex et al., 2012), illus-
trates how NEBULA finds counterexamples. Consider Zeno Theorem 10, which asserts the
equivalence of m - m and Z. This is true under strict semantics but not under non-strict
semantics, even when m is total. When run on m - m and Z, NEBULA finds a counterexam-
ple exposing this inequivalence. NEBULA starts by applying symbolic execution to m - m.
Applying symbolic execution to Z is not possible, as it is already fully reduced. To evaluate
m - m, NEBULA must concretize m. On the branch where m = S m’, NEBULA will reduce
S m’ - S m’ to m’ - m’.

So far, this reduction is similar to the previous examples, and one might expect to apply
coinduction between m - m and m’ - m’. However, coinduction cannot be applied here
because the other expression, Z, is already fully reduced. (The reason for this restriction on
coinduction will be explained in Section 4.2.) On the contrary, we have found a cycle coun-
terexample. The new expression m’ - m’ is as general as the original expression m - m.
This means we can follow the same reduction steps that m - m took to reduce to m’ - m’
over again. More specifically, m’ - m’ can reduce to m’’ - m’’, where m’ = S m’’, and
the process can repeat forever, resulting in non-termination. On the other hand, Z has
already terminated. Mapping m’ - m’ to m - m requires us to replace m’ with m, and, in the
state m’ - m’, we have concretized m as S m’. Thus, we can conclude that letting m’ = m in
m = S m’ will lead to non-termination, and we obtain the input counterexample m = S m.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

8 J. C. Kolesar et al.

e ::= Expressions
| x variable
| s symbolic variable
| λx . e lambda
| D data constructor
| e e application
| case e of {�a} case
| ⊥L bottom

a ::= D �x→ e Alternatives

Fig. 6: The language considered by NEBULA.

Note that the direction of the correspondence between the current and previous state
to form a cycle counterexample is the reverse of that for a proof by coinduction. For
coinduction, we show that the past state pair is at least as general as the current state pair,
so that any reduction steps that can be applied to the current state pair can also be applied to
the past state pair. This means that, if the past state pair cannot be reduced to inequivalent
expressions, neither can the current state pair. In contrast, for a cycle counterexample, we
show that the current state is at least as general as the past state, so that the current state
can continue reduction in the same way as the past state.

3 Symbolic execution

Symbolic execution is a program analysis technique that runs code with symbolic variables
in place of concrete values. Here we describe symbolic execution for a non-strict functional
language, which will both allow us to search for counterexamples to proposed equivalences
and act as a guide for proof techniques such as coinduction. While symbolic execution as
presented here resembles Hallahan et al. (2019), the formalization has been adapted to
account for non-total values. The structure of states and the reduction rules over states
have also been simplified.

Syntax Figure 6 shows the core language λS used by NEBULA. NEBULA operates over a
non-strict typed functional language, consisting of standard elements such as variables,
lambdas, algebraic datatypes, and case statements. Symbolic variables s are used in λS to
denote unknown values. An algebraic datatype is a finite set of constructors with argu-
ments, D1 τ 1

1 . . . τ
n1
1 , . . . , Dk τ 1

k . . . τ
nk
k . A bottom value, denoted ⊥L, is an error. The

superscript L is a label. When we define equivalence in Section 4, two bottoms will be
treated as equivalent if and only if they have the same label.

Notation We define = to check syntactic equality of expressions. We write e′ � e to indi-
cate that e′ is a sub-expression of e. (We interpret the sub-expression relation as being
reflexive.) The expression e [e2 / e1] denotes e with each occurrence of the sub-expression
e1 replaced by e2. If we have a mapping V from symbolic variables to expressions, we
write e [V (s) / s] to denote e with all occurrences of s replaced with the expression V (s) for
each s in V .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 9

Symbolic Weak Head Normal Form Non-strict semantics reduces expressions to Weak
Head Normal Form (WHNF) (Peyton Jones, 1996), i.e. a lambda abstraction or data con-
structor application. Correspondingly, symbolic execution reduces expressions to Symbolic
Weak Head Normal Form (SWHNF). SWHNF is defined as follows:

SWHNF(e)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

True e= s

True e=D �e
True e= λx . e′

True e=⊥L

False otherwise

Symbolic variables and bottoms are in SWHNF because they function as stopping points
for symbolic execution, just as lambdas and data constructor applications do.

States Symbolic execution operates on states of the form (e, Y), where e is the expres-
sion being evaluated. The symbolic store Y is used to record values assigned to symbolic
variables. Symbolic variables map to data constructors that are fully applied to symbolic
variables. We refer to the mappings as concretizations. We write s ∈ Y if Y has a map-
ping for s. We overload ∈, so that (s, e) ∈ Y denotes that s is mapped to e in Y . We
write lookup(s, Y) to denote the data constructor application that Y contains for s, and
Y {s→D �s} denotes the symbolic store with s mapped to D �s and all other mappings from
Y preserved.

Reduction We formalize evaluation in terms of small-step reduction rules. We write S ↪→
S′ to indicate that S can take a single step to the state S′. We write S ↪→∗ S′ to indicate that
S can be reduced to the state S′ by zero or more applications of ↪→. Because expressions
can contain symbolic values, it is sometimes possible to apply more than one reduction
rule to a state or to apply the same rule in multiple different ways. Whenever this situation
arises in symbolic execution, the state is duplicated, and each possible rule is applied to a
distinct copy of the state. This enables the execution to explore all possible paths through
a program.

Figure 7 shows the reduction rules. The rules for lambdas and applications are standard.
The VAR rule fetches the definitions of non-symbolic variables and functions (such as the
definitions of min and <= in Example 2.1) from an implicit environment. These definitions
may be recursive, but they cannot contain symbolic variables. We assume the existence
of a function lookupVar that serves as an interface with the implicit environment, and
we assume that every non-symbolic variable has a mapping in the environment. A case
expression case e of {�a} branches depending on the value of e, which we call the scrutinee.
The CSEV rule for case statements reduces the scrutinee of the case statement to SWHNF,
so that CSDC can be used to select the appropriate branch. If the scrutinee of the case
statement evaluates to a symbolic variable s, the applicable rule depends on whether the
symbolic variable is already in the state’s symbolic store Y . If s ∈ Y , the rule LKDC selects
the appropriate case statement branch to continue evaluation. If s /∈ Y , evaluation is still
possible for the state: FRDC splits the state to explore each possible branch, and it records
the choice made along each branch in Y so that LKDC can be applied the next time each
state branches on s.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

10 J. C. Kolesar et al.

VAR
(x, Y) ↪→ (lookupVar(x), Y)

APP
(f , Y) ↪→ (f ′, Y ′)

(f e, Y) ↪→ (f ′ e, Y ′)

APPλ
((λx . e′) e, Y) ↪→ (e′ [e / x], Y)

CSEV
(e, Y) ↪→ (e′, Y ′)

(case e of {�a}, Y) ↪→ (case e′ of {�a}, Y ′)

CSDC
(caseD �e of {D �x→ ea; . . .}, Y) ↪→ (ea [�e / �x], Y)

FRDC
s 	∈ Y �s fresh

(case s of {D �x→ ea; . . .}, Y) ↪→ (ea [�s / �x], Y {s→D �s})

LKDC
s ∈ Y D �s= lookup(s, Y)

(case s of {D �x→ ea; . . .}, Y) ↪→ (ea [�s / �x], Y)

BTDC
L fresh

(case s of {D �x→ ea; . . .}, Y) ↪→ (⊥L, Y {s→⊥L})

BTAPP
(⊥L e, Y) ↪→ (⊥L, Y)

BTCS
(case⊥L of {�a}, Y) ↪→ (⊥L, Y)

Fig. 7: Reduction rules.

prop23_lhs a b = max a b
prop23_rhs a b = max b a

max x y = case x of
Z -> y
S x’ -> case y of
Z -> x
S y’ -> S (max x’ y’)

Fig. 8: Zeno Theorem 23.

The reduction rules BTAPP and BTCS force any expression which must evaluate ⊥L to
reduce to⊥L itself. The rule BTDC concretizes a symbolic variable to⊥L with a fresh label
L. The inclusion of BTDC requires any proofs relying on our symbolic execution engine to
consider the possibility of a partial input for any of a program’s arguments. Labels can be
used to distinguish between errors from distinct sources.

Example 3.1. Consider the property prop23 from the Zeno evaluation suite (Sonnex et al.,
2012), shown in Figure 8. The property asserts that the max function over natural numbers
is commutative. If we ignore the labels on bottom values, then prop23_lhs and prop23_rhs

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 11

must be equivalent, and prop23 is valid. However, the equivalence does not hold if we take
labels into consideration. If we concretize a as ⊥A and b as ⊥B, then max a b and max b a
reduce to different values. The former reduces to ⊥A, and the latter reduces to ⊥B. The
reason for the difference in the two sides’ results is that max a b branches on the value of a
before it branches on the value of b, whereas max b a does the opposite. Because the outer
case statement evaluates to an error on each side, the value of the variable in the inner case
statement is never used.

Our reduction rules, as we present them here, assume that all symbolic values are first-
order. Nevertheless, our system is capable of proving properties that involve symbolic
functions. We describe our method of handling symbolic functions in Section 6.5.

Importantly, we do not have any reduction rules for expressions that are in SWHNF.
There is no rule that allows us to derive (D e, Y) ↪→ (D e′, Y ′) from (e, Y) ↪→ (e′, Y ′).
Likewise, there is no rule to derive (λx . e, Y) ↪→ (λx . e′, Y ′) from (e, Y) ↪→ (e′, Y ′). In
a non-strict language, we cannot evaluate the arguments of a data constructor application
without first eliminating the data constructor, and we cannot evaluate the body of a lambda
abstraction without first applying the lambda to an argument. We want to capture the same
behavior in our own formalism.

We assume that all case expressions are exhaustive for the types of their scrutinees, so
evaluation cannot become stuck at a case expression that has no branch to match its scruti-
nee. Correspondingly, we assume that an individual case expression cannot have multiple
branches for the same data constructor, so evaluation cannot branch nondeterministically at
a case statement unless the scrutinee is a non-concretized symbolic variable. Additionally,
we assume that scrutinees of case expressions cannot be function-typed. Since we also do
not include any reduction rules that apply to SWHNF expressions, we can guarantee that
an expression in our formalism has a reduction rule that applies to it if and only if the
expression is not in SWHNF:

Theorem 1. For any expression e and symbolic store Y , there exist an expression e′ and
symbolic store Y ′ such that (e, Y) ↪→ (e′, Y ′) if and only if e is not in SWHNF.

Proof See the Appendix. �

Reduction Sequences For our proofs about reduction, we need to rely on the concept of
reduction sequences. A finite reduction sequence S↪→ = S1, . . . Sk is a sequence of states
such that ∀i, 1≤ i < k.Si ↪→ Si+1. Similarly, an infinite reduction sequence S↪→ = S1, . . .
is an infinite sequence of states such that ∀i, 1≤ i.Si ↪→ Si+1. We use the term reduc-
tion sequence when the distinction between a finite and infinite reduction sequence is
not significant. Also, we sometimes need to reason about the simultaneous reduction of
two expressions, so we introduce the concept of paired reduction sequences. A paired
reduction sequence is a sequence of triples of two expressions and one symbolic store,
S↪→ = (e1

1, e2
1, Y1), . . . , (e1

k , e2
k , Yk), . . . such that

∀i, 1≤ i.((e1
i , Yi) ↪→ (e1

i+1, Yi+1)∧ e2
i = e2

i+1)

∨((e2
i , Yi) ↪→ (e2

i+1, Yi+1)∧ e1
i = e1

i+1)

holds for every entry in the sequence.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

12 J. C. Kolesar et al.

�-EVAL
∃e′.(e1, Y1) ↪→∗ (e′, Y1)∧ (e′, Y1)�V (e2, Y2)

(e1, Y1)�V (e2, Y2)

�-SYM0
∃e= lookup(s, Y1) (e, Y1)�V (e2, Y2)

(s, Y1)�V (e2, Y2)

�-SYM1

∃e′ = lookup(s, V), e′′.(e′, Y1) ↪→∗ (e′′, Y1)∧ (e1, Y1)�V (e′′, Y2)
∃e= lookup(s, Y2) (e1, Y1)�V (e, Y2)

(e1, Y1)�V (s, Y2)

�-SYM2
s /∈ Y2 ∃e= lookup(s, V), e′.(e, Y1) ↪→∗ (e′, Y1)∧ (e1, Y1)�V (e′, Y2)

(e1, Y1)�V (s, Y2)

�-VAR
(x, Y1)�V (x, Y2)

�-LAM
(e1, Y1)�V (e2[x1/x2], Y2)

(λx1 . e1, Y1)�V (λx2 . e2, Y2)

�-CASE

(e1, Y1)�V (e2, Y2)
∀(D �x1→ ea

1) ∈ �a1, (D �x2→ ea
2) ∈ �a2.(ea

1, Y1)�V (ea
2[�x1/ �x2], Y2)

(case e1 of { �a1}, Y1)�V (case e2 of { �a2}, Y2)

�-DC
(D, Y1)�V (D, Y2)

�-APP

(e1, Y1)�V (e′1, Y2)
(e2, Y1)�V (e′2, Y2)

(e1 e2, Y1)�V (e′1 e′2, Y2)

�-BT
(⊥L, Y1)�V (⊥L, Y2)

Fig. 9: Approximation definition.

Approximation We define an approximation relation�V on states. Intuitively, S �V S′ (“S
is approximated by S′” or “S′ approximates S”) if S is a more concrete version of S′: that
is, if S replaces all the symbolic variables in S′ with other expressions and is the same as
S′ otherwise. Different occurrences of the same symbolic variable within S′ need to have
the same replacement within S.

We formalize �V in Figure 9. The relation S �V S′ holds if there is any inference tree
with S �V S′ as the root. The subscript V is a mapping V = {. . . (s, e), . . .} from symbolic
variables in S′ to expressions in S. We define lookup(s, V) to refer to the expression e such
that (s, e) ∈ V . We overload ∈, so that s ∈ V holds if there is some mapping for s in V . We
use S � S′ as shorthand for ∃V .S �V S′.

Most of the rules of � simply walk over the two states’ expressions recursively.
The most interesting piece of the definition of �V is the handling of symbolic vari-
ables on the right-hand side of the relation. The rule �-SYM2 allows us to establish that
(e1, Y1)�V (s, Y2) when s /∈ Y2, by fetching e= lookup(s, V) and checking if there is
some e′ such that (e, Y1) ↪→∗ (e′, Y1) and (e1, Y1)�V (e′, Y2). The rule �-SYM1 is simi-
lar to �-SYM2, but it applies to the case where there is some e= lookup(s, V), and thus

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 13

requires additionally that e1 � e. The rule �-SYM0 handles concretized symbolic variables
on the left-hand side: if there is a mapping for a symbolic variable in the left-hand symbolic
store, we can use that mapping as a replacement for the symbolic variable itself. The final
rule of interest is �-EVAL, which states that (e1, Y1)�V (e2, Y2) if there is some e′ such
that (e1, Y1) ↪→∗ (e′, Y1) and (e′, Y1)�V (e2, Y2). In other words, an arbitrary number of
deterministic reduction rules can be applied to the left-hand expression of �V .

It should be noted that checking whether one state approximates another is undecid-
able in general, as it requires checking if a state’s execution (alternatively, a program’s
execution) will reach a particular point eventually. Even though it is impossible to have a
complete calculus of rules for proving approximation relations, our formalization of sym-
bolic execution is complete in a different sense. Our formalization of � carefully ensures
that symbolic execution explores all paths through a program. If a state S2 approximates
another state S1, evaluation steps on S1 cannot break the connection to S2 without replac-
ing it with a new connection to a state to which S2 evaluates. Consequently, we can use
approximation to verify properties of programs. We state this formally as Theorem 2:

Theorem 2 (Symbolic Execution Completeness). Let S1 and S2 be states such that S1 � S2.
If S1 ↪→ S′1, then either S′1 � S2 or there exists S′2 such that S2 ↪→ S′2, and S′1 � S′2.

Proof Consider a state S1 = (e1, Y1) and a state S2 = (e2, Y2) such that S1 � S2. We will
show that if S1 is reduced by a single application of ↪→, so that S1 ↪→ S′1, then either (1)
S′1 � S2 or (2) there exists a reduction S2 ↪→ S′2 such that S′1 � S′2.

Use of Induction In many cases, we rely on induction on the size of the expressions in states
S1 and S2. This results in new values V ′, e′1, e′2, Y ′1, Y ′2, which we must use in the application
of � to the larger expression. For most expressions, (e′1, Y ′1)�V ′ (e′2, Y ′2) holding relies on
the fact that the only rule that requires modifying V to add a variable is FRDC, which
only results in mappings for fresh variables being added to V . (The rule BTDC modifies
the symbolic store, but it does not affect V : V maps symbolic variables on the right-hand
side of � to expressions on the left-hand side, and concretizing a symbolic variable as
a bottom does not introduce any new symbolic variables on the right-hand side.) Thus,
Lemma 4 from the Appendix ensures that (e′1, Y1)�V ′ (e′2, Y2) continues to hold, except
in the case where e′2 is or contains a symbolic variable. We will consider this special case
in the following, when discussing symbolic variables.

In one case, we also apply this theorem inductively on a usage of � on the right-hand
side of the definition of �. To see why this is justified, notice that for S1 � S2 to hold, this
case may be used only a finite number of times (to a finite depth). Thus, in the base case,
we have applied any other piece of �’s definition.

Case Analysis We will now enumerate the cases in which S1 �V S2 holds and justify the
theorem in each case.

Reduction on Left Suppose (e1, Y1)�V (e2, Y2) holds because of �-EVAL, whose premise
is ∃e′.(e1, Y1) ↪→∗ (e′, Y1)∧ (e′, Y1)�V (e2, Y2). There are two possibilities. The first pos-
sibility is that the number of reduction steps required to reduce (e1, Y1) to (e′, Y1) is 0
(that is, e1 = e′). In this case, (e′, Y1)�V (e2, Y2) must hold because of some other piece

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

14 J. C. Kolesar et al.

of the approximation definition, and we refer to the relevant piece of the proof to jus-
tify the theorem. The second possibility is that the number of reduction steps is nonzero.
In this case, the reduction (e1, Y1) ↪→∗ (e′, Y1) must be deterministic, since Y1 is not
updated. Thus, when we reduce e1 to some e′1 ((e1, Y1) ↪→ (e′1, Y1)), it must be the case that
∃e′′.(e′1, Y1) ↪→∗ (e′′, Y1)∧ (e′′, Y1)�V (e2, Y2), and so (e′1, Y1)�V (e2, Y2) by �-EVAL.

Symbolic Variables If e1 is a symbolic variable, it cannot be reduced, and so the theorem
does not apply. There are two cases involving a symbolic variable on the right-hand side
in which e1 can be reduced.

First, consider the possibility that (e1, Y1)�V (s, Y2) and ∃e= lookup(s, Y2). The
rule from the definition of �V being applied must be �-SYM1, so it must be the case
that ∃e′ = lookup(s, V), e′′.(e′, Y1) ↪→∗ (e′′, Y1) and (e1, Y1)�V (e′′, Y2) and (e1, Y1)�V

(e, Y2). Because e comes from a symbolic store, it is in SWHNF, so it must be the case
that e1 either is already in SWHNF, or can be reduced to SWHNF deterministically. If
e1 is already in SWHNF, then it cannot be reduced, so the theorem holds vacuously.
Consequently, let e′1 be the SWHNF expression distinct from e1 to which e1 can be reduced.
There must be at least one step of reduction that e1 can take, so let es

1 be the expression
such that (e1, Y1) ↪→ (es

1, Y1). Since e is in SWHNF and cannot undergo reduction, apply-
ing our inductive hypothesis to (e1, Y1)�V (e, Y2) gives us (es

1, Y1)�V (e, Y2). Likewise,
applying our inductive hypothesis to (e1, Y1)�V (e′′, Y2) gives us a disjunction: either
(es

1, Y1)�V (e′′, Y2) or there exists some state (e′′′, Y2) to which (e′′, Y2) steps such that
(es

1, Y1)�V (e′′′, Y2).
If (e′′, Y2) does not need to undergo an evaluation step, then we have everything we need

to apply �-SYM1. With (es
1, Y1)�V (e′′, Y2) and (es

1, Y1)�V (e, Y2) and the premises from
before, we can conclude that (es

1, Y1)�V (s, Y2). If (es
1, Y1)�V (e′′′, Y2) holds instead, then

we need to change some of the premises we use for �-SYM1. (We know that the symbolic
store does not change for the reduction (e′′, Y2) ↪→ (e′′′, Y2) because no new mappings can
be introduced for e1 during its deterministic reduction to SWHNF. If it were possible to
introduce a new mapping for Y2, the original approximation (e1, Y1)�V (e′′, Y2) would not
have held.) We still know that (es

1, Y1)�V (e, Y2) holds. Since the reduction (e′′, Y2) ↪→
(e′′′, Y2) does not modify the symbolic store, we can say that (e′′, Y1) steps to (e′′′, Y1).
(We know that all of the relevant symbolic variables for the step (e′′, Y2) ↪→ (e′′′, Y2) are
present in Y1 because of the determinism of the reduction for e1.) Chaining this together
with (e′, Y1) ↪→∗ (e′′, Y1) gives us (e′, Y1) ↪→∗ (e′′′, Y1), so we can apply �-SYM1.

Second, consider the possibility that (e1, Y1)�V (s, Y2) and s /∈ Y2. The �V rule for this
situation is�-SYM2, so it must be the case that ∃e′ = lookup(s, V), e′′.(e′, Y1) ↪→∗ (e′′, Y1),
where (e1, Y1)�V (e′′, Y2). Suppose that (e1, Y1) ↪→ (e′1, Y1) for some Y1. (We know that
the evaluation step cannot change the symbolic store because (e1, Y1)�V (s, Y2) and s is
in SWHNF. As we noted for the previous part, this means that e1 must reduce to SWHNF
deterministically.) By induction (as justified in the note at the start of the proof), we know
that (e′1, Y1)�V (e′′, Y2) holds or that there exists some state (e′′′, Y2) to which (e′′, Y2)
steps such that (e′1, Y1)�V (e′′′, Y2).

For the first subcase, assume that (e′1, Y1)�V (e′′, Y2). We know from before that
(e′, Y1) ↪→∗ (e′′, Y1), so we have everything we need to apply �-SYM2 to derive
(e′1, Y1)�V (s, Y2). For the second subcase, assume that (e′′, Y2) ↪→ (e′′′, Y2) and that
(e′1, Y1)�V (e′′′, Y2). We know that the reduction step for e′′ does not modify the symbolic

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 15

store because of the determinism of the reduction for e1. As in the previous part, if it were
possible to introduce a new mapping in the reduction of e′′, the original approximation
(e1, Y1)�V (e′′, Y2) would not have held. Since the evaluation is deterministic and we
know from earlier that (e′, Y1) ↪→∗ (e′′, Y1), it follows that (e′, Y1) ↪→∗ (e′′′, Y1). This
gives us what we need to apply �-SYM2 to derive (e′1, Y1)�V (s, Y2).

Variables The only rule that can reduce a variable is VAR, which looks up the variable’s
definition. The definition e of a non-symbolic variable cannot contain symbolic variables,
so the theorem holds by induction over the structure of e.

Application Suppose e2 = e1
2 e2

2. The � rule that applies is �-APP, so we know that e1 =
e1

1 e2
1 and e1

1 �V e1
2 and e2

1 �V e2
2. If e2 is already in SWHNF, the theorem holds trivially.

Thus, we consider the two possible ways e1 may be reduced:

• If APP is applied, then (e1
2, Y2) ↪→ (e1′

2 , Y ′2). The theorem holds by induction on e1
1

and e1
2.

• Now suppose the rule APPλ can be applied. Then e1
2 has the form λx2 . eb

2 and e1
1

has the form λx1 . eb
1, The rule �-LAM gives us that (eb

1, Y1)�V (eb
2 [x1 / x2], Y2).

Then, by Lemma 3 from the Appendix, (eb
1 [e2

1 / x1], Y1)�V (eb
2 [e2

2 / x2], Y2). Thus
(eb

1 [e2
1 / x1], {})�V (eb

2 [e2
2 / x2], Y2) and the theorem is satisfied.

Cases Suppose e2 = case eb
2 of { �a2}. Then the rule �-CASE applies, and the left-hand

expression must have the form e1 = case eb
1 of { �a1}, where there exists some V such that

(eb
1, Y1)�V (eb

2, Y2) and ∀(D �x1→ ea
1) ∈ a1, (D �x2→ ea

2) ∈ a2.(ea
1, Y1)�V (ea

2[�x1/ �x2], Y2).
There are four rules that might be applicable to reduce the right-hand side. The rules CSEV

and CSDC simply require an inductive argument on the application of ↪→, so we focus on
FRDC and LKDC.

First consider FRDC. We assume some s1 /∈ Y1, where (case s1 of { �a1}, Y1)�V

(case s2 of { �a2}, Y2). Suppose s2 ∈ Y2. Then, s2 must be mapped to some D ea
1 . . . ea

k , and
by the definition of �, it must be that there exists some e′ that deterministically reduces to
both s1 and D ea

1 . . . ea
k . This contradicts our assumption that s1 /∈ Y1, so s2 /∈ Y2. Thus, it is

easy to see from the definition of� that if FRDC is used to reduce the left-hand state, it can
be applied to the right-hand state to instantiate s2 with the same constructor and preserve
the approximation. A new V ′ must be constructed, which maps the fresh variables in the
right-hand state to the corresponding fresh variables in the left-hand state.

Now consider LKDC. We assume there exists some e=D sa
1 . . . sa

k = lookup(s1, Y1),
where (case s1 of { �a1}, Y1)�V (case eb

2 of { �a2}, Y2). By the definition of �, it must be the
case that s1 �V eb

2. The definition of � also gives us that eb
2 must either be a symbolic

variable or a data constructor application. There are three possible ways we will preserve
the mapping, depending on the right-hand state:

• First, suppose eb
2 is a symbolic variable s with no mapping in Y2. In this case, FRDC

can be applied to pick the same constructor that e has (or, if e is ⊥, BTDC can
be applied.) A new V ′ must be constructed, which maps the symbolic variables
introduced by the rule to the corresponding arguments of e.
Our use of induction and the possibility of s appearing at multiple places in eb

2

require that we justify that, for all e, assuming (e, Y1)� (s, Y2) held when s /∈ Y2,
then (e, Y ′1)� (s, Y2{s→D s1 . . . sn}) still holds after an application of FRDC or

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

16 J. C. Kolesar et al.

BTDC on the right-hand side of the expression. The� rule that applies is �-SYM2, so
we know that there exists e′ = lookup(s, V) such that (e′, Y1) ↪→∗ (e, Y1). In order
for FRDC (or BTDC) to be applied on the right-hand side to map s to D s1 . . . sn

(or ⊥), it must hold that, in the scrutinee of the case statement, (ec, Y1)�V (s, Y2)
is being checked. Thus, it must also be the case that (e′, Y1) ↪→∗ (ec, Y1) and
that (ec, Y1) ↪→∗ (e′c, Y1), where (e′c, Y1)�V (D s1 . . . sn, Y2) (or, in the case of
BTDC, that (e′c, Y1)�V (⊥, Y2).) By Lemma 6 from the Appendix, it is then the
case that there is only one possible reduction sequence for (e, Y1), specifically
(e, Y1) ↪→∗ (ec, Y1) ↪→ (e′c, Y ′1). Thus, (e, Y ′1)� (s, Y2{s→D s1 . . . sn}) holds (or a
similar approximation holds in the case of an application of BTDC.)

• Now suppose eb
2 is a symbolic variable that Y2 maps to e′ =D sa′

1 . . . sa′
k . By the

definition of �-SYM1, it must be that e �V e’. Consequently, from the rule �-DC,
we know that D sa

1 . . . sa
k �V D sa′

1 . . . sa′
k , and thus ∀1≤ i≤ k.sa

i �V sa′
1 . Then, we

can apply LKDC on the right-hand side as well, and it is clear the approximation
continues to hold on the reduced states, using the same V .

• Finally, suppose eb
2 is a data constructor application itself. Again, it is clear that

we can apply LKDC on the right-hand side, and it is clear that the approximation
continues to hold on the reduced states, using the same V .

Thus, the theorem is satisfied for case statements.

Lambdas, Constructors, Bottom Lambdas, data constructors, and bottoms are already in
SWHNF, so they cannot be reduced. The theorem holds trivially in these cases. �

Allowing arbitrary evaluation at various points is essential to ensure that Theorem 2
holds. The following example illustrates this:

Example 3.2. Consider the approximation

(case id D of {D→ f (id D)}, {})�{s→id D} (case s of {D→ f s}, {})

where id is the identity function, λx . x, and f is an arbitrary function. After a single reduc-
tion step, the left-hand side of the expression will have inlined the definition of id, reducing
to this:

(case (λx . x) D of {D→ f (id D)}, {})
If � required that a symbolic variable on the right map precisely to the expression on the
left, then

(case (λx . x) D of {D→ f (id D)}, {})�V (case s of {D→ f s}, {})

would not hold for any V . The rule �-SYM2 allows us to leave V = {s→ id D} to preserve
the approximation.

In Section 4.1, when we define our equivalence proof rules, we will include two rules
for reasoning about reduction that are based on Theorem 2. Also, in Section 6, we will for-
malize a simpler computable relation⊆ that implies approximation. In our implementation
of NEBULA, we use ⊆ rather than � to satisfy the premises of our proof rules.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 17

4 Equivalence

Consider two expressions e1 and e2 that share a set of free (symbolic) variables {s1 . . . sk}.
We wish to define equivalence ≡ for non-strictly computed values. Intuitively, equiva-
lence for non-strictly computed values means that the two expressions both evaluate to the
same value or both fail to terminate. We will formalize this with some mutually recursive
definitions. First, we define≡WHNF , which checks equivalence only on WHNF expressions
and labeled bottoms (and treats bottoms with different labels as inequivalent):

(e1 ≡WHNF e2)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀k
i=1.e1

i ≡ e2
i e1 =D e1

1 . . . e1
k ∧ e2 =D e2

1 . . . e2
k

∀e.e′1 [e / s1] ≡ e′2 [e / s2] e1 = λs1 . e′1 ∧ e2 = λs2 . e′2
L1 = L2 e1 =⊥L1 ∧ e2 =⊥L2

False otherwise

Next, we say that a group of concretizations ea
1, . . . ea

k for variables {s1 . . . sk} satisfies Y
if there exists some mapping V such that, for every 1≤ i≤ k, either si is unmapped in Y or
(ea

i , Y)�V (ei, Y), where ei = lookup(si, Y). Now we can define general equivalence. We
say that e1 and e2 are equivalent with respect to some symbolic store Y and write e1 ≡Y ,P

e2 if, for all concrete assignments ea
1, . . . ea

k to {s1 . . . sk} that satisfy Y , both expressions
either (1) evaluate to the same WHNF expression, with corresponding internal values or
unevaluated expressions also equivalent:

∃e′1, e′2.e1[ea
1 / s1 . . . ea

k / sk] ↪→∗ e′1 ∧ e2[ea
1 / s1 . . . ea

k / sk] ↪→∗ e′2 ∧ e′1 ≡WHNF e′2

or (2) do not terminate:

∀e′1, e′2.(e1[ea
1 / s1 . . . ea

k / sk] ↪→∗ e′1 ∧ e2[ea
1 / s1 . . . ea

k / sk] ↪→∗ e′2)

=⇒ (¬SWHNF(e′1)∧¬SWHNF(e′2))

The definitions of WHNF equivalence and general equivalence are mutually recursive
because WHNF serves as a partial stopping point for execution in a non-strict functional
language. We want to be able to reason about situations where a non-strict program runs
forever but hits an infinite number of WHNF stopping points along its execution path. If the
first two cases in the definition of WHNF equivalence relied on WHNF equivalence rather
than general equivalence, we would lose that ability. We would only be able to establish
equivalences in situations where two programs either terminate completely or diverge on
a path that hits WHNF only finitely many times.

We treat bottom values with different labels as distinct because programmers might not
want to treat errors from different sources as interchangeable. When a symbolic variable is
concretized as a bottom value, it receives a fresh label to distinguish it from other bottom
values. This also means we do not need to distinguish between a symbolic variable’s eval-
uation terminating with an error or failing to terminate: the labeled bottom can represent
either behavior since it is distinct from non-terminating expressions and from other bottom
values. Having two different failure-case concretization options for symbolic variables,
with one representing termination with an error and the other representing non-termination,
would be redundant and would not make our formalism any more expressive.

Although we view bottom values as representing either non-termination or termination
with an error for symbolic variable concretization, we do not regard non-termination and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

18 J. C. Kolesar et al.

SYN-EQ-EQUIV
e1 = e2

R, Y , e1 ≡ e2
DC-EQUIV

∀k
i=1R, Y , e1

i ≡ e2
i

R, Y , D e1
1 . . . e1

k ≡ D e2
1 . . . e2

k

LAM-EQUIV

s fresh
R, Y , (λx1 . e1) s ≡ (λx2 . e2) s

R, Y , λx1 . e1 ≡ λx2 . e2
BOT-EQUIV

R, Y ,⊥L ≡ ⊥L

Fig. 10: Syntactic equivalence and equivalence based on splitting SWHNF expressions.

RED-L
∀(e′1, Y ′)s.t.(e1, Y) ↪→ (e′1, Y ′).R, Y ′, e′1 ≡ e2

R, Y , e1 ≡ e2

RED-R
∀(e′2, Y ′)s.t.(e2, Y) ↪→ (e′2, Y ′).R, Y ′, e1 ≡ e′2

R, Y , e1 ≡ e2

Fig. 11: Reduction equivalence rules.

termination with an error as equivalent in general. Bottom values from symbolic variables
represent non-termination that comes from the arguments of a program. We want to dis-
tinguish this from non-termination that comes directly from the recursive structure of the
program currently being examined. An example of the latter kind of non-termination is the
cyclic evaluation of m - m in Example 2.3. Whenever we concretize one of the descen-
dants of m, the concretization terminates with a data constructor, but the recursion of the
subtraction function that consumes those data constructors never ends. In Section 5, we
discuss our technique for detecting non-termination that comes from infinite recursion.

4.1 Equivalence rules

We define a relation on states S ≡ S′ that is true if and only if corresponding inputs to S
and S′ produce syntactically equivalent outputs. Here, we formalize proof rules that allow
NEBULA to show that S ≡ S′ holds. In Section 6, we will discuss the actual implementation
of these rules in NEBULA.

Syntactic and SWHNF Equivalence The rules in Figure 10 allow us to prove the equiva-
lence of two expressions. The rule SYN-EQ-EQUIV allows us to discharge two expressions
as equivalent if they are syntactically equal. The other three rules concern expressions
in SWHNF. Given two expressions that are applications of the same data constructor,
e1 =D e1

1 . . . e1
k and e2 =D e2

1 . . . e2
k , the rule DC-EQUIV reduces the task of checking

whether e1 and e2 are equivalent to checking the equivalence of each matching argu-
ment pair (e1

i , e2
i). The rule LAM-EQUIV states that two lambdas are equivalent if their

applications to a fresh symbolic value are equivalent. The rule BOT-EQUIV says that two
bottoms are equivalent if they share a label. These rules follow easily from the definition
of equivalence.

Reduction Rules Figure 11 shows RED-L and RED-R, which apply symbolic execution to the
left and right states, respectively, being checked by the relation. The correctness of these
rules follows from Theorem 2, which establishes the completeness of symbolic execution.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 19

When used alongside the SWHNF equivalence rules, RED-L and RED-R are sufficient
to check equivalence up to some input depth, on programs that terminate for all finite
inputs. In the next section, we will see how coinduction can be used to extend this result
to arbitrarily large inputs and programs which do not necessarily terminate, allowing full
verification of equivalence.

4.2 Equivalence verification with coinduction

Because we aim to reason about potentially infinite expressions and non-terminating exe-
cution paths, the basis of NEBULA’s approach to verification is coinduction. Coinduction is
a proof technique based on the greatest fixed point of an equation. In contrast to an induc-
tive construction, which creates a complex object from a base case and inductive steps, a
coinductive proof starts by confirming that an object upholds a property and then decon-
structs the object to show that each of its parts satisfies the same property (Gordon, 1995;
Kozen & Silva, 2017).

Here, we present a brief overview of the theoretical basis of coinduction. For full details,
we refer readers to Gibbons & Hutton (2005), Gordon (1995), and Kozen & Silva (2017).
The process of proving coinductively that two objects are equivalent involves the con-
struction of a bisimulation. A bisimulation is a relation between structures, in which two
structures are related only if they are still related after being reduced (Gibbons & Hutton,
2005). An individual bisimulation is defined in terms of a larger relation ∼, which is the
greatest bisimulation. For our purposes, the greatest bisimulation ∼ is the greatest fixed
point for state equivalence: it is the relation that relates all state pairs (S1, S2) such that
either (1) S1 and S2 are equivalent when reduced to SWHNF or (2) evaluating S1 and S2

results in a cycle where the two states are approximated (as defined in Section 3) by other
states in ∼. (This definition of equivalence is narrower than the definition that we provide
at the start of the section: here we consider only non-terminating paths that lead to cycles,
but the definition from the start of the section encompasses all forms of non-termination.
Cycles are what we use as evidence that an execution path does not terminate. Either way,
we cannot compute ∼ directly since program equivalence is undecidable in general, but
we do not need to manipulate it directly.) The more specific bisimulation that we want
to find between two programs is the union of ∼ with a set R of state pairs. To establish
that R and ∼ form a valid bisimulation, we simply need to confirm that R is a consistent
subset of ∼, or, equivalently, that R ∪ ∼ is equal to ∼. The relation R is a subset of ∼
if every state pair (S1, S2) meets condition (1) or (2). If we know that R is a subset of ∼,
then all state pairs related by R must uphold semantic equivalence. More importantly, R is
consistent if, for every state pair (S1, S2) in R, the other state pairs that serve as evidence
for the inclusion of (S1, S2) in R are also related by R (AbdelGawad, 2019). If S1 and S2

satisfy condition (1), then the state pairs that serve as evidence are the ones that confirm
that their corresponding sub-expressions are equivalent. For that situation, membership of
the sub-expression state pairs in R can be established either by appealing to conditions (1)
and (2) recursively or by some other technique such as syntactic equality. Alternatively, if
S1 and S2 satisfy condition (2), the evidence for their inclusion in R is the pair (S′1, S′2) of
states that approximate S1 and S2, respectively.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

20 J. C. Kolesar et al.

RADD
R∪ (e1, e2, Y), Y , e1 ≡ e2

R, Y , e1 ≡ e2

U-COIND

(eR
1 , eR

2 , Y R) ∈ R ¬SWHNF(eR
1) ¬SWHNF(eR

2)
∃V .(e1, Y)�V (eR

1 , Y R)∧ (e2, Y)�V (eR
2 , Y R)

R, Y , e1 ≡ e2

G-COIND
∃(eR

1 , eR
2 , Y R) ∈ R, V . (e1, Y)�V (eR

1 , Y R)∧ (e2, Y)�V (eR
2 , Y R)

R, Y , e1 ≡ e2

Fig. 12: Unguarded and guarded coinduction.

We formalize our use of coinduction as the rules RADD, U-COIND, and G-COIND in
Figure 12. The rule RADD attempts to build a bisimulation by adding an expression pair
(eR

1 , eR
2) and a corresponding symbolic store Y R to R. The rule U-COIND allows NEB-

ULA to discharge a pair of expressions (e1, e2) and a corresponding symbolic store Y if
¬SWHNF(eR

1), ¬SWHNF(eR
2), and there is a mapping V such that (e1, Y)�V (eR

1 , Y R) and
(e2, Y)�V (eR

2 , Y R). The rule G-COIND allows NEBULA to discharge a pair of expres-
sions (e1, e2) and a corresponding symbolic store Y if there is a mapping V such that
(e1, Y)�V (eR

1 , Y R) and (e2, Y)�V (eR
2 , Y R).

At a high level, U-COIND and G-COIND are both sound because of Theorem 2. If there
is a path that could lead to a counterexample between (e1, Y) and (e2, Y), then there must
also be a path that leads to a counterexample between (eR

1 , Y R) and (eR
2 , Y R).

To uphold soundness, we enforce productivity properties for our proof trees when appli-
cations of RADD, U-COIND, and G-COIND occur. The productivity properties involve the
rules from Figures 10 and 11:

Definition 1 (U-Productivity). A proof tree is U-productive if both an application of RED-

L and an application of RED-R occur between every use of RADD and every corresponding
use of U-COIND.

Definition 2 (G-Productivity). A proof tree is G-productive if an application of DC-EQUIV

or LAM-EQUIV occurs between every use of RADD and every corresponding use of G-

COIND.

We say that a proof tree is productive if it is both U-productive and G-productive. A
proof tree must be productive to be valid. Enforcing U-productivity prevents us from
making circular proofs that add states to R and then immediately use the added states
to discharge the branch. G-productivity prevents circular proofs in the same way that U-
productivity does, but it allows us to use states that are in SWHNF during coinduction.
This is important if a state enters SWHNF immediately after an application of DC-EQUIV

or LAM-EQUIV.

4.3 Lemmas

As we mentioned in Example 2.2, direct applications of coinduction are not always possi-
ble. Sometimes we need lemmas, extra state pairs that we have proven equivalent, in order

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 21

LEMMALEFT

{}, Y L, eL
1 ≡ eL

2 ∃e′1 � e1.e′1 = f ea
1 . . . ea

k
∃e′′1 � e′1.(e′′1, Y)�V (eL

1, Y L) eV
2 = eL

2 [V (s) / s]
¬calls(eV

2 , f , {}) R, Y , e1 [eV
2 / e′′1] ≡ e2

R, Y , e1 ≡ e2

LEMMARIGHT

{}, Y , eL
1 ≡ eL

2 ∃e′2 � e2.e′2 = f ea
1 . . . ea

k
∃e′′2 � e′2.(e′′2, Y)�V (eL

2, Y L) eV
1 = eL

1 [V (s) / s]
¬calls(eV

1 , f , {}) R, Y , e1 ≡ e2 [eV
1 / e′′2]

R, Y , e1 ≡ e2

LEMMAOVER
{}, Y L, eL

1 ≡ eL
2 (e1, Y)�V (eL

1, Y L) (e2, Y)�V (eL
2, Y L)

R, Y , e1 ≡ e2

Fig. 13: Proof rules for lemmas.

to guide an expression into a form more amenable to � and coinduction. In Figure 13, we
introduce three rules, LEMMALEFT, LEMMARIGHT, and LEMMAOVER, that allow us to apply
lemmas soundly alongside coinduction.

LEMMALEFT and LEMMARIGHT The rule LEMMALEFT substitutes one expression for another
on the left-hand side of a state pair and uses a lemma to justify the substitution. Let e1 and
e2 be the two main expressions that we want to prove equivalent, and let Y be their corre-
sponding symbolic store. The first step in applying LEMMALEFT is to prove some lemma
{}, Y L, eL

1 ≡ eL
2. To link the lemma to our main equivalence proof, we need to find some

expression e′′1 � e1 and mapping V such that (e′′1, Y)�V (eL
1, Y L). The sub-expression e′′1 is

the part of e1 that will receive the lemma substitution. We can substitute the mapping V
into eL

2, creating eV
2 = eL

2 [V (s) / s], the new sub-expression that we will use as a replace-
ment for e′′1. Then we simply need to prove the equivalence R, Y , e1 [eV

2 / e′1] ≡ e2 for
some state pair set R, and we can conclude R, Y , e1 ≡ e2 in the end.

For soundness, LEMMALEFT requires two other lemma productivity properties to hold.
First, we require the substitution to happen within a sub-expression e′1 of e1 that is in
function application form: simply put, e′1 must be a function application f ea

1 . . . ea
k , where

f is a non-symbolic variable. Note that e′1 is allowed to be e1 itself. Second, we require that
f , the function being applied in e′1, is not syntactically included in eV

2 or in any functions
invoked by eV

2 , either directly or indirectly. For an expression e, calls(e, f , {}) indicates
whether e has any direct or indirect invocations of f :

calls(e, f , X)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = x∨ calls(lookupVar(x), f , {x} ∪ X) e= x, f /∈ X

calls(e′, f , X) e= λx . e′

calls(e1, f , X)∨ calls(e2, f , X) e= e1 e2

calls(e′, f , X)∨
∃(D �x→ e′′) ∈ �a.calls(e′′, f , X) e= case e′ of {�a}

False otherwise

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

22 J. C. Kolesar et al.

LEMMALEFTUS

{}, Y L, eL
1 ≡ eL

2 ∃e′1 � e1.e′1 = f ea
1 . . . ea

k
∃e′′1 � e′1.(e′′1, Y)�V (eL

1, Y L) eV
2 = eL

2 [V (s) / s]
R, Y , e1 [eV

2 / e′′1] ≡ e2

R, Y , e1 ≡ e2
(a) Unsound proof rule.

f = [] g= g w h c= case h of {[]→ c; . . .}

(b) Problematic expressions.

RADD

RED-L/R

LEMMALEFTUS

...
{}, Y , w f f ≡ w f (w f f)

e′1 =w f f
(w f f , Y)�{} (w f f , Y)

eV
2 =w f (w f f)

U-COIND

w f (w f f)�{} w f (w f f)
g�{} g

R, Y , w f (w f f) ≡ g

R, Y , w f f ≡ g

...
R= {(w f (w f f), g, Y)}, Y , w f (w f f) ≡ g

{}, Y , w f (w f f) ≡ g
(c) An incorrect proof tree.

Fig. 14: An unsound use of lemmas that causes coinduction to prove incorrectly that a
terminating program and a non-terminating program are equivalent.

The function is an exhaustive traversal over e that unfolds non-symbolic variable def-
initions as it encounters them. In calls(e, f , X), the third argument X serves to prevent
the function from entering an infinite loop. The set should be empty in the initial call,
and it records the variables whose definitions have been unfolded so far. If we ever see
a variable that we have unfolded previously, we do not unfold it again. We can ignore
repeated unfoldings because any AST nodes in a repeated unfolding are covered else-
where in the traversal. Note that there is no need to take symbolic variable mappings into
account because symbolic variables cannot be concretized as functions. For more details
on our handling of symbolic functions, see Section 6.5.

The two lemma productivity properties prevent us from using lemmas to prove that
terminating expressions are equivalent to non-terminating expressions. The need for the
two properties arises from the fact that the correctness of coinduction relies in part on the
directionality of reduction ↪→. Recall that coinduction relies on detecting cycles in the
execution of a program. If we allowed lemma application without the lemma productivity
properties, lemmas could be used to reverse reduction steps without completing a cycle,
thus allowing for unsound applications of coinduction.

Example 4.1. Figure 14 shows an example of a situation where LEMMALEFTUS, a flawed
version of LEMMALEFT that does not enforce the second lemma productivity property, leads
to a faulty derivation of an untrue equivalence. Figure 14(a) shows the rule itself, which
takes all of the premises that LEMMALEFT takes except ¬(eV

2 � f). Figure 14(b) shows the
definitions of three expressions that we can use together with LEMMALEFTUS to violate

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 23

soundness. We can see from the definitions of f and w that w f (w f f) is not in SWHNF
itself, but it reduces to w f f and then to f , which is an empty list and therefore a terminal
expression in SWHNF. On the other hand, the variable g is a non-terminating expression
that will never reach SWHNF because it is defined in terms of itself.

Figure 14(c) shows the faulty derivation, where we reach the incorrect conclu-
sion that w f (w f f) and g are equivalent. At the start, we can apply U-COIND

to derive R, Y , w f (w f f) ≡ g because R= {(w f (w f f), g, Y)}. After that, we apply
LEMMALEFTUS. Between the application of LEMMALEFTUS and the final application of
RADD, there are two steps: one application of RED-L and one application of RED-R. The
application of RED-L converts the previous rule’s conclusion of R, Y , w f f ≡ g into
R, Y , w f (w f f) ≡ g since, as we said before, w f (w f f) reduces to w f f in one step.
The application of RED-R leaves the conclusion R, Y , w f (w f f) ≡ g unchanged since
g reduces to itself, but we need the step in the proof tree to uphold U-productivity for
U-COIND. At the end, we apply RADD to reach the conclusion that the terminating expres-
sion w f (w f f) is equivalent to the non-terminating expression g, which is a violation of
soundness.

Why do our lemma productivity requirements prevent this unsoundness? In short, in
a finite reduction sequence, a given function f may be called only finitely many times.
The equivalence guaranteed by the lemma (e1, Y)≡ (e2, Y) and the second productivity
requirement ensure that, even after lemma substitution, the number of calls to f required
for an equivalent (modulo any differences between the reduction of e1 and e2) reduction
sequence will not be increased by a lemma application. By induction on the number of
applications of f , we can then show that, if there exists a reduction path that would demon-
strate an inequivalence between the two expressions without the lemma being applied, we
will still discover it even after applying the lemma.

In Example 2.2, the lemma substitution that we use upholds both of our lemma produc-
tivity properties. The larger expression that receives the substitution is an application of
++, and the new sub-expression that we insert is drop n’ xs’. In the definition of drop,
there are no function applications other than the recursive application of drop itself, so we
meet the requirement of not introducing any new occurrences of ++.

The rule LEMMARIGHT resembles LEMMALEFT but substitutes on the right-hand side of
the state pair. Its soundness requirements are dual to the requirements for LEMMALEFT.

LEMMAOVER The rule LEMMAOVER uses a lemma to discharge an equivalence immedi-
ately rather than modifying the states for the equivalence. More specifically, LEMMAOVER

derives the conclusion (R, Y , e1 ≡ e2) from the existence of some eL
1, eL

2, and Y L such that
({}, Y L, eL

1 ≡ eL
2), (e1, Y) �V (eL

1, Y L), and (e2, Y) �V (eL
2, Y L). The justification for the

rule is straightforward. Since (e1, Y) �V (eL
1, Y L) and (e2, Y) �V (eL

2, Y L), it must be the
case that (eL

1, Y L) and (eL
2, Y L) are generalizations of (e1, Y) and (e2, Y). That is, (eL

1, Y L)
and (eL

2, Y L) must over-approximate the behavior of (e1, Y) and (e2, Y). Consequently, if
(eL

1, Y L) and (eL
2, Y L) are equivalent, so are (e1, Y) and (e2, Y).

Lemma Application Locations Our lemma rules, as we present them here, can perform
substitutions at any location within an expression. However, in practice, we usually do
not need to consider all parts of an expression as candidates for lemma substitutions. In
Section 6.4.1, we discuss the heuristics that we use for lemmas to restrict our attention

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

24 J. C. Kolesar et al.

to the locations where lemma substitutions are most likely to be useful. We discuss our
lemma heuristics further in Section 7.3.6, where we examine their effect on our evaluation
results.

4.4 Soundness

We define the soundness of an equivalence checker as follows:

Definition 3 (Soundness). A set of proof rules is sound if a productive proof tree using
those rules, and with the conclusion {}, Y , e1 ≡ e2, can be constructed only if e1 and e2

are equivalent.

Soundness establishes that our proof rules for equivalence align with the semantic defi-
nition of equivalence from the beginning of the section. We formally state the soundness
of the coinduction rules, in combination with the rules from the prior sections, as the
following theorem:

Theorem 3 (Soundness of Coinduction Rules). The syntactic equality rule
(SYN-EQ-EQUIV), the SWHNF equivalence rules (DC-EQUIV and LAM-EQUIV), the
reduction rules (RED-L and RED-R), the coinduction rules (RADD, U-COIND, and G-COIND),
and the lemma rules (LEMMALEFT, LEMMARIGHT, and LEMMAOVER) are sound when used in
a productive proof tree.

Proof Consider a proof tree with a root of {}, Y , e1 ≡ e2. Soundness of the syntactic
equality rule, the SWHNF equivalence rules, and the reduction rules is straightforward to
prove, so we focus on the coinduction and lemma rules.

We consider branches beginning at the root of the proof tree and ending with U-COIND,
G-COIND, or LEMMAOVER.

Ending with U-COIND Consider a branch ending at a leaf that is discharged with U-COIND:

RADD

¬SWHNF(eP
1)

¬SWHNF(eP
2)

U-COIND

∃(eP
1 , eP

2 , Y P) ∈ R, V .
(eC

1 , Y C)�V (eP
1 , Y P)

∧(eC
2 , Y C)�V (eP

2 , Y P)

R∪ (SC
1 , SC

2), Y C , eC
1 ≡ eC

2

...
R∪ (eP

1 , eP
2 , Y P), Y P, eP

1 ≡ eP
2

R, Y , eP
1 ≡ eP

2

...
{}, Y , e1 ≡ e2

Note that, since the proof tree is productive, there must be at least one application of
each of RED-L and RED-R between RADD and U-COIND.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 25

Suppose that there is, in fact, some reduction of (eC
1 , eC

2 , Y) that demonstrates that
eC

1 	≡ eC
2 . Then, by the completeness of symbolic execution (Theorem 2), there exists some

reduction of (eP
1 , eP

2 , Y) that demonstrates that eP
1 	≡ eP

2 . Since eP
1 	≡ eP

2 , it must be that there
exists a reduction of (eP

1 , eP
2 , Y) where one of the expressions reaches SWHNF and the

other never does, or where both expressions reach non-equivalent SWHNF expressions.
We consider each case:

• Only one expression terminates Without loss of generality, suppose that eP
1 reaches a

SWHNF expression eF
1 and that eP

2 does not terminate. Letting p(S)= SWHNF(S) and
q(S)= True, if no lemma is applied in the proof tree, Lemma 13 from the Appendix
tells us that there exists a reduction sequence S′↪→ = (e1′

1 , Y ′1), (e1′
2 , Y ′2), . . . which

reduces eP
1 to some SWHNF expression such that

∀i.e1′
i−1 ↪→ e1′

i =⇒ (e1′
j , Y ′j) 	� (e1′

i , Y ′i). (4.1)

If a lemma is applied by LEMMALEFT or LEMMARIGHT in a proof tree, it must be
applied to some expression f e . . . e in function application form. Lemma 14 from
the Appendix tells us that (4.1) is true even in the case of such a lemma applica-
tion, along the branch of the proof tree corresponding to a minimal number of f
applications. (Lemma 14 depends on Lemma 10, which requires the number of f
applications to be minimal.) In either the case with lemmas or the case without lem-
mas, the relevant reduction sequence must correspond to some branch of the proof
tree, and along it, we will never be able to apply U-COIND to discharge the state.
Thus, we will not be able to form a finite proof tree, and our rules are sound in this
case.

• Both expressions terminate Now suppose that eP
1 reduces to a SWHNF expres-

sion eF
1 , that eP

2 reduces to a SWHNF expression eF
2 , and that eF

1 	≡ eF
2 . The

expressions eF
1 and eF

2 must be data constructor applications, lambdas, or bot-
toms. Similarly to the previous case, letting p(S)= S � eF

1 and q(S)= S � eF
2 allows

us to use Corollary 3 to guarantee that there exists a paired reduction sequence
S′↪→ = (e1

1, e2
1, Y ′1), (e1

2, e2
2, Y ′2), . . . which reduces eP

1 and eP
2 to SWHNF expressions

that approximate eF
1 and eF

2 , respectively, such that

∀i.e1′
i−1 ↪→ e1′

i =⇒ (e1′
j , Y ′j) 	� (e1′

i , Y ′i)

and

∀i.e2′
i−1 ↪→ e2′

i =⇒ (e2′
j , Y ′j) 	� (e2′

i , Y ′i).

Similarly to the case in which only one expression terminates, Lemma 14 tells us
that this is true along some reduction sequence in the proof tree even if a lemma is
applied with LEMMALEFT or LEMMARIGHT.
We subdivide further to consider each of the three possible ways that the expressions
could reach SWHNF:

– eF
1 and eF

2 are data constructor applications If the data constructors being
applied are different, the proof tree will not be able to be completed, and we will
not be able to prove the equivalence of eF

1 and eF
2 soundly. If the data construc-

tors are the same, DC-EQUIV must be applied to check the equivalence of each

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

26 J. C. Kolesar et al.

corresponding argument between eF
1 and eF

2 . We can see then, by an inductive
argument on the size of the proof tree, that the proof for one of the corresponding
argument pairs must fail.

– eF
1 and eF

2 are lambdas We proceed with LAM-EQUIV, which checks the equiv-
alence of both lambdas applied to the same fresh symbolic literal. Again, by an
inductive argument on the size of the proof tree, the proof of the equivalence of
these applications will fail.

– eF
1 and eF

2 are labeled bottoms If the labels are different, we will not be able to
apply BOT-EQUIV to complete the proof tree.

Ending with G-COIND Now consider a proof tree with a root of ({}, Y , e1 ≡ e2), with a
branch that ends with G-COIND:

RADD

G-COIND

∃(eP
1 , eP

2 , Y P) ∈ R, V .
(eC

1 , Y C)�V (eP
1 , Y P)

∧(eC
2 , Y C)�V (eP

2 , Y P)

R∪ (SC
1 , SC

2), Y C , eC
1 ≡ eC

2

...
R∪ (eP

1 , eP
2 , Y P), Y P, eP

1 ≡ eP
2

R, Y , eP
1 ≡ eP

2

...
{}, Y , e1 ≡ e2

Note that, if there is at least one application each of RED-L and RED-R between the
applications of RADD and G-COIND, we could have applied U-COIND instead, and soundness
follows by the same argument. Thus, assume there is no application of RED-L (without loss
of generality, we could assume instead that there is no application of RED-R) between RADD

and G-COIND. To satisfy the productivity requirement, there must have been an application
of either DC-EQUIV or LAM-EQUIV. This means that eP

1 is already in SWHNF.
Suppose that there is, in fact, some reduction of (eC

1 , eC
2 , Y) that demonstrates that eC

1 	≡
eC

2 . Then, by Theorem 2, there must exist some reduction of (eP
1 , eP

2 , Y) that demonstrates
that eP

1 	≡ eP
2 . Since eP

1 	≡ eP
2 , it must be the case that there exists a reduction of eP

2 that
does not reach SWHNF or that reaches an application of a constructor distinct from the
constructor being applied in eP

1 . Soundness then follows from Lemma 13, as it does in the
U-COIND case.

Ending with LEMMAOVER Now consider the case where we end a branch with the
LEMMAOVER rule:

LEMMAOVER

{}, Y L, eL
1 ≡ eL

2
(e1, Y)�V (eL

1, Y L) (e2, Y)�V (eL
2, Y L)

R, Y , e1 ≡ e2

...

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 27

INEQUIV-DC
D1 	=D2

R, Y , D1 �e1 	≡ D2 �e2

INEQUIV-BOTL
SWHNF(e2) ⊥L 	= e2

R, Y ,⊥L 	≡ e2

INEQUIV-BOTR
SWHNF(e1) ⊥L 	= e1

R, Y , e1 	≡ ⊥L

CYL

SWHNF(e2) e ∈ {e1} ∪ targets(e1)
(e, Y) ↪→∗ (e′1, Y ′) e′ ∈ {e′1} ∪ targets(e′1) (e, Y)� (e′, Y ′)

R, Y , e1 	≡ e2

CYR

SWHNF(e1) e ∈ {e2} ∪ targets(e2)
(e, Y) ↪→∗ (e′2, Y ′) e′ ∈ {e′2} ∪ targets(e′2) (e, Y)� (e′, Y ′)

R, Y , e1 	≡ e2

Fig. 15: Counterexample rules.

To use LEMMAOVER, we must prove that Sl
1 ≡ Sl

2. Then, we can discharge S1 ≡ Sl
2 if

there exists some V such that (e1, Y)�V Sl
1 and (e2, Y)�V Sl

2.
�

5 Counterexample detection

We now discuss our techniques for detecting inequivalence and producing counterexam-
ples. We begin with the simple case, where the inequivalence manifests itself through the
expressions terminating with different SWHNF values. Then we explain how we detect
one-sided cycles: situations where one expression evaluates to a SWHNF value and the
other expression fails to terminate.

Inequivalent Values The INEQUIV-DC rule, shown in Figure 15, applies when the left-hand
and right-hand expressions have been reduced to SWHNF expressions that have distinct
outermost data constructors. In this case, the two expressions are inequivalent, and we
report their execution path as a counterexample. The rules INEQUIV-BOTL and INEQUIV-

BOTR state that a labeled bottom is inequivalent to any SWHNF expression except itself.

One-Sided Cycle Detection The one-sided cycle detection rules, CYL and CYR, are shown
in Figure 15. The cycle detection rules check if one expression has a non-terminating
path, while the other expression has already terminated. CYL detects the case where the
left-hand state (e1, Y) can loop infinitely while (e2, Y) has already reached SWHNF and
terminated. To detect non-termination, CYL checks if there is some (e′1, Y ′) such that
(e, Y) ↪→∗ (e′1, Y ′), where e is either e1 itself or a target expression within e1. There also
needs to exist some e′ such that (e, Y)� (e′, Y ′), where e′ is either e′1 itself or a target
expression within e′1. For any expression ê, the target expressions of ê are a non-exhaustive
set of sub-expressions of ê that are guaranteed to undergo evaluation before ê reaches
SWHNF. We use a helper function to define the set of target expressions:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

28 J. C. Kolesar et al.

targets(e)=

⎧⎪⎪⎨
⎪⎪⎩

{e′} ∪ targets(e′) e= case e′ of {�a}
{e1} ∪ targets(e1) e= e1 e2

{} otherwise

If the premises of CYL are satisfied and e′ is e′1 itself, then, by Theorem 2, there is an infi-
nite reduction sequence beginning with (e, Y). Intuitively, the premises (e, Y) ↪→∗ (e′1, Y ′)
and (e, Y)� (e′1, Y ′) mean that (e, Y) can evaluate to a state that is at least as general
as itself. Since (e′1, Y ′) is at least as general as (e, Y), (e′1, Y ′) must have an execution
path corresponding to any execution path that (e, Y) has. From (e′1, Y ′), we can follow
the path corresponding to (e, Y) ↪→∗ (e′1, Y ′) to reach another state (e′′1, Y ′′) such that
(e′1, Y ′)� (e′′1, Y ′′), and so on to infinity, so we have an infinite reduction sequence.

If e′ is a target expression of e′1 instead, then we can still construct an infinite reduction
sequence for (e, Y), but the construction is less direct. As in the previous case, we have that
(e, Y) ↪→∗ (e′1, Y ′). Because e′ is a target expression of e′1, any execution path that (e′1, Y ′)
has must reduce e′ to SWHNF before reducing anything else. Since (e, Y)� (e′, Y ′), we
can follow the execution path for e′ corresponding to (e, Y) ↪→∗ (e′1, Y ′), and this will
give us another more deeply nested target expression that approximates (e, Y) when paired
with the current state of its expression. We can keep repeating this process indefinitely to
produce an infinite execution path.

All that remains to be done is to link our infinite reduction sequence for e to an infinite
reduction sequence for e1. If e is e1, no conversion is necessary. If e is not e1, we can
convert the infinite execution path for e into an infinite execution path for e1 in the same
way that we converted the infinite path for e′ into an infinite path for e′1 before. Because e is
a target expression within e1, any execution path that (e1, Y) has must reduce e to SWHNF
before reducing anything else, and the approach from before works again. Since an infinite
reduction sequence for e1 exists, (e1, Y) cannot be equivalent to an expression that has
already terminated. We report the one-sided cycle as a counterexample immediately.

CYR works in the same way that CYL does, but it handles the case where the right-hand
expression is the non-terminating one.

Example 5.1. In Example 2.3 from Section 2, we showed a cycle counterexample where
e= e1 and e′ = e′1 for the application of CYL. For a different example that uses target
expressions, consider Theorem 4 from the Zeno suite (Sonnex et al., 2012). The theorem
appears in Figure 16. The right-hand side is in SWHNF, but the left-hand side has an
infinite execution path in the event that n is infinite. Evaluation starts by reducing the
outermost case statement:

case n === n of
False -> count n xs
True -> S (count n xs)

If we concretize n as S n’, the expression reduces further to this:

case n’ === n’ of
False -> count (S n’) xs
True -> S (count (S n’) xs)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 29

count :: Nat -> [Nat] -> Nat
count x [] = Z
count x (y:ys) =
case x === y of
False -> count x ys
True -> S (count x ys)

forall n xs . count n (n : xs) = S (count n xs)

Fig. 16: The count function and Zeno Theorem 4.

At this point, we can apply CYL. We do not have an approximation relation between
the two whole expressions because the new expression has n’ in some places where the
old expression had n and has S n’ in others. However, n’ === n’ is at least as general
as n === n. The sub-expression n === n is a target expression of the old expression, and
n === n reduces to n’ === n’ along the path we are considering, so we can use the target
expressions for CYL.

Note that this application of CYL is valid only because n === n reduces directly to
n’ === n’. If there were more evaluation steps between the old expression and the new
expression that altered the outer case statement and then brought it back to a form resem-
bling the old expression, we would not be able to apply CYL. In the premises for CYL, we
enforce this requirement by phrasing the reduction premise in terms of the target expression
being considered, not the outermost expression.

6 Automated equivalence checking

We now detail the automation of NEBULA. NEBULA aims to prove the equivalence of two
expressions automatically, or to find a counterexample showing that the expressions are
inequivalent, given an initial mapping between the expressions’ symbolic variables.

6.1 Approximation relations

The theoretical approximation relation � defined in Figure 9 is not computable. To imple-
ment the equivalence checking algorithm, we use a simpler approximation relation ⊆,
defined in Figure 17, that implies the theoretical version of approximation. The relation �
is not computable because certain rules check whether one expression can be reduced to
another expression. The corresponding rules for ⊆ simply check for syntactic alignment
between two states.

Within our algorithm, we can justify the claim that S1 � S2 holds by checking that S1 ⊆
S2 holds. The rules in Figure 17 compute a mapping V such that S1 ⊆V S2 (alternatively,
S1 �V S2) holds. These rules’ premises are judgments of the form V ′ � e1 �V ,Y1,Y2 e2, which
means that the mapping V can be extended to a new mapping V ′ such that (e1, Y1)�V ′
(e2, Y2). Most of the rules walk over the structure of the expressions inductively. The
most interesting rules are �-SYMV1 and �-SYMV2. The rule �-SYMV1 applies when e2 is

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

30 J. C. Kolesar et al.

�-SYMV1
s /∈ Y2 s /∈ V

V ∪ {s→ e} � e �V ,Y1,Y2 s
�-SYMV2

s /∈ Y2 e= lookup(s, V)

V � e �V ,Y1,Y2 s

�-SYMLKL

∃e= lookup(s, Y1)
V ′ � e �V ,Y1,Y2 e2

V ′ � s �V ,Y1,Y2 e2
�-SYMLKR

∃e= lookup(s, Y2)
V ′ � e1 �V ,Y1,Y2 e

V ′ � e1 �V ,Y1,Y2 s

�-CASE

�a1 = a1
1 . . . am

1 �a2 = a1
2 . . . am

2 V1 � e1 �V ,Y1,Y2 e2

∀(D �x1→ ea
1) ∈ �a1, (D �x2→ ea

2) ∈ �a2.Vi+1 � ea
1 �Vi,Y1,Y2 ea

2[�x1/ �x2]

Vm+1 � case e1 of { �a1}�V ,Y1,Y2 case e2 of { �a2}

�-VAR
V � x �V ,Y1,Y2 x

�-LAM
V ′ � e1 �V ,Y1,Y2 e2[x1/x2]

V ′ � λx1 . e1 �V ,Y1,Y2 λx2 . e2

�-DC
V �D �V ,Y1,Y2 D

�-APP

V ′ � e1 �V ,Y1,Y2 e′1
V ′′ � e2 �V ′,Y1,Y2 e′2

V ′′ � e1 e2 �V ,Y1,Y2 e′1 e′2

�-BT
V �⊥L �V ,Y1,Y2 ⊥L

⊆-LINK
V � e1 �{},Y1,Y2 e2

(e1, Y1)⊆V (e2, Y2)

Fig. 17: Computable approximation.

a symbolic variable not mapped by the current V , and it adds e1 as the mapping for e2,
producing the conclusion V ∪ {s→ e} � e1 �V ,Y1,Y2 s. The rule �-SYMV2 applies when e2

is a symbolic variable already in V and checks that e1 is syntactically equal to the existing
mapping: that is, V � e1 �V ,Y1,Y2 s if e1 = lookup(s, V).

As we state in Section 3 and demonstrate with Example 3.2, the use of evaluation in the
definition of� is essential to establish Theorem 2, the completeness of symbolic execution.
The following theorem, which can be proven by case analysis on the definitions of � and
⊆, allows us to use � and to benefit from symbolic execution completeness in theory,
while using the computable ⊆ in practice:

Theorem 4. If S1 ⊆ S2, then S1 � S2.

Proof We need to prove that, for any states S1 = (e1, Y1) and S2 = (e2, Y2) such that
e1 ⊆E

V ,Y1,Y2
e2 for some mapping V , there exists some mapping V ′ such that (e1, Y1)�V ′

(e2, Y2). We will show this by case analysis and induction on the definition of computable
approximation.

For this proof, we can treat the relations (e1, Y1)�V ′ (e2, Y2) and V ′ � e1 �V ,Y1,Y2 e2

as interchangeable for any combination of expressions, symbolic stores, and variable map-
pings. The former has one symbolic variable mapping, but the latter has two. In the rules for
computable approximation, we use the auxiliary mapping V to construct the main mapping
V ′ gradually while traversing a pair of expressions. The rule �-SYMV1 adds the mappings

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 31

that we need as we encounter them, and the requirement that s /∈ V for that rule prevents
us from adding inconsistent mappings. We can always convert the auxiliary relation into
⊆ if we start the traversal with an empty auxiliary mapping.

If we ignore the distinction between the two relations for computable approximation,
then the proof is trivial for most rules because there is an exact analogue among the rules
for non-computable approximation. The main difficulty comes from the three rules for han-
dling symbolic variables in computable approximation that do not have exact analogues.
(The rule �-SYMLKL corresponds to �-SYM0.)

The rule �-SYMV1 is subsumed by �-SYM2. If we have s /∈ Y2, s /∈ V , and V ∪ {s→ e} �
e �V ,Y1,Y2 s, then let V ′′ = V ∪ {s→ e}. By definition, e= lookup(s, V ′′). It holds trivially
that (e, Y1) ↪→∗ (e, Y1), and we also know that (e, Y1)�V ′′ (e, Y2) since any expression
approximates itself. Together with our premise s /∈ Y2, we have everything we need to
apply �-SYM2 to conclude (e, Y1)�V ′′ (s, Y2).

The rule �-SYMV2 is also subsumed by �-SYM2. If we have s /∈ Y2, e= lookup(s, V),
and V � e �V ,Y1,Y2 s, then we have (e, Y1) ↪→∗ (e, Y1) and (e, Y1)�V (e, Y2) trivially.
Again, this gives us what we need to apply �-SYM2 to reach the conclusion (e, Y1)�V

(s, Y2).
The most complex case of the proof is the one for �-SYMLKR, and we will dedicate

the remainder of the proof to it. The rule �-SYMLKR derives V ′ � e1 �V ,Y1,Y2 s from the
premises ∃e= lookup(s, Y2) and V ′ � e1 �V ,Y1,Y2 e. We will break our proof for this rule
into two sub-cases.

Concretized Symbolic Variables on Both Sides Suppose that e1 is a symbolic variable s′.
We know from our premises that s has a concretization e in Y2. Moreover, e is not a
symbolic variable because a symbolic variable cannot be concretized as another symbolic
variable. We also have as a premise that V ′ � s′ �V ,Y1,Y2 e. To derive V ′ � s′ �V ,Y1,Y2 e in
the first place, we would have needed to use the rule �-SYMLKL. No other rule’s conclusion
has a symbolic variable on the left-hand side and something that is not a symbolic variable
on the right-hand side. That application of �-SYMLKL would have needed to have e′1 =
lookup(s′, Y1) and V ′ � e′1 �V ,Y1,Y2 e as premises. By our inductive hypothesis, this implies
that there exists some mapping V ′′ such that (e′1, Y1)�V ′′ (s, Y2). We said that Y1 maps s′

to e′1, so we can apply �-SYM0 to conclude (s′, Y1)�V ′′ (s, Y2), which was our goal for this
sub-case.

Concretized Symbolic Variable on the Right Only Now assume that e1 is not a symbolic
variable. For this sub-case, we still have the same premises and conclusion: V ′ � e1 �V ,Y1,Y2

s, ∃e= lookup(s, Y2), and V ′ � e1 �V ,Y1,Y2 e. The rule �-SYM1 gives us that (e1, Y1)�V ′′
(s, Y2) if three conditions hold, where V ′′ is a new mapping, e′ = lookup(s, V ′′), and e′′ is
some other expression:

1. (e′, Y1) ↪→∗ (e′′, Y1).
2. (e1, Y1)�V ′′ (e′′, Y2).
3. (e1, Y1)�V ′′ (e, Y2).

Let e′ and e′′ both be equal to e. These definitions make condition (1) hold trivially
because e′ = e′′ and ↪→∗ is reflexive. Before we define V ′′ and confirm the other two

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

32 J. C. Kolesar et al.

conditions, we will perform some more case analysis on e. Because e is drawn from a
symbolic store, it must be a data constructor application or labeled bottom.

If e=⊥L for some label L, then we know that e1 is ⊥L as well since V ′ � e1 �V ,Y1,Y2 e.
We assumed that e1 is not a symbolic variable, so there is no other way for the relation to
hold. The rule�-BT gives us that (⊥L, Y1)�V ′′ (⊥L, Y2) regardless of the value of V ′′. This
gives us conditions (2) and (3) immediately because e1, e′′, and e are all equal to⊥L in this
situation. Let V ′′ be the mapping that only maps s to e′ in order to uphold the requirement
that e′ = lookup(s, V ′′).

If e=D �ed , where �ed is a vector of n arguments for D, then e1 must be D �ec for
some other vector �ec of the same length n. Since V ′ � e1 �V ,Y1,Y2 e and we can ignore
the distinction between the two relations for computable approximation, it must hold
that (e1, Y1)⊆V ′ (e, Y2) and that (ec

i , Y1)⊆V ′ (ed
i , Y2) for every i ∈ {1, ..., n}. As an induc-

tive hypothesis, we can assume that, for every such i, there is a mapping Vi such that
(ec

i , Y1)�Vi (ed
i , Y2). For every index i, the set of symbolic variables in ed

i must be dis-

joint from the set of symbolic variables in any other argument in �ed because D �ed is a
concretization of s. We also know that s does not appear in �ed because symbolic variable
concretizations cannot be cyclic. This means that we can define V ′′ as

⋃n
i=0 Vi, where V0

is the mapping that simply maps s to e′, without worrying about overlapping mappings.
(Assume that V1, ..., Vn only contain mappings that are actually used for their respec-
tive approximations. We include V0 in the union in order to uphold the requirement that
e′ = lookup(s, V ′′).) Adding irrelevant symbolic variable mappings does not interfere with
an approximation, so we know that (ec

i , Y1)�V ′′ (ed
i , Y2) for every i ∈ {1, ..., n}. It follows

from �-DC and �-APP that (D �ec, Y1)�V ′′ (D �ed , Y2). In other words, (e1, Y1)�V ′′ (e, Y2).
This is precisely what we wanted to confirm for condition (3), and it gives us condition (2)
as well because e′′ = e.

�

6.2 Equivalence checking loop

We describe the main verification algorithm here. In this section, we ignore the generation,
proving, and usage of lemmas. We will discuss integration of lemmas into the algorithm
in Section 6.4.

The algorithm runs symbolic execution on pairs of states, keeping track of all of the
branching paths that it encounters. The execution stops periodically so that NEBULA can
attempt to discharge branches by proving the equivalence of the two expressions on a
branch. The algorithm terminates when it discharges every branch or finds a contradiction.

Tactics are the basis of NEBULA’s approach to proving equivalence. The main purpose
of applying a tactic to a branch is to discharge the branch by proving the equivalence of its
two sides, but tactics can also produce potential lemmas or identify counterexamples. We
enumerate the proof tactics employed by NEBULA in Section 6.3.

We refer to the branches that descend from the original proof goal as obligations. An
obligation is a linear record of the history of two expressions’ symbolic execution, divided
into blocks that represent different stages of simplification of the expressions. A new
block is introduced each time an expression reaches SWHNF, and the rule DC-EQUIV

or LAM-EQUIV from Figure 10 is applied. Blocks allow us to enforce the productivity

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 33

H←{[((e1, {}); (e2, {}))]};
while H not empty do

H ′ ← {};
for [. . . , (S1

a , . . . , S1
b ; S2

c , . . . , S2
d)] ∈H do

Run symbolic execution on S1
b and S2

d ;

Get (S1
b+1, S2

d+1) from stopping points on both sides;

for (S1
b+1, S2

d+1) ∈ (S1
b+1, S2

d+1) do
Make new obligations from (S1

b+1, S2
d+1) if possible;

if obligation creation fails then
return (S1

b+1, S2
d+1) as a counterexample;

else
Add the new obligations to H ′;

for t ∈ tactics do
Filter H ′ with t;
if t fails on any obligation then

return the obligation as a counterexample;

H←H ′;
return VERIFIED;

Algorithm 1: Verification algorithm without lemmas.

properties for both guarded and unguarded coinduction. The verification algorithm deals
mainly with obligations rather than dealing with state pairs directly because our pri-
mary techniques for proving equivalences require comparisons between different points
in expressions’ evaluation histories.

The main algorithm, shown as Algorithm 1, maintains a set H of obligations. Reduction
for the most recent state pair in each obligation continues until it reaches a termination
point: a point where we consider applying coinduction or other tactics to the state. We
will cover the formal definition of a termination point later in this section. Once reduc-
tion finishes for each obligation, we generate a set of updated obligations. An individual
obligation from the old set can produce one new obligation, multiple new obligations, or
no obligations at all. We then apply tactics to the obligations. If any application of a tac-
tic to an obligation finds a contradiction, we terminate the main loop and report that the
two original expressions are not equivalent. After attempting to apply every tactic to every
obligation, we use the remaining obligations as the starting point for the next loop iteration.
If the set of obligations ever becomes empty, we terminate the loop and report that the two
original expressions are equivalent.

Obligation Reductions Formally, an obligation H is a list of blocks, where a block B is
a pair of lists of states (S1

a , . . . , S1
b ; S2

i , . . . , S2
j) such that ∀a≤ c < b.S1

c ↪→∗Yj
S1

c+1 and ∀i≤
k < j.S2

k ↪→∗Yb
S2

k+1. The reductions ↪→Y2 and ↪→∗Y2
are the same as ↪→ and ↪→∗, except with

a single additional rule: LKDC-SYNC, shown in Figure 18. The rule LKDC-SYNC ensures
that concretizations of a variable stay consistent between the two sides of an obligation. In
↪→Y2 and ↪→∗Y2

, Y2 is the symbolic store from the latest state on the opposite side of the
obligation. If s has a concretization on the opposite side but not on the side being evaluated,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

34 J. C. Kolesar et al.

LKDC-SYNC
s /∈ Y s ∈ Y2 D �s= lookup(s, Y2)

(case s of {D �x→ ea; . . .}, Y) ↪→Y2 (ea [�s / �x], Y {s→D �s})
Fig. 18: Symbolic store synchronization.

LKDC-SYNC copies the concretization from the opposite side’s store into the store of the
current state.

As a matter of notation, we denote the first state on either side of the first block of an
obligation as having an index of 1. If j and k are the last state indices on the two sides of
block Bi, then the first states on the corresponding sides of block Bi+1 have indices of j+ 1
and k + 1.

Recall that we form a new block whenever we apply DC-EQUIV or LAM-EQUIV. If S1
j and

S2
k are the final states in a block Bi, the expressions inside S1

j and S2
k must be either data

constructor applications or lambdas. If the expressions are data constructor applications,
then the expressions in the starting states S1

j+1 and S2
k+1 in Bi+1 are corresponding argu-

ments from the applications. If S1
j and S2

k are lambdas, then the expressions in S1
j+1 and

S2
k+1 are applications of those lambdas to the same fresh symbolic argument. We divide

the state histories in an obligation into blocks in order to uphold soundness for our proof
tactics. Since we treat the evaluation sequences on the left and right sides as decoupled,
we need a way to ensure that the two states we classify as equivalent actually represent
corresponding points in the two sides’ evaluation. Example 6.1 demonstrates why blocks
are necessary for soundness:

Example 6.1. If we disregarded blocks, we could prove wrongly that S (S Z) = S Z. Let
P1 be the starting proof goal, namely S (S Z) = S Z. Removing the outer S constructors
from both sides of P1 allows us to replace the proof goal with a new goal, S Z = Z, which
we will call P2. The left-hand expression in P2 is S Z, which is identical to the right-hand
expression in P1. Since P2 is a descendant of P1, it appears as if the left-hand expression
from P1 has been reduced to a point (in P2) where it is identical to the right-hand expression
from P1. Appealing to the syntactic equality of the two expressions would yield a proof
of P1, but this is not actually valid reasoning because the reduction from P1 to P2 does
not happen by regular evaluation. Removing the S constructors in the reduction from P1

to P2 creates a new block, so forbidding the use of syntactic equality between states from
different blocks prevents invalid theorems like P1 from being proven.

Symbolic Execution Termination Symbolic execution stops if the expression being eval-
uated reaches SWHNF, but some expressions will never reach SWHNF no matter how
many evaluation steps they undergo. Because of this, we also stop symbolic execution if
an expression e is either a fully-applied non-symbolic function or a case statement such
that an element of targets(e) is a fully-applied non-symbolic function, reusing the defini-
tion of targets(e) from Section 5. This guarantees termination because the only feature of
λS that can prevent symbolic execution from reaching SWHNF is recursion. To enforce
the productivity properties described in Section 4.2 and to ensure that we use coinduc-
tion soundly, we require that symbolic execution have taken at least one step on each side
before terminating.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 35

Verification Process Initially, H contains only one obligation: [((e1, {}); (e2, {}))], where
(e1, e2) is the starting expression pair. During each iteration of the main loop, for each
unresolved obligation [. . . , (. . . , S1

j ; . . . , S2
k)], we apply reduction to S1

j (assuming S1
j is not

in SWHNF already) to obtain a new set of states S1
j+1 such that ∀S1

j+1 ∈ S1
j+1.S1

j ↪→∗
Y2

k
S1

j+1.

Then, for each S1
j+1 = (e1

j+1, Y 1
j+1) ∈ S1

j+1, S2
k+1 is reduced using ↪→∗

Y1
j+1

to obtain a set of

states S2
k+1, which gives us new obligations

{[. . . , (. . . , S1
j , S1

j+1; . . . , S2
k , S2

k+1)]|S2
k+1 ∈ S2

k+1}.
If either of the most recent states is already in SWHNF, we simply reduce the other state to
obtain n new states and append each new state to the appropriate side of the newest block
in the obligation, producing n new obligations to take the place of the old one.

6.3 Tactics

After performing symbolic execution, we apply tactics to the obligations in an effort to dis-
charge them or to produce counterexamples. Our proof rules and counterexample rules, as
presented in Sections 4 and 5, expect two expressions that share a symbolic store. However,
our implementation maintains separate symbolic stores for the left-hand and right-hand
expressions in an obligation. We will begin by explaining synchronization, our process for
joining the two sides’ symbolic stores together when applying tactics, and briefly explain-
ing our motivation and justification for this representation. Then we will enumerate the
tactics that NEBULA uses in the main verification algorithm.

6.3.1 Synchronization

When we apply tactics, we synchronize the left-hand and right-hand states to be used for
the tactic with each other.

Method If (e1, Y1) and (e2, Y2) are two states, then (e1, Y) and (e2, Y) are the synchronized
versions of the states, where Y = Y1 ∪ Y2. There is no risk of concretizations conflicting
with each other when we take the union since we only ever synchronize pairs of states
from the same obligation. If a symbolic variable s has already been concretized on one side
of an obligation, the reduction rule LKDC-SYNC ensures that s cannot receive a conflicting
concretization on the opposite side.

Justification Synchronizing the two sides of an obligation just before applying a tactic
rather than synchronizing immediately at every opportunity allows us to decouple the
evaluation sequences of an obligation’s two sides from each other. Allowing staggered
present-state and past-state combinations for tactics enables us to identify more opportuni-
ties to apply the tactics than we would find otherwise. The latest left-hand and right-hand
expressions may not retain any meaningful connection over the course of multiple applica-
tions of symbolic execution. If the left-hand side and right-hand side both reach cycles that
are usable for coinduction, the cycles may not start or end at the same time, and the two
sides will not necessarily hit the same number of stopping points for symbolic execution
between the start and end of their cycles. Example 2.1 is an instance of this.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

36 J. C. Kolesar et al.

6.3.2 Implementations of tactics

NEBULA uses tactics including syntactic equality and cycle counterexample detection, as
outlined in Sections 4 and 5. For the most part, the implementations of these tactics are
straightforward from the rules in those sections. However, the implementations of guarded
and unguarded coinduction rely heavily on the structure of the obligations and blocks.

Coinduction Coinduction, as described in Section 4.2, allows us to discharge obligations
directly. Consider two blocks within an obligation, which may or may not be distinct:

[. . . , (S1
a , . . . , S1

b ; S2
j , . . . , S2

k), . . . , (S1
c , . . . , S1

d ; S2
m, . . . , S2

n), . . .]

Let B be the first block and let B′ be the second block. Coinduction can be unguarded
or guarded. For unguarded coinduction, B and B′ are allowed to be the same block, but all
four of the expressions in the present states and past states must not be in SWHNF. For
guarded coinduction, the expressions from the present and past states can be in SWHNF,
but B and B′ must be distinct blocks.

Recall the rule RADD from Figure 12 for adding state pairs to a relation set R. We want
to be able to apply RADD to any 1≤ p1 < d and 1≤ p2 < n, to add S1

p1
, S2

p2
to R. Then we

could choose any p1 < q1 ≤ d or p2 < q2 ≤ n and attempt to use U-COIND (from Figure 12)
to discharge either the state pair (S1

d , S2
q2

) or the state pair (S1
q1

, S2
n). We synchronize the two

present states with each other and the two past states with each other, so that (as the rules
in Section 4.2 require) the present states share a symbolic store and the past states share
a symbolic store. Note that we do not need to consider applying coinduction to S1

q1
and

S2
q2

where both q1 	= d and q2 	= n, because we have considered that possibility already in
some past loop iteration. For guarded coinduction, the past states that we add to R need to
have indices 1≤ p1 ≤ b and 1≤ p2 ≤ k, and we use the rule G-COIND (also from Figure 12)
instead. Everything else remains the same as it is for unguarded coinduction.

6.4 Lemmas

Lemmas allow us to modify expressions before applying ⊆ and coinduction to them.
Section 4.3 covers the rules and conditions that allow us to apply lemmas soundly. Here,
we discuss both the practical implementation of the rules and the heuristics that we use to
select potential lemmas.

Coinduction Lemmas We use lemmas to rewrite states into forms that are more amenable
to ⊆ and coinduction. Consequently, we generate potential lemmas in situations where
⊆ fails to hold. If we have two states such that (e1, Y1) 	⊆ (e2, Y2), we may be able to
generate a lemma that, once proven, allows us to rewrite one of the two states so that the
approximation holds.

LEMCO in Figure 19 shows how we produce possible lemmas from failed approximation
attempts. Specifically, LEMCO generates possible lemmas in situations where �V ,Y1,Y2 fails
to hold between two expressions, 	� e1 �V ,Y1,Y2 e2. We use these expressions to create a
new possible lemma:

(e1, Y ′) ≡ (e2 [V (s) / s], Y ′)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 37

LEMCO
Y ′ = Y1 ∪ Y2

(e1, Y ′) ≡ (e2 [V (s) / s], Y ′) 	� e1 �V ,Y1,Y2 e2

LEMGEN

e′1 ∈ targets(e1) e′2 ∈ targets(e2)
e′1 = e′2 s fresh Y ′ = Y1 ∪ Y2

(e1 [s / e′1], Y ′) ≡ (e2 [s / e′2], Y ′) 	� e1 �V ,Y1,Y2 e2

Fig. 19: Rules for lemma introduction.

If we prove the lemma, we may be able to rewrite the first function application with
it to create a situation where �V ,Y1,Y2 holds. Note that, if we let VI denote the iden-
tity mapping on variables, (e1, Y ′)⊆VI (e1, Y ′). Consequently, once we prove the lemma,
the rule LEMMALEFT from Figure 13 can replace e1 with e2 [V (s) / s]. We can see that
e2 [V (s) / s] �V ,Y1,Y2 e2, and so it is possible that �V ,Y1,Y2 will hold for the entirety of the
initial expression after the rewriting.

Recall the two lemma productivity properties from Section 4.3 that are sufficient for
enforcing sound lemma usage. The first property requires that the expression receiving a
substitution based on the lemma is an application of some function f . The second property
requires that the function f not appear syntactically in the expression e2 [V (s) / s] being
added by the substitution, or in any functions directly or indirectly callable by e2 [V (s) / s].
Both requirements can be confirmed before applying a lemma with a simple syntactic
check.

Generalization Lemmas The generalization tactic generates potential lemmas that, if
proven, can be used to discharge a pair of states S1 = (e1, Y1) and S2 = (e2, Y2) from oppo-
site sides of the same block. To generate these potential lemmas, we examine the set
of target expressions from either side, reusing our helper function from Section 5. If an
expression in targets(e1) is syntactically equal to an expression in targets(e2), then we cre-
ate a potential lemma where the matching target expressions in e1 and e2 are replaced
with the same fresh symbolic variable. The rule LEMGEN in Figure 19 formalizes this. If
we prove the lemma, we can use it to discharge the original obligation by applying the
LEMMAOVER rule from Figure 13.

Lemma Implementation Augmenting Algorithm 1 to support lemmas requires a few
changes. Every potential lemma receives a fresh name L to differentiate it from other poten-
tial lemmas. We add lemma obligations to H , but we tag every obligation for a potential
lemma with the potential lemma’s name. We know that we have finished proving a lemma
L when every obligation in H with L as its tag has been discharged.

We also tag each potential lemma with a generating state pair (Si
m, Si

n), which is the
pair of states that caused us to generate the potential lemma when ⊆ failed to hold. If we
succeed in proving the lemma, we retry the coinduction tactic, with the new lemma in
hand, on all obligations that include the states Si

m and Si
n, with all appropriate state pairs

from the other side. We discharge all obligations for which coinduction succeeds with the
new lemma.

Before we add any new potential lemma to the list of potential lemmas to prove, we
perform a few checks to avoid redundant work. If the new potential lemma is implied by

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

38 J. C. Kolesar et al.

a lemma that has already been proven, is equivalent to a potential lemma that has been
proposed but not proven yet, or implies a previously proposed potential lemma that has
been disproven, we discard the potential lemma instead of attempting to prove it. Here, we
mean that one potential lemma L implies another potential lemma L′ if the generating state
pair of L approximates the generating state pair of L′ according to ⊆. Also, L and L′ count
as equivalent if the approximation works in both directions.

6.4.1 Heuristics for potential lemma generation

In our implementation, we use a heuristic to limit the generation of possible lemmas. If
(e1, Y1) and (e2, Y2) are two states being tested for approximation, and e′1 and e′2 are corre-
sponding sub-expressions of e1 and e2 such that � e′1 �V ,Y1,Y2 e′2 fails to hold, then we use
LEMCO to produce a possible lemma from e′1 and e′2 only if e′1 and e′2 do not lie in the active
region of e1 and e2. We define a function active(e) to indicate the parts of an expression
that lie in the active region:

active(e)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{e} ∪ active(e1) e= e1 e2

{e} ∪ active(e′) e= case e′ of {�a}
{e} ∪ active(e′) e= λx . e′

{e} otherwise

Intuitively, active(e) is a set of AST nodes within e that are guaranteed to undergo eval-
uation if symbolic execution continues indefinitely without reaching a terminal expression.
The set is not necessarily the whole set of AST nodes that are guaranteed to undergo eval-
uation, since determining reachability is undecidable in general. However, the function
captures some guarantees that hold universally for our language. Importantly, the output
of active(e) should be viewed as a set of AST locations, not a set of expressions. If the
same sub-expression e′ appears multiple times in an expression e, both in the active region
and outside it, the copies of e′ that are not in active(e) can be used to generate possible
lemmas.

Our definition of the active region is very similar to our definition of target expressions
from Section 5, but active(e) includes the bodies of lambdas and targets(e) does not. The
reason for the difference is that the definition of the active region depends on the assump-
tion that e has an infinite reduction sequence. The definition of target expressions does not
incorporate that assumption.

For an application e1 e2, the active region includes e1 but not e2. Recall the reduc-
tion rules in Figure 7. An infinite reduction sequence is not guaranteed to evaluate e2:
the sequence could apply APP repeatedly, constantly reducing e1 while never touching e2.
However, an infinite reduction sequence must manipulate e1, either by applying APP or
by applying APPλ to substitute e2 into e1. The rule BTAPP effectively leaves e1 untouched,
but it cannot appear in an infinite reduction sequence because the end result of BTAPP is a
terminal expression.

For case statements, we include the scrutinee in the active region but not the expressions
in the branches. The rationale is the same as it is for applications. An infinite reduction

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 39

HGLOOKUP
s′ = lookup(s e, Y)

(s e, Y) ↪→ (s′, Y)
HGFRESH

s e /∈ Y s′ fresh

(s e, Y) ↪→ (s′, Y {s e→ s′})
Fig. 20: Evaluation for symbolic functions.

sequence can reduce the scrutinee forever with CSEV and never reach any of the branches,
but there is no way for it to avoid reducing the scrutinee. We cannot have an infinite
reduction sequence where the scrutinee reduces to a bottom value because the evaluation
would terminate one step afterward with BTCS.

Even though lambdas are in SWHNF, we count the body of a lambda as being inside
the active region if the lambda itself is in the active region. When a lambda is applied to
an argument, the body receives some substitutions and becomes the main expression to be
evaluated afterward. If the lambda itself is in the active region, then an infinite reduction
sequence will need to reduce the lambda eventually by applying it, and the body of the
lambda will need to undergo evaluation at that point.

Why do we choose not to generate potential lemmas from sub-expressions in the
active region? It is not a requirement for soundness, but it helps to prevent NEBULA

from cluttering its search space with unnecessary potential lemmas. Recall the proof of
prop01 from Example 2.2. We needed to apply a lemma to convert drop (S n’) (x:xs’)
into drop n’ xs’ because the application of drop is not in the active region of
take n’ xs’ ++ drop (S n’) (x:xs’). On the execution path where n’ and xs’ are con-
cretized with more successors and list elements endlessly, the application of drop will
never be reduced, so normal evaluation will never cause it to align with the original appli-
cation drop n xs. On the other hand, there is no need to apply a lemma to the application of
take: the application lies in the active region, so ordinary symbolic execution reduces the
application of take on its own to give us the alignment we want. In general, the same prin-
ciple establishes that lemma substitutions in the active region are not as useful for NEBULA

as lemma substitutions outside the active region are. There are exceptions, as we discuss
in Section 7.3.6, but in practice the performance improvement that comes from narrowing
the space of potential lemmas outweighs the benefit of generating potential lemmas from
sub-expressions in the active region.

6.5 Symbolic functions

Our implementation supports symbolic function variables, although our earlier formal-
ism does not. The reduction rules for symbolic function applications appear in Figure 20.
As symbolic execution proceeds, we record symbolic function applications that we have
encountered in the symbolic store, just as we record concretizations of ordinary symbolic
variables. If a symbolic function application we are evaluating is syntactically identical
to one encountered previously, we apply HGLOOKUP to introduce the same variable that
we used before. Otherwise, we apply HGFRESH to introduce a new symbolic variable. For
the sake of simplicity, we check only for syntactic equality between symbolic function
applications rather than performing a more thorough equivalence check.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

40 J. C. Kolesar et al.

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile _ [] = []
takeWhile p (x:xs) =
case p x of
True -> x : (takeWhile p xs)
_ -> []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile _ [] = []
dropWhile p (x:xs) =
case p x of
True -> dropWhile p xs
_ -> x:xs

forall p xs . takeWhile p xs ++ dropWhile p xs = xs

Fig. 21: Zeno Theorem 43.

Our verification process remains sound when we introduce symbolic functions, as the
symbolic variable that replaces a symbolic function application can assume any value of
its type, including ⊥L. This means that our handling of symbolic functions can only make
proof goals more general.

Although verification remains sound when we support symbolic functions, symbolic
functions do introduce the possibility of spurious counterexamples. Expressions can be
equivalent even if they are not syntactically identical, so NEBULA may assign two equiv-
alent applications of a symbolic function to two distinct symbolic variables. If the two
variables receive different concretizations, the choice of concretizations will represent an
impossible situation. NEBULA cannot detect the inconsistency, and it may derive a spuri-
ous counterexample from the branch. Nevertheless, spurious counterexamples are rare in
practice. In our evaluation, NEBULA never rejected any theorem, valid or invalid, because
of a spurious counterexample.

6.5.1 Symbolic function consistency

The possibility of spurious counterexamples has repercussions for our handling of one-
sided cycle detection. An approximation for one-sided cycle detection does not represent
a real counterexample if it maps expressions with differently concretized symbolic func-
tion mappings to each other. NEBULA can encounter spurious counterexamples with this
problem if we do not impose any safeguards for one-sided cycle detection:

Example 6.2. Consider Theorem 43 from the Zeno test suite (Sonnex et al., 2012), shown
in Figure 21. In the theorem, p is a symbolic function whose output type is Bool. The
function application takeWhile p xs returns the entries at the front of xs up to but not
including the first entry for which p returns False. Conversely, dropWhile p xs returns
all the entries of xs except the ones returned by takeWhile p xs. Consider the symbolic
execution branch where, at the start, xs is concretized as x:ys. We examine the left-hand
side’s evaluation:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 41

takeWhile p xs ++ dropWhile p xs
takeWhile p (x:ys) ++ dropWhile p (x:ys)

Within takeWhile, p is applied to x, so we map p x to a fresh symbolic variable b. The
case statement inside takeWhile will then branch on the value of b. On the branch where b
is concretized as True, we have this:

(x:takeWhile p ys) ++ dropWhile p (x:ys)
x:(takeWhile p ys ++ dropWhile p (x:ys))

At this point, the leading x drops from both sides. (The right-hand side is simply x:ys.)
We evaluate further, taking the branch where ys is concretized as y:zs:

takeWhile p ys ++ dropWhile p (x:ys)
takeWhile p (y:zs) ++ dropWhile p (x:y:zs)

We apply p to y, and we map p y to a fresh symbolic variable b’. Now takeWhile
branches on the value of b’. Consider the branch where b’ is concretized as False, causing
takeWhile to return []. This makes the application of dropWhile reachable:

[] ++ dropWhile p (x:y:zs)
dropWhile p (x:y:zs)
dropWhile p (y:zs)

Because p x evaluates to True, dropWhile drops x from the front of the list. Once eval-
uation reaches this point, CYL appears to be applicable. If we ignore symbolic function
mappings, then dropWhile p (x:y:zs) approximates dropWhile p (y:zs), with y map-
ping to x and zs mapping to y:zs. The right-hand side is y:zs at this point, which is in
SWHNF, so we have what looks like a one-sided cycle. However, this is not a genuine
counterexample because x is not really a more specific version of y in all aspects of its
behavior. During evaluation on this branch, we decided that p x is True and that p y is
False. The concrete values True and False are distinct, so replacing y with x does not
preserve the program’s non-symbolic behavior perfectly.

We can avoid spurious cyclic counterexamples with this problem by enforcing an extra
symbolic function consistency requirement on any approximation mapping V for a one-
sided cycle. Let Y1 be the symbolic store for the present state S1, and let Y2 be the symbolic
store for the past state S2. Let e1 be a symbolic function application mapped to the variable
s1 in Y1. Let e2 be another symbolic function application mapped to s2 in Y2. Let V be
a mapping for an approximation between S1 and S2. If any expressions with symbolic
function mappings from the symbolic store in the past align with expressions that have
symbolic function mappings in the symbolic store in the present, then the mappings for the
two expressions also need to align:

∀(e1, s1) ∈ Y1, (e2, s2) ∈ Y2.(e1, Y1)⊆V (e2, Y2)⇒ (s1, Y1)⊆V (s2, Y2)

Importantly, the mapping V for symbolic function consistency is fixed to be the
same mapping from the main approximation. If an approximation that holds between
two symbolic function applications requires a different set of mappings than the main
approximation does, then we do not need to worry about it.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

42 J. C. Kolesar et al.

Note that our enforcement of symbolic function consistency is only a helpful heuristic
for rejecting certain spurious counterexamples, not a requirement for the soundness of ver-
ification. There is no need to check symbolic function consistency when applying regular
tactics for verification. To see why, let e1 and e2 be two symbolic function applications such
that (e1, Y1)� (e2, Y2) for some symbolic stores Y1 and Y2, but e1 and e2 are not syntacti-
cally equal. Let s1 and s2 be the fresh symbolic variables used for e1 and e2, respectively.
Suppose that, as the verification algorithm runs, we produce and discharge an obligation
H where s1 and s2 have inconsistent concretizations. Discharging H does not make the
verification algorithm unsound: the concretizations for s1 and s2 represent an impossi-
ble situation, so the equivalence for H holds vacuously. Additionally, in order to verify
the theorem fully, we will still need to cover all of the cases where s1 and s2 have con-
sistent concretizations. Taking impossible concretizations into consideration may prevent
NEBULA from verifying certain theorems, but it does not allow NEBULA to disregard any
symbolic execution paths that really need to be validated.

6.6 Total variables

Our implementation allows users to mark specific symbolic variables as total. Total sym-
bolic variables and their descendants cannot be concretized as bottoms. To support total
symbolic variables soundly, an additional condition needs to hold for approximations
between states. If the approximation mapping V maps the symbolic variable s to an expres-
sion e, and s has been marked as a total variable, then e needs to be total as well for the
approximation to be valid. Checking totality for expressions in general is undecidable, so
we under-approximate the requirements for totality:

totalExpr(e)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s marked as total e= s

True e=D

totalExpr(e1)∧ totalExpr(e2) e= e1 e2

False otherwise

The only expressions that we count as total for approximations are data constructors,
symbolic variables that have been marked as total, and applications of expressions that
are total by the same definition. When a total symbolic variable is concretized, any new
symbolic variables in the concretization are marked as total in turn.

Totality works differently for symbolic functions than it does for symbolic variables of
algebraic datatypes. We never concretize symbolic functions, so, for our purposes, a total
function is one that always maps total inputs to total outputs. During symbolic execution,
if we encounter an application of a total symbolic function f to arguments ea

1 . . . ea
k that are

all total according to totalExpr(ea
i), we mark the fresh variable that we use as a substitute

for the application as total.
Our definition of totality, as used to describe both functions and non-function expres-

sions, is standard in the field of functional programming (Danielsson et al., 2006; Claessen
et al., 2012; Breitner et al., 2018; Spector-Zabusky et al., 2018; Hallahan et al., 2019;
Mastorou et al., 2022). This meaning is closely linked to the mathematical concept of a
total function. In mathematics, a total function has a mapping for every element in its

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 43

domain, or set of allowed input values. In functional programming, when deciding whether
a function is total, we consider a non-function expression to be part of the domain only if
it contains no bottoms or diverging sub-expressions. Correspondingly, we consider a func-
tion expression to be part of the domain only if that function expression is itself total.
Note that a total function may still produce ⊥ or diverge when given arguments (includ-
ing function arguments) that themselves contain ⊥ or diverge because such expressions
are not part of the considered domain for totality. Further, in these situations, the function
itself is not the source of the bottom or non-termination: it simply retransmits the bottom
or non-termination that comes from some other part of the program.

7 Evaluation

We implemented our techniques for equivalence checking with coinduction and symbolic
execution in a practical tool, NEBULA. NEBULA is written in Haskell, and it checks equiv-
alences between Haskell expressions automatically. NEBULA is open source. It is available
as part of the G2 symbolic execution engine at https://github.com/BillHallahan/
G2 and at https://zenodo.org/records/7083308. In our evaluation of NEBULA, we
seek to answer two main questions:

(1) When given theorems that hold in a non-strict context, does NEBULA succeed in
proving their correctness?

(2) When given theorems that hold only in a strict context, does NEBULA succeed
in both (a) finding counterexamples in general and (b) finding non-terminating
counterexamples for theorems that have them?

We base our evaluation on the 85 theorems from the IsaPlanner suite (Johansson et al.,
2010), as they are formulated in the Zeno codebase (Sonnex et al., 2012). For our main
evaluation, we simply run NEBULA on the original formulations of the theorems. Many of
the theorems do not hold in a non-strict setting, so we use the true ones for question (1) and
the false ones for question (2). As a further assessment of question (1), we also run NEBULA

on modified versions of the invalid theorems that hold even when evaluation is non-strict.
We group the invalid theorems into two categories. Some of the theorems do not handle
errors properly, and requiring some of their arguments to be total makes the theorems true.
For other theorems, the possibility of one side diverging while the other terminates is a
problem. In these cases, we force one or more of the theorem’s arguments to be finite
to make the theorem true. If a theorem needs both totality requirements and finiteness
requirements to be true in a non-strict setting, we include it in the second category.

7.1 Benchmark construction

We give NEBULA its inputs in the form of rewrite rules. Rewrite rules are constructs
that allow a programmer to express domain-specific optimizations to the GHC Haskell
compiler (Peyton Jones et al., 2001). A rewrite rule consists of a number of universally
quantified variables, a pattern for expressions to be replaced, and a pattern for replace-
ment expressions. The two expressions are defined in terms of the universally quantified
variables. GHC does type-check rewrite rules, but it does not check that the rules preserve

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://github.com/BillHallahan/G2
https://github.com/BillHallahan/G2
https://zenodo.org/records/7083308
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

44 J. C. Kolesar et al.

a program’s behavior otherwise. We designed NEBULA to take its inputs in the form of
rewrite rules to allow for easy rewrite rule verification.

The process for converting theorems into rewrite rules is simple. In the Zeno code, every
theorem is a function with a return type of Bool. If the outermost layer of a theorem’s
function body is an equality check between two sub-expressions, then we represent the
theorem as a rewrite rule that asserts the equality of the two sub-expressions. Otherwise,
we represent the theorem as a rewrite rule that asserts that the theorem’s whole expression
is equal to True. In either case, the universally quantified variables for the rewrite rule are
the arguments of the original theorem’s function.

7.1.1 Totality and finiteness requirements

Every theorem in our suite is true under the assumption that all arguments are total and
finite. However, most of the theorems no longer hold in their original formulations in a
non-strict context. We run NEBULA on every unmodified theorem to see whether it can
verify the ones that remain true and find counterexamples for the ones that become false.
To assess NEBULA’s verification abilities further, we also run it on modified versions of the
invalid theorems. The modified theorems include extra requirements to make them true in a
non-strict context. Some of the modified versions of the theorems require certain variables
to be total. Others remove infinite concretizations of specific variables from consideration
by forcing the evaluation of one or both sides not to terminate when given an infinite
input.

We can require the arguments of a rewrite rule to be total, as outlined in Section 6.6, by
designating them as total in the settings of NEBULA. To force finiteness for an argument,
we use type-specific walk functions. A walk function for an algebraic datatype τw takes two
arguments, one of type τw and one polymorphic argument of type τp. The walk function
traverses over some portion of the τw argument. The traversal ensures that the function
application will raise an error if that portion of the argument is non-total or will fail to
terminate if that portion of the argument is infinite. Once the traversal finishes, the walk
function returns its τp argument.

We add walk functions manually to the theorems that need them. When a variable needs
to be finite, we wrap the main expression on one or both sides of a rewrite rule with an
application of the corresponding walk function. For example, consider the rewrite rule
prop10:

forall m . m - m = Z

Recall from Example 2.3 in Section 2 that this rule is false if m is infinite, i.e. m = S m.
Now consider an altered version of prop10 that includes a walk function on the right-hand
side:

walkNat Z a = a
walkNat (S x) a = walkNat x a

forall m . m - m = walkNat m Z

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 45

walkList [] a = a
walkList (_:xs) a = walkList xs a

walkNatList xs a = case xs of
[] -> a
y:ys -> walkNat y (walkNatList ys a)

Fig. 22: The walkList and walkNatList functions.

The left-hand side still diverges if m is infinite, but now the right-hand side diverges as
well. Further, there is no need to make m total now: both m - m and walkNat m Z force m
to be evaluated fully, so if m is non-total, both expressions will terminate with the same
bottom value.

We utilize three different walk functions in our evaluation. The function walkNat applies
to natural numbers. The other two walk functions appear in Figure 22. The function
walkList forces the spine of a list to be total and finite but does not impose any restrictions
on the contents of the list. The function walkNatList forces the spine of a natural number
list to be total and finite and also applies walkNat to every entry within the list. For the sake
of simplicity, we do not consider any finer distinctions for finiteness, even though finer dis-
tinctions are possible. In cases where the minimum conditions necessary for a theorem to
hold are not expressible in our system, we over-approximate the conditions.

If a theorem requires multiple variables to be finite, we need to have multiple nested
walk function applications. Whenever multiple variables need walk function applications
for a single theorem, the order that we use for the walk function application nesting is
the same as the order that the original theorem’s arguments follow. On both sides, the
walk function applications for earlier arguments appear outside the walk function appli-
cations for later arguments. We impose our walk-function ordering requirement for the
sake of simplicity. Allowing for more variation in the order of walk function applica-
tions would cause the number of options for minimal finiteness requirements to grow
significantly without any evident benefit for demonstrating the capabilities of NEBULA.
Furthermore, if we allowed different walk-function application orders between the two
sides of a theorem, simple counterexamples would be possible for any combination with
differing orders between the two sides. Let a and b be two symbolic variables of type Nat
and consider the expressions walkNat a (walkNat b Z) and walkNat b (walkNat a Z).
If we define a as ⊥L and b as S b, then walkNat a (walkNat b Z) evaluates to ⊥L and
walkNat b (walkNat a Z) fails to terminate. We can circumvent the problem by requir-
ing a and b to be total, but we still do not derive any clear benefit from permitting variation
in walk-function application orders.

For some Zeno theorems, there are two distinct minimal combinations of restrictions
on finiteness and totality that make the theorem true. In situations where multiple minimal
combinations of requirements exist, we treat the versions of the theorem with the two com-
binations of requirements as if they were distinct theorems. No theorem in the Zeno suite
has more than two minimal alternatives that are expressible in our system of requirements
for totality and finiteness.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

46 J. C. Kolesar et al.

Table 1: Evaluation results.

Category # Thms # V # C # TO V Time C Time
Unmodified theorems 85 24 61 0 7.6 5.1
Modified (no finite variables) 17 13 0 4 6.7 N/A
Modified (finite variables) 58 14 0 44 7.7 N/A
Cycle counterexamples 45 0 44 1 N/A 5.7

Thms indicates the number of theorems in a category.
V indicates the number of theorems in the category that were verified.
C indicates the number of theorems that NEBULA marked as untrue by finding counterexamples.
TO indicates the number of timeouts in a category.
V Time is the average time that NEBULA takes to verify the theorems that it proved in a category, in seconds.
C Time is the average time that NEBULA takes to find a counterexample for the theorems in a category that it
rejected, also in seconds.

7.2 Results

For the evaluation, we ran NEBULA on a Linux desktop with a 3.7 GHz Intel Xeon W-
2145 processor, and we gave each theorem a time limit of 3 minutes. To compile NEBULA,
we used version 8.10.7 of GHC, which is the same version that we used for the original
evaluation. Table 1 summarizes the results of our evaluation.

We report a positive answer for question (1): NEBULA can prove theorems that hold in
a non-strict context. Of the 85 unmodified theorems, 24 are true in a non-strict context.
NEBULA proves the correctness of all 24.

As an additional assessment of question (1), we also run NEBULA on the theorems mod-
ified with totality requirements and finiteness requirements. There are 16 theorems that can
be made true with totality requirements and no finiteness requirements. For one of the the-
orems, namely theorem 23, there are two different possible minimal totality requirements.
We can view the two different modified versions of theorem 23 as distinct theorems, bring-
ing the count to 17 for this category. With the minimum totality requirements in place,
NEBULA proves 13 of the theorems (76%) and hits the time limit on the remaining 4.
There are also 45 theorems that are only true when certain variables are required to be
finite. 13 of the 45 theorems have two distinct combinations of minimal totality and finite-
ness requirements, so we effectively have 58 theorems in this category. NEBULA verifies
14 of the theorems (24%) and hits the time limit on the rest.

We also report a positive answer for both parts of research question (2). For part (a), we
can see that NEBULA succeeds at finding counterexamples in general because it produces
a genuine counterexample for every single one of the 61 unmodified untrue theorems.

For part (b) of question (2), we have NEBULA attempt to find cycle counterexamples
for the 45 unmodified theorems that need finite variables to be true. The suite of unmod-
ified theorems does not suffice for testing this: all of the theorems with non-terminating
counterexamples also have terminating counterexamples that involve bottom values. To
test NEBULA’s ability to detect cycle counterexamples, we required totality for all of the
theorems’ arguments but did not impose any finiteness requirements. Requiring all of the
arguments to be total makes non-cyclic counterexamples impossible. Under these condi-
tions, NEBULA finds genuine cycle counterexamples for 44 of the 45 theorems (98%) and
hits the time limit for only one.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 47

7.3 Discussion of results

7.3.1 Differences from original evaluation

Overall, the results of our evaluation are better than the results in our original paper on
NEBULA. For the original suite of unmodified benchmarks, we had 22 verifications, 61
counterexamples, and 2 timeouts. For the original suite of modified benchmarks with no
finite variables, we had 11 verifications and 7 timeouts. For the original suite of modified
benchmarks with finite variables, we had 12 verifications and 44 timeouts. For the orig-
inal cycle counterexample detection suite, we had 32 counterexamples and 12 timeouts.
Overall, we added 6 new verifications and 12 new cycle counterexamples. Every theorem
that was verified in the original evaluation is still verified, and every theorem that was
rejected with a genuine counterexample in the original evaluation is still rejected with a
genuine counterexample.

In the original publication, one of the benchmarks was misclassified, namely theorem 58.
It was classified as requiring total variables but no finite variables, but it actually requires
finiteness restrictions to be valid in a non-strict setting, and there are two distinct ways to
make it valid with finiteness requirements. Because of this, our new evaluation has one
fewer theorem for the modified benchmarks with no finite variables, two new theorems for
the modified benchmarks with finite variables, and one new theorem for the cycle coun-
terexample detection suite. Theorem 58 is not one of the 11 modified theorems without
finite variables that the original version of NEBULA could verify, so the verifications and
counterexamples from the original evaluation are all still valid.

Multiple factors contributed to our improved success rates. After the original publica-
tion, we improved NEBULA’s ability to prove equivalences by loosening the requirements
for lemma substitutions. The original version of LEMMALEFT required e′1, the sub-
expression of e1 in function application form, to be e1 itself. Likewise, the original version
of LEMMARIGHT required e′2 to be e2 itself. Additionally, we allow NEBULA to apply two
lemma substitutions to a single expression simultaneously, whereas it could apply only one
at a time in the original evaluation. In principle, we could allow NEBULA to apply arbi-
trarily many lemma substitutions at once, but capping the number at two keeps the search
space manageable.

We improved our ability to detect cycle counterexamples as well. The current version of
NEBULA can look inside target expressions for cycles. The original version of CYL required
e′, the sub-expression of e′1 that loops back to e, to be e′1 itself. Additionally, the original
version of CYL required e, the sub-expression of e1 that starts the looping path, to be e1

itself. Similarly, the original version of CYR required e′ and e to be e′2 and e2, respectively.

7.3.2 Finite-variable benchmarks

NEBULA performs well on the unmodified benchmarks, the totality-requiring bench-
marks, and the cycle counterexample benchmarks, but it performs relatively poorly on the
finiteness-requiring benchmarks. We do not consider this a major cause for concern. Walk
functions are abnormal constructs that do not resemble the code that a programmer would
typically write in a non-strict language, and we include them specifically to counteract the
non-strict behavior of Haskell.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

48 J. C. Kolesar et al.

data Tree a = Leaf | Node (Tree a) a (Tree a)

height :: Tree a -> Nat
height Leaf = Z
height (Node l x r) = S (max (height l) (height r))

Fig. 23: The height function.

NEBULA’s relatively low success rate on the finiteness-requiring benchmarks stems pri-
marily from its reliance on coinduction as its primary proof tactic. In general, coinduction
is not the best fit for verifying properties involving functions that reach SWHNF only on
finite inputs. An induction-based proof technique would likely be more appropriate. This
is the reason why many of the modified benchmarks with finite variables fail: the walk
functions used in the modified versions of the theorems terminate only on finite inputs.
In particular, NEBULA fails to verify any modified theorem where a list of natural num-
bers needs to have only finite entries. It also fails to verify any modified theorem that
includes walk functions for two or more variables. Several of the failing theorems among
the unmodified theorems and the modified theorems with only total variables face simi-
lar issues. For instance, NEBULA does not verify any valid theorem involving the rev and
sort functions for lists: both functions can traverse the whole spine of their input list before
reaching SWHNF.

7.3.3 Inadequate proof tactics

Walk functions are a major obstacle for NEBULA, but some recursive functions that do
reach SWHNF on infinite inputs also present difficulties. For example, the height function
on binary trees, shown in Figure 23, is not well-suited for NEBULA’s proof tactics. Because
height interleaves applications of max with recursive applications of itself, symbolic exe-
cution adds an extra max application to the expression with every layer of recursion, and
this prevents any use of the coinduction tactic. The development of techniques for rea-
soning about functions like height coinductively is an interesting opportunity for future
work.

7.3.4 Cycle counterexamples

In our original evaluation, NEBULA found cycle counterexamples for 32 of the 44 theo-
rems that had them. In our new evaluation, we find them for 44 of 45. The one remaining
theorem for which NEBULA cannot find a cycle counterexample is Theorem 52, shown in
Figure 24. The theorem contains applications of the rev and count functions. The defini-
tion of rev also appears in the figure, and the definition of count appears in Figure 16. The
combination of count with rev makes cycle counterexample detection impossible because
the case statement at the outermost level of count branches on the output of rev on the
right-hand side of each theorem. As we mentioned in Section 7.3.2, rev can traverse its
whole input list before reaching SWHNF, and in fact it is guaranteed to traverse its whole
input list before reaching SWHNF. Consequently, on the symbolic execution branch where
xs is infinite, the outermost case statement in count needs to keep unfolding increasingly

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 49

rev :: [a] -> [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

forall n xs . count n xs = count n (rev xs)

Fig. 24: The rev function and Zeno Theorem 52.

deep layers of nested case statements from rev that never eliminate themselves, which
prevents our techniques for cycle detection from being used. Even though we can look for
cycles inside target expressions, we cannot find an exact match. If we abstract away the
case statements, the structure of nested function applications that symbolic execution will
encounter on the right-hand side looks like this across successive steps:

count n ((rev ...) ++ [x])
count n (((rev ...) ++ [y]) ++ [x])
count n ((((rev ...) ++ [z]) ++ [y]) ++ [x])

The ASTs do not align between steps in the way that we would need them to align for a
cycle counterexample. The non-symbolic components of the ASTs are structurally distinct
at every step. The location of rev within the AST changes every time: each iteration adds
another ++ application on top of it. More importantly, the rev applications are never among
the target expressions. The rev applications are all arguments of ++ applications, and the
target expressions for a function application are inside the function being applied, not the
argument that the function receives.

Theorem 53, one of the theorems for which NEBULA finds a cycle counterexample, is
nearly identical to Theorem 52 but contains sort instead of rev. NEBULA can find a cycle
counterexample for Theorem 53 because sort compares the Nat entries in its input list with
<= as it traverses the list. (The definition of <= appears in Figure 2 as part of Example 2.1.)
If we have two adjacent cyclically defined infinite Nat entries in the list, sort will become
stuck comparing the two entries with <= forever. This creates an opportunity for a one-
sided cycle that does not exist for Theorem 52 because rev does not manipulate the entries
in its input list. The cycle is similar to the one that we discuss in Example 16.

7.3.5 Impact of the time limit

We believe that the 3-minute time limit for the evaluation does not inhibit NEBULA’s per-
formance in a significant way. Usually, when NEBULA can prove an equivalence, it finds
the cyclic pattern that it needs for coinduction rather quickly. This was true for the original
evaluation, and it continues to hold for our updated evaluation. NEBULA’s average times
for proving equivalences and finding counterexamples in our updated evaluation are all
under 10 seconds. Generally, the differences between the theorems that NEBULA verifies
and the theorems that NEBULA fails to verify are more qualitative than quantitative: the
mere size of the expressions that need to be evaluated is not a significant factor. When
NEBULA reaches the time limit for a theorem, what typically happens is that the evaluation
of one or both expressions proceeds down an infinite path with no obvious cyclic pattern.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

50 J. C. Kolesar et al.

forall n xs . count n (n : xs) = walkNat n (S (count n xs))

Fig. 25: Modified Zeno Theorem 4.

As evaluation continues, the proof obligation for that path will keep branching into more
obligations that NEBULA has no way of discharging. This state explosion prevents NEB-
ULA from making any real progress toward verifying the equivalence. Because NEBULA

behaves in this way in situations where it reaches the time limit, giving NEBULA additional
time to run is unlikely to improve its verification coverage in most cases.

Nevertheless, there are rare situations where NEBULA takes a long time to find a proof.
Theorem 55 is one of the two unmodified theorems that NEBULA could not verify in the
original evaulation, and its running time is a major outlier. It takes 62.8 seconds to verify,
which is the longest individual non-timeout running time that we observed in our evalu-
ation by a wide margin. The next-longest non-timeout running time that we observed is
19.4 seconds, which comes from one of the altered benchmarks with no finite variables
that NEBULA could not verify in the original evaluation.

7.3.6 Impact of heuristics

We know that one of our heuristics that we impose for the sake of efficiency limits NEB-
ULA’s effectiveness in certain situations. Recall from Section 6.4.1 that NEBULA does not
generate potential lemmas for LEMCO from the active region of an expression. There is
an additional theorem that we can verify if we disable this heuristic. The theorem is the
finiteness-requiring version of Theorem 4 from the Zeno evaluation suite (Sonnex et al.,
2012), shown in Figure 25. On the left-hand side, symbolic execution follows the same
path that it does in the ordinary version of Theorem 4 that we discussed in Example 5.1:

case n === n of
False -> count n xs
True -> S (count n xs)

Evaluation continues along the same path to another similar state when we concretize n
as S n’:

case n’ === n’ of
False -> count (S n’) xs
True -> S (count (S n’) xs)

Because we have a walk function on the right-hand side, we can find an equivalence
proof at this point rather than a cycle counterexample. If we allow lemma genera-
tion in the active region, then NEBULA can create and prove a lemma that asserts that
n’ === n’ and S n’ === S n’ are equivalent. Replacing the scrutinee in the newer state
with S n’ === S n’ will allow NEBULA to find an approximation between the two states.
The lemma substitution in the active region is a necessary part of the proof: we can-
not achieve the same result by applying two lemma substitutions to the branches of the
case statement instead. The potential lemma that NEBULA would generate for the branches
asserts the equivalence of count (S n’) xs and count n’ xs, which is not true in general

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 51

because the main recursion of count happens on the list being searched, not the number
whose occurrences are being counted.

Although disabling the heuristic allows NEBULA to prove the altered version of Theorem
4, there is a downside to allowing potential lemma generation in the active region. In cer-
tain situations, increasing the number of potential lemmas that NEBULA needs to consider
creates a state explosion problem that prevents it from making progress toward a proof.
We ran NEBULA on our test suite with lemma generation allowed in the active region and
all other settings kept the same as they are in the main evaluation. With the change in
place, NEBULA verifies only 22 of the correct unmodified theorems, 10 of the modified
theorems with no finite variables, and 8 of the modified theorems with finite variables. In
total, NEBULA hits the time limit for 12 theorems that it can verify with its normal settings.
The altered version of Theorem 4 is the only new theorem that becomes verifiable with the
heuristic disabled, so we choose to leave our limitations on potential lemma generation in
place.

Interestingly, even though NEBULA does not use lemmas for counterexample detection,
disabling the heuristic also has an effect on our outcomes for counterexample detection.
For the suite of unmodified theorems, NEBULA still finds all 61 counterexamples, but
it detects only 43 counterexamples for the cycle counterexample benchmarks instead of
44. The two timeouts are Theorems 52 and 53, which we mentioned in Section 7.3.4.
When NEBULA runs on an invalid theorem, it still searches for a proof as it searches for
counterexamples, so it makes sense that the heuristic change would affect counterexample
detection as well.

7.3.7 Impact of lemmas

Lemma substitutions are an important part of NEBULA’s approach to equivalence ver-
ification, even though the process of searching for usable lemmas impedes NEBULA’s
performance when we allow potential lemma generation in the active region. To assess
the significance of lemmas in NEBULA’s algorithm, we ran NEBULA on our test suite with
lemma substitutions disabled and all other settings kept the same as they are for the main
evaluation. Without the ability to use lemma substitutions, NEBULA verifies only 20 of
the correct unmodified theorems, 8 of the modified theorems with no finite variables, and
7 of the modified theorems with finite variables. All of the verifiable theorems are ones
that are also verifiable with lemma substitutions enabled. Also, NEBULA still detects all of
the counterexamples that it does normally. In total, NEBULA verifies 16 fewer theorems
with lemmas disabled than it does with lemma substitutions enabled, so the effectiveness
of NEBULA does depend to a significant extent on its ability to use lemma substitutions.

8 Related work

Coinduction NEBULA relies on coinduction, a well-established proof technique (Gordon,
1995; Rutten, 2000; Gibbons & Hutton, 2005; Sangiorgi, 2009; Kozen & Silva, 2017).
Our primary contribution is the development of a calculus to combine coinduction with
symbolic execution, along with the use of that calculus to automate coinductive reasoning
for a functional language.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

52 J. C. Kolesar et al.

Other researchers have examined the possibility of using coinduction to verify pro-
grams’ equivalence previously (Koutavas & Wand, 2006; Sangiorgi et al., 2007). Unlike
our approach for NEBULA, the formalizations in Koutavas & Wand (2006) and Sangiorgi
et al. (2007) do not take infinite or non-total inputs into consideration. More importantly,
the two papers only provide theoretical frameworks for proving programs’ equivalence
by coinduction, not an automated algorithm for generating proofs like the one that we
introduce.

Interactive Tools Interactive tools allow a user to prove properties of programs manually or
semi-automatically. An interactive setup has the advantage that it might allow the prover to
verify larger or more complex properties, but proving each property requires more manual
effort.

CIRC (Lucanu & Roşu, 2007; Roşu & Lucanu, 2009) generates coinductive proofs for
values and properties specified in Maude, a logic language. In contrast, NEBULA targets
the functional language Haskell. For CIRC’s purposes, expressions do not have complete
definitions that specify an unambiguous evaluation order for all possible inputs. Instead,
CIRC relies on axioms that allow it to make certain substitutions for expressions. While
CIRC supports some simple automation, it requires much more manual effort to prove
properties than NEBULA requires. For example, CIRC cannot apply case analysis automat-
ically to decompose a property into several subproperties, whereas NEBULA applies case
analysis automatically every time it concretizes a symbolic variable.

HERMIT (Farmer et al., 2015) is an interactive verification tool for Haskell programs
that accounts for the possibility of bottom expressions. The design of HERMIT is quite
different from the design of NEBULA: like CIRC, HERMIT relies on guidance from users
in order to find proofs. Users can guide HERMIT to a proof through the tool’s interactive
REPL.

Mastorou et al. (2022) describe a method for using the LiquidHaskell verifier to prove
coinductive properties. The outlined techniques rely on a guardedness property which
states that values are produced, and thus, in contrast to our approach with NEBULA, they
cannot be used to prove equivalence of non-terminating expressions. The approach also
relies on user-written proofs to guide the verifier.

Hs-to-coq (Breitner et al., 2018) automates the translation of Haskell code into Coq
code, allowing users to verify properties of their Haskell code within Coq. While Breitner
et al. (2018) discuss only inductive proofs, hs-to-coq has been extended to support verifica-
tion of coinductive properties (Breitner, 2018). However, this verification is not automated:
it requires manually written Coq proofs.

Leino & Moskal (2014) describe the integration of features supporting coinduction into
the modular verifier Dafny. Dafny requires user-provided annotations to specify function
and loop behavior, unlike NEBULA, which aims to prove equivalences automatically.

Functional Automated Inductive Proofs Zeno (Sonnex et al., 2012), HipSpec (Claessen
et al., 2013), Cyclist (Brotherston et al., 2012), and IsaPlanner (Johansson et al., 2010)
are automated theorem provers targeting properties of functional programs. These tools
assume strict semantics and, correspondingly, total and finite data structures. Zeno and
HipSpec accept Haskell programs as input, but both fail to reason about Haskell in a com-
pletely accurate way because they ignore infinite and non-total inputs, unlike NEBULA. Our

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 53

evaluation highlights the difference. It uses the same benchmarks as Zeno, HipSpec, and
IsaPlanner, but only 28% of these theorems are true under non-strict semantics, whereas
all of them are true under strict evaluation.

Even without cycle counterexamples, we can find a counterexample for each of the
invalid theorems by using bottom values. However, this does not entail that cycle coun-
terexamples are unnecessary or that we could emulate the full functionality of NEBULA

simply by allowing a strict equivalence checker to concretize variables as bottoms. As we
mentioned at the start of Section 4, bottom values and non-termination are not semanti-
cally interchangeable. Cycle counterexamples have a different meaning than terminating
counterexamples do, and existing equivalence checkers would not be able to detect cycle
counterexamples even if we extended them with the ability to reason about bottom
values.

Cyclist differs from Zeno, HipSpec, and IsaPlanner in that it relies on cyclic proofs.
A cyclic proof is an infinite proof tree that follows a looping pattern along every infi-
nite branch (Brotherston, 2005). There is some resemblance between the infinite looping
paths in a cyclic proof and the infinite execution paths that loop back on themselves that
we consider for NEBULA, but NEBULA’s proofs do not qualify as cyclic proofs. We take
advantage of cyclic behavior in non-strict functional programs’ execution paths, but the
proofs about those execution paths are not themselves cyclic. Our proof trees are always
finite.

Functional Symbolic Execution NEBULA is not the first tool to perform symbolic exe-
cution for a non-strict functional language. Both our formalism and our implementation
utilize techniques introduced by G2, a symbolic execution engine for non-strict func-
tional programs (Hallahan et al., 2019). Other prior work in the domain of functional
symbolic execution has targeted languages such as Racket (Torlak & Bodik, 2014) and
Erlang (Vidal, 2015).

The concept of narrowing in functional logic programming resembles our technique
for concretizing symbolic variables during symbolic execution. Narrowing is the process
of replacing variables of unspecified value with specific values (Alpuente et al., 1996,
2005; Antoy, 2001; López-Fraguas & Sánchez-Hernández, 2002). Moreover, narrowing
serves the same purpose in functional logic programming that concretization serves
in our formalism: gradual exploration of the possible values of an algebraic data type
(Antoy & Hanus, 2010). The specific version of symbolic variable concretization
employed by NEBULA comes from G2 (Hallahan et al., 2019).

Imperative Symbolic Execution RelSym (Farina et al., 2019) is a symbolic execution
engine for proving relational properties of imperative programs. RelSym depends on user-
provided invariants in order to reason about loops. Differential symbolic execution (Person
et al., 2008) is a technique for detecting behavioral differences that arise from changes to
a program. It exploits optimizations based on the assumption that the old and new versions
of the program are mostly similar.

(Non)Termination Checking Looper (Burnim et al., 2009), TNT (Gupta et al., 2008),
Jolt (Carbin et al., 2011), and Bolt (Kling et al., 2012) detect non-termination of imperative
programs. Like NEBULA, these tools rely on finding program states that are, in some sense,
repetitions of earlier states. Le et al. (2020) and Cook et al. (2014) detect both program

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

54 J. C. Kolesar et al.

termination and non-termination. Both focus on nonlinear integer programs, as opposed
to the data-structure-heavy programs that NEBULA targets. Nguyễn et al. (2019) use sym-
bolic execution and the size-change principle (Lee et al., 2001) to prove termination of
functional programs but, unlike NEBULA, cannot prove non-termination.

Symbolic Functions Nguyễn & Van Horn (2015) handle symbolic functions during sym-
bolic execution by using templates to concretize function definitions gradually. It is
possible that techniques from Nguyễn & Van Horn (2015) could complement NEBULA

by allowing us to guarantee the correctness of apparent counterexamples. However, our
current approach of over-approximation allows us to consider fewer states when we aim
to confirm an equivalence.

9 Conclusion

We have presented NEBULA, the first fully automated expression equivalence checker
designed with non-strictness in mind. We used NEBULA both to verify correct theorems
and to find counterexamples for incorrect theorems that hold in a strict setting. We have
evaluated our tool in practical settings with promising results.

We view the verification of rewrite rules in production Haskell code as a potential appli-
cation for NEBULA. Rewrite rules see significant use on Hackage, the main repository
of open-source libraries for the Haskell community. In our preliminary survey, we have
found that there are over 5000 rewrite rules across more than 300 libraries on Hackage.
Consequently, our tool has the potential to assist Haskell programmers with the verifica-
tion and debugging of rewrite rules. We plan to explore this possibility further in future
work. From a theoretical perspective, there are no major impediments to running NEBULA

on rewrite rules from Hackage, but the implementation of NEBULA as it exists currently is
not capable of running on them. Preparing NEBULA for the task would require additional
engineering: the versions of GHC that real-world Haskell packages require can vary, and
real-world packages typically have dependencies on other supporting packages.

Acknowledgments

We thank the anonymous OOPSLA 2022 reviewers for their feedback on earlier versions
of this paper. We thank Dorel Lucanu for answering our questions about CIRC. The orig-
inal version of this work was supported by the National Science Foundation under Grant
Numbers CCF-2131476, CNS-1565208, CCF-2219995, and CCF-2318974.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/
S0956796825100099.

Conflicts of Interest

The authors’ conflicts of interest include Timos Antonopoulos (Yale University), Eric
Campbell (Cornell University), Ben Chaimberg (Yale University), Matthew Elacqua (Yale
University), Ferhat Erata (Yale University), Nate Foster (Cornell University), William
Harris (Amazon Web Services), Samuel Judson (Yale University), Viktor Kuncak (EPFL,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0956796825100099
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 55

Switzerland), Tancrède Lepoint (Amazon Web Services), Daniel Luick (Yale University),
Ning Luo (Northwestern University), James Parker (Galois), Mark Santolucito (Barnard
College), Martin Schäf (Amazon Web Services), Scott Shapiro (Yale University), Zhong
Shao (Yale University), Robert Soulé (Yale University), Eran Tromer (Boston University),
Willem Visser (Amazon Web Services), Xiao Wang (Northwestern University), Thomas
Wies (New York University), Ennan Zhai (Alibaba), and Jialu Zhang (University of
Waterloo).

Author Homepages

• John Charles Kolesar: https://johnckolesar.github.io
• Ruzica Piskac: https://www.cs.yale.edu/homes/piskac/
• William Triest Hallahan: https://billhallahan.github.io

References

AbdelGawad, M. A. (2019) Induction, coinduction, and fixed points: Intuitions and tutorial. arXiv
preprint arXiv:1903.05127.

Alpuente, M., Falaschi, M. & Vidal, G. (1996) Narrowing-driven partial evaluation of functional
logic programs. In Programming Languages and Systems–ESOP’96: 6th European Symposium
on Programming Linköping, Sweden, April 22–24, 1996 Proceedings 6. Springer, pp. 45–61.

Alpuente, M., Lucas, S., Vidal, G. & Hanus, M. (2005) Specialization of functional logic programs
based on needed narrowing. Theory Practice Logic Program. 5(3), 273–303.

Antoy, S. (2001) Evaluation strategies for functional logic programming. Electron. Notes Theoret.
Comput. Sci. 57, 1–16.

Antoy, S. & Hanus, M. (2010) Functional logic programming. Commun. ACM. 53(4), 74–85.
Benton, N. (2004) Simple relational correctness proofs for static analyses and program transforma-

tions. ACM SIGPLAN Not. 39(1), 14–25.
Breitner, J. (2018) hs-to-coq supports coinduction. Available at: https://mobile.twitter.com/
nomeata/status/977257104120664064.

Breitner, J., Spector-Zabusky, A., Li, Y., Rizkallah, C., Wiegley, J. & Weirich, S. (2018) Ready, set,
verify! applying hs-to-coq to real-world haskell code (experience report). Proc. ACM Program.
Lang. 2(ICFP), 1–16.

Brotherston, J. (2005) Cyclic proofs for first-order logic with inductive definitions. In International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods. Springer,
pp. 78–92.

Brotherston, J., Gorogiannis, N. & Petersen, R. L. (2012) A generic cyclic theorem prover. In Asian
Symposium on Programming Languages and Systems. Springer, pp. 350–367.

Burnim, J., Jalbert, N., Stergiou, C. & Sen, K. (2009) Looper: Lightweight detection of infinite loops
at runtime. In 2009 IEEE/ACM International Conference on Automated Software Engineering.
IEEE, pp. 161–169.

Campbell, E. H., Hallahan, W. T., Srikumar, P., Cascone, C., Liu, J., Ramamurthy, V., Hojjat, H.,
Piskac, R., Soulé, R. & Foster, N. (2021) Avenir: Managing data plane diversity with control plane
synthesis. In NSDI, pp. 133–153.

Carbin, M., Misailovic, S., Kling, M. & Rinard, M. C. (2011) Detecting and escaping infinite loops
with jolt. European Conference on Object-Oriented Programming. Springer, pp. 609–633.

Claessen, K., Johansson, M., Rosén, D. & Smallbone, N. (2012) Hipspec: Automating inductive
proofs of program properties. In ATx/WInG@ IJCAR. Citeseer, pp. 16–25.

Claessen, K., Johansson, M., Rosén, D. & Smallbone, N. (2013) Automating inductive proofs using
theory exploration. In International Conference on Automated Deduction. Springer, pp. 392–406.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://johnckolesar.github.io
https://www.cs.yale.edu/homes/piskac/
https://billhallahan.github.io
https://mobile.twitter.com/nomeata/status/977257104120664064
https://mobile.twitter.com/nomeata/status/977257104120664064
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

56 J. C. Kolesar et al.

Cook, B., Fuhs, C., Nimkar, K. & O’Hearn, P. (2014) Disproving termination with overapproxima-
tion. In 2014 Formal Methods in Computer-Aided Design (FMCAD). IEEE, pp. 67–74.

Danielsson, N. A., Hughes, J., Jansson, P. & Gibbons, J. (2006) Fast and loose reasoning is morally
correct. ACM SIGPLAN Not. 41(1), 206–217.

Dixon, L. & Fleuriot, J. (2003) Isaplanner: A prototype proof planner in isabelle. In International
Conference on Automated Deduction. Springer, pp. 279–283.

Elliott, C. (2010) Non-strict memoization. Available at: http://conal.net/blog/posts/
nonstrict-memoization.

Farina, G. P., Chong, S. & Gaboardi, M. (2019) Relational symbolic execution. In Proceedings of the
21st International Symposium on Principles and Practice of Declarative Programming, pp. 1–14.

Farmer, A., Sculthorpe, N. & Gill, A. (2015) Reasoning with the hermit: tool support for equational
reasoning on ghc core programs. ACM SIGPLAN Not. 50(12), 23–34.

Gibbons, J. & Hutton, G. (2005) Proof methods for corecursive programs. Fundam. Inf. 66(4),
353–366.

Gordon, A. D. (1995) A tutorial on co-induction and functional programming. In Functional
Programming, Glasgow 1994, pp. 78–95.

Gupta, A., Henzinger, T. A., Majumdar, R., Rybalchenko, A. & Xu, R.-G. (2008) Proving non-
termination. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 147–158.

Hallahan, W. T., Xue, A., Bland, M. T., Jhala, R. & Piskac, R. (2019) Lazy counterfactual symbolic
execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 411–424.

Johansson, M., Dixon, L. & Bundy, A. (2010) Case-analysis for rippling and inductive proof.
In International Conference on Interactive Theorem Proving. Springer, pp. 291–306.

Kling, M., Misailovic, S., Carbin, M. & Rinard, M. (2012) Bolt: On-demand infinite loop escape in
unmodified binaries. ACM SIGPLAN Not. 47(10), 431–450.

Koutavas, V. & Wand, M. (2006) Small bisimulations for reasoning about higher-order imperative
programs. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 141–152.

Kozen, D. & Silva, A. (2017) Practical coinduction. Math. Struct. Comput. Sci. 27(7), 1132–1152.
Le, T. C., Antonopoulos, T., Fathololumi, P., Koskinen, E. & Nguyen, T. (2020) Dynamite: Dynamic

termination and non-termination proofs. Proc. ACM Program. Lang. 4(OOPSLA), 1–30.
Lee, C. S., Jones, N. D. & Ben-Amram, A. M. (2001) The size-change principle for program ter-

mination. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 81–92.

Leino, K. R. M. & Moskal, M. (2014) Co-induction simply. In International Symposium on Formal
Methods. Springer, pp. 382–398.

López-Fraguas, F. J. & Sánchez-Hernández, J. (2002) Narrowing failure in functional logic
programming. In International Symposium on Functional and Logic Programming. Springer,
pp. 212–227.

Lucanu, D. & Roşu, G. (2007) Circ: A circular coinductive prover. In International Conference on
Algebra and Coalgebra in Computer Science. Springer, pp. 372–378.

Mastorou, L., Papaspyrou, N. & Vazou, N. (2022) Coinduction inductively: Mechanizing coinduc-
tive proofs in liquid haskell. Haskell Symposium.

Milovancevic, D., Giunta, J. & Kuncak, V. (2021) On Proving and Disproving Equivalence of
Functional Programming Assignments. Technical report.

Nguyễn, P. C., Gilray, T., Tobin-Hochstadt, S. & Van Horn, D. (2019) Size-change termination
as a contract: Dynamically and statically enforcing termination for higher-order programs. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 845–859.

Nguyễn, P. C. & Van Horn, D. (2015) Relatively complete counterexamples for higher-order
programs. ACM SIGPLAN Not. 50(6), 446–456.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

http://conal.net/blog/posts/nonstrict-memoization
http://conal.net/blog/posts/nonstrict-memoization
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 57

Person, S., Dwyer, M. B., Elbaum, S. & Păsăreanu, C. S. (2008) Differential symbolic execution.
In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 226–237.

Peyton Jones, S., Tolmach, A. & Hoare, T. (2001) Playing by the rules: rewriting as a practical
optimisation technique in ghc. In Haskell Workshop, pp. 203–233.

Peyton Jones, S. L. (1996) Compiling haskell by program transformation: A report from the trenches.
In European Symposium on Programming. Springer, pp. 18–44.

Roşu, G. & Lucanu, D. (2009) Circular coinduction: A proof theoretical foundation. In International
Conference on Algebra and Coalgebra in Computer Science. Springer, pp. 127–144.

Rutten, J. J. (2000) Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249(1), 3–80.
Sangiorgi, D. (2009) On the origins of bisimulation and coinduction. ACM Trans. Program. Lang.

Syst. (TOPLAS). 31(4), 1–41.
Sangiorgi, D., Kobayashi, N. & Sumii, E. (2007) Environmental bisimulations for higher-order lan-

guages. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE,
pp. 293–302.

Schkufza, E., Sharma, R. & Aiken, A. (2013) Stochastic superoptimization. ACM SIGARCH Comput.
Archit. News 41(1), 305–316.

Schuts, M., Hooman, J. & Vaandrager, F. (2016) Refactoring of legacy software using model learn-
ing and equivalence checking: An industrial experience report. In International Conference on
Integrated Formal Methods. Springer, pp. 311–325.

Smith, C. & Albarghouthi, A. (2019) Program synthesis with equivalence reduction. In International
Conference on Verification, Model Checking, and Abstract Interpretation. Springer, pp. 24–47.

Sonnex, W., Drossopoulou, S. & Eisenbach, S. (2012) Zeno: An automated prover for proper-
ties of recursive data structures. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, pp. 407–421.

Spector-Zabusky, A., Breitner, J., Rizkallah, C. & Weirich, S. (2018) Total haskell is reasonable
coq. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, pp. 14–27.

Torlak, E. & Bodik, R. (2014) A lightweight symbolic virtual machine for solver-aided host
languages. ACM SIGPLAN Not. 49(6), 530–541.

Vidal, G. (2015) Towards symbolic execution in erlang. In Perspectives of System Informatics: 9th
International Ershov Informatics Conference, PSI 2014, St. Petersburg, Russia, June 24–27, 2014.
Revised Selected Papers 9. Springer, pp. 351–360.

Appendix A

A.1. Symbolic weak head normal form

Theorem 1. For any expression e and symbolic store Y , there exist an expression e′ and
symbolic store Y ′ such that (e, Y) ↪→ (e′, Y ′) if and only if e is not in SWHNF.

Proof For the first direction, we need to show that any expression that can take a step
is not in SWHNF. Start from the assumption that (e, Y) ↪→ (e′, Y ′) for some e′ and Y ′.
To confirm that e is not in SWHNF, we can perform case analysis and induction on our
reduction rules. Most of the reduction rules apply to expressions that, by definition, are
never in SWHNF. The rule VAR applies to non-symbolic variables. The rules APPλ and
BTAPP apply to applications where the left-hand side is not a data constructor. The rules
CSEV, CSDC, FRDC, LKDC, BTDC, and BTCS all apply to case statements. In the extended
version of our formalism where we allow symbolic functions, the rules HGLOOKUP and
HGFRESH apply to applications where the left-hand side is a symbolic variable.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

58 J. C. Kolesar et al.

The only remaining rule to consider is APP. With it, we can conclude (e, Y) ↪→ (e′, Y ′)
if e is e1 e2, e′ is e′1 e2, and (e1, Y) ↪→ (e′1, Y ′). In this situation, since e is an application,
the only way for it to be in SWHNF is for e1 to be a data constructor D. The constructor D
on its own is in SWHNF, so our inductive hypothesis gives us that it cannot undergo any
reduction steps. This contradicts our earlier assumption that (e1, Y) ↪→ (e′1, Y ′), so e must
not be in SWHNF, and the first direction holds.

For the second direction, we need to show that any expression that is not in SWHNF can
take a step. Assume that e is not in SWHNF. We will apply an inductive argument again.
There are multiple cases to consider. If e is a non-symbolic variable, then VAR applies
to it because we assume that all non-symbolic variables have mappings in our implicit
environment. If e is an application e1 e2 where the left-hand side is not a data constructor,
we have multiple sub-cases to consider depending on what e1 is

• If e1 is not in SWHNF, we can apply APP since our inductive hypothesis gives us
that e1 can reduce to some other expression.

• If e1 is a lambda, we can apply APPλ.
• If e1 is a bottom, we can apply BTAPP.
• In the ordinary version of our formalism, e1 cannot be a symbolic variable s, but

the result still holds in the extended version of our formalism where we allow sym-
bolic variables to be function-typed. We can apply either HGLOOKUP or HGFRESH

depending on whether s e2 has a mapping in Y .

If e is a case statement case e1 of {�a}, we again have multiple sub-cases to consider
depending on what e1 is

• If e1 is not in SWHNF, we can apply CSEV since our inductive hypothesis gives us
that e1 can reduce to some other expression.

• If e1 is a symbolic variable that has a mapping in Y , we can apply LKDC.
• If e1 is a symbolic variable that does not have a mapping in Y , we can apply FRDC.
• If e1 is a data constructor application, we can apply CSDC since we assume that all

case statements are exhaustive.
• If e1 is a bottom, we can apply BTCS.
• Lastly, e1 cannot be a lambda because that would violate our assumption that

scrutinees are never function-typed.

There are no more options for non-SWHNF expressions, so the second direction
holds. �

A.2. Approximation lemmas and theorems

Lemma 1 (� preserved by inlining). If (e1, Y1)�V (s, Y2) and e2 = lookup(s, Y2), then
(e1, Y1)�V (e2, Y2).

Proof Follows immediately from the definitions of �-SYM1 and �-EVAL. �

Corollary 1. If (e1, Y1)�V (e2, Y2) and e′2 is e2 with all symbolic variable concretizations
from Y2 inlined, then (e1, Y1)�V (e′2, Y2).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 59

Lemma 2 (� transitive). If S1 � S2 and S2 � S3 then S1 � S3.

Proof To start, note that we can assume that there is no overlap between the symbolic
variables in S2 and the symbolic variables in S3. If there is any overlap, we can simply give
fresh names to all of the symbolic variables in S2 to eliminate the overlap while preserving
the approximations between S1 and S2 and between S2 and S3. The result that we derive at
the end is still the one that we wanted originally, namely that S1 � S3, since S1 and S3 do
not change.

Let (e1, Y1)= S1, let (e2, Y2)= S2, and let (e3, Y3)= S3. Let V be the mapping such that
S1 �V S2, and let V ′ be the mapping such that S2 �V ′ S3. For the new approximation, we
will need a new mapping V ′′. For each mapping (s, e) ∈ V ′, let e′ be e with all of the
symbolic variables from Y2 inlined and let lookup(s, V ′′)= e′. Also, for any mapping
(s, e) ∈ V , let V ′′ map s to e. There are no common symbolic variables between S2 and
S3, so, if any symbolic variable s is mapped by both V and V ′, at least one of the two
mappings must be irrelevant. V ′′ should contain a mapping for s based on the mapping in
V or V ′ that is actually needed for one of the two original approximations. We will prove
that S1 �V ′′ S3 by induction on the relation S2 �V ′ S3.

Deterministic Evaluation on the Left This is not one of the main cases, but we are cover-
ing it here so that, in the subsequent cases, we can ignore the possibility that �-EVAL is
the main rule used for the approximation (e1, Y1)�V (e2, Y2). Assume for this case that
it is the main rule. This means that there exists some e′1 such that (e1, Y1) ↪→∗ (e′1, Y1)
and (e′1, Y1)�V (e2, Y2). If we can use the facts that (e′1, Y1)�V (e2, Y2) and (e2, Y2)�V ′
(e3, Y3) to derive that (e′1, Y1)�V ′′ (e3, Y3), it follows immediately that (e1, Y1)�V ′′
(e3, Y3) by �-EVAL. This means that, in the following cases, we can ignore the possibility
that �-EVAL is used as the main rule for the approximation between e1 and e2.

Deterministic Evaluation in the Middle Suppose that (e2, Y2)�V ′ (e3, Y3) comes from �-

EVAL, meaning that there exists some e′2 such that (e2, Y2) ↪→∗ (e′2, Y2) and (e′2, Y2)�V ′
(e3, Y3). Because (e1, Y1)�V (e2, Y2), Lemma 8 gives us that there exists some e′1 such
that (e1, Y1) ↪→∗ (e′1, Y1) and (e′1, Y1)�V (e′2, Y2). At this point, the inductive hypothesis
lets us derive that (e′1, Y1)�V ′′ (e3, Y3). Since (e1, Y1) ↪→∗ (e′1, Y1), it follows from �-EVAL

now that (e1, Y1)�V ′′ (e3, Y3).

Concretized Symbolic Variable in the Middle Assume that the formula (e2, Y2)�V ′
(e3, Y3) comes from �-SYM0, which means that e2 is a symbolic variable s2, that Y2 maps
s2 to some e′2, and that (e′2, Y2)�V ′ (e3, Y3). Note that we can rewrite (e1, Y1)�V (e2, Y2)
as (e1, Y1)�V (s2, Y2). We know that �-EVAL is not the rule being applied to estab-
lish this result, and we also know that s2 has a mapping e′2 in Y2, so the only rule
that could have given us (e1, Y1)�V (s2, Y2) is �-SYM1. From the premises of that rule,
we have (e1, Y1)�V (e′2, Y2). At this point, we can apply the inductive hypothesis to
(e1, Y1)�V (e′2, Y2) and (e′2, Y2)�V ′ (e3, Y3) to conclude that (e1, Y1)�V ′′ (e3, Y3) holds.

Concretized Symbolic Variable on the Right Assume that (e2, Y2)�V ′ (e3, Y3) comes from
�-SYM1, meaning that e3 is a symbolic variable s3 that Y3 maps to some e′3. In this case,
we know that there exists some e′ = lookup(s3, V ′) and some other expression e′′ such
that (e′, Y2) ↪→∗ (e′′, Y2), (e2, Y2)�V ′ (e′′, Y3), and (e2, Y2)�V ′ (e′3, Y3). We want to find

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

60 J. C. Kolesar et al.

some expressions e′1 = lookup(s3, V ′′) and e′′1 such that (e′1, Y1) ↪→∗ (e′′1, Y1), (e1, Y1)�V ′′
(e′′1, Y3), and (e1, Y1)�V ′′ (e′3, Y3) so we can apply �-SYM1.

We already have a definition of e′1 from V ′′: e′1 is e′ with all of the symbolic variables
from Y2 inlined. Let e′′1 be e′′ with all of the symbolic variables from Y2 inlined. We know
that (e′, Y2) ↪→∗ (e′′, Y2), so it must be the case that (e′1, {}) ↪→∗ (e′′1, {}). All of the symbolic
variables that are used in the evaluation from e′ to e′′ are inlined for e′1, so there is no need
to use concretizations from the symbolic store in the evaluation from e′1 to e′′1. It follows
that (e′1, Y1) ↪→∗ (e′′1, Y1) because adding unused concretizations to a state does not interfere
with its evaluation.

Also, since (e2, Y2)�V ′ (e′′, Y3), Corollary 1 gives us that (e2, Y2)�V ′ (e′′1, Y3) as
well. We can apply the inductive hypothesis to this to derive that (e1, Y1)�V ′′
(e′′1, Y3). Likewise, applying the inductive hypothesis to (e2, Y2)�V ′ (e′3, Y3) gives us that
(e1, Y1)�V ′′ (e′3, Y3). All of these conclusions together allow us to apply �-SYM1.

Non-Concretized Symbolic Variable on the Right Now assume that (e2, Y2)�V ′ (e3, Y3)
comes from �-SYM2, meaning that e3 is a symbolic variable s3, s3 /∈ Y3, and there exist
some e′ = lookup(s3, V ′) and e′′ such that (e′, Y2) ↪→∗ (e′′, Y2) and (e2, Y2)�V ′ (e′′, Y3).
We want to find some expressions e′1 = lookup(s3, V ′′) and e′′1 such that (e′1, Y1) ↪→∗
(e′′1, Y1) and (e1, Y1)�V ′′ (e′′1, Y3).

We already have a definition of e′1 from V ′′: e′1 is e′ with all of the symbolic variables
from Y2 inlined. Let e′′1 be e′′ with all of the symbolic variables from Y2 inlined. We know
that (e′, Y2) ↪→∗ (e′′, Y2), so it must be the case that (e′1, {}) ↪→∗ (e′′1, {}). All of the symbolic
variables that are used in the evaluation from e′ to e′′ are inlined for e′1, so there is no need
to use concretizations from the symbolic store in the evaluation from e′1 to e′′1. It follows
that (e′1, Y1) ↪→∗ (e′′1, Y1) because adding unused concretizations to a state does not interfere
with its evaluation.

Also, since (e2, Y2)�V ′ (e′′, Y3), Corollary 1 gives us that (e2, Y2)�V ′ (e′′1, Y3). We can
apply the inductive hypothesis to this to derive that (e1, Y1)�V ′′ (e′′1, Y3). This gives us
everything that we need to apply �-SYM2.

Non-Symbolic Variables Now assume that (e2, Y2)�V ′ (e3, Y3) comes from �-VAR, mean-
ing that e2 = e3 = x. Symbolic variables cannot map to non-symbolic variables, and we
covered �-EVAL for the approximation between e1 and e2 already, so, in order for
(e1, Y1)�V (e2, Y2) to hold, it must be the case that e1 = x as well. This lets us apply
�-VAR to derive immediately that (e1, Y1)�V ′′ (e3, Y3).

Lambdas Suppose that (e2, Y2)�V ′ (e3, Y3) comes from �-LAM, meaning that e2 =
λx2 . e′2, e3 = λx3 . e′3, and (e′2[x′/x2], Y2)�V ′ (e′3[x′/x3], Y3) for some fresh variable x′.
In this case, e1 must be a lambda λx1 . e′1 as well because we covered �-EVAL already.
The fact that (e1, Y1)�V (e2, Y2) implies that (e′1[x/x1], Y1)�V (e′2[x/x2], Y2) for some
other fresh variable x. We can use Lemma 3 to derive that (e′2[x′/x2][x/x′], Y2)�V ′
(e′3[x′/x3][x/x′], Y3). We can simplify this to (e′2[x/x2], Y2)�V ′ (e′3[x/x3], Y3) because x′

is fresh and therefore cannot appear in e′2 or e′3. Since we know now that (e′1[x/x1], Y1)�V

(e′2[x/x2], Y2) and (e′2[x/x2], Y2)�V ′ (e′3[x/x3], Y3), we can apply the inductive hypothesis
to derive that (e′1[x/x1], Y1)�V ′′ (e′3[x/x3], Y3). Then we can apply �-LAM to establish that
(λx1 . e′1, Y1)�V ′′ (λx3 . e′3, Y3), which was our goal.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 61

Data Constructors Assume that (e2, Y2)�V ′ (e3, Y3) comes from �-DC, meaning that e2 =
e3 =D. Since we can ignore the possibility that �-EVAL applies between e1 and e2, �-DC

must apply between e1 and e2. This means that e1 =D, so we can apply �-DC to e1 and e3

to derive that (e1, Y1)�V ′′ (e3, Y3).

Applications The next possibility to consider is that (e2, Y2)�V ′ (e3, Y3) comes from �-

APP, meaning that e2 = e′2 e′′2, e3 = e′3 e′′3, (e′2, Y2)�V ′ (e′3, Y3), and (e′′2, Y2)�V ′ (e′′3, Y3). e1

must be an application e′1 e′′1 in order for the approximation between e1 and e2 to hold, since
the approximation between the two does not use �-EVAL as the main rule. Our assumption
that (e1, Y1)�V (e2, Y2) implies that (e′1, Y1)�V (e′2, Y2) and (e′′1, Y1)�V (e′′2, Y2). We can
apply the inductive hypothesis twice over now to derive that (e′1, Y1)�V ′′ (e′3, Y3) and
(e′′1, Y1)�V ′′ (e′′3, Y3). Next, we can apply �-APP to conclude from these that (e1, Y1)�V ′′
(e3, Y3), which is what we wanted to show.

Case Expressions Now assume that (e2, Y2)�V ′ (e3, Y3) comes from �-CASE, meaning
that e2 = case e′2 of { �a2} and e3 = case e′3 of { �a3}, where (e′2, Y2)�V ′ (e′3, Y3) and, for any
aligning branch pair of (D �x2→ ea

2) ∈ a2 and (D �x3→ ea
3) ∈ a3, we know that (ea

2, Y2)�V ′
(ea

3[�x2/ �x3], Y3). Recall that we can ignore �-EVAL for the approximation between e1 and
e2. Since e2 approximates e1, it must be the case that e1 = case e′1 of { �a1}, that (e′1, Y1)�V

(e′2, Y2), and that, for any aligning branch pair of (D �x1→ ea
1) ∈ a1 and (D �x2→ ea

2) ∈
a2, (ea

1, Y1)�V (ea
2[�x1/ �x2], Y2). Because (e′1, Y1)�V (e′2, Y2) and (e′2, Y2)�V ′ (e′3, Y3), we

know from the inductive hypothesis that (e′1, Y1)�V ′′ (e′3, Y3).
Let (D �x1→ ea

1) be an alternative in �a1. Because case statement branches are exhaus-
tive, we know that there is an alternative (D �x2→ ea

2) from �a2 such that (ea
1, Y1)�V

(ea
2[�x1/ �x2], Y2). For this same alternative, we also know that there is an alternative

(D �x3→ ea
3) ∈ �a3 such that (ea

2, Y2)�V ′ (ea
3[�x2/ �x3], Y3). We can rewrite the approximations

for alternatives equivalently as (ea
2[�x′/ �x2], Y2)�V ′ (ea

3[�x′/�x3], Y3) and (ea
1[�x/ �x1], Y1)�V

(ea
2[�x/�x2], Y2) for fresh variable vectors �x and �x′. Because �x′ is fresh, Lemma 3 lets

us rewrite the first of these approximations again as (ea
2[�x/ �x2], Y2)�V ′ (ea

3[�x/�x3], Y3).
(Replacing �x2 or �x3 with �x′ and then replacing �x′ with �x is equivalent to replacing �x2

or �x3 with �x directly since �x′ does not appear in ea
2 or ea

3.) At this point, we can apply
the inductive hypothesis again. Chaining the two approximations together gives us that
(ea

1[�x/ �x1], Y1)�V ′′ (ea
3[�x/�x3], Y3). We can eliminate the fresh variable, converting the

approximation into (ea
1, Y1)�V ′′ (ea

3[�x1/�x3], Y3). An approximation of this form must hold
for any alternative in a1, and the branches must be in a corresponding order for all three
case statements, so we know now that all of the requirements for (case e′1 of { �a1}, Y1)�V ′′
(case e′3 of { �a3}, Y3) hold.

Bottoms Now suppose that (e2, Y2)�V ′ (e3, Y3) comes from �-BT, meaning that e2 = e3 =
⊥L for some label L. Since �-EVAL is not used between e1 and e2, the only way that
(e1, Y1)�V (e2, Y2) can hold is for e1 to be⊥L as well. This means that we can apply �-BT

on e1 and e3 to derive that (e1, Y1)�V ′′ (e3, Y3). �

Lemma 3 (�V substitution). Given expressions e1, e2, symbolic stores Y1 and Y2 involv-
ing some variable x, expressions e′1, e′2, and some V such that (e1, Y1)�V (e2, Y2) and
(e′1, Y1)�V (e′2, Y2) then (e1 [e′1 / x], Y1)�V (e2 [e′2 / x], Y2).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

62 J. C. Kolesar et al.

Proof Case analysis and induction on definition of �V . �

Lemma 4. Suppose (e1, Y1)�V (e2, Y2). For any e and any s that does not appear in e2,
it is the case that (e1, Y1)�V{s→e} (e2, Y2).

Proof Case analysis and induction on definition of �V . �

Lemma 5. If S1 ↪→ S2, and there exists some e such that SWHNF(e) and S1 ↪→∗ (e, _), then
S2 	� S1.

Proof Case analysis based on the expression in S1 and induction on ↪→ in the possible
reductions. The only difficulty is that a variable may reduce to itself. However, in this
case, the state will never reach SWHNF. �

Lemma 6. If (e1, Y1) ↪→∗ (ek , Yk) in k steps, then (e1, Yk) ↪→∗ (ek , Yk). Further, the next
k steps in the reduction of (e1, Yk) are deterministic.

Proof Case analysis of the reduction rules. The only rule which may be applied nondeter-
ministically is FRDC, since a symbolic variable that is not mapped in Y may be replaced
by any constructor of the appropriate type. The reduction of (e1, Yk) ↪→∗ (ek , Yk) will pro-
ceed exactly as the reduction of (e1, Y1) ↪→∗ (ek , Yk) except that any applications of FRDC

will be substituted for applications of LKDC, which will return the constructor application
inserted into Y by FRDC. �

Lemma 7. If S1 can be reduced to S2 in k steps, and there is some S′1 such that S1 � S′1,
then there is some S′2 such that S′1 can be reduced to S′2 in k′ steps, where k′ ≤ k.

Proof Follows from Theorem 2. �

Lemma 8 (Symbolic Execution Determinism). Let S1 = (e1, Y1) and S2 = (e1, Y2) be
states such that S1 �V S2. If S2 ↪→ S′2 where S′2 = (e′2, Y2), then there exists S′1 = (e′1, Y1)
such that S1 ↪→∗ S′1 and S′1 �V S′2.

Proof We proceed by case analysis on the expression e2.

Variable If (x, Y1)�V (x, Y2), both sides can only be reduced by VAR. Thus, the theorem
trivially holds.

Application If (e1
1 e2

1, Y1)�V (e1
2 e2

2, Y2), reduction may proceed on the right by APP

or APPλ. In either case, the same rule must be applicable on the left, preserving the
approximation by induction on the size of the expression.

Case Suppose (case eb
1 of { �a1}, Y1)�V (case eb

2 of { �a2}, Y2). If the rule CSEV or CSDC

is applicable on the right-hand side, the same rule must be applicable on the left-hand
side, and the lemma holds by induction on the size of the expression. FRDC cannot be
applied on the right-hand side, because it is nondeterministic. If LKDC is applicable on
the right-hand side, then eb

2 is some s2, such that there is an e= lookup(s2, Y2). By the
definition of �, (eb

1, Y1)�V (e, Y2). It must be the case that (eb
1, Y1) ↪→∗ (eb′

1 , Y1) such

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 63

that (eb′
1 , Y1)�V (e, Y2). Thus, both states may continue evaluation along corresponding

alternative expressions, preserving the approximation.

Symbolic Variables, Lambdas, Constructors, Bottom Symbolic variables, lambdas, data
constructors, and bottoms are already in SWHNF, so they cannot be reduced deterministi-
cally. The theorem holds trivially in these cases.

�

A.3. Reduction sequence lemmas

For our lemmas about reduction sequences, we need to introduce some new terminol-
ogy: a non-approximating reduction sequence is a reduction sequence in which no state is
approximated by a past state, that is, ∀i < j.Sj 	� Si.

Reduction Sequences and Approximation To establish the soundness of coinduction, we
rely on the following lemma, which relates reduction sequences and approximation:

Lemma 9. Let p be a predicate on states such that S1 � S2 ∧ p(S1) =⇒ p(S2). If
there exists a reduction sequence S↪→ = S1, . . . , Sn and p(Sn), then there exists some
non-approximating reduction sequence S′↪→ = S′1, S′2, . . . , S′n′ , where S′1 = S1 and p(S′n′).

Proof We proceed by induction on the length n of the reduction sequence S↪→.

Base Case - n = 2 By Lemma 5.

Inductive Step—Assume for n≤ k, Show for n= k + 1 If, for all 1≤ i < j≤ k + 1, it is
the case that Sj 	� Si, then we are done. Otherwise, let i and j be two indices such that
1≤ i < j≤ k + 1 and Sj � Si. Sj reduces to Sk+1 in k + 1− j steps. Then, by Lemma 7,
Si can be reduced to some state S′k+1 = (e′k+1, Y ′k+1), such that Sk+1 � S′k+1, in at most
k + 1− j steps. Since Sk+1 � S′k+1 ∧ p(Sk+1), it must also be the case that p(S′k+1) holds.
Since S1 can be reduced to Si in i− 1 steps and Si can be reduced to S′k+1 in k + 1− j steps,
S1 can be reduced to S′k+1 in i− 1+ k + 1− j+ 1 steps (where the extra “+1” comes from
the reduction between states Si and Sj). Since i− 1+ k + 1− j+ 1= k + 1− (j− i)≤ k,
this lemma follows from the inductive hypothesis. �

Corollary 2. If there exists a reduction sequence S↪→ = S1, . . . , Sn = (en, Yn) and
SWHNF(en), then there exists some non-approximating reduction sequence S′↪→ = S′1 =
S1, S′2, . . . , S′n′ = (en′ , Yn′), where SWHNF(en′).

Corollary 3. If there exists a reduction sequence S↪→ = S1, . . . , Sn and SA � Sn, then there
exists some non-approximating reduction sequence S′↪→ = S′1 = S1, S′2, . . . , S′n′ , where SA �
Sn′ .

Proof Consider Lemma 9 with p(S)= SA � S, which satisfies S1 � S2 ∧ p(S1) =⇒ p(S2)
by the transitivity of � (Lemma 2). �

Lemma 10. Let p be a predicate on states such that S1 � S2 ∧ p(S1) =⇒ p(S2). Let S↪→ =
S1, . . . , Sn be a non-approximating reduction sequence which calls f a minimal number

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

64 J. C. Kolesar et al.

of times while satisfying p(en). Let SL
1 = (eL

1, Y L
1) and SL

2 = (eL
2, Y L

1) be states such that
SL

1 ≡ SL
2 . Pick k such that ek = fe1

k . . . et
k (ek is in function application form), f /∈ eL

1 , and
for some V we have ∃e′k � ek .(e′k , Yk)�V (eL

1, Y L
1). Let S′k = ek [(eL

2 [V (s) / s]) / e′k]. Then
there exists some reduction sequence S′↪→ = S′k . . . S′m such that p(S′m) and ∀1≤ i≤ k, k ≤
j≤m.S′j 	� Si.

Proof The existence of S′↪→ = S′k . . . S′m such that p(S′m) is satisfied is straightforward, since
all we have done is substitute one subexpression for an equivalent subexpression.

Suppose that in reduction sequence S↪→, the function f is called x times before state k,
and y times after state k. Thus, it is called x+ y+ 1 times in total (the 1 extra time being at
state k itself). Since (eL

2 [V (s) / s]) does not contain f , there must be reduction of S′k+1 to S′m
which calls f exactly y times. Now suppose there exist i and k such that 1≤ i≤ k, k ≤ j≤m
and S′j � Si. S′j must be reducible to S′m calling f at most y times. Then, by Lemma 9, Si

must also be able to be reduced to satisfy p calling f at most y times, which contradicts
our assumption that S↪→ calls f a minimal number of times. Thus, it must be that for all
1≤ i≤ k, k ≤ j≤m, we have S′j 	� Si.

�

Lemma 11. Consider a finite paired reduction sequence S↪→ = (e1
1, e2

1, Y1) . . .

(e1
k , e2

k , Yk). There exists a paired reduction sequence S′↪→ = (e1′
1 , e2′

1 , Y ′1) . . . (e1′
k , e2′

k , Y ′k)
with the same initial and final expressions, but such that all reductions of the first
expression are completed before any reductions of the second expression. That is, e1′

1 = e1
1,

e2′
1 = e2

1, e1′
k = e1

k , e2′
k = e2

k , and there exists some b such that ∀1≤ i≤ b.e2′
b = e2′

b+1 and
∀b < i≤ k.e1′

b = e1′
b+1.

Proof Follows from reasoning similar to that required for Lemma 6.
The only rules which may cause any sort of interaction between the evaluation of e1

and e2 are FRDC, BTDC, and LKDC, which set and lookup variables in the same symbolic
store. Thus, any two neighboring reductions where the reduction of e2 happens before the
reduction of e1 may be swapped. The only catch is that that if FRDC or BTDC is being
applied to a variable s in e2, and LKDC is being applied to that same variable in e1, then the
rules being applied to each state must also be swapped. That is, the application of FRDC or
BTDC on e2 will become an application of LKDC, and the application of LKDC on e1 will
become an application of FRDC or BTDC. �

Lemma 12. Consider an infinite paired reduction sequence S↪→ = (e1
1, e2

1, Y1) . . .

(e1
k , e2

k , Yk), such that the evaluation of e1
1 (resp. e2

1) eventually reaches SWHNF. That
is, there exists some b such that ∀b < i≤ k.e1

b = e1
b+1. Then there exists an infinite

paired reduction sequence S′↪→: S′↪→ = (e1′
1 , e2′

1 , Y ′1) . . . (e1′
k , e2′

k , Y ′k) with the same initial
expression, but such that all reductions of the first expression are completed before any
reductions of the second expression. That is, e1′

1 = e1
1, e2′

1 = e2
1, and there exists some b′

such that ∀1≤ i≤ b′.e2′
b′ = e2′

b′+1 and ∀b′ < i≤ k.e1′
b′ = e1′

b′+1.

Proof Follows from the same basic argument as Lemma 11. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

Checking equivalence in a non-strict language 65

Lemma 9 can be extended to apply to paired reduction sequences, even with the choice
of predicate differing between the first and second state:

Lemma 13. Let p and q be predicates on states such that S1 � S2 ∧ p(S1) =⇒ p(S2) and
S1 � S2 ∧ q(S1) =⇒ q(S2). If there exists a (possibly infinite) paired reduction sequence
S↪→ = S1, . . . , Sn, where Sn = (e1

n, e2
n, Yn) and p((e1

n, Yn)) and q((e2
n, Yn)), then there exists

some (possibly infinite) paired reduction sequence S′↪→ = S′1, S′2, . . . , S′n′ with S′1 = S1,
where p((e′1n, Y ′n)) and q((e′2n, Y ′n)), and such that, for all 1 < i < j≤ n′, it is the case that

e1
i−1 ↪→ e1

i =⇒ (e1
j
′
, Y ′j) 	� (e1

i
′
, Y ′i)

and

e2
i−1 ↪→ e2

i =⇒ (e2
j
′
, Y ′j) 	� (e2

i
′
, Y ′i).

Proof By Lemma 11, S↪→ can be reordered into a paired reduction sequence that first per-
forms all reductions on e1 until it reaches state n, and then only performs reductions on
e2 afterward. By Lemma 9, we can then reduce both reductions individually to ensure
this lemma holds. Note, importantly, that the construction in Lemma 9 never requires
changing the constructor (or assignment to bottom) for an expression’s concretization.
Consequently, the only impact that these two individual changes to reductions might have
on each other is that, if an application of FRDC is removed from e1, a corresponding LKDC

applied to e2 may need to be changed to a FRDC. �

Corollary 4. If there exists a paired reduction sequence S↪→ = S1, . . . , Sn where Sn =
(e1

n, e2
n, Yn) and SA � (e1

n, Yn) (resp. SA � (e2
n, Yn)), then there exists some (possibly infi-

nite) paired reduction sequence S′↪→ = S′1 = S1, S′2, . . . , S′n′ , where SA � (e1
n′ , Yn′) (resp.

SA � (e2
n′ , Yn′)), such that for all 1≤ i < j≤ n′ it is the case that

e1
i−1 ↪→ e1

i =⇒ (e1
j
′
, Y ′j) 	� (e1

i
′
, Y ′i)

and

e2
i−1 ↪→ e2

i =⇒ (e2
j
′
, Y ′j) 	� (e2

i
′
, Y ′i).

Lemma 14. Lemma 10 can be applied to the reduction of both the first and second state
in a (possibly infinite) reduction sequence.

Proof The proof follows from the proof of Lemmas 10 and 12 and resembles the proof of
Lemma 13. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796825100099
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.169, on 24 Sep 2025 at 09:56:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796825100099
https://www.cambridge.org/core

	Checking equivalence in a non-strict language
	Introduction
	Motivating examples
	Symbolic execution
	Equivalence
	Equivalence rules
	Equivalence verification with coinduction
	Lemmas
	Soundness

	Counterexample detection
	Automated equivalence checking
	Approximation relations
	Equivalence checking loop
	Tactics
	Synchronization
	Implementations of tactics

	Lemmas
	Heuristics for potential lemma generation

	Symbolic functions
	Symbolic function consistency

	Total variables

	Evaluation
	Benchmark construction
	Totality and finiteness requirements

	Results
	Discussion of results
	Differences from original evaluation
	Finite-variable benchmarks
	Inadequate proof tactics
	Cycle counterexamples
	Impact of the time limit
	Impact of heuristics
	Impact of lemmas

	Related work
	Conclusion

